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ABSTRACT
Considering the upcoming OWFA, we use simulations of the foregrounds and the z = 3.35 H I 21-cm intensity mapping signal
to identify the (k⊥, k�) modes where the expected 21-cm power spectrum P(k⊥, k�) is substantially larger than the predicted
foreground contribution. Only these uncontaminated k modes are used for measuring P(k⊥, k�) in the “Foreground Avoidance”
technique. Though the foregrounds are largely localized within a wedge. we find that the small leakage beyond the wedge
surpasses the 21-cm signal across a significant part of the (k⊥, k�) plane. The extent of foreground leakage is extremely sensitive
to the frequency window function used to estimate P(k⊥, k�). It is possible to reduce the leakage by making the window function
narrower; however, this comes at the expense of losing a larger fraction of the 21-cm signal. It is necessary to balance these
competing effects to identify an optimal window function. Considering a broad class of cosine window functions, we identify a
six term window function as optimal for 21-cm power spectrum estimation with OWFA. Considering only the k modes where
the expected 21-cm power spectrum exceeds the predicted foregrounds by a factor of 100 or larger, a 5 σ detection of the binned
power spectrum is possible in the k-ranges 0.18 ≤ k ≤ 0.3 Mpc−1 and 0.18 ≤ k ≤ 0.8 Mpc−1 with 1000–2000 and 104 h of
observation, respectively.
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1 IN T RO D U C T I O N

Intensity mapping with the neutral hydrogen (H I) 21-cm radiation
is a promising tool to study the large-scale structures in the post-
reionization Universe (Bharadwaj, Nath & Sethi 2001). It holds the
potential of measuring the baryon acoustic oscillation (BAO) that is
imprinted in the H I 21-cm power spectrum, and the comoving scale
of BAO can be used as a standard ruler to constrain the evolution
of the equation of state of dark energy (Chang et al. 2008; Wyithe,
Loeb & Geil 2008; Masui, McDonald & Pen 2010; Seo et al. 2010).
Further, a measurement of just the H I 21-cm power spectrum can
also be used to constrain cosmological parameters (Bharadwaj, Sethi
& Saini 2009; Visbal, Loeb & Wyithe 2009). Higher order statistics
such as the bispectrum holds the prospect of quantifying the non-
Gaussianities in the H I 21-cm signal (Ali, Bharadwaj & Pandey 2005;
Hazra & Sarkar 2012). Using the H I signal in cross-correlation with
the WiggleZ galaxy survey data, the Green Bank Telescope (GBT)
has made the first detection of the H I signal in emission at z ≈
0.8 (Chang et al. 2010; Masui et al. 2013). Switzer et al. (2013)
have constrained the autopower spectrum of the redshifted H I 21-cm
radiation from redshift z ∼ 0.8 with GBT.
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The Giant Meterwave Radio Telescope (GMRT; Swarup et al.
1991) is sensitive to the cosmological H I signal from a range of
redshifts in the post-reionization era (Bharadwaj & Pandey 2003;
Bharadwaj & Ali 2005) and (Ghosh et al. 2011a,b) have carried
out preliminary observations towards detecting this signal from z

= 1.32. The Canadian Hydrogen Intensity Mapping Experiment
(CHIME; Newburgh et al. 2014; Bandura et al. 2014) aims to measure
the BAO in the redshift range 0.8–2.5. The future Tianlai (Chen
2012, 2015), SKA1-MID (Bull et al. 2015), HIRAX (Newburgh
et al. 2016) and MeerKLASS (Santos et al. 2017) also aim to
measure the redshifted H I 21-cm signal from the post-reionization
era. In this paper, we consider the upcoming Ooty Wide Field Array
(OWFA; Subrahmanya, Manoharan & Chengalur 2017a), which aims
to measure the H I signal from z = 3.35 .

The Ooty Radio telescope (ORT; Swarup et al. 1971) is a 530
m long (north–south) and 30 m wide (east–west) offset-parabolic
cylinder that is located on a hill whose slope roughly matches the
latitude of the station (11◦). Effectively, the axis of the cylinder is
parallel to the earth’s rotation axis, making it equatorially mounted.
The telescope is mechanically steerable in the east–west direction by
rotating the cylinder about its axis, allowing continuous tracking of
a source on the sky. Throughout this paper, we consider observations
that track a single field on the sky. This allows the signal from
different time instances to be coherently added to increase the signal-
to-noise ratio (SNR).
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Table 1. Definitions for some of the symbols used here.

Symbol Definition Symbol Definition

b × d Aperture dimensions 30 m×1.92 m NA Number of antennas 264
νc Central frequency 326.5 MHz Ua Different baselines where a = 1, 2, . . . , NA − 1
Bbw Bandwidth 39 MHz Nc Number of channels 312
�ν Channel width 0.125 MHz νn Different frequency channels where n = 0, 1, ..., Nc − 1
Nr Number of realization of simulations Np Number of terms in frequency window function
Ns Number of time stamps r Comoving distance to redshift 3.35, 6.84 Gpc

r
′ |dr/dν|ν=νc 11.5 Mpc MHz−1

tobs Observation time �t Integration time
PT(k⊥, k�) H I 21-cm power spectrum PN(k⊥, k�) Noise power spectrum
PL(k⊥, k�) Foreground leakage power spectrum R(k⊥, k�) PT(k⊥, k�)/PL(k⊥, k�)
Rt Threshold value of R(k⊥, k�) R(Rt, tobs) Ratio of SNR and SNR for MS6 window

The ORT is currently being upgraded to function as an interfero-
metric array the OWFA. This upgrade will result in two concurrent
modes namely OWFA PI and PII. OWFA PI will be a linear array
of NA = 40 antennas each with a rectangular aperture b × d, where
b = 30 and d = 11.5 m. The entire analysis of this paper is restricted
to OWFA PII that has a larger number of antennas NA = 264, with
smaller aperture (b = 30 and d = 1.92 m) arranged with a spacing d
along the north–south axis of the cylinder. The telescope operates
at a nominal frequency of νc = 326.5 MHz. We consider Nc =
312 frequency channels each of width �ν = 0.125 MHz spanning a
bandwidth of Bbw = 39 MHz (see Table 1).

The details of the antenna and hardware configuration can be
found in Prasad & Subrahmanya (2011) and Subrahmanya et al.
(2017a,b). Theoretical estimates (Bharadwaj, Sarkar & Ali 2015)
predict that it should be possible to measure the amplitude of the 21-
cm power spectrum with 150 h of observations using OWFA PII. A
more recent study (Sarkar, Bharadwaj & Ali 2017) indicates possible
measurement of the 21-cm power spectrum in several different k-bins
in the range 0.05–0.3 Mpc−1 with 1000 h of observations. Sarkar,
Bharadwaj & Sarkar (2018b) have shown that the cross-correlation
of the redshifted H I 21-cm signal with OWFA PII with the Ly α

forest is detectable in a 200 h integration each in 25 independent
fields of view (FoV).

The complex visibilities are the primary quantities measured
by any radio-interferometric array like OWFA. It is possible to
directly estimate the H I 21-cm power spectrum from the measured
visibilities (Bharadwaj & Sethi 2001; Bharadwaj & Ali 2005). Sarkar,
Bharadwaj & Marthi (2018a) have proposed and implemented a new
technique to estimate the OWFA H I signal visibilities. Galactic and
extragalactic foregrounds pose a severe challenge to the H I 21-
cm signal detection (Ali, Bharadwaj & Chengalur 2008; Ghosh
et al. 2011b). The theoretical estimates (Ali & Bharadwaj 2014)
predict that the visibilities measured at OWFA will be dominated by
astrophysical foregrounds that are expected to be several orders of
magnitude larger than the H I signal. The astrophysical foregrounds
are all expected to have a smooth frequency dependence in contrast
to the H I signal. With the increasing frequency separation, the
H I signal is expected to decorrelate much faster than the foregrounds
(Bharadwaj & Pandey 2003), a feature on which most foreground
removal techniques rely to distinguish between the foregrounds and
the H I signal. Modelling foreground spectra is challenging and
is further complicated by the chromatic response of the telescope
primary beam. Marthi et al. (2017, hereafter Paper I) have introduced
a Multi-frequency Angular Power Spectrum (MAPS) estimator and
demonstrated its ability, using an emulator (PROWESS; Marthi
2017), to accurately characterize the foregrounds for OWFA PI.

Several studies have shown that the foreground contributions are
expected to be largely confined within a wedge shaped region in
the (k⊥, k�) plane (Datta, Bowman & Carilli 2010; Morales et al.
2012; Parsons et al. 2012; Trott, Wayth & Tingay 2012; Vedantham,
Udaya Shankar & Subrahmanyan 2012). In this work, we focus
on a conservative strategy referred to as ‘foreground avoidance’.
In this strategy, only the k modes where the predicted foreground
contamination is substantially below the expected 21-cm signal are
used for power spectrum estimation. Ideally, one hopes to use the
entire set of k modes outside the foreground wedge for estimating the
21-cm power spectrum. However, there are several factors that cause
foreground leakage beyond the foreground wedge. The chrormaticity
of the various foreground components and also the individual antenna
elements causes foreground leakage beyond the wedge. The exact
extent of this wedge is still debatable (see Pober et al. 2014 for
a detailed discussion). The large OWFA FoV makes it crucial to
address the wide-field effects for the foreground predictions for
OWFA. On a similar note, the Fourier transform along the frequency
axis used to calculate the cylindrical power spectrum introduces
artefacts due to the discontinuity in the measured visibilities at the
edge of the band. It is possible to avoid this problem by introducing a
frequency window function that smoothly falls to zero at the edges of
the band. This issue has been studied by Vedantham et al. (2012) and
Thyagarajan et al. (2013), who have proposed the Blackman–Nuttall
(BN; Nuttall 1981) window function. While the additional frequency
window does successfully mitigate the artefacts, it also introduces
additional chromaticity that also contributes to foreground leakage
beyond the wedge boundary.

In this paper, we have used simulations of the foregrounds and the
H I 21-cm signal expected for OWFA PII to quantify the extent of the
foreground contamination outside the foreground wedge. The aim is
to identify the (k⊥, k�) modes that can be used for measuring the 21-
cm power spectrum, and to asses the prospects of measuring the 21-
cm power spectrum using the foreground avoidance technique. Our
all-sky foreground simulations (described in Section 2) incorporate
the two most dominant components namely the diffuse Galactic
synchrotron emission and the extragalactic point sources. This work
improves upon the earlier work (Paper I) by introducing an all-sky
foreground model. The simulated foreground visibilities (described
in Section 3) incorporate the chromatic behaviour of both the sources
and also the instrument. The actual OWFA primary beam pattern
is unknown. We have carried out the entire study here using two
different models for the primary beam pattern, we expect the actual
OWFA beam pattern to be in between the two different scenarios
considered here. We have used the ‘Simplified Analysis’ of Sarkar
et al. (2018a) to simulate the H I signal contribution to the visibilities
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(also described in Section 3). To estimate the 21-cm power spectrum
from the the OWFA visibilities, in Section 4, we introduce and also
validate a visibility-based estimator that has been constructed so as
to eliminate the noise bias and provide an unbiased estimate of the
3D power spectrum.

Our results (Section 5) show that the foreground leakage outside
the wedge is extremely sensitive to the form of the frequency window
function used for estimating the 21-cm power spectrum. While the
leakage can be reduced by making the window function narrower,
this is at the expense of increasing the loss in the 21-cm signal. It is
necessary to balance these two competing effects in order to choose
the optimal window function. In this paper, we consider a broad class
of cosine window functions each with a different number of terms. We
introduce a figure of merit, which allows us to quantitatively compare
the performance of different window functions, and we use this to
determine the optimal window function to estimate the 21-cm power
spectrum using OWFA. Considering the optimal window function,
we finally quantify the prospects of measuring the 21-cm power
spectrum using OWFA. The results are discussed and summarized
in Section 6.

We use the fitting formula of Eisenstein & Hu (1999) for the
Lambda cold dark matter (�CDM) transfer function to generate the
initial, linear matter power spectrum. The cosmological parameter
values used are as given in Planck Collaboration I (2014): �m =
0.318, �b h2 = 0.022, �λ = 0.682, ns = 0.961, σ 8 = 0.834, and h
= 0.67.

2 SI M U L AT I O N S

The radiation from different astrophysical sources other than the
redshifted cosmological H I 21-cm radiation are collectively referred
to as foregrounds. The most dominant contributions to the fore-
grounds at 326.5 MHz, come from the diffuse synchrotron from our
own galaxy (diffuse galactic synchrotron emission, DGSE) and the
extragalactic radio sources (extragalactic point sources; EPS). The
free–free emission from our galaxy and from external galaxies are
also larger than the H I 21-cm signal. We exclude accounting the
free–free emissions as a separate component in our analysis since
they have power-law spectra similar to the other components (Kogut
et al. 1996). They are easily subsumed by the uncertainty in the
discrete continuum source contribution and they make relatively
smaller contributions to the foregrounds.

2.1 The diffuse galactic synchrotron emission

The DGSE arises from the energetic charged particles (produced
mostly by supernova explosions) accelerating in the galactic mag-
netic field (Ginzburg & Syrovatskii 1969). Various observations at
150 MHz (Bernardi et al. 2009; Ghosh et al. 2012; Iacobelli et al.
2013; Choudhuri et al. 2017) have quantified C
 the angular power
spectrum of brightness temperature fluctuations of the DGSE. Based
on these, we have modelled the DGSE using

C
(ν) = 513 mK2

(
1000




)2.34 (
150 MHz

ν

)5.04

, (1)

where the amplitude and the 
 power-law index are from Ghosh et al.
(2012), whereas for the frequency spectral index, we have used the
results from Rogers & Bowman (2008). Various studies indicate that
the amplitude and slope have different values in different patches of
the sky (e.g. La Porta et al. 2008, Choudhuri et al. 2017), and so also
the spectral index (De Oliveira-Costa et al. 2008). These variations

will introduce additional angular and frequency structures. However,
in our simulations, we have used fixed values across the entire sky.

We simulate the DGSE using the package HEALPIX (Hierarchical
Equal Area isoLatitude Pixelization of a sphere; Górski et al. 2005),
where we represent the entire sky using 12 582 912 pixels of size
3.435 arcmin. We assume that the brightness temperature fluctuations
of the DGSE are a Gaussian random field and used the SYNFAST
routine of HEALPIX to generate different statistically independent
realizations of the brightness temperature fluctuations at νc. These
were scaled to obtain the brightness temperature fluctuations at the
other frequency channels in the observing bandwidth of OWFA. The
left panel of Fig. 1 shows a particular realization of the simulated
DGSE maps, and the right panel shows a comparison of C
 values
estimated from the simulations (in points) and the input model (in
solid line) at νc. We use 20 statistically independent realizations of
the DGSE simulations to estimate the mean values and 1σ error bars
shown here.

2.2 Extragalactic point sources

The EPS are expected to dominate the 326.5-MHz sky at most
of the angular scales of our interest. These sources are a mix
of normal galaxies, radio galaxies, quasars, star-forming galaxies,
and other objects, which are unresolved by the OWFA. We model
the differential source count dN/dS of the sources using the fitting
formula given by Ali & Bharadwaj (2014):

dN

dS
=

{
4000( S

1 Jy )−1.64(Jy Sr)−1 3 mJy ≤ S ≤ 3 Jy
134( S

1 Jy )−2.24(Jy Sr)−1 10μJy ≤ S ≤ 3mJy
, (2)

where they fit the 325 MHz differential source counts measured
by Sirothia et al. (2009). This is consistent with the WENSS 327
MHz differential source count (fig. 9 of Rubart & Schwarz 2013).
For the sources below 3 mJy, they fit the 1.4 GHz source counts
from extremely deep VLA observations (Biggs & Ivison 2006) and
extrapolate it to 326.5 MHz. Here we assume that the sources with
flux S > 3 mJy make the major contribution to foregrounds, and only
consider sources with S > 3 mJy. We assume that the spectral nature
of such sources can be modelled (spectral behaviour) as a power
law Sν∝να , where for each source, we randomly assign a value of
α drawn from a Gaussian distribution with mean −2.7 and rms =
0.2 (Olivari et al. 2018). The angular clustering of radio sources at
low flux densities is not well known. To make an estimate, we use
the angular correlation function w(θ ) measured from NVSS, which
can be approximated as w(θ ) ≈ (1.0 ± 0.2) × 10−3 θ−0.8 (Overzier
et al. 2003), for which the angular power spectrum w
 has been
calculated to be w
 ≈ 1.8 × 10−4
−1.2 (Blake, Ferreira & Borrill
2004; Olivari et al. 2018). The EPS contribution to the brightness
temperature fluctuations can be decomposed into two parts, namely
(a) the Poisson fluctuations due to the discrete nature of the sources,
and (b) a fluctuation due to the angular clustering of the sources.
The simulations were carried out using HEALPIX with the same
specifications as mentioned in Section 2.1. Based on the differential
source counts (equation 2), we expect 3145 728 sources in the sky
map, corresponding to a mean 0.25 sources per pixel. We have
simulated 100 times the expected number of sources (mean 25 per
pixel), and assigned them flux values that are randomly drawn from
the differential source count (equation 2) and whose spectral index
values are assigned randomly as discussed earlier. To incorporate
the angular clustering, we generate realizations of Gaussian random
fluctuations δp (p labels the pixels) corresponding to the angular
power spectrum w
. We distribute the simulated sources among the
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Figure 1. The left panel shows a single realization of the simulated DGSE map for the nominal frequency of νc = 326.5 MHz. In the right panel, the line shows
the angular power spectrum C
 of the input DGSE model (equation 1) at νc, while the points with the error bars are the mean and standard deviation obtained
from the simulations.

Figure 2. This shows the angular power spectrum C
 of the brightness
temperature fluctuations of the foreground components. The hollow and
filled circles show the mean EPS and the total foreground (i.e. EPS+DGSE)
contributions to C
 with 1σ error bars estimated from 20 statistically
independent realizations of the simulations, the analytical predictions are
shown in different line-styles as indicated in the figure. The shaded region
bounds the 
 range probed by OWFA PII.

pixels by assigning 25(1 + δp) sources from the simulated source list
to pixel p, and so on covering all the pixels in the sky map. Finally, we
have randomly selected 3145728 sources from the simulated source
list. The brightness temperature distribution resulting from these
simulated sources now incorporates both the Poisson fluctuation and
the angular clustering of the sources.

Fig. 2 shows the mean C
(νc) along with 1σ error bars estimated
from 20 statistically independent realizations of the foregrounds.
This is compared with the theoretical predictions for the different
components, as well as the predictions for the total expected C
. We
see that the DGSE dominates at large angular scales i.e. 
 < 600,
while the EPS dominates at small angular scales i.e. 
 ≥ 600.

3 V ISIBILITY SIMULATION

OWFA is a linear array of NA antennas arranged without any
intervening gap along the length of a north–south parabolic cylinder.
Each antenna has a rectangular aperture of dimension b × d =

30 m × 1.92 m illuminated by four end-to-end linear dipoles (fig. 4
of Paper I). The spacing between the centres of two adjacent antennas
also is d, and we have the smallest baselines U1 = (d/λ) ẑ, where
λ is the observing wavelength and we adopt a Cartesian coordinate
system that is tied to the telescope with the the unit vectors ẑ and ŷ,
respectively, along the length and breadth of the cylinder. The unit
vector x̂ points perpendicular to the antenna aperture, this direction
lies along the celestial equator.

The baselines Ua = a × U1 measured at OWFA are all multiples
of U1 with a = 1, 2, ..., NA − 1. The OWFA baselines have a high
degree of redundancy i.e. we have (NA − a) different antenna pairs
that correspond to the same baseline Ua . The OWFA visibilities
V t (Ua, νn) are measured at n = 0, 1, ..., Nc − 1 different frequency
channels each with a respective central frequency νn. Following
Paper I, we express the measured visibilities as

V t (Ua, νn) = M (Ua, νn) + N t (Ua, νn), (3)

where M (Ua, νn) refers to model visibilities originating from the
sky signal, and N t (Ua, νn) is the additive system noise contribution.
Here the label t = 0, 1, 2, . . . , Ns − 1 in V t (Ua, νn) denotes distinct
measurements of the visibilities each corresponding to a different
time stamp and Ns denotes the total number of time stamps. We
note that there are several effects like calibration errors, ionospheric
fluctuations, and man-made RFI that may also contribute to the
measured visibilities in equation (3); however, we do not consider
these here. We also consider that a fixed field is being tracked
throughout the observation. The model visibility that originates from
the sky signal is given by (Perley, Schwab & Bridle 1989)

M (Ua, νn) = Qνn

∫
d�n̂ T (n̂, νn) A (�n, νn) e−2πiUa ·�n, (4)

where, Qνn
= 2kB/λ2

n is the conversion factor from brightness tem-
perature to specific intensity in the Rayleigh–Jeans limit, T (n̂, νn) is
the brightness temperature distribution on the sky along the direction
of the unit vector n̂ that has sky coordinates (RA, Dec.) = (α, δ),
d�n̂ is the elemental solid angle in the direction n̂, and �n = n̂ − m̂,
where m̂ is the unit vector in the pointing direction of the antennas,
which also corresponds to x. Throughout this work, we assume that
m̂ points towards the position (RA, Dec.) = (0, 0) on the sky.

The model visibilities M (Ua, νn) can further be considered to be
the sum of two parts,

M (Ua, νn) = F (Ua, νn) + S (Ua, νn) , (5)
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which refer to the the foreground and the H I signal,
respectively.

The foreground contribution F (Ua, νn) is highly sensitive to the
telescope’s primary beam pattern (Berger et al. 2016). The actual
OWFA primary beam pattern A (�n, νn) is currently unknown, and
we have considered two different possibilities for the predictions
presented here. The first model for A (�n, νn) (Table 2) is based on
the simplest assumption that the OWFA antenna aperture is uniformly
illuminated by the dipole feeds, which results in the ‘Uniform’
sinc-squared primary beam pattern considered in several earlier
works (Ali & Bharadwaj 2014; Paper I; Chatterjee & Bharadwaj
2018b). In reality, the actual illumination pattern is expected to
fall away from the aperture centre, resulting in a wider FoV as
compared to the uniform illumination. In order to assess how this
affects the foreground predictions and foreground mitigation, we
have considered a ‘Triangular’ illumination pattern (Fig. 3) for which
we have a broader sinc-power-four primary beam pattern (Table 2 ).

Considering both the uniform and the triangular beam patterns,
Fig. 3 shows the variation of A(�n, ν) with δ (i.e. along the north–
south direction) for fixed α = 0 and ν = νc. Comparing the two
beam patterns, we find that the uniform main lobe subtends ∼±24◦

(FWHM), whereas this is approximately double ∼±35◦ (FWHM)
for triangular. The number of side lobes is also found to decrease
from uniform to triangular. The uniform and triangular beam patterns
represent two extreme cases, and the actual OWFA beam pattern will
possibly be somewhere in between these two extreme cases both in
terms of the extent of the main lobe and the number of side lobes.

We use the simulated foreground maps (Section 2) to compute
F (Ua, νn) using

F (Ua, νn) = Qνn
��pix

∑
p

T (αp, δp, νn)

×A(αp, δp, νn)e−2πiUa (sin δp) , (6)

where ��pix is the solid angle subtended by each simulation
pixel. The pixels in the simulated maps are labeled using p with
corresponding (RA, DEC)p = (αp, δp) and the sum is over all the
pixels in the simulation.

Considering S (Ua, νn), the H I signal contribution to the model
visibilities, we have simulated these using the flat-sky approximation
(FSA). An earlier work (Chatterjee & Bharadwaj 2018b) has carried
out a full spherical harmonic analysis for OWFA to find that the
differences from the FSA are at most within 10 per cent at the few
smallest baselines and they are much smaller at the other larger
baselines. Using �n = θ , which is now a 2D vector on the plane of
the sky, equation (4) reads

S (Ua, νn) = Qνn

∫
d2θ T (θ , νn) A (θ , νn) e−2πi Ua ·θ , (7)

whereby S (Ua, νn) is the Fourier transform of
[Qνn

T (θ , νn) A (θ , νn)]. We can express this as a convolution (Ali
& Bharadwaj 2014),

S (Ua, νn) = Qνn

∫
d2U′ ã(Ua − U′, νn) T̃ (U′, νn) , (8)

where T̃ (U′, ν) is now the Fourier transform of T (θ , ν), and the
aperture power pattern ã(U, ν) = ∫

d2θ e−2πiU·θ A (θ , ν) (Table 2).
In a recent work, Sarkar et al. (2018a) have proposed an analytic

technique to simulateS (Ua, νn) the H I signal contribution to the visi-
bilities, which is based on the FSA. Here we have used the ‘Simplified
Analysis’ presented in section 2 of Sarkar et al. (2018a). This uses
the eigenvalues and the eigenvectors of the predicted two-visibility
correlation matrix S2(Ua, νn, νn′ ) = 〈S (Ua, νn)S∗(Ua, νn′ )〉 to sim-

ulate multiple statistically independent realizations of S (Ua, νn).
The simplified analysis used here ignores the correlation between
the H I signal at adjacent baselines and also the non-ergodic nature of
the H I visibility signal along the frequency axis, both of these have
however been included in the ‘Generalized Analysis’ presented in
Sarkar et al. (2018a). We note that it is necessary to diagonalize the
entire covariance matrix between the visibilities at all the baselines
and frequency channels in order to incorporate the correlations be-
tween the H I signal at the adjacent baselines. This is computationally
intensive and we have avoided this by adopting the simplified analysis
that considers each baseline separately significantly reducing the
dimension of the covariance matrix.

The two-visibility correlation S2(Ua, νn, νn′ ) is related to the 21-
cm brightness temperature power spectrum PT(k) (Bharadwaj &
Sethi 2001; Bharadwaj & Ali 2005). For OWFA, we have (Ali &
Bharadwaj 2014)

S2(Ua, νn, νn′ ) = Q2
νc

∫
d3k

(2π)3
|ã(Ua − k⊥r

2π
, νc)|2

×PT(k⊥, k‖) eir ′k‖(νn′ −νn). (9)

Here k⊥, which is the component of a 3D wave vector k perpendicular
to the line of sight, can be associated with the baselines U available
at OWFA as k⊥ = 2πU/r , where r = 6.84 Gpc is the comoving
distance to z = 3.35, and r ′ = |dr/dν|ν=νc = 11.5 Mpc MHz−1 sets
the conversion scale from the frequency separation to comoving
distance in the radial direction. Here k� is the line-of-sight component
of a 3D wave vector k.

The H I 21-cm brightness temperature power spectrum PT(k⊥, k�)
is modelled as (Ali & Bharadwaj 2014)

PT(k⊥, k‖) = T̄ 2b2
H I x̄2

H I [1 + βμ2]2P (k) , (10)

where μ = k�/k, T̄ = 4.0 mk(1 +
z)2

(
�bh

2/0.02
)

(0.7/h) (H0/H (z)), bH I = 2 is the linear bias,
x̄H I = 2.02 × 10−2 is the mean neutral hydrogen fraction, and
P(k) is the power spectrum of the underlying dark matter density
distribution. The term (1 + βμ2) arises due to of the effect of
H I peculiar velocities, and β = f (�)/bH I is the linear redshift
distortion parameter, where f(�) is the dimensionless linear growth
rate. We use β = 0.493 and f(�) = 0.986 throughout this paper.
It is worth mentioning that, detailed simulations (Castorina &
Villaescusa-Navarro 2017; Sarkar & Bharadwaj 2018; Villaescusa-
Navarro et al. 2018; Modi et al. 2019) predict that the non-linear
effects due the redshift-space distortion becomes significant at high
k� modes. These non-linearities and the shot noise present at high
k modes are not included in the 21-cm power spectrum model
considered here (equation 10). However, we expect those high k
modes (k > 1.0 Mpc−1) to be noise dominated and their contribution
to the SNR is expected to be small.

The noise contribution N t (Ua, νn) in each visibility is assumed
to be an independent complex Gaussian random variable with zero
mean. The real part (or equivalently the imaginary part) of the noise
contribution has an rms fluctuation,

σN(Ua) =
√

2 kB Tsys

η A
√

�ν �t (NA − a)
, (11)

where Tsys is the total system temperature, kB is the Boltzmann
constant, A = b × d is the physical collecting area of each antenna, η
is the aperture efficiency (Table 2) with λ2/ηA = ∫

A (θ , ν) d2θ , and
�t = 16 s is the correlator integration time. The OWFA baselines
are highly redundant (Ali & Bharadwaj 2014; Subrahmanya et al.
2017b), and the factor 1/

√
(NA − a) in σN(Ua) accounts for the
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Table 2. Here �ny, Uy, and �nz, Uz are, respectively, the y and z components of �n and U.

Illumination Uniform Triangular

Primary beam pattern A(�n, ν) = sinc2
(
πb �ny/λ

)
sinc2 (πd �nz/λ) sinc4

(
πb �ny/2λ

)
sinc4 (πd �nz/2λ)

Aperture power pattern ã(U, ν) = (
λ2/bd

)
�
(
Uyλ/b

)
� (Uzλ/d)

(
64λ2/bd

)
G
(
Uyλ/b

)
G (Uzλ/d)

�(x) =
{

1 − |x| for |x| < 1
0 for |x| ≥ 1

G(x) =
⎧⎨
⎩

1/6 − |x|2 + |x|3 for |x| < 1/2
1/3 − |x| + |x|2 − |x|3/3 for |x| ≥ 1/2
0 for |x| ≥ 1

FWHM, η, η̃ 1.55◦ × 24◦ , 1, 32.49 2.25◦ × 35◦ , 9/16, 19.86

Notes. FWHM is the full width at half-maximum of A(�n, ν). η (equation 11) and η̃(equation A3) are the aperture efficiency and a dimensionless factor,
respectively.

Figure 3. The left panel shows the uniform (red solid line) and triangular (blue dashed line) illumination patterns considered here. The right panel shows the
corresponding primary beam patterns (Table 2) along the north–south direction.

redundancy in the baseline distribution. We expect Tsys to have a
value around 150 K, and we use this value for the estimates presented
here.

4 3 D POW ER SPECRTUM ESTIMATION

We now discuss how the measured visibilities V t (Ua, νn) are used
to estimate the 3D power spectrum P (k⊥a, k‖m). Considering a
particular baseline Ua and frequency νn, the different time stamps
V t (Ua, νn) contain the same sky signal, only the system noise is
different. We first average over the different time stamps to reduce
the data volume ,

V̄ (Ua, νn) = 1

Ns

Ns−1∑
t=0

V t (Ua, νn) , (12)

here Ns denotes the total number of time stamps. The visibilities
V̄ (Ua, νn) are then Fourier transformed along the frequency axis to
obtain the visibilities vf (Ua, τm) in delay space (Morales & Hewitt
2004),

vf (Ua, τm) = (�ν)
Nc−1∑
n=0

e2πiτmνnF (νn)V̄ (Ua, νn) , (13)

where the delay variable τm takes values τm = m/Bbw with −Nc/2
< m ≤ Nc/2. The Fourier transform here assumes that the visibility
signal is periodic in frequency with a period equal to the bandwidth
Bbw. The measured visibilities V̄ (Ua, νn), however, do not satisfy
this requirement. This introduces a discontinuity in the values of the
visibilities and also their derivatives at the edge of the frequency
band. As noted in several earlier works (Vedantham et al. 2012;

Thyagarajan et al. 2013), these discontinuities introduce artefacts
that result in foreground leakage outside the foreground wedge. In
addition to this, several other features like the frequency depen-
dence of both the foreground sources and the telescope’s primary
beam pattern also contribute to the foreground leakage. However,
in this paper, we entirely focus on the leakage arising from the
discontinuities at the boundary of the frequency band. The leakage
from these discontinuities can be reduced (Vedantham et al. 2012)
by introducing F(ν) (equation 13), which is a frequency window
function that smoothly falls to zero at the edges of the band making
the product [F (νn) V̄ (Ua, νn)] effectively continuous at the edge
of the band. Earlier works (Vedantham et al. 2012; Thyagarajan
et al. 2013) show that the BN (Nuttall 1981) window function is
a promising candidate for power spectrum estimation, and this is
expected to reduce the foreground leakage by seven to eight orders
of magnitude. However, discontinuities in the various derivatives
persist and, as we shall see later, the BN window function fails to
reduce the foreground leakage to a level below the H I signal expected
at OWFA. In order to investigate if this problem can be overcome by
considering other window functions, we have considered a broader
set of cosine window functions ,

F (νn) =
Np−1∑
p=0

(−1)p Ap cos
( 2npπ

Nc − 1

)
, (14)

each having different coefficients Ap and number of terms Np. Since
the band is divided into an even number (Nc) of frequency channels,
the channel with index Nc/2 is considered as the centre frequency
where the window function peaks. Note that this is equivalent to DFT-
even (see e.g. Harris 1978). Here we have considered the Blackman–
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Table 3. The coefficients of the different window functions used in this work.

Coefficient The cosine frequency window functions F(νn)

Ap BN BH4 MS5 MS6 MS7
(Np = 4) (Np = 4) (Np = 5) (Np = 6) (Np = 7)

A0 3.6358 × 10−1 3.5875 × 10−1 3.2321 × 10−1 2.9355 × 10−1 2.7122 × 10−1

A1 4.8918 × 10−1 4.8829 × 10−1 4.7149 × 10−1 4.5193 × 10−1 4.3344 × 10−1

A2 1.3659 × 10−1 1.4128 × 10−1 1.7553 × 10−1 2.0141 × 10−1 2.1800 × 10−1

A3 1.0641 × 10−2 1.1680 × 10−2 2.8496 × 10−2 4.7926 × 10−2 6.5785 × 10−2

A4 1.2613 × 10−3 5.0261 × 10−3 1.076 18 × 10−2

A5 1.3755 × 10−4 7.7001 × 10−4

A6 1.3680 × 10−5

Figure 4. The left panel shows the window functions F(νn) (mentioned in the legend) as a function of channel number n, and the right panel shows the f̃ (τ )
for a small number of delay channels. f̃ (τ ) is normalized to unity at the central delay channel.

Harris four-term window function (BH4), and a family of minimum
sidelobe (MS) window functions (MS5, MS6, and MS7). Of these,
the BN (Paul et al. 2016) and BH4 (Eastwood et al. 2019) have been
used extensively in recent observational studies. Table 3 shows the
coefficients (Albrecht 2001) of these window functions considered
here.

The left panel of Fig. 4 shows the different window functions
F(ν) considered here. As discussed earlier, we see that the window
function smoothly goes down to zero towards the edge of the band.
An immediate consequence of introducing the window function F(ν)
is the loss of signal, primarily towards the edge of the frequency band.
Considering the window functions F(ν) in the order shown in Table 3,
we see that the F(ν) gets successively narrower as we move from
BN to MS7. We expect the suppression at the edge of the band to be
more effective as the window function gets narrower; however, this
comes at an expanse of increasing sensitivity loss.

Considering the delay space visibilities v (Ua, τm) without the
window function (i.e. F(ν) = 1 in equation 13), we have (Choudhuri
et al. 2016)

vf (Ua, τm) = 1

Bbw

Nc/2−1∑
m′=−Nc/2

f̃ (τm − τm′ ) v (Ua, τm′ ) . (15)

We see that vf (Ua, τm) is related to v (Ua, τm) through a convolution
with f̃ (τm), which is the Fourier transform of the frequency window
F(ν). This convolution smoothens out the signal over the width
of f̃ (τm). Considering the H I signal, the delay space visibilities

v (Ua, τm) and v (Ua, τm′ ) at two different delay channels τm and
τm′ are predicted to be uncorrelated (e.g. Choudhuri et al. 2016).
The convolution in equation (15) however introduces correlations in
vf (Ua, τm) at two different values of the delay channel, the extent
of this correlation is restricted within the width of f̃ (τm). The right-
hand panel of Fig. 4 shows the amplitude of f̃ (τm) for the different
window functions considered here. We see that f̃ (τm) peaks at m =
0, and the values of f̃ (τm) are very small beyond the primary lobe,
which is typically a few delay channels wide. This primary lobe of
f̃ (τm) gets successively wider as we move from BN to MS7, i.e. the
window function F(ν) gets successively narrower. The BN window
function has the narrowest f̃ (τm) and vf (Ua, τm) will be correlated
upto m ≈ ±4, whereas this extends to m ≈ ±7 for MS7, which is the
widest in delay space. The finite width of f̃ (τm) also leads to a loss
of H I signal at the smallest τm values that correspond to the largest
frequency separations. Fig. 4 illustrates the fact that f̃ (τm) widens
and this loss in H I signal increases as we move from the BN to the
MS7 window function.

The delay space visibility vf (Ua, τm) is related to the H I 21-
cm brightness temperature fluctuation �Tb(k⊥a, k‖m), where k⊥a =
2πUa/r and k�m = 2πτm/r

′
(Morales & Hewitt 2004), and we

can use this to estimate P (k⊥a, k‖m), the 3D power spectrum of
the sky signal. Considering the autocorrelation of vf (Ua, τm), we
have

〈|vf (Ua, τm) |2〉 = C−1
F

[
P (k⊥a, k‖m) + PN(k⊥a, k‖m)

]
, (16)
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with

C−1
F = �ν

∑
n |F (νn)|2[Q2

νc

∫
d2U |ã (U, νc) |2]

r2 r ′ , (17)

and the noise power spectrum is

PN(k⊥a, k‖m) = CF

(
�ν

Ns

)2 Nc−1∑
n=0

Ns−1∑
t=0

〈|N t (Ua, νn)|2〉 |F (νn)|2 .

(18)

The angular brackets 〈. . . 〉 here denote an ensemble average over
different random realizations of the H I 21-cm signal. We can use
|vf (Ua, τm) |2 to estimate the H I 21-cm power spectrum P (k⊥a, k‖m)
except for the term PN(k⊥a, k‖m), which arises due to the system
noise (equation 3) in the measured visibilities. This introduces a
positive noise bias that needs to be accounted for before we can use
equation (16) to estimate P (k⊥a, k‖m).

We use equation (16) to define P̂ (Ua, τm) the 3D power spectrum
estimator as

P̂ (Ua, τm) = CF [|vf (Ua, τm) |2

−
(

�ν

Ns

)2 Nc−1∑
n=0

Ns−1∑
t=0

|V t (Ua, νn) |2|F (νn)|2] . (19)

The second term in the right-hand side of equation (19) is introduced
to exactly subtract out the noise bias in equation (16). The estimator
P̂ (Ua, τm) therefor provides an unbiased estimate of the power
spectrum, and we have

P (k⊥a, k‖m) = 〈P̂ (Ua, τm)〉 . (20)

In addition to the noise bias, some signal also is subtracted out;
however, the fraction of the total visibility correlation signal that is
lost is of the order of ∼1/Ns, which is extremely small for a long
observation. For example, we have Ns ∼ 105 for tobs = 1000 h
of observation with an integration time of �t = 16 s. It is worth
noting that the correlation between the adjacent baselines can also
be used to obtain additional estimates of the power spectrum (Ali &
Bharadwaj 2014); however, we have not considered this possibility
here. Appendix A presents analytical expressions for the variance
of the estimator; this is useful for predicting the uncertainty in the
estimated power spectrum.

4.1 Validating the estimator

To validate the H I signal simulations and the 3D power spectrum
estimator, we have carried out simulations of the H I signal visibilities
using the prescription described in Section 3 considering both the
uniform and the triangular illuminations. For both cases, we have
simulated Nr = 1000 statistically independent realizations of the
H I signal visibilities including the system noise component. To
reduce the data volume and the computation, we have considered
a total observation time of tobs = 1000 h with an integration time
of �t = 1 h for the uniform illumination, and tobs = 10 000 h with
�t = 10 h for the triangular illumination respectively. In both cases
we have Ns = 1000, which implies that we have 1/Ns = 0.1 per cent
loss in the visibility correlation due to the term that cancels out
the noise bias. As mentioned earlier, we expect this loss to be even
smaller in actual observations where Ns will be much larger. The
upper panels of Fig. 5 show the spherically averaged input model
21-cm brightness temperature power spectrum PT(k) as a function
of k. The figure also shows the binned input model power spectrum
where we have considered PT(k) at the (k⊥, k�) modes corresponding

Figure 5. Considering the power spectrum, the upper panels show a
comparison of the spherically averaged input model, the binned input model,
and that estimated from the simulations. Nr = 1000 statistically independent
realizations of the simulation were used to estimate the mean and 1σ error
bars shown here. The points in the bottom panels show � (equation 21), which
quantifies the deviation between the binned input model and the simulated
power spectrum.

to the OWFA baselines and delay channels, and binned these into 20
equally spaced logarithmic bins.

The simulated H I 21-cm signal visbilities S (Ua, νn) considered
here only contain the autocorrelation signal, as mentioned earlier the
correlations between the adjacent baselines have not been incorpo-
rated here. We have used the simulated visibilities in equation (19)
to estimate the power spectrum. The upper panels of Fig. 5 show
the binned power spectrum P(k) estimated from the simulations, the
left- and the right panels show the results for uniform and triangular
illuminations, respectively. The Nr realizations of the simulations
were used to estimate the mean and the 1σ error bars shown in the
figure. In both the cases, we find that the estimated power spectra are
in good agreement with the input power spectrum. The error bars at
the smallest k-bins are somewhat large due to the cosmic variance,
though we see that a detection is possible here. At large k, the errors
exceed the expected power spectrum, and a detection is not possible
within the tobs considered here. In both the illuminations, we see
that the errors are relatively small in the k-range 0.05–0.3 Mpc−1,
which is most favourable for measuring the power spectrum with
OWFA (Sarkar et al. 2017). The lower panels of Fig. 5 show the
dimensionless ratio,

� = δP (k)
√

Nr

σ
. (21)

Here Nr is the number of realizations of the simulations, and δP(k) is
the difference between the estimated and the input model power
spectrum. Ideally, we expect this to have a spread of the order
of σ/

√
Nr around zero arising from statistical fluctuations. The

normalized dimensionless ratio � is thus expected to have a variation
of order unity provided the estimator provides an unbiased estimate of
the power spectrum. We find that the values of � in the lower panels
are distributed within ±5 at all the bins except for that at the smallest
k-value. The power spectrum is possibly underestimated at the lowest
few baselines because the estimator ignores the convolution with
the aperture power pattern that is included in the visibility signal
(see equation 9 and also Choudhuri et al. 2014). This deviation is
however seen to be well within the 1σ error bars for tobs = 1000 h
of observation (upper left panel of 5). Overall, we conclude that
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Figure 6. Predictions of the component-wise contributions to the 3DPS P(k⊥, k�) from the H I signal, the DGSE, the EPS, and the total 3DPS. The left panels
show the cylindrical power spectrum P(k⊥, k�). The dotted lines mark the approximate wedge boundaries (equation 22). The right panels show vertical sections
through the left panels for fixed k⊥ = 0.095 (in dashed lines) and 0.34 Mpc−1 (in solid lines). The horizontal solid lines and dotted lines in the right panels
indicate the approximate wedge boundaries (equation 22) for the above mentioned k⊥ modes.

our simulations validate the power spectrum estimator presented
here.

5 R ESULTS

We first focus on the H I signal and foreground predictions, and
we have not included the noise contribution here. Considering
the uniform illumination and the BN window function, the left
panel of Fig. 6 shows the predicted cylindrical power spectrum
P(k⊥, k�) averaged over 20 statistically independent realizations of
the simulations for the H I signal, the individual DGSE and EPS
foreground components and the total sky signal. We see that the
foregrounds are largely confined within the ‘Foreground Wedge’
(Datta et al. 2010). The foreground contamination would be restricted
to k� = 0 if the foregrounds were spectrally flat in the absence
of the instrument, i.e. the visibilities V (U, ν) were independent of
frequency. However, the fact that the baselines U = d ν/c change
with frequency introduces a frequency dependence inV (U, ν) even if
the sky signal is frequency independent. The foreground simulations
here include both the ν scaling of U as well as the intrinsic ν

dependence of the sky signal, and as a consequence the foreground
contribution to P(k⊥, k�) extends out along k� on to a wedge that is
expected to be bounded by

k‖ =
[

r sin(θl)

r ′ νc

]
k⊥ (22)

in the (k�, k⊥) plane (Datta et al. 2010; Vedantham et al. 2012; Morales
et al. 2012; Parsons et al. 2012; Trott et al. 2012), where θ l refers
to the largest angle (relative to the telescope’s pointing direction)
from which we have a significant foreground contamination. Here
we consider θ l = 90◦ as the horizon limit. We see (Fig. 6) that there
is a very large foreground contribution at k� = 0, and the foregrounds
beyond this are largely contained within a wedge. The dotted line in
the figure shows the wedge boundary predicted by equation (22): We
see that the boundary of the simulated foreground wedge is located

beyond the dotted line. The primary beam pattern A(�n, ν), the
intrinsic frequency dependence of the sources introduced through
the spectral index α and F(ν) all introduce additional frequency
dependence (or chromaticity) in V (U, ν) that enhance the extent
of the foreground wedge beyond that predicted by equation (22).
We also notice that there are several structures visible inside the
foreground wedge.

The right panels show vertical sections through the left panels,
i.e. they show P(k⊥, k�) as a function of k� for fixed k⊥ values. We
have chosen k⊥ = 0.095 and 0.34 Mpc−1 (dashed and solid lines,
respectively) for which the horizontal lines show the corresponding
wedge boundaries predicted by equation (22). Considering the
foregrounds, the k� dependence of P(k⊥, k�) shows two peaks, the
first at k� = 0 and the second at the wedge boundary. The second peak
corresponds to what is known as the ‘pitch fork’ effect (Thyagarajan
et al. 2015; Thyagarajan et al. 2015), which is seen to be more
prominent at the larger baseline. The foreground wedge is found to
extend by �k‖ � 0.1 Mpc−1 beyond the horizontal lines. In addition
to this, we find oscillatory structures within the wedge where the k�
values of the dips correspond to the nulls in the primary beam pattern
(i.e. replace θ l in equation (22) with θ1, θ2. . . the angular positions of
the various nulls of the primary beam pattern). Considering large k�
beyond the wedge boundary, in all cases we find that P(k⊥, k�) drops
to a small value that does not change very much with k�. This small
value of P(k⊥, k�) arises due to the foreground leakage beyond the
wedge. For DGSE, the value of P(k⊥, k�) decreases with increasing
k⊥. This reflects the fact that the DGSE contribution decreases with
increasing 
 (C
 ∝ 
−2.34). In contrast, the EPS contribution, which
is Poisson dominated, does not change much with k⊥.

Considering the H I signal (Fig. 6), we find that the foreground
contribution is ∼1010 times larger at k� = 0 and other points within the
wedge boundary. We also find that the foreground leakage remains
∼102 times larger than the H I signal beyond the wedge boundary.
This implies that the BN window is not a suitable choice for H I power
spectrum detection with OWFA. Although the BN window function
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Figure 7. The ratio R(k⊥, k�) (equation 23) for different window functions considered in this work. The left- and right panels show the results for the uniform
and triangular illumination, respectively. R(k⊥, k‖) ≥ 10, 50, and 100 regions for the triangular illumination are shown by the solid, dashed and fine-dotted
contours, respectively, in both the left- and right panels. The triangular illumination considered here represents the worst possible scenario for the illumination
pattern and the allowed (k⊥, k�) range for the actual OWFA beam pattern is not expected to be smaller than that of shown by the contours.

ensures that the values of the filtered visibilities are continuous at the
boundary of the frequency band, discontinuities still persist in the
various derivatives. The leakage in P(k⊥, k�) seen at large k� beyond
the wedge boundary arises from these discontinuities. Further, Fig. 6
shows an interesting feature that the leakage power P(k⊥, k�) appears
to be proportional to P(k⊥, 0), which is the foreground power at k�
= 0. We note that such a behaviour is not surprising as we expect
the leakage amplitude to be proportional to the magnitude of the
discontinuities that, in turn, are expected to be proportional to the
overall foreground amplitude. Here P(k⊥, 0) provides a measure of
the total foreground power (i.e. amplitude squared; equations 13 and
19).

In this paper, we consider the possibility of controlling the
discontinuities at the band edges by suitably tailoring the window
function. This leads us to investigate the possibility of using higher
term window functions for H I power spectrum detection with OWFA.
To this end, we make a comparative study of the expected foreground
leakage for the set of window functions discussed earlier (equation 14
and Table 3).

To identify the (k⊥, k�) modes that can be used for the H I power
spectrum detection, we introduce the ratio

R(k⊥, k‖) = PT(k⊥, k‖)/PL(k⊥, k‖) , (23)

where PT(k⊥, k�) is the theoretically expected H I 21-cm signal power
spectrum (equation 10) and PL(k⊥, k�) is the foreground leakage
contribution. Fig. 7 shows R(k⊥, k�) for the different higher term
window functions. The left- and right panels show the results for the
uniform and the triangular illumination, respectively. We have only
shown the points where R(k⊥, k�) > 1, i.e. the H I signal exceeds
the foreground leakage. For both the illumination patterns, we find
that the largest values of R(k⊥, k�), which are in the range 50–500,
are located at the lowest (k⊥, k�) modes just beyond the wedge
boundary. The values of R(k⊥, k�) and the region where R(k⊥, k�) >

1 both increase as we increase the number of terms in the window
function. In all cases, we have R(k⊥, k�) < 1 at large (k⊥, k�) where
the H I signal is small. In comparison to the uniform illumination,
the region where R(k⊥, k�) > 1 is found to be somewhat smaller for
the triangular illumination because of the larger FoV.

We have assumed that the (k⊥, k�) region where R(k⊥, k�) ≥
Rt can be used to detect the H I 21-cm signal power spectrum. Rt

here is a threshold value that has to be set sufficiently high so as
to minimize the possibility of residual foreground contamination.
We discuss the criteria for deciding the value of Rt later in this
section. We see that the (k⊥, k�) region corresponding to different
values of Rt are somewhat smaller for the triangular illumination
as compared to the uniform illumination. The OWFA illumination
pattern is unknown, but we expect the actual OWFA predictions to be
somewhere between the uniform and the triangular predictions. The
(k⊥, k�) range that simultaneously satisfies R(k⊥, k�) ≥ Rt for both the
uniform and the triangular illuminations can safely be used to detect
the H I 21-cm signal power spectrum. The R(k⊥, k�) ≥ Rt regions for
Rt = 10, 50, and 100 for the triangular illumination are shown by
the solid, dashed, and fine-dotted contours respectively in both the
left- and right panels. The triangular illumination considered here
represents the worst possible scenario for the illumination pattern of
the OWFA antennas. We do not expect the allowed (k⊥, k�) range for
the actual OWFA beam pattern to be smaller than that predicted for
the triangular illumination. Thus, for any value of Rt, throughout we
have used the triangular illumination to determine the allowed (k⊥,
k�) range.

From Fig. 7, we see that the allowed (k⊥, k�) region and the peak
R(k⊥, k�) values increase as we increase the number of terms in
the window function. It thus appears to be advantageous for H I 21-
cm signal detection to increase the number of terms in the window
function. This would indeed be true if the power spectrum estimated
at the different (k⊥, k�) modes were uncorrelated. However, the
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Figure 8. A comparison of predicted SNRs for different higher term window functions considered in this work. The upper and lower panels show the predictions
for the uniform and triangular illuminations, respectively. The SNR values 5, 10, and 20 are shown by the solid, dashed, and dotted contours, respectively.

convolution in equation (15) causes the H I signal at different k�
modes to be correlated. We see that f̃ (τm) gets wider (right panel
of Fig. 4), causing the k� extent of the correlations to increase
as we increase the number of terms in the window function. The
system noise contribution at the different k� modes are also expected
to be correlated because of the convolution. Further, the window
function F(ν) gets narrower (left panel of Fig. 4) and the loss in the
H I signal at the edge of the frequency band also increases as we
increase the number of terms. It is therefore not obvious whether
it is advantageous for H I 21-cm signal detection to increase the
number of terms in the window function. Rather, it would be more
appropriate to ask as to which of the different window functions
considered here is best suited for H I signal detection. In order to
quantitatively address this issue, we consider a figure of merit namely
the SNR for measuring AH I = b2

H I x̄2
H I , which is the amplitude of

the H I 21-cm signal power spectrum (equation 10). We have used
the Fisher-matrix formalism where the SNR for the measurement of
AH I is given by

SNR2 =
∑

a,m,m′

∂PT(k⊥a, k‖m)

∂ ln AH I

C−1
a (m,m′)

∂PT(k⊥a, k‖m′ )

∂ ln AH I

. (24)

Here we have assumed that the entire allowed (k⊥, k�) range
where R(k⊥, k�) ≥ Rt is combined to estimate AH I . Considering
�P̂ (Ua, τm) = P̂ (Ua, τm) − P (Ua, τm), the error in estimated the
21-cm power spectrum, the correlation between different k� mode
arising from the convolution in equation (15) can be quantified
through the covariance matrix ,

Ca(m,m′) = 〈[�P̂ (Ua, τm)][�P̂ (Ua, τm′ )]〉 . (25)

We have estimated P (Ua, τm) and Ca(m, m′) for different window
functions and different values of tobs using simulations. For each
case, we have used Nr = 1000 statistically independent realizations

of the OWFA visibilities incorporating the H I signal and the system
noise.

Fig. 8 shows the predicted SNR values as a function of tobs and Rt.
The four columns, respectively, correspond to the four higher term
window functions, whereas the two rows respectively correspond to
the uniform and triangular illuminations. Our aim here is to identify
the optimal window function. Considering BH4, we find that the SNR
values are considerably lower compared to the three other window
functions and BH4 is not a good choice. We find that for the entire
Rt range considered here (1 ≤ Rt ≤ 500), the SNR values do not
differ much between the MS6 and MS7 window functions. The SNR
values for the MS5 window function also are comparable to those
for MS6 and MS7 for Rt � 30; however, the SNR values for MS5
drop rapidly for larger Rt(> 30). Fig. 8 therefore indicates that BH4
can definitely be excluded; however, all three MS5, MS6, and MS7
exhibit comparable performance if one wishes to use a threshold Rt

< 30. For a higher threshold Rt > 30, MS5 also is excluded; however,
both MS6 and MS7 exhibit comparable performance.

In order to quantify the small differences in the SNR predictions
of the window functions, we consider the ratio of the SNRs for the
different window functions with respect to that for MS6 that we take
as reference :

R(Rt, tobs) = SNR(Rt, tobs)/[SNR(Rt, tobs)]MS6 . (26)

A value R(Rt, tobs) > 1 tells us that the corresponding window
function performs better than MS6, whereas the converse is true
if R(Rt, tobs) < 1. The left-, middle, and right panels of Fig. 9
show R(Rt, tobs) as a function of tobs for Rt = 10, 50, and 100,
respectively. As expected, the R(Rt, tobs) values always remain
substantially below 1.0 for BH4 and this is excluded. Note that
the R(Rt, tobs) values for BH4 are not visible in the middle and right
panels due to the very small allowed (k⊥, k�) region at these Rt values.
Considering MS5 next, for Rt = 10, we find that R(Rt, tobs) ≥ 1.0,
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Foreground avoidance 4409

Figure 9. A comparison of R(Rt, tobs) for different window functions considered in this work. The upper and lower panels show the predictions for the uniform
and triangular illuminations, respectively. The left, middle, and right panels show the results for the three cases where Rt = 10, 50, and 100, respectively. The
thin dashed line in the right panels shows the ratio RMS6 = [SNR(Rt = 100, tobs)]MS6/[SNR(Rt = 50, tobs)]MS6.

provided tobs ≤ 1000 h; however, R(Rt, tobs) < 1 if tobs > 1000 h and
it declines steadily with increasing tobs. For Rt = 50 and 100, we have
R(Rt, tobs) < 1 irrespective of tobs. Considering MS7, we find that
0.9 < R(Rt, tobs) < 1.0 for all the three Rt values shown here. This
is a direct consequence of the fact that the extent of the correlation
between the k� modes increases (Fig. 4) with an increase in the
number of terms in the window function. Although the allowed (k⊥,
k�) region increases if we increase the number of terms, the enhanced
correlation causes the SNR to degrade beyond MS6. The uniform and
triangular illuminations both show very similar results. Our analysis
suggests that the MS5 window is optimal at small Rt (e.g. Rt ≤ 30)
and small tobs (e.g. tobs ≤ 1000 h); barring this situation, the MS6
window function is optimal for H I power spectrum estimation with
OWFA.

Once we have identified the optimal window function, we next aim
to fix a suitable Rt for H I 21-cm power spectrum estimation. We have
earlier discussed that the value of Rt must be set sufficiently high
to minimize the possibility of residual foreground contamination.
Shorter observations (e.g. tobs ≤ 1000 h) are expected to have
a relatively large noise contribution, and it is possibly adequate
to consider a less conservative threshold Rt ≈ 10 along with the
MS5 window function for H I power spectrum estimation. For tobs

≥ 1000 h, where we target a more precise measurement of the
H I power spectrum, it is worth considering a more conservative
threshold Rt ≥ 50 and use the MS6 window function. The question is

whether the SNR would fall significantly if we increase the value
of the threshold Rt in the range 50–100. The thin dashed line
in the right panels of Fig. 9 shows the ratio RMS6 = [SNR(Rt =
100, tobs)]MS6/[SNR(Rt = 50, tobs)]MS6. We find that the SNR values
degrade at most by ∼ 8 per cent if we increase Rt from 50 to 100.
This indicates that one can set the value of the threshold Rt as high
as 100 without a significant loss of SNR. For Rt = 100, the residual
foreground contamination is expected to be ≤ 1 per cent for every
(k⊥, k�) modes that is used for H I power spectrum estimation .

An earlier study (Sarkar et al. 2017) has predicted that a 5 σ

detection of the binned power spectrum is possible in the k =√
k2

⊥ + k2
‖ range 0.05 ≤ k ≤ 0.3 Mpc−1 with 1000 h of observation;

this, however uses the entire available (k⊥, k�) region and does not
take the foreground contamination into account. The fact is that a
significant (k⊥, k�) range has to be excluded due to the foreground
wedge and the residual foreground leakage. We next consider
the revised SNR predictions for the binned H I power spectrum
taking into account the (k⊥, k�) modes that have to be excluded
to avoid the foreground contamination. For these predictions, we
have used the MS6 window function and set a high threshold of
Rt = 100; the results do not change very much if Rt is varied in
the range Rt = 10 and 100 (Fig. 8). The range k ≤ 0.1 Mpc−1 is
completely within the foreground wedge, and this is excluded from
H I power spectrum estimation. We have binned the allowed k-range
(0.1 < k < 2.0 Mpc−1) into 10 logarithmic bins and estimated the
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Figure 10. The SNR predictions for the binned power spectrum estimation
using MS6 window function for the triangular and uniform illuminations.
Here we have set Rt = 100. The upper panels show the predicted SNR as
a function of k and tobs. The contours mark the SNR values 5, 10, and 15
(mentioned in the figure). The middle panels show horizontal sections through
the upper panels for tobs = 1000, 4000, and 104 h (mentioned in the figure
legend). The horizontal dot–dashed line marks the SNR value 5. The lower
panels show the percentage loss of SNR (�SNR) due to the presence of the
foregrounds for tobs = 104 h.

SNR prediction for different tobs. The upper row of Fig. 10 shows the
SNR predictions as a function of k and tobs, with the left- and right
panels corresponding to the uniform and triangular illuminations,
respectively. The middle row shows horizontal sections through the
upper panels, i.e. they show the SNR as a function of k for fixed
values of tobs (mentioned in the figure legend), and the lower row
shows the percentage loss of SNR (�SNR) due to the excluded (k⊥,
k�) region. To calculate �SNR, we have used the SNR predictions
considering the entire available (k⊥, k�) region (similar to Sarkar
et al. 2017) as reference.

Considering the upper row of Fig. 10, we see that the SNR
predictions are similar for both the illuminations but the SNR values
are ∼1.5 times lower for the triangular illumination in comparison
to the uniform illumination. Our results are also similar to those
in fig. 3 of Sarkar et al. (2017) except that our prediction for the
uniform illumination is ∼1.5 times lower due to the foreground
contamination. We find that at low tobs, the SNR peaks in the smallest
k-bin (∼ 0.18Mpc−1) and a 5 σ measurement is possible at this
k-bin with tobs ≈ 600 and 1000 h for the uniform and triangular
illuminations, respectively. A 5 σ detection of the binned power
spectrum is possible in the k-range 0.18 ≤ k ≤ 0.3 Mpc−1 with tobs ∼
1000 h for the uniform illumination, whereas this will require tobs ∼
2000 h for the triangular illumination. The peak SNR shifts towards
larger k-bins for larger tobs, and the peak is at k ∼ 0.3 Mpc−1 for tobs

= 104 h, where a 15 σ detection is possible. The shift in the peak SNR
is clearly visible in the middle row of the figure. A 10 σ detection is
possible in the range k ∼ 0.2–0.4 Mpc−1 with tobs ∼ 3000 and 4000 h

for the uniform and triangular illuminations, respectively. The SNR
falls drastically at large k (> 0.8 Mpc−1); this is also noticeable in
fig. 3 of Sarkar et al. (2017) and this is due to the fact that the
H I power spectrum fall at large k (Fig. 5) whereby these bins are
dominated by the system noise contribution. The situation is further
aggravated here because a considerable fraction of the available (k⊥,
k�) region has to be excluded to avoid the foregrounds. Considering
the lower row of the figure, we see that the fractional loss in the SNR
(�SNR) is > 60 per cent at k > 0.8 Mpc−1, and it increases rapidly
to ∼ 80 per cent at the larger k-bins. The fractional loss in the SNR is
in the range 40–60 per cent for k in the range 0.18 ≤ k ≤ 0.8 Mpc−1,
where there are prospects of a detection. We also note that (�SNR) is
minimum at � 40 per cent at k ∼ 0.3 Mpc−1 where the SNR peaks
for tobs ≥ 104 h.

6 SU M M A RY A N D C O N C L U S I O N

The ORT (Swarup et al. 1971) is currently being upgraded to operate
as a radio interferometer, the OWFA (Subrahmanya et al. 2017b),
and this work focuses on PII of OWFA. The array operates with a
single linear polarization. The ORT (and also OWFA) feed system
consists of linear dipoles arranged end to end along the long axis
of the cylindrical parabolic reflector. Considering any particular
dipole, its radiation pattern is minimum along the direction of the
adjacent dipoles and we thus expect minimal coupling between the
adjacent dipoles. The actual primary beam patten A (�n̂, ν) for
OWFA is unknown. For this study, we use two extreme models
for A (�n̂, ν): The first one is based on the simplest assumption
that the OWFA antenna aperture is uniformly illuminated by the
dipole feeds (uniform illumination), whereas the second one as-
sumes a triangular illumination pattern (Fig. 3). We expect the
actual OWFA illumination to be somewhat in between these two
scenarios.

OWFA is sensitive to the HI 21-cm signal from z = 3.35, and
measuring the cosmological 21-cm power spectrum is one of the
main goals of this upcoming instrument. The cosmological H I 21-
cm signal is faint and is buried in foregrounds that are several
orders of magnitude brighter. The foregrounds processed through
the chromatic response of the instrument produce spectral features
that contaminate the H I signal, and this poses a severe challenge
for detecting the 21-cm power spectrum. In this paper, we have
simulated the H I 21-cm signal and foregrounds expected for OWFA
PII. Our aim here is to use these simulations to quantify the extent
of the expected foreground contamination and asses the prospects of
detecting the 21-cm power spectrum.

We have used all-sky foreground simulations (described in Sec-
tion 2) that incorporate the contributions from the two most domi-
nant components namely the diffuse Galactic synchrotron emission
and the extragalactic point sources. These were used to calculate
the foreground contribution F (Ua, νn) to the model visibilities
(equation 5) expected at OWFA. These simulations incorporate the
chromatic behaviour of both the sources and also the instrument.
To simulate the H I signal contribution to the model visibilities
S (Ua, νn) (equation 8), we use the ‘Simplified Analysis’ presented
in Sarkar et al. (2018a). This is based on the flat-sky approximation,
and also ignores the correlation between the H I signal at adjacent
baselines and the non-ergodic nature of the H I visibility signal along
the frequency axis. To estimate the 21-cm power spectrum from the
measured visibilities, we introduce an estimator (equation 19) that
has been constructed so as to eliminate the noise bias and provide
an unbiased estimate of the 3D power spectrum P(k⊥, k�). We have
validated this for both the uniform and the triangular illuminations
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using a large number of statistically independent realizations of
H I simulations. These particular simulations also include the system
noise; the foregrounds however are ignored. We find (Fig. 5) that
in the absence of foregrounds, for both the illuminations, the k-
range 0.05–0.3 Mpc−1 is most favourable for measuring the power
spectrum with OWFA. This is consistent with the results of earlier
work (Sarkar et al. 2017).

Considering the foregrounds, the contamination is primarily lo-
calized within a wedge shaped region of the (k⊥, k�) plane (Fig. 6).
The k modes outside this ‘foreground wedge’ are believed to be
largely uncontaminated by the foregrounds. However, there is a
relatively small fraction of the foreground that leaks out beyond the
wedge. Though small, this foreground leakage may still exceed the
expected H I signal in many of the k modes outside the foreground
wedge. For signal detection, we focus on a strategy referred to as
‘foreground avoidance’ where only the k modes that are expected
to be uncontaminated are used for measuring the 21-cm power
spectrum. In this work, we use simulations to identify the region
of the (k⊥, k�) plane that is expected to be uncontaminated, and we
use this to quantify the prospects of measuring the 21-cm power
spectrum using OWFA.

Our simulations show that foreground leakage outside the wedge,
though small, can still exceed the 21-cm power spectrum expected
at OWFA. We find that the extent of foreground leakage is extremely
sensitive to the frequency window function F(ν) (equation 13) that
is introduced (Vedantham et al. 2012) to suppress the measured
visibilities near the boundaries of the frequency band. Considering
the extensively used (e.g. Paul et al. 2016) BN filter that has four
terms, we find that the foreground leakage exceeds the expected
21-cm power spectrum at all the available k modes, and it will not
be possible to measure the 21-cm power spectrum using OWFA. In
order to overcome this problem, we consider a set of cosine window
functions with progressively increasing number of terms (Table 3
and Fig. 4). The window function gets narrower resulting in better
suppression at the edges of the band as we increase the number
of terms. Using R(k⊥, k�), which is the ratio of the expected 21-
cm power spectrum to the foreground leakage contribution, we find
that the (k⊥, k�) region where R(k⊥, k�) > 1 (i.e. the region where
H I signal exceeds the foreground leakage) increases if we increase
the number of terms in the window function (Fig. 7). Taken at face
value, this indicates that it is advantageous to increase the number of
terms in the window function. It is however also necessary to take
into consideration the fact that the H I signal in adjacent k� modes
get correlated due to F(ν) and the extent of this correlation increases
as we increases the number of terms. The number of independent
estimates of the 21-cm power spectrum thus gets reduced if we
increase the number of terms. We therefore need to choose the
optimal window function by balancing between these two competing
effects. We have used the Fisher matrix formalism to define the SNR
(equation 24) for measuring the amplitude of the 21-cm power
spectrum, and we use this as a figure of merit to identify the optimal
window function.

Our analysis (Fig. 8) shows that the optimal choice of window
function depends on the observing time tobs and the threshold value
Rt. A threshold value Rt implies that we only use the modes where
R(k⊥, k�) ≥ Rt for measuring the 21-cm power spectrum. We note
that the value of Rt must be set sufficiently high to minimize the
possibility of residual foreground contamination. We find that the
five-term MS5 window function is optimal at small tobs (≤1000 h)
and small Rt (≤30), whereas the six-term MS6 window function is
optimal for larger values of tobs and Rt. Relative to MS6, the SNR is
found to degrade slightly if we consider the seven term MS7 window

function. The uniform and triangular illuminations both show very
similar results.

We propose a possible observational strategy based on the finding
summarized above. Shorter observations (e.g. tobs ≤ 1000 h) are ex-
pected to have a relatively large noise contribution, and it is possibly
adequate to consider a relatively low threshold Rt ≈ 10 along with the
MS5 window function. For longer observations, tobs ≥ 1000 h, where
we target a more precise measurement of the 21-cm power spectrum,
it is worth considering a more conservative threshold Rt ≥ 50 and
use the MS6 window function. Our investigations also show that the
SNR does not fall much if Rt is increased from 50 to 100, and we
could equally well consider using a very conservative threshold of Rt

= 100 where the contribution from foreground leakage is expected
to be less than 1 per cent of the 21-cm power spectrum.

The SNR values for measuring the amplitude of the 21-cm power
spectrum (Fig. 8) are approximately 1.5 times lower for the
triangular illumination in comparison to the uniform Illumination.
Using MS5 with Rt ≈ 30, a 5σ detection will take ∼180 and ∼300 h
with the uniform and triangular illuminations, respectively. The same
is increased to ∼200 and ∼300 h if we use MS6 or MS7 with Rt ≈
100.

We have also considered the prospects of measuring the binned 21-
cm power spectrum. The discussion here is restricted to MS6 with Rt

= 100. We find that the range k ≤ 0.1 Mpc−1 is completely within the
foreground wedge (Fig. 10) and has to be excluded. For low tobs, the
SNR peaks at the smallest k ≈ 0.18Mpc−1 bin and a 5 σ measurement
is possible at this k-bin with tobs ≈ 600 and 1000 h for the uniform and
triangular illuminations, respectively. A 5 σ detection of the binned
power spectrum is possible in the k-range 0.18 ≤ k ≤ 0.3 Mpc−1

with tobs ∼ 1000 h for the uniform illumination, whereas this will
require tobs ∼ 2000 h for the triangular illumination. Considering
tobs = 104 h, for both the illuminations, the peak SNR shifts to
larger k-values 0.3–0.4 Mpc−1 and a 5 σ detection is possible in
the range 0.18 ≤ k ≤ 0.8 Mpc−1. We have used �SNR to quantify
the fractional loss in SNR due to the foreground contamination;
the comparison here is with respect to the situation where there
are no foregrounds. We find that �SNR has values in the range
40–60 per cent for k in the range 0.18 ≤ k ≤ 0.8 Mpc−1, where there
are good prospects of measuring the 21-cm power spectrum.

The exact beam pattern of OWFA is not known, but we expect
this to be somewhere between the uniform and triangular illumina-
tions considered here. We therefore expect the actual situation for
measuring the 21-cm power spectrum to lie somewhere between the
two different sets of predictions presented here. This study indicates
that ‘Foreground Avoidance’ provides an effective technique for
measuring the 21-cm power spectrum with OWFA. It is also predicted
that a 5 σ measurement of the 21-cm power spectrum should be
possible within approximately a few hundred hours of observations
despite the k modes that have to be excluded due to foreground
contamination. It is however necessary to note that the entire analysis
presented here is based on 20 statistically independent realizations
of our specific foreground model. While this model attempts to
incorporate the salient features of the two dominant foreground
components, it still remains to establish how robust the results are
with respect to variations in the foreground model. Although the
exact quantum of foreground leakage may vary depending on the
foreground model, we do not expect this to be a very severe effect
as we have adopted a pretty conservative threshold Rt = 100 for a
considerable part of our analysis. Calibration (Marthi & Chengalur
2014) is another issue that could affect the results presented here. In
future work, we plan to study the effect of calibration errors and also
the effect of varying the foreground model.
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A P P E N D I X A : VA R I A N C E O F T H E ES T I M ATO R

In Section 4, we have used several statistically independent realiza-
tions of the signal to determine the variance (σ 2) of the estimated
power spectrum. Such a procedure is, by and large, only possible with
simulated data. We usually have accessed to only one statistically
independent realizations of the sky signal, and the aim is to use this to
not only estimate the power spectrum but also predict the uncertainty
in the estimated power spectrum. Considering the power spectrum
estimator P̂ (Ua, τm), we theoretically calculate the variance

σ 2
p (Ua, τm) = 〈P̂ 2 (Ua, τm)〉 − 〈P̂ (Ua, τm)〉2 . (A1)

which is used to predict the uncertainty in the estimated power spec-
trum P (k⊥, k‖). The entire analysis here is based on the assumption
that the H I signal is a Gaussian random field.

Considering the power spectrum estimator, we have

σ 2
p (Ua, τm) = [

P (k⊥a, k‖m) + PN(k⊥a, k‖m)
]2

. (A2)

We use 〈|N t (Ua, νn)|2〉 = 2σ 2
N(Ua) (equation 11), equations (17) and

(18) to simplify the noise power spectrum,

PN(k⊥a, k‖m) = r2 r ′ T 2
sys

η̃ �t Ns (NA − a)
, (A3)

where η̃ = [
∫

A2(θ )d2θ ]/[
∫

A(θ )d2θ ]2 is a dimensionless factor
(Chatterjee & Bharadwaj 2018a). It is worth noting that the second
term in the right-hand side of equation (19), which has been
introduced to subtract out the noise bias in equation (16) is ignored
for calculating the variance. The signal contribution from this term
to the estimator is of the order of ∼1/Ns, which is extremely small
for a long observation.

Fig. A1 shows the analytic prediction for the variance calculated
using equation( A2) (solid line) for a total observation time of
tobs = 1000 h with an integration time �t = 1 h for the uniform
illumination. For comparison, we also show (points) the variance
estimated from Nr = 1000 independent realizations of the simulated
signal visibilities. Here we have binned the variance σp(Ua, τm) at
the (k⊥, k‖) modes corresponding to the OWFA baselines and delay
channels into 20 equally spaced logarithmic bins to compute σ p(k).

The shaded region in the figure shows the theoretically estimated
error �σp = σp(k)/

√
Nr in σ p(k) for Nr = 1000 statistically indepen-

dent realizations of the H I signal. We see that the analytic predictions

Figure A1. The analytic prediction for the variance (equation A2) for auto-
correlation is compared with variance estimated from Nr = 1000 realizations
of the simulated signal visibilities.

are in reasonably good agreement with the values obtained from the
simulations over the entire k-range that we have considered here,
except the two smallest k-bins. This discrepancy possibly arises
because the estimator ignores the convolution with the aperture power
pattern that is included in the simulated visibility signal (equation 9).
From Fig. A1, we also notice that σ p(k) remains relatively small in
the k-range 0.05–0.3 Mpc−1, which is consistent with the findings
of Sarkar et al. (2017). The k modes larger than 0.7 Mpc−1 remains
noise dominated and larger hours of observation is required to extract
signal from these modes.
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