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5Departamento de Astronomı́a, Universidad de La Serena, Av. Juan Cisternas 1200 Norte, La Serena, Chile
6Instituto de Astrofı́sica de La Plata (CCT La Plata, CONICET, UNLP), Observatorio Astronómico, Paseo del Bosque S/N, B1900FWA La Plata, Argentina
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ABSTRACT
We present the ROGER (Reconstructing Orbits of Galaxies in Extreme Regions) code, which uses three different machine
learning techniques to classify galaxies in, and around, clusters, according to their projected phase-space position. We use a
sample of 34 massive, M200 > 1015h−1M�, galaxy clusters in the MultiDark Planck 2 (MDLP2) simulation at redshift zero. We
select all galaxies with stellar mass M� ≥ 108.5h−1M�, as computed by the semi-analytic model of galaxy formation SAG, that
are located in, and in the vicinity of, these clusters and classify them according to their orbits. We train ROGER to retrieve the
original classification of the galaxies from their projected phase-space positions. For each galaxy, ROGER gives as output the
probability of being a cluster galaxy, a galaxy that has recently fallen into a cluster, a backsplash galaxy, an infalling galaxy, or
an interloper. We discuss the performance of the machine learning methods and potential uses of our code. Among the different
methods explored, we find the K-Nearest Neighbours algorithm achieves the best performance.

Key words: methods: analytical – methods: numerical – galaxies: clusters: general – galaxies: kinematics and dynamics.

1 IN T RO D U C T I O N

Galaxies in the Universe show a wide variety of properties as a
result of the action of both, internal and environmental processes.
Clusters of galaxies constitute the most extreme environments in the
Universe for galaxy evolution. They are the most massive objects
(∼ 1014–15M�) in virial equilibrium, are characterized by a deep
gravitational potential well, a large number of galaxy members,
and an intracluster medium filled with hot ionized gas. Galaxies in
clusters exhibit different properties compared to galaxies that reside
in the field, or in less massive systems.

Several physical processes affect galaxies inside clusters in a
simultaneous way. One of these mechanisms is the ram pressure
stripping (e.g. Gunn & Gott 1972; Abadi, Moore & Bower 1999;
Book & Benson 2010; Steinhauser, Schindler & Springel 2016).
This process can remove an important fraction of the cold gas
from galaxies, resulting in the inhibition of star formation. Although
this mechanism is more effective at the central regions of massive
clusters, it has been reported in less massive systems (e.g. Rasmussen,
Ponman & Mulchaey 2006; Jaffé et al. 2012; Hess & Wilcots 2013).
Ram pressure stripping occurs as galaxies move at high speeds
through the hot ionized gas of the intracluster medium, which collides
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with the cold gas of the galaxies and removes it. The warm gas from
the galactic halo can also be removed by the gas of the intracluster
medium, a process known as starvation (e.g. Larson, Tinsley &
Caldwell 1980; Balogh, Navarro & Morris 2000; McCarthy et al.
2008; Bekki 2009; Bahé et al. 2013; Vijayaraghavan & Ricker 2015).
This process can cut-off further gas cooling from the galaxy’s halo
gas that fuels future star formation. Kawata & Mulchaey (2008)
predicted that starvation can act in galaxy groups as well. Another
physical process that works on galaxies in their passage through
the deep potential well of the cluster is tidal stripping (e.g. Zwicky
1951; Gnedin 2003a; Villalobos, De Lucia & Murante 2014). It can
induce a central star formation burst (Byrd & Valtonen 2001), bar
instabilities (Łokas et al. 2016), changes in the pattern of the spiral
arms (Semczuk, Łokas & del Pino 2017), and truncate dark matter
haloes (e.g. Gao et al. 2004; Limousin et al. 2009). In the outskirts
of clusters, mechanisms like galaxy–galaxy interaction, known as
harassment, are more effective (e.g. Moore et al. 1996; Moore, Lake
& Katz 1998; Gnedin 2003b; Smith et al. 2015). Most of the processes
mentioned above tend to decrease or to completely suppress the star
formation in galaxies. As a consequence, galaxies in clusters are
typically red, early-type, with an old stellar population, and have
little or none star formation at all.

Clusters of galaxies are continually accreting galaxies. Some
galaxies may fall as members of galaxy groups and, therefore, they
may have already experienced environmental effects that accelerated
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the consumption of their gas reservoir prior to entering the cluster.
This is known as pre-processing (e.g. Fujita 2004; Mihos 2004), and
has both observational and theoretical support (e.g. Balogh et al.
1999; McGee et al. 2009; De Lucia et al. 2012; Jaffé et al. 2012;
Wetzel et al. 2013; Hou, Parker & Harris 2014). In the outskirts of
clusters, not only star forming and pre-processed galaxies are found,
but also backsplash galaxies. These are galaxies that have orbited
the central regions of the cluster only once since their infall. They
are currently outside the cluster, and will fall back to the cluster
in the future (e.g. Gill, Knebe & Gibson 2005; Rines & Diaferio
2005; Aguerri & Sánchez-Janssen 2010; Muriel & Coenda 2014).
Backsplash galaxies do not necessarily have become passive yet.
They have suffered the extreme environmental effects of the inner
regions of a cluster, which has surely left traces in their physical
properties. Consequently, the characterization of this population
of galaxies is important to understand the effects that the cluster
environment produces in galaxies.

Since the efficiency of the physical processes described above
depends heavily on the history of galaxies in and around clusters, a
detailed knowledge of galaxy orbits is essential. It is customary to
classify galaxies around clusters using different criteria according to
their position in the Projected Phase-Space Diagram (PPSD). This 2D
space combines the projected cluster-centric distance, with the line-
of-sight velocity relative to the cluster. Oman, Hudson & Behroozi
(2013) use a N-body simulation to compile a catalogue of the orbits
of satellite haloes in cluster environments. They found that satellite
haloes in different phases of their orbits occupy different regions
in the PPSD. Mahajan, Mamon & Raychaudhury (2011) quantify
the decrease of star formation in backsplash galaxies. Muzzin et al.
(2014) find that quiescent, star forming, and post-starburst galaxies
in clusters at z ∼ 1, are distributed differently in the PPSD. Muriel
& Coenda (2014) study the properties of galaxies in the outskirts
of a sample of 90 galaxy clusters. They split galaxies into two
classes: those with high relative velocity, and those with low relative
velocity, being the latter candidates to be backsplash galaxies. These
authors find that backsplash candidates are systematically older,
redder, and have formed fewer stars in the last 3 Gyr than high-
velocity galaxies. In addition, Hernández-Fernández et al. (2014)
and Jaffé et al. (2015) infer the orbital histories of cluster galaxies
from their PPSD positions to investigate the effects of ram pressure
on the gas fraction of galaxies. Oman & Hudson (2016) measure
quenching time-scales in clusters as a function of the position in
the PPSD. Yoon et al. (2017) trace the gas stripping histories of
galaxies infalling into the Virgo cluster using a reference sample
in the PPSD. Jaffé et al. (2018) reconstruct the stripping history of
jellyfish galaxies using their PPSD position as an indication of their
orbits.

Using cosmological hydrodynamic N-body simulations of groups
and clusters, Rhee et al. (2017) separate galaxies in the PPSD as a
function of the time elapsed since their infall into the system: first,
recent, intermediate, and ancient infallers. They define regions in the
PPSD where each of these types of galaxies are more likely to be
found. These regions can, in turn, be used to classify galaxies from
their PPSD position. An alternative tool is given by Pasquali et al.
(2019). They use cosmological simulations of groups and clusters and
derive zones of constant mean infall time. They use these zones to
study the environmental effects upon satellite galaxies. They provide
an analytical form for the curves that define each zone. Smith et al.
(2019) use these zones in the PPSD to create samples of ancient and
recent infallers among satellite galaxies in an SDSS group catalogue.
They use these samples to study the stellar mass growth histories of
galaxies as a function of infall time.

Although many interesting results have been obtained using the
PPSD, in practice it is very difficult to determine with certainty
whether a particular galaxy is a backsplash, or it is infalling to the
cluster for the first time, or if it has already become a cluster member.
In this work we take a different approach by classifying galaxies
relating their 3D orbits with their position in the PPSD. We use a
sample of massive clusters from the MultiDark Planck 2 (MDLP2)
cosmological simulation (Klypin et al. 2016) and generate the
galaxy population with the semi-analytic model of galaxy formation
SAG (Cora et al. 2018). We classify galaxies in and around these
clusters into five types, according to their 3D orbits. Then, we
develop a Machine Learning code and train it to recover the orbital
classification (3D) of the galaxies out of their PPSD position (2D).
Machine learning techniques represent a new way of analysing big
data sets in an agnostic and homogeneous way. Taking into account
the amount of data generated by current and future surveys and
simulations, the data-driven techniques will become a fundamental
tool for their analysis. These methods are very useful and powerful
tools to find patterns and relations between the variables that are
involved in a specific problem. In particular, these methods are
especially good in classification problems (de los Rios et al. 2016;
Bom et al. 2017; Diaz Rivero & Dvorkin 2020).

This article is organized as follows: we describe the data sets
of simulated clusters and galaxies in Section 2, where we also
define different galaxy types according to their orbits; in Section 3,
we present our code ROGER (Reconstructing Orbits of Galaxies in
Extreme Regions) that relates the 2D PPSD position of galaxies to
their 3D orbits, and analyse its performance; finally, we present our
conclusions in Section 4.

2 THE SAMPLE OF SI MULATED C LUSTERS
A N D G A L A X I E S

We use a sample of clusters and galaxies from a simulated galaxy
catalogue constructed using the semi-analytic model of galaxy
formation and evolution SAG (Semi-Analytic Galaxies; Cora et al.
2018). As a backbone for this synthetic catalogue, we use dark matter
haloes and subhaloes, and their corresponding merger trees, extracted
from the cosmological simulation MDPL2 (Klypin et al. 2016). In
this section, we briefly present the MDPL2 simulation and the SAG
code, and describe the samples of simulated clusters and galaxies we
use throughout the paper.

2.1 The MDPL2 simulation

The MDPL2 simulation is part of the MULTIDARK suite of dark matter
simulations, publicly available at the COSMOSIM data base1 (Riebe
et al. 2013; Klypin et al. 2016). The simulation has 38403 dark matter
particles in a comoving cubic volume of 1 h−3 Gpc3, evolved from
redshift 120 to redshift 0. The cosmology adopted corresponds to a
�CDM model with parameters consistent with Planck measurements
(Planck Collaboration XVI 2014; Planck Collaboration XIII 2016):
�m = 0.307, �� = 0.693, �b = 0.048, σ 8 = 0.823, n = 0.96, and h =
0.678. Dark matter haloes were identified using the ROCKSTAR halo
finder (Behroozi, Wechsler & Wu 2013a), keeping all the dark matter
bounded structures with at least 20 particles. The final catalogue
comprises ∼127 × 106 haloes, whose merger trees were constructed
using the CONSISTENTTREES algorithm (Behroozi et al. 2013b).

1https://www.cosmosim.org/
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2.2 The SAG model

The version of SAG used in this work was presented in detail in
Cora et al. (2018). This model includes the main physical processes
relevant to galaxy formation and evolution: radiative cooling of hot
gas in central and satellite galaxies, star formation in quiescent and
bursty modes, being the latter triggered by galaxy mergers and disc
instabilities, detailed treatment of chemical enrichment of gaseous
and stellar components, supernova feedback and stellar winds, gas
ejection and reincorporation of hot gas, central super-massive black
hole growth and AGN feedback, ram pressure and tidal stripping.
For a complete and detailed description of all of these processes and
their implementations, we refer the reader to Cora (2006), Lagos,
Cora & Padilla (2008), Tecce et al. (2010), Gargiulo et al. (2015),
Muñoz Arancibia et al. (2015), Ruiz et al. (2015), Cora et al. (2018),
Collacchioni et al. (2018), and Cora et al. (2019).

2.3 Galaxies in and around clusters in the MDPL2-SAG
catalogue

From the MDPL2 simulated volume, we select all haloes at redshift
zero that have a mass, computed within the region that encloses
200 times the critical density, M200 ≥ 1015h−1M�. Furthermore,
we impose an isolation criterion by requiring that they have no
companion haloes more massive than 0.1 × M200, within 5 ×
R200, where R200 is the radius enclosing the overdensity. With
this restriction, we exclude from our analysis haloes undergoing
a major merger, or interacting with a massive companion. Both these
situations are likely to affect galaxy orbits to a great extent in the
vicinity of the main halo. Out of the 85 haloes more massive than
1015h−1M� in the MDPL2 volume, our selection results in a set of
34 massive, relaxed haloes that constitute our cluster sample for this
paper.

In order to guarantee completeness, we impose a low stellar
mass cut-off of log10(Mmin

� /h−1M�) = 8.5 in our sample of galaxies
(Knebe et al. 2018). Below this mass limit, observed stellar mass
functions are not well reproduced and galaxy properties are not
followed in a reliable way.

For each cluster in our sample, we follow the trajectory of all
central galaxies and of those satellite galaxies that keep their dark
matter substructure2 and that end up in a region that includes the
cluster and its surroundings. We choose each of these regions to be a
cylinder elongated along the z-axis of the simulation box to include
not only the cluster galaxies and galaxies in the surroundings of the
cluster, but also interlopers, i.e. galaxies that will appear in or around
the cluster in projection but are unrelated to it; interlopers constitute
the main source of contamination in the PPSD. There is no loss of
generality by choosing cylinders parallel to the z-axis, i.e. we are
choosing the line-of-sight direction to be this axis of the simulation
box. The dimensions of these cylinders are: a radius of 5 × R200, and
a longitude in the z-axis that extends as far as to include all galaxies
within |�Vz + H0�z| ≤ 3σ , where �Vz is the galaxy peculiar
velocity in the z direction relative to the cluster, �z is the proper
distance between the galaxy and the cluster in the z-direction, H0 =
67.8 km s−1 Mpc−1 is the Hubble constant, and σ is the 1D velocity
dispersion of the cluster. As shown by Munari et al. (2013), the
measurement of σ produces different values depending on whether
dark matter particles or subhaloes are used in the computation. For
consistency, we computed σ out of the satellite galaxies more massive

2Orphan galaxies are avoided in this analysis.

than Mmin
� , using the biweight estimator of Beers, Flynn & Gebhardt

(1990). We recall that satellite galaxies in the MDPL2-SAG catalogue
are the central galaxies of the subhaloes, thus our estimation of σ

is made out of those subhaloes that harbour a central galaxy more
massive than our chosen stellar mass threshold.

We classify all galaxies in these cylinders into different types
according to their orbits around clusters. These galaxies are, in turn,
used to train and test the machine learning algorithms described in
the next section. We define five classes of galaxies:

(i) Clusters members (CL): galaxies that may have crossed R200

several times in the past and now orbit around the cluster centre.
Most of them are found within R200 of the cluster centre.

(ii) Recent infallers (RIN): galaxies that have crossed R200 only
once on their way in the past 2 Gyr (we discuss the choice of this time-
scale below). Among these, there are galaxies that can get further
away than R200 from the cluster centre in the future.

(iii) Backsplash galaxies (BS): galaxies that have crossed R200

exactly twice. The first time on their way in, and the second time on
their way out of the cluster, where they are found now. Most of these
galaxies will fall back into the cluster. Accordingly to this definition,
some RIN may become BS in the future.

(iv) Infalling galaxies (IN): galaxies that have never been closer
than R200 to the cluster centre, and their main halo3 has negative
radial velocity relative to the cluster. We consider these galaxies to
be either bounded to the cluster, or will potentially fall into the cluster
in the future.

(v) Interlopers (ITL): galaxies that have never been closer than
R200 to the cluster centre, but unlike IN, their main halo has a
positive radial velocity relative to the cluster, i.e. the halo is receding
away from the cluster at redshift zero. In contrast to the IN galaxies
described above, we consider these galaxies as objects that will not
fall into the cluster. They are galaxies unrelated to the cluster that
can be confused with classes (i)–(iv) in the PPSD.

Galaxies of classes (i) to (iv) are of interest in cluster studies, while
galaxies of class (v) constitute the main source of contamination
at the time of classifying galaxies in and around clusters from an
observational point of view.

We show in Fig. 1 examples of how our classification scheme
works. For one of the cluster in our sample, we have chosen examples
of galaxies from the five classes defined above, and show their 3D
cluster-centric distance as a function of the lookback time.

Special attention deserves our choice of 2 Gyr to define RIN
galaxies above. It makes no sense to classify all galaxies within
R200 as cluster members, since some of the galaxies that have entered
the clusters in recent times may get out of the cluster in the future,
and become BS galaxies. On the other hand, it would be very useful
to pick out the galaxies that are experiencing the effects of the cluster
environment for the first time. Thus, it is important to define a time-
scale to tell apart between ‘old’ cluster galaxies, and galaxies that
have fallen into the cluster not a long time ago. When we analysed
the distribution of the infall time of galaxies that are within R200 at
redshift zero, we find a clear peak at lookback times tinf ≤ 2 Gyr; this
fact motivates our choice of the condition imposed to classify RIN
galaxies. We show in Fig. 2 the distribution of the first infall times
of galaxies that have been within R200 at least once in their lifetimes,
i.e. CL, RIN, and BS.

3In the simulation, the main halo is the galaxy’s own halo for a central galaxy,
and it is the central galaxy’s halo for a satellite galaxy.
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Figure 1. Cluster-centric distance as a function of lookback time for ten
galaxies in/around one of the clusters in our sample. The thick black solid
line represents the R200 of the cluster. Different colours correspond to galaxies
classified as: cluster members (CL, red lines), recent infallers (RIN, green
lines), backsplash (BS, orange lines), infall galaxies (IN, violet lines), and
interlopers (ITL, grey lines).

Figure 2. Distribution of the time since first infall for all galaxies in our
sample that have been within R200 of a cluster at some point in their lifetimes.
Colours are as in Fig. 1.

For real galaxies, only their projected distance to the centre of
the cluster, and their line-of-sight velocity relative to the cluster can
be measured, i.e. their positions in the PPSD. In Fig. 3 (left-hand
panel), we show the PPSD of all galaxies in our sample. Phase-
space positions of galaxies relative to their parent cluster’s centre are
computed by projecting the 3D Cartesian coordinates of the galaxies
in the MDPL2 box into the (x, y) plane. Hereafter, the projected
distance on this plane, Rproj, will be referred to as the 2D distance,

and it will be quoted in units of R200 unless otherwise specified. On
the other hand, the z-axis velocity relative to the cluster, �Vlos ≡
|�Vz + H0�z|, will be called the line-of-sight velocity, and will be
quoted in units of the velocity dispersion of the cluster, σ .

As can be seen in Fig. 3, there is much overlap between the five
classes of galaxies in the PPSD. Thus, deciding how to classify a
galaxy according to its phase-space position is not trivial. CL and
RIN galaxies have similar radial distributions, occupying the region
defined by Rproj/R200 � 1. These two classes differ, however, in their
line-of-sight velocity distributions: CL galaxies are concentrated
towards �Vlos/σ ∼ 0, while RIN galaxies show a roughly flat
distribution up to �Vlos/σ ∼ 1.25, an indication that the latter do
not constitute a population in virial equilibrium. BS galaxies are
found preferentially between 0.5R200 and 2R200, with a broad peak
at ∼1.2R200. Their velocity distribution is very similar to that of
IN galaxies. These two latter classes are characterized by having
typically low line-of-sight velocities. IN galaxies, in turn, have
little overlap with CL and RIN galaxies, they are mostly located
at Rproj/R200 > 1, showing a flat radial distribution up to Rproj/R200

∼ 3. Finally, ITL galaxies are found everywhere in the PPSD, with
two distinctive features consistent with a population uncorrelated to
the clusters: their radial distribution is roughly linear with Rproj, and
they have an almost flat velocity distribution. ITL galaxies are a clear
source of contamination for BS and IN galaxies, and to a much lesser
extent for CL and RIN galaxies.

To tackle the problem of classifying galaxies out of their PPSD
position, we explore machine learning techniques in the next section.
This constitutes a new, alternative way to address the problem, not
previously found in the literature.

3 MAC HI NE LEARNI NG CLASSI FI CATIO N O F
GALAXI ES I N THE 2 D PHASE SPAC E

Machine learning (ML) techniques have proved to be powerful tools
for classification tasks, as they look for correlations between the input
variables, also called features, and the classes in which we want to
group our data. It is important to remark that, in order to achieve this
goal, it is mandatory to have a reliable data set in which we must
know the input variables (in our case, the 2D distance to the cluster
centre and the relative velocity along the line of sight), as well as the
output classes (in our case, the real orbital classification).

Using the data set described in Section 2, we analyse the perfor-
mance of three different techniques: K-Nearest Neighbours, Support
Vector Machine, and Random Forest. We briefly describe them.

(i) K-Nearest Neighbours (KNN): This algorithm estimates the
probability of a new object to belong to a certain class taking into
account the proportion of neighbours of each class. The neighbours
are defined as the k nearest objects belonging to the training set.
It is worth remarking that as the variables in the y and x-axis are
normalized and span a similar range of values, we decided to use the
Euclidean distance in the PPSD to look for neighbours.

(ii) Support Vector Machine (SVM; Cortes & Vapnik 1995): It
is a supervised learning algorithm that, given a training set {(x1,
y1), . . . , (xn, yn)} in a feature space of dimension d, it looks for
hyperplanes, i.e. hypersurfaces of dimension d − 1, that separate the
classes. It is important to note that this algorithm only looks for linear
hyperplanes in the feature space. A way to generalize this method to
more complex hyperplanes is to enlarge the feature space by means
of a set of basis functions h(x). Then the hyperplanes will be searched
for in a new feature space defined by h(xi) = (h1(xi), h2(xi), . . . ), that
translates on to non-linear surfaces in the original feature space.

MNRAS 500, 1784–1794 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/2/1784/5942674 by guest on 19 April 2024



1788 M. de los Rios et al.

Figure 3. Projected phase-space diagram of our full sample (left-hand panel) and of the validation-set (right-hand panel) of MDPL2-SAG galaxies. In the main
box, we show in different colour shades the density of galaxies classified as CL (red), RIN (green), BS (orange), and IN (violet). ITL galaxies are shown as
individual grey points for clarity. We show in the upper and right-hand side panels, the corresponding marginalized distributions of Rproj/R200 and |�Vlos|/σ .
These distributions are normalized to have unity area.

(iii) Random Forest (RF): A decision tree algorithm is a supervised
learning algorithm that subdivides the input feature space into
subregions and then adjusts a local model to each of these subregions.
One of the main problems of the decision trees is their instability; this
means that small changes in the training set can lead to very different
predictions. That is why in general it is advisable to train many
decision trees and then average the results. RF is an implementation
of this technique developed by Breiman (2001). This method consists
in training N decision trees randomly selecting the features that will
be studied to subdivide the input space as explained above. In this
way, we can reduce the correlation between different trees.

With the aim of providing a fully consistent and automatic method
for the classification of galaxies, we have created the R-package
ROGER that is publicly available through the github repository: https:
//github.com/Martindelosrios/ROGER/. With this software any user
can analyse their own galaxy sample with the methods described
above.

For the analysis of the three machine learning methods, we use
the R-package caret (Kuhn 2020). To train the three algorithms
described above, we first randomly split the full data set of galaxies
into two independent samples: a training-set of 26 370 galaxies (90
per cent of the total) and a validation-set of 2930 galaxies (10 per cent
of the total). Each of these sets is a random pick of the galaxies shown
in left-hand panel of Fig. 3. For a better comparison, we show in the
right-hand panel of Fig. 3 the PPSD of the galaxies in the validation
set. It can be seen that this subsample follows similar trends than
the full data set as expected. The first set is used for the training of
the machine learning algorithms, while the validation set is used to
estimate the performance of each technique.

We also randomly choose one galaxy cluster and its associated
galaxies (1041 galaxies in the cylinder), which are not included
neither in the training set nor in the validation set, but are used to
test the final algorithm instead. Taking into account that the galaxies

in the validation set are never ‘seen’ by the trained machine learning
algorithms, we avoid overfitting the data, thus achieving a reliable
measurement of the performance of each method as explained below.

3.1 Class probability of galaxies in the PPSD: a comparison of
the three ML methods

Once the ML methods have been trained, we use them to predict, for
each galaxy in the validation set, the class probability, pi (i = 1, . . . ,
5), of belonging to a particular class. These predicted probabilities
allow us to classify galaxies, to measure the performance of each
method, and to compare their outputs.

In Fig. 4 we show, for each method, the mean probability of the
four classes of interest (CL, RIN, BS, and IN) as a function of the
position in the PPSD. To compute these maps, we perform a 2D
binning of the PPSD and compute the mean value of the probability
of a particular class for all validation set galaxies in each bin. It
can be seen that, as expected, the high-probability regions found
by all methods agree well with the high-density regions of Fig. 3.
It is interesting to note that the SVM method assigns a non-zero
(however very low) probability of being a galaxy of classes (i) to
(iv), to regions of the phase-space where there are almost exclusively
interlopers (class (v)).

3.1.1 Classification from the class probability and testing the ML
methods

With the estimated class probabilities, there are at least three
straightforward schemes for classifying a galaxy:

(a) The class is given by the highest class probability.
(b) The class is given by a random pick of the five classes

taking into account the estimated class probabilities. Briefly, given
a galaxy with class probabilities, pi, where

∑5
i=1 pi = 1, we choose
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(a) KNN method (b) SVM method (c) RF method

Figure 4. Mean class probability in the PPSD for galaxies in the validation set. Panel (a) shows the results obtained with the KNN method, panel (b) SVM
method, and panel (c) RF method. In each case, different subpanels correspond to galaxies classified as CL (red), RIN (green), BS (orange), and IN (violet).

the class using the R-function sample setting the parameter
prob =pi.

(c) The class is given by the class probability that is higher than
a certain threshold.

Another utility of the class probabilities is their use in weighted
statistics. There might be situations in which it is not desirable to split
galaxies in the sample under study into classes, but to use all galaxies
in statistics which involve a weighting scheme. The estimated class
probabilities can be used as such weights.

In order to compare the performance of the ML methods, we define
the following statistics:

(i) Sensitivity: the number of correct predictions of a given class
in the resulting sample, divided by the total number of galaxies of
that class in the validation set.

(ii) Precision: the number of correctly predicted galaxies of a given
class in the resulting sample, divided by the total number of galaxies
of that class in the resulting sample.

Using the scheme (c) above, and taking the probability threshold
as a parameter, we can construct different resulting samples. This
procedure, in turn, allows us to build a curve in the sensitivity-
precision space. In Fig. 5, we show sensitivity versus precision,
for each of the trained algorithms, parametrized by the threshold
value, that varies from 0.1 (corresponding to the extreme of each
curve in the upper left-hand corner of each panel) to 0.9 (the other
extreme of the curves). It is important to remark that, given a certain
threshold, there can be galaxies in the validation set with all their
probabilities lower than this value, and so, they will not be classified,
and consequently, the sensitivity of the method will be reduced.
In some extreme cases (see for example the SVM classification
for backsplash galaxies) there are no galaxies with a probability
higher than a threshold of 0.6, making it impossible to compute
the sensitivity and precision. We also show in this figure as a
blue triangle, light-green square, and red filled circle the sensitivity
versus precision achieved for each method when classifying galaxies
taking into account the class with the highest probability (scheme (a)
above).

Figure 5. Sensitivity versus precision of the trained ML algorithms repre-
sented by different curves. Results are obtained using the scheme (c) that
considers a probability threshold as a parameter. In the curves shown, the
parameter ranges from 0.1 at the upper end to 0.9 at the lower end. We show
as blue triangle, light-green square, and red filled circle the sensitivity and
precision obtained when classifying galaxies taking into account the class with
the highest probability. Each panel corresponds to a different class of galaxy
in the training set: cluster galaxies (upper left-hand panel), recent infallers
(upper right-hand panel) backsplash galaxies, (lower left-hand panel), and
infalling galaxies (lower right-hand panel).

As expected, the sensitivity decreases as the probability threshold
increases. This happens because increasing the threshold reduces
the number of galaxies of each class in the resulting sample, thus
the sensitivity is also reduced. It is also expected that the precision
increases with increasing probability threshold. It can be seen that
in general this is the case, with some few exceptions. This can be
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understood in terms of the overlapping of the different classes in
the phase-space diagram. Thus there are regions in which, although
the machine learning methods may compute a high probability for a
galaxy of being of a certain class, there could also be many galaxies of
other classes. In these regions, an important degree of contamination
is expected.

As an example of the ML predictions, we show in the left-
hand panels of Fig. 6 the PPSD of the validation set, where the
classification of the galaxies is determined by the highest class
probability. Additionally, we show in solid lines the corresponding
Rproj/R200 and |�Vlos|/σ marginalized distribution for the estimated
classification, while in dashed lines we show the ‘true’ distributions
corresponding to the validation set (same as right-hand panel of
Fig. 3). It can be seen that, although the algorithm is capable of
recovering similar trends as in Fig. 3, there are regions in which
the different classes overlap and so, this echoes in contamination on
the resulting samples. As discussed above, an important feature in
Fig. 3 is that some classes overlap more with the rest than others.
For instance, it is more likely for miss-classified cluster galaxies to
be classified as recent infallers than as backsplash or infallers. This
implies that in the resulting predictions the miss-classification will
not be at random.

A useful way to visualize the performance of an algorithm is
through the confusion matrix. Each row of this matrix represents the
instances of each predicted class, while each column represents the
instances of each real class. On the one hand, from the diagonal of this
matrix we can read the sensitivity of the method when classifying the
different types of galaxies. On the other hand, from the off-diagonal
terms we can see the miss-classifications. In the right-hand panels
of Fig. 6, we present the confusion matrices of the classification
shown in the left-hand panels, quoting the percentages of galaxies
of each real class that were classified as belonging to each predicted
class. For instance, when using the KNN method, out of the real CL
galaxies, 74 per cent are well classified. The remaining 26 per cent
were classified as RIN (15 per cent), as BS (8 per cent), as IN (3 per
cent), and as INT (0 per cent). The row corresponding to CL galaxies
shows that 45 per cent of the real RIN galaxies, 14 per cent of the
real BS galaxies, the 6 per cent of the real IN galaxies, and the 5 per
cent of the real ITL galaxies were classified as CL. We find that the
KNN method achieves a sensitivity of 74 per cent, 45 per cent, 45
per cent, 63 per cent, and 59 per cent when classifying galaxies as
CL, RIN, BS, IN, and ITL, respectively. The SVM method achieves
a 74 per cent, 42 per cent, 43 per cent, 65 per cent, and 58 per cent of
sensitivity, while the RF method achieves 48 per cent, 44 per cent, 39
per cent, 50 per cent, and 63 per cent of sensitivity. It should be kept
in mind that these numbers correspond to the classification taking
into account the highest class probability (scheme (a)), and they
will change if the classification is performed with another scheme.
Another feature worth remarking is that, although the RF method
recovers distributions more similar to the real ones, its performance
is poorer than the SVM and KNN methods in terms of both sensitivity
and precision.

Finally, as theROGER software gives as output the class probability
of a galaxy of belonging to each class, we can build a random
realization of a particular cluster, by randomly classifying each
galaxy as explained in scheme (b). An example of such procedure is
given in Section 3.1.2.

Taking into account the results shown in this section, the method of
our preference is KNN. It has two main advantages: it is the simplest
one, and performs similarly or better than the more complex SVM
and RF methods. We remark that in the ROGER package the three
methods are available.

3.1.2 Testing the methods in an independent cluster

As a further test, and to provide an end-to-end example, we analyse
the cluster that was previously left aside from both the training and
validation sets. Several JUPYTER notebooks with full examples are
provided on the GITHUB repository. We also include an appendix A
where we show the basic options included in the ROGER software.

In the left-hand panel of Fig. 7, we show the PPSD of the test
galaxy cluster, where different colours refer to the types of galaxies
as predicted by the KNN method by taking into account the highest
class probability. We show the resulting confusion matrix in the
right-hand panel of Fig. 7.

Finally, we create a random realization of the test cluster following
the scheme (b) as explained in the previous subsection. In the left-
hand panel of Fig. 8, we show the PPSD of the random realization for
the test cluster and its surroundings. The corresponding marginalized
distributions are represented by solid lines. For a better comparison,
in dashed lines, we add the marginalized distributions of galaxy
projected distance and line-of-sight velocity taking into account their
real classes. As it can be seen from this figure, the distributions
in both axis of the random realization agree well with the real
distributions of the galaxies, which demonstrate the ability of the
method to learn the real properties of each galaxy class. In the right-
hand panel of Fig. 8, we show the corresponding confusion matrix.
The classification obtained by taking into account the highest class
probability achieves a better performance in terms of the confusion
matrix, nevertheless the random realization reproduces better the
overall distributions.

The results of applying the ROGER algorithm to a sample of
galaxies completely independent of the samples used for training
and validation follow the same trends and are consistent with the
results obtained during the validation process (see Figs 5 and 6).

4 C O N C L U S I O N S

We have developed ROGER, a machine learning technique-based
algorithm that classifies galaxies by relating their position in the
projected phase space diagram with their 3D orbits. This algorithm
was trained using a galaxy catalogue generated from the MDPL2
cosmological simulation and the SAG semi-analytic model of galaxy
formation. The volume of this simulation is large enough to have
a statistically significant sample of massive isolated clusters and
galaxies, which we used to study different machine learning methods.
For each galaxy, these methods give as output the probability of being
a cluster galaxy, a recent infaller, a backsplash galaxy, an infalling
galaxy, or an interloper galaxy. Classifying galaxies into these five
classes is useful in studies in which it is necessary to know the past
trajectory of galaxies, in order to understand how different physical
mechanisms have acted upon them. As an example, let us consider
a backsplash and a recent infaller, they may both be satellites of
a cluster, however, their past histories are different. The former has
been all the way into the cluster and out, while the latter has just dived
into the cluster. We should expect them to have different physical
properties.

Considering a classification scheme that adopts different proba-
bility thresholds, we were able to build different final samples with
different contamination and sensitivity. We found that the method
with the best performance is the K-Nearest Neighbours method,
achieving a 74 per cent, 45 per cent, 45 per cent, 63 per cent, and
59 per cent of sensitivity when classifying cluster galaxies, recent
infaller galaxies, backsplash galaxies, infaller galaxies, and interloper
galaxies, respectively (see Fig. 6). Although the other methods have
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Figure 6. Left-hand panels: Phase-space ROGER classification of the galaxies in the validation-set determined by the highest class probability using the three
different ML techniques: KNN method (panel a), SVM method (panel b), and RF method (panel c). Symbols and colours are as in Fig. 3. Marginalized normalized
distributions are shown at the top and at the right-hand side of each panel in continuous lines. We have included as dashed lines the ‘true’ distributions shown in
the right-hand panel of Fig. 3. Right-hand panels: Confusion matrices associated with the classification of the left-hand panels.
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Figure 7. Left-hand panel: Phase-space ROGER classification of the galaxies in the test cluster using the KNN method and the highest class probability for each
galaxy. We show in different colour shades the density of galaxies classified as CL (red), RIN (green), BS (orange), and IN (violet). ITL galaxies are shown as
individual grey points for clarity. In the upper and right sub-panels, we show the marginalized distributions of projected distance and line-of-sight velocity of
galaxies, respectively, according to the ROGER classification (continuous lines) and the ’real’ classification (dashed lines). Right-hand panel: confusion matrix
associated to the left-hand panel.

Figure 8. Left-hand panel: Phase-space ROGER classification of the galaxies in the test cluster using the KNN method and a random realization considering
the class probabilities for each galaxy. We show in different colour shades the density of galaxies classified as CL (red), RIN (green), BS (orange), and IN
(violet). ITL galaxies are shown as individual grey points for clarity. In the upper and right-hand sub-panels, we show the marginalized distributions of projected
distance and line-of-sight velocity of galaxies, respectively, according to the ROGER classification (continuous lines) and the ‘real’ classification (dashed lines).
Right-hand panel: confusion matrix associated to the left-hand panel.

similar performances and are available in the ROGER software, we
choose the KNN method as our preferred algorithm for its simplicity.

Finally, with the aim of providing a fully consistent and automatic
algorithm for the classification of galaxies in the PPSD, we present
ROGER, an R-package that is publicly available through the GITHUB

repository: https://github.com/Martindelosrios/ROGER/.
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Muñoz Arancibia A. M., Navarrete F. P., Padilla N. D., Cora S. A., Gawiser

E., Kurczynski P., Ruiz A. N., 2015, MNRAS, 446, 2291
Muriel H., Coenda V., 2014, A&A, 564, A85
Muzzin A. et al., 2014, ApJ, 796, 65
Oman K. A., Hudson M. J., 2016, MNRAS, 463, 3083
Oman K. A., Hudson M. J., Behroozi P. S., 2013, MNRAS, 431, 2307
Pasquali A., Smith R., Gallazzi A., De Lucia G., Zibetti S., Hirschmann M.,

Yi S. K., 2019, MNRAS, 484, 1702
Planck Collaboration XVI, 2014, A&A, 571, A16
Planck Collaboration XIII, 2016, A&A, 594, A13
Rasmussen J., Ponman T. J., Mulchaey J. S., 2006, MNRAS, 370, 453
Rhee J., Smith R., Choi H., Yi S. K., Jaffé Y., Candlish G., Sánchez-Jánssen
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APPENDI X A : ROGER EXAMPLES

This is a simple example of the basic use of the ROGER software in
an R-console.
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Once the library is installed,4 we begin by loading the ROGER
library

library(‘ROGER’)

Assuming that the data of a galaxy cluster is loaded in a data-
frame called ‘cat’ with the projected phase-space information of
each galaxy, that have at least two columns named ‘r’ (projected
radius in units of R200), and ‘v’ (line-of-sight velocity relative to the
cluster in units of the cluster velocity dispersion σ ), we can just run
the following script to estimate the class probability of each galaxy
using the trained KNN algorithm.

4the installation procedure can be found in the GITHUB repository

pred prob <-- get class(cat, model = knn,
type = ‘prob’)

This will give as an output a data frame with five columns that
correspond to the five class probabilities. It is worth to remark
that the user can use the SVM or the RF method just changing
the model option with ‘svm’ or ‘rf’, respectively. The user can
also change the type of prediction from ‘prob’ to ‘class’ in order
to directly predict the most probable class, or set a probability
threshold value putting ‘threshold =x’ to classify galaxies that
have the corresponding class probability higher than the selected
value.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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