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ABSTRACT
We assess the robustness of the two highest rungs of the ‘cosmic distance ladder’ for Type Ia supernovae and the determination
of the Hubble–Lemaı̂tre constant. In this analysis, we hold fixed Rung 1 as the distance to the LMC determined to 1 per cent
using detached eclipsing binary stars. For Rung 2, we analyse two methods, the TRGB and Cepheid distances for the luminosity
calibration of Type Ia supernovae in nearby galaxies. For Rung 3, we analyse various modern digital supernova samples in
the Hubble flow, such as the Calán-Tololo, CfA, CSP, and Supercal data sets. This metadata analysis demonstrates that the
TRGB calibration yields smaller H0 values than the Cepheid calibration, a direct consequence of the systematic difference in the
distance moduli calibrated from these two methods. Selecting the three most independent possible methodologies/bandpasses
(B, V, J), we obtain H0 = 69.9 ± 0.8 and H0 = 73.5 ± 0.7 km s−1 Mpc−1from the TRGB and Cepheid calibrations, respectively.
Adding in quadrature the systematic uncertainty in the TRGB and Cepheid methods of 1.1 and 1.0 km s−1 Mpc−1, respectively,
this subset reveals a significant 2.0σ systematic difference in the calibration of Rung 2. If Rung 1 and Rung 2 are held fixed,
the different formalisms developed for standardizing the supernova peak magnitudes yield consistent results, with a standard
deviation of 1.5 km s−1 Mpc−1, that is, Type Ia supernovae are able to anchor Rung 3 with 2 per cent precision. This study
demonstrates that Type Ia supernovae have provided a remarkably robust calibration of R3 for over 25 yr.

Key words: stars: variables: Cepheids – cosmology: distance scale; stars: supernovae.

1 IN T RO D U C T I O N

After one century of research, the advances of recent years both
in the field of theory and experimentation have allowed us to
witness remarkable progress in our understanding of the Universe
on large scales. A concordant Lambda cold dark matter (�CDM)
cosmological model is able to reproduce the evolution of the Universe
from the epoch of recombination, characterized by the remnants
effects of density fluctuations of quantum origin, to its complex
current large-scale structure. Such a model is geometrically flat,
composed of cold dark matter, and has a dominant component of dark
energy that is responsible for the current acceleration of the Universe.
Remarkably, one requires only six cosmological parameters to define
the basic cosmology as has been observationally demonstrated by the
WMAP and Planck missions.

Within the �CDM model, the Hubble–Lemaı̂tre constant (H0)
is arguably the most important cosmological parameter. By def-
inition, it corresponds to the expansion rate of the Universe at
the present time. It sets the size, age, and critical density of
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the Universe, and pervades virtually all models in extra-galactic
research. Ever since the discovery of the cosmic expansion in 1927–
1929 (Lemaı̂tre 1927; Hubble 1929), there has been a continuous
effort from the astronomical community to measure its value, with
the range of experimentally measured values of H0 decreasing
over time, from ∼500 km s−1 Mpc−1 to a narrow interval of only
67–74 km s−1 Mpc−1.

The traditional method has consisted in measuring luminosity
distances to galaxies in the smooth Hubble flow from bright
astronomical sources with properly calibrated luminosities. This
approach has required the calibration of a series of increasingly
brighter astrophysical sources, which, altogether is known as the
‘cosmic distance ladder’ (CDL). Many different techniques have
been attempted in order to build the ladder and determine the value
of H0. In this work, we will focus in a particularly successful
architecture, which is based on enormous improvements over the
past three decades in (1) improving our ability to measure precise
(5–7 per cent) distances to individual Type Ia supernovae (SNe Ia), (2)
establishing Cepheid or tip of the red giant branch (TRGB) distances,
with the Hubble Space Telescope (HST), to a growing sample of
galaxies having hosted SNe Ia, and (3) improving the determination
of the distance to the Large Magellanic Cloud (LMC) or other very
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nearby galaxies. The concatenation of these techniques creates a
three-rung ladder where all links are essential for the purpose of
determining the value of H0 and none is less important than the other.
Several authors claim today that this concatenation of methods can
lead to an ∼1 per cent precision in the measurement of H0 (Riess
et al. 2016; Burns et al. 2018; Freedman et al. 2019; Riess et al.
2019, R16, B18, F19, and R19 hereafter, respectively). However, the
reported values range between 74.22 ± 1.82 (R19) and 69.8 ± 0.8
km s−1 Mpc−1(F19), which shows that the 1 per cent precision is a
future goal for the CDL.

Other experimental approaches sensitive to H0 but independent
of the cosmic ladder in the local Universe have been advocated in
recent years such as the measurement of temperature anisotropies
in the cosmic microwave background (CMB). The exceptional data
provided by the WMAP and Planck satellites have allowed precise
determinations of the Hubble–Lemaı̂tre constant using the CMB
data alone, namely H0 = 70.0 ± 2.0 and 67.4 ± 0.5 km s−1 Mpc−1,
respectively (Hinshaw et al. 2013; Planck Collaboration I 2018). It
must be kept in mind that these values are indirect constraints based
on a flat �CDM cosmological model.

The measurement of the angular diameter of the baryon acoustic
oscillation (BAO) feature is also sensitive to the expansion history.
However, the BAO depends on the sound horizon measured by the
CMB, so the two H0 results are not independent. The parameters
yielded by the BAO experiment using the Sloan Digital Sky Survey
III data anchored to the Planck CMB data lead to H0 = 67.6 ± 0.5
km s−1 Mpc−1(Alam et al. 2017), thus providing further evidence for
the six parameter cosmological model fit by the Planck collaboration.
As shown by Addison et al. (2018), when Ly α BAO data are
combined with CMB data, the solutions for H0 obtained from WMAP
and Planck agree even better and with smaller uncertainties, namely,
H0 = 68.3 ± 0.7 and 68.1 ± 0.6 km s−1 Mpc−1, respectively.

Strong gravitational lenses afford another route for the cosmic
ladder, yet model-dependent. This method consists in measuring time
delays between different images of a background quasar lensed by a
foreground galaxy and modeling the lens mass distribution. Recently,
Wong et al. (2019) presented a measurement of the Hubble–Lemaı̂tre
constant of 73.3 ± 1.8 km s−1 Mpc−1 from six lens systems.

The Megamaser Cosmology Project has recently obtained another
measurement of the Hubble–Lemaı̂tre constant independent from the
cosmic ladder. Their analysis yielded distances from six magamaser-
hosting galaxies, which led to a constraint to the Hubble–Lemaı̂tre
constant of H0 = 73.9 ± 3.0 km s−1 Mpc−1 (Reid, Pesce & Riess
2019).

The value of the Hubble–Lemaı̂tre constant is a long-standing
controversy. Thirty years ago the debate was between values of 50 and
100 km s−1 Mpc−1. Since then we have seen a notable progress but,
as the precision of our measurements has increased, we find ourselves
once again with two camps advocating significant, although small,
differences between 67 and 74 km s−1 Mpc−1. This ∼ 10 per cent
difference is 5σ beyond their internal uncertainties, a difference too
large for the precision astronomy era, that could be explained for
our current inability to identify and handling the systematics in the
distance ladder, or for the lack of a complete understanding of the
early Universe physics or to later variations in the behaviour of dark
energy. The latter makes the H0 problem even more interesting to
solve.

The purpose of this paper is to make a thorough revision of the
setting of the CDL, which, as shown above, is currently deliver-
ing internally discrepant values between 74.22 ± 1.82 (R19) and
69.8 ± 0.8 km s−1 Mpc−1 (F19). Our goal is to focus the attention
into the heart of the distance ladder method, that is, we will not

discuss the Rung 1 (the determination of the LMC distance), which
we assume well determined, but we will re-analyse in detail the
second and third rungs of the distance ladder. For Rung 2, we will
investigate the impact on the value of H0 using recent Cepheid and
TRGB relative distances anchored to the LMC. For Rung 3, we
will employ different samples of SNe Ia, starting with the first set
of digital light curves obtained in the early 1990s, combined with
different methodologies to standardize their luminosities, which will
allow us to assess the consistency and the systematics uncertainties
of the SNe Ia technique.

This paper is organized as follows. In Section 2, we review the
latest advances in the establishment of the CDL. In Section 3,
we analyse the systematics of the CDL. First, we focus on Rung
2 assessing the implications of adopting the Cepheid and TRGB
distances for the calibrations of several SN Ia samples. Then we
assess the robustness of Rung 3 employing 30 combinations of SN Ia
samples observed in optical and near-infrared (NIR) bandpasses,
and six different methodologies for the standardization of the SN
peak luminosities. Finally, in Section 4, we summarize the main
conclusions of this paper.

2 TH E C O S M I C D I S TA N C E L A D D E R

The traditional method to measure H0 consists in establishing a
CDL whose highest third rung provides a direct measurement of
the cosmic expansion rate from galaxies in the smooth Hubble flow.1

This last step has been approached using various types of objects, but
the most precise methods remain those involving SNe Ia (Freedman
et al. 2001). Thus, the modern determination of H0 involves the
following three steps (or rungs), namely (1) the measurement of the
distance to a nearby galaxy such as the LMC, NGC 4258, M31, or
parallaxes in the Milky Way; (2) distance determinations to other
nearby SN Ia host galaxies (distance modulus μ < 33), relative to
the first anchor, via the traditional Cepheid method or the most recent
TRGB technique; and (3) the measurement of distances to SNe Ia in
the Hubble flow (range of redshifts z = 0.01–0.1, or μ = 33-38),
applying the inverse square law to their apparent magnitudes and
their intrinsic luminosities calibrated via Cepheids or TRGB stars.

The first rung. Rung 1 (R1) has been established with four methods:
(1) the modelling of masers in the galaxy NGC 4258, which yields
a distance modulus of 29.40 ± 0.02 (Reid et al. 2019); (2) detached
eclipsing binary stars (DEBs), which yield a distance modulus for the
LMC of 18.48 ± 0.02 (precision of 1 per cent in distance; Pietrzyński
et al. 2019); (3) trigonometric parallaxes of Milky Way Cepheids
(Benedict et al. 2007; van Leeuwen et al. 2007); and (4) DEBs in
M31 (Ribas et al. 2005; Vilardell et al. 2010).

The calibration of Rung 2 has been anchored to one or more of
these four calibrations. For instance, R16 adopted all four of these
calibrations for the determination of the Cepheid luminosities in
19 galaxies that have hosted SNe Ia. Instead, F19 adopted solely the
LMC distance calibration measured from DEBs for the measurement
of the TRGB in 18 SNe Ia host galaxies. This complicates a
direct comparison of both methods and their associated systematic
uncertainties.

R19 updated the Cepheid calibration to be anchored solely to
the LMC DEB distance but did not provide the revised individual
galaxy distances. They found that the net effect of changing the

1Defined as the limit where the distance modulus errors are roughly matched
to the peculiar velocity. For a peculiar velocity of 200 km s−1 and a 0.1 mag
error in distance modulus, the limit of the smooth Hubble flow is z = 0.014.
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zero-point (R1) of the CDL is an increase in H0 from 73.24 to
74.22 km s−1 Mpc−1, 1.34 per cent relative to their 2016 value. This
increase in the value of H0 can be translated into a global correction
of −0.029 mag to their 2016 distance moduli catalogue. This allows
us to establish a common ground for the first rung, leaving the R1
calibration out of this discussion, to focus on the assessment of the
R2 calibration using Cepheid and TRGB techniques, and the R3
calibration using SNe Ia.

The second rung. The calibration of Rung 2 (R2) has been
historically approached using the classical Cepheid Leavitt law (the
P-L relation), ever since the pioneering work of Sandage et al. and
Freedman et al. in the 1990s using the Hubble Space Telescope (HST).
This approach has been improved significantly as the sensitivity of
HST has allowed the discovery and characterization of Cepheid stars
in a greater and more distant sample of SN Ia host galaxies and
through the addition of new SNe Ia that have exploded in nearby
galaxies over recent years. There are 19 SNe Ia possessing Cepheid-
calibrated distances in the range μ = 29.1–32.9 (R16; R19).

In the last years, an alternative technique has matured allowing the
determination of precise distances to nearby galaxies by identifying
the locus of the TRGB stars in a colour–magnitude diagram (Lee,
Freedman & Madore 1993; Beaton et al. 2016). The TRGB technique
affords a competitive and independent method for the calibration of
R2. This work has been vigorously championed by the Carnegie-
Chicago Hubble Project (CCHP) in a series of eight papers that
introduce the method, measure distances to 13 SNe Ia host galaxies,
bring to a common scale five additional galaxies measured by Jang &
Lee (2015, 2017), thus raising the total number of SNe Ia host
galaxies with TRGB distances to 18 (F19).

The Cepheid and TRGB sets of distance calibrators overlap in ten
galaxies, thus allowing a measurement of the systematic differences
in the calibration of the SNe Ia luminosities and of R2, and the
implications in the determination of the value of H0, as the reader
will see in Section 3.1.

The third rung. The third and highest rung of the CDL (R3) has
been reached with different methods such as galaxies themselves
using the Tully–Fisher (Giovanelli et al. 1997), surface brightness
fluctuations (Tonry et al. 1997), planetary nebulae (Feldmeier,
Jacoby & Phillips 2007), and Faber–Jackson (Faber & Jackson 1976)
techniques. However, it has been demonstrated that SNe play the
most competitive role in this endeavour. Several approaches have
been developed for SNe II such as the standardized candle method
(SCM; Olivares et al. 2010), the photometric colour method (PCM;
de Jaeger et al. 2015, 2020), and the photospheric magnitude method
(PMM; Rodrı́guez, Clocchiatti & Hamuy 2014). Undoubtedly, the
most precise approach to measure the local expansion rate of the
Universe has been achieved using SNe Ia, thanks to their enormous
brightness and the standardization of their peak luminosities to reach
an unrivaled level of 5–7 per cent precision in distance.

The success of SNe Ia as precise distance indicators goes back to
the pioneering work of Kowal (1968) using photographic photometry.
The potential of SNe was also emphasized by Sandage (1970) in
his famous paper ‘Cosmology: A search for two numbers’, which
was later confirmed using high-precision digital photometry. The
first large, multiband CCD sample of distant SNe was produced
by the Calán-Tololo survey carried out from the Cerro Tololo Inter-
American Observatory between 1989 and 1993 (Hamuy et al. 1993b),
which ended with the publication of 29 BVRI optical SNe Ia light
curves (Hamuy et al. 1996b). In 1993, astronomers of the Center
for Astrophysics (CfA) started a photometric monitoring campaign
of SNe Ia using CCD detectors at the Fred Lawrence Whipple
Observatory, which yielded a first release of 22 SNe Ia optical

(BVRI) light curves (Riess et al. 1999), a second release of 44 SNe
Ia (Jha et al. 2006), and, more recently, a third release (CfA 3) of
185 SNe Ia observed between 2001 and 2008 (Hicken et al. 2009).
The extensive Lick Observatory Supernova Search (LOSS) program
carried out since 1998 has produced more than 200 BVRI SNe Ia
light curves (Li et al. 2000; Filippenko et al. 2001; Ganeshalingam
et al. 2010; Stahl et al. 2019). The Carnegie Supernova Program
(CSP) carried out between 2004 and 2009 from Las Campanas
Observatory (LCO) meant a significant advance in the quality of the
SN Ia optical light curves, thanks to the use of a uniform photometric
system, in situ measurements of the full transmission curves for the
telescope/filter/CCD system, and by expanding the survey to NIR
YJHK bands (Hamuy et al. 2006). The CSP released two initial data
sets (Contreras et al. 2010; Stritzinger et al. 2011), and a third final
data release published by Krisciunas et al. (2017), which contains
the overall CSP I data set of 134 SNe Ia. Since 2017, the Foundation
Supernova Survey has been obtaining griz light curves with the Pan-
STARRS telescope on the peak of Haleakala on the island of Maui.
A first data release of 225 SNe Ia was recently published by Foley
et al. (2018).2

Along with obtaining larger samples of SNe Ia with increasing
precision, observing cadence, and wavelength coverage, the success
of the SNe Ia method has critically relied on the developments of
novel techniques for the standardization of their peak luminosities,
such as the correction light-curve decline rate (Phillips 1993; Riess,
Press & Kirshner 1995), host-galaxy extinction (Riess, Press &
Kirshner 1996; Phillips et al. 1999), and, most recently, host-galaxy
mass (Kelly et al. 2010; Sullivan et al. 2010; B18). The great variety
of distant SN Ia samples and the different techniques implemented in
the standardization of their peak magnitudes afford an opportunity to
study possible systematic differences in the SNe Ia method, as will
be seen in the following section.

3 SY S T E M AT I C S IN TH E VA L U E O F TH E
HUBBLE– LEMA Î TRE C ONSTANT FROM TH E
C D L

The purpose of this section is to derive an additional evaluation of the
systematic uncertainties in the determination of H0 from the CDL
approach to that addressed by F19 and R19. As mentioned in the
previous section, our strategy consists in leaving the R1 calibration
out of this discussion, to focus on the assessment of R2 applying both
the Cepheid and the TRGB calibrations to several modern samples
of nearby SNe Ia, and study the R3 calibration using various data
sets and methodologies for standardizing the luminosities of distant
SNe Ia. Having multiple data sets/methodologies affords a novel
opportunity to empirically assess the internal consistency, possible
systematic differences in the SNe Ia technique, and derive a more
precise value of H0 by combining independent data sets.

Ever since the work of Rust (1974), Pskovskii (1977), and Phillips
(1993), it was unambiguously demonstrated that SNe Ia were not
perfect standard candles in the optical bands, and that their peak
magnitudes were correlated with the width of their light curves. The
gathering of the first data set of digital photometry for SNe in the
Hubble flow by the Calán-Tololo survey confirmed such correlation
and proved that it was possible to successfully standardize their peak
magnitudes to unrivaled levels of 0.14 mag, or 7 per cent in distance
(Hamuy et al. 1995, 1996a). As the distant samples became more

2We omit from this summary the high-z surveys designed for the measurement
of dark energy.
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Table 1. Prescriptions for standardizing SN magnitudes.

Method Reference Bandpasses Number of
distant SNe

H96 Hamuy et al. (1996a) BVI 26
P99 Phillips et al. (1999) BVI 40
F10 Folatelli et al. (2010) JH 31
K12 Kattner et al. (2012) JH 24
F19 Freedman et al. (2019) Bi

′
JH 99

R19 Riess et al. (2019) u
′
g

′
r
′
i
′
UBVRI 217

numerous, it was possible to identify additional parameters such
as SN colour (Lira 1996; Riess et al. 1996; Tripp 1998; Phillips
et al. 1999), or host-galaxy properties to further standardize the SN
luminosities (Kelly et al. 2010; Sullivan et al. 2010). Several novel
methodologies were developed for the analysis of greater and higher
quality data sets, and improve the usefulness of SNe Ia as distance
indicators, as will be summarized below.

Data sets and methodologies. The selection of the methodologies
employed for this study is driven by the a priori decision to not
alter the original analysis of the distant SNe performed by their
authors and consistently apply such formalisms to the nearby SNe.
Given this constraint, we are able to employ six prescriptions for
the standardization of the SN luminosities. For four of them, we
calculate ourselves the standardized peak magnitudes for the nearby
SNe, and for two methodologies, such magnitudes are available in
the literature:

(i) the Hamuy et al. (1996a, hereafter H96) technique that used
BVI photometry for a subsample of 26 Calán-Tololo distant SNe;

(ii) the Phillips et al. (1999, hereafter P99) approach that employed
BVI light curves for a subsample of 40 Calán-Tololo + CfA distant
SNe;

(iii) the Folatelli et al. (2010, hereafter F10) implementation based
on JH photometry from 31 CSP distant SNe;

(iv) the Kattner et al. (2012, hereafter K12) model that is based
on JH data for the 24 best-observed CSP distant SNe;

(v) the F19 method based on the BiJH photometry from 99 CSP
distant SNe;

(vi) the R19 method based on the u
′
g

′
r

′
i
′
UBVRI Supercal data set,

a combination of 217 CSP, LOSS, and CfA SNe.

Table 1 summarizes the six prescriptions employed for this work.
In the case of the first four methods (H96, P99, F10, and K12), we
remeasure the light-curve parameters for each of the nearby SNe,
such as peak magnitude, colour, and decline rate directly from the
data, that is, without attempting to apply a light-curve fitter. These
parameters are obtained from a simple Legendre polynomial fit
performed around maximum light and the scatter around the fit yields
the peak magnitude error (with an adopted minimum of 0.02 mag).
The magnitude decline, �m15(B), is computed by interpolating the B
magnitude directly from the data at an epoch of 15 d past maximum,
and subtracting the B peak magnitude. A minimum uncertainty of
0.04 mag is adopted for �m15(B). In this manner, we maintain a
uniform method of calibration. In these first four papers, a calibration
recipe is provided to correct the peak magnitude to a standard
candle (absolute magnitude) value. We use this calibration as given
in these papers but apply it to our directly measured light-curve
parameters. In all cases, we apply Galactic reddening corrections
from Schlafly & Finkbeiner (2011, hereafter SF11), although H96
used Burstein & Heiles (1982, hereafter BH82), while P99 employed
Schlegel, Finkbeiner & Davis (1998, hereafter SFD98). To ensure

internal consistency, we compute the differences among BH82,
SFD98, and SF11 for each of the samples of distant SNe and apply
the corresponding corrections. All of the technical details employed
for computing the standardized absolute magnitudes can be found in
the Appendix, for each of these four methods.

Table A1 presents the resulting light-curve parameters for the
nearby SNe with TRGB distances, for which we are able to apply the
H96 method. For each SN, we present their BVI absolute magnitudes
standardized to an equivalent decline rate of �m15(B) = 1.1. The
uncertainties quoted for the individual absolute magnitudes are, by
choice, the quadrature sum of the uncertainties in the measured
parameters and the standardization coefficients, without attempting
to estimate systematic errors. Table A2 presents the same information
for the nearby SNe with Cepheid distances, for which we are able
to apply the H96 method. Likewise, the pair of Tables A3 and A4
presents the results for the BVI filters using the P99 method. In
Tables A5 and A6, we present the results for the JH filters applying
the F10 technique. Similarly, Tables A7 and A8 summarize the same
but using the K12 method. At the bottom of these tables, we provide,
for each filter, the weighted mean absolute magnitude for the whole
sample of nearby SNe that we are able to employ in each case,
the weighted standard deviation, the standard error of the mean, the
error of the weighted mean, and the number of SNe employed.3 In
the following analysis, we also use mean absolute magnitudes for
different subsamples of the nearby SNe listed in such tables.

For the remaining two cases, namely F19 and R19, the standard-
ized peak magnitudes of the nearby SNe were derived with a light-
curve fitter by their own authors. They qualify for this study because
both the nearby and distant SN corrected peak magnitudes were
analysed in a consistent manner and the data are publicly available.
In the Appendix, we summarize each of these two methodologies
and the relevant parameters drawn from each of them.

Since we apply each of these six prescriptions to one or more
bandpasses, we are able to study a total of 12 methodology/bandpass
combinations, namely, H96(B), H96(V), H96(I), P99(B), P99(V),
P99(I), F10(J), F10(H), K12(J), K12(H), F19(B), and R19(B). In
the case of H96, we derive two sets of solutions, as explained in the
Appendix, raising the number of cases studied to 15. For each of
these possible combinations, we compute absolute magnitudes and
H0 values. We perform this analysis independently for the TRGB and
Cepheid calibrations, that is, we obtained a total of 30 sets of absolute
magnitudes and H0 values. For each of these methodology/bandpass
combinations, we attempt to include in the analysis as many of
the 18 and 19 nearby SNe with TRGB and Cepheid distances,
respectively. But in some cases, we have to exclude objects that lack
the indispensable data required for standardizing their magnitudes
in an identical manner as their corresponding distant counterparts.
Given that each methodology draws a different sample of nearby
SNe, the resulting absolute magnitudes and H0 values are subject to
different systematic uncertainties. Hence, care has to be exercised
when comparing these techniques, as explained below.

3.1 Rung 2

In this section, we investigate the net effect on absolute magnitudes
of SNe Ia, either by adopting the TRGB or Cepheid distances.
We approach this test separately for each of the 12 standardization
methodology/bandpass combinations. With the purpose of separating

3Not surprisingly, the dispersion and mean error decreased over time from
H96 to K12 as a result improvements in the photometry.
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Figure 1. Absolute magnitude differences between the TRGB and Cepheid methods using 12 methodology/bandpass combinations. Note that in all cases, the
difference is negative, that is, the TRGB method results in brighter magnitudes. The average difference MTRGB − MCeph = −0.060 ± 0.008 (σ/

√
n) is shown

as the grey band.

from this test the systematics arising from drawing different nearby
SNe from their parent population, for each methodology/bandpass
combination, we identify the same sample of nearby SNe having both
Cepheid and TRGB distances. We obtain between five and ten SNe
in common for each methodology/bandpass combination. We then
calculate the absolute magnitude difference between the Cepheid
and TRGB calibrations. Fig. 1 presents the difference in absolute
magnitude for each of the 12 methodology/bandpass combinations.
In all cases, the absolute magnitudes are systematically brighter when
using the TRGB distances. On average, the 12 combinations yield
MTRGB − MCeph = −0.060 ± 0.008 (σ/

√
n). Since we use TRGB and

Cepheid distance moduli anchored to the same R1 calibration, this
comparison provides a direct estimate of the systematic difference
between the TRGB and Cepheid distance moduli. This difference
can be compared to the systematic uncertainties in the TRGB and
Cepheid methods of 0.033 (F19) and 0.030 mag (R19), respectively
(excluding the systematic uncertainty in the adopted LMC distance
modulus). Adding in quadrature both terms, we would expect a 0.044
mag difference in MTRGB − MCeph, somewhat smaller than our derived
value of MTRGB − MCeph = −0.060 ± 0.008, thus suggesting that
the systematic uncertainties calculated by F19 and/or R19 might be
somewhat underestimated.

3.2 Rung 3

Here we investigate the robustness of R3 of the CDL using the
various surveys and techniques employed to deliver standardized SN
luminosities for SNe Ia in the Hubble flow. As mentioned above,
the scope of this work focuses on six prescriptions that make use
of several distant samples of SNe Ia such as the Calán-Tololo, CfA,
LOSS, and CSP.

The common approach in those analysis has been to establish the
redshift-magnitude relationship, also known as the Hubble diagram.
Here the meaning of magnitude is a standardized peak brightness of
an SN. Within the context of the Friedman–Lemaı̂tre cosmological
model, the redshift–magnitude relationship takes the form

mMAX,corr = 5 log x + ZP, (1)

where x = dLH0, dL is the luminosity distance of each SN, H0 is
the Hubble–Lemaı̂tre constant, and ZP is an empirically determined
zero-point provided by the data. In the low-redshift (z < 0.1) regime,

Table 2. Hubble diagram zero-points.

Method Published zero-point (ZP
′
) Zero-point (ZP)a

H96 (B) − 3.318 ± 0.035 − 3.384 ± 0.035 b

H96 (V) − 3.329 ± 0.031 − 3.379 ± 0.031 b

H96 (I) − 3.057 ± 0.035 − 3.087 ± 0.035 b

P99 (B) 28.671 ± 0.043 − 3.671 ± 0.043 c

P99 (V) 28.615 ± 0.043 − 3.615 ± 0.043 c

P99 (I) 28.236 ± 0.037 − 3.236 ± 0.037 c

F10 (J) − 18.44 ± 0.01 − 2.727 ± 0.01 d

F10 (H) − 18.38 ± 0.02 − 2.667 ± 0.02 d

K12 (J) − 18.552 ± 0.002 − 2.839 ± 0.002 d

K12 (H) − 18.390 ± 0.003 − 2.677 ± 0.003 d

F19 (B) − 19.162 ± 0.010 − 3.449 ± 0.010 d

R16 (B) − 0.71273 ± 0.00176 − 3.564 ± 0.009 e

amMAX, corr = 5 logx + ZP.
bCorrected for new Galactic Extinction Calibration; see Section A1.2.
cZP = 25 − ZP

′
.

dZP = ZP
′ + 25 − 5 × log(72).

eZP = 5 × ZP
′
.

the redshift–magnitude relationship can be approximated by a simple
kinematical model including an acceleration term,

mMAX,corr ≈ 5 log

(
cz(1 + 1 − q0

2
z)

)
+ ZP, (2)

where q0 is the deceleration parameter. Within the aforementioned
cosmological framework, ZP relates two physical quantities, H0 and
MMAX,corr, in this simple way:

ZP = MMAX,corr − 5 log H0 + 25, (3)

where MMAX,corr is the standardized absolute peak magnitude of
SNe Ia. Hence, the empirically derived ZP of the Hubble diagram
interacts directly with the Hubble–Lemaı̂tre constant, and the peak
absolute magnitude is the contact point between ZP and H0.

Each one of the six prescriptions selected for this work has
different definitions for the zero-points. Table 2 summarizes the
original zero-points published by their authors (ZP

′
), each of which

is unique for each methodology and bandpass. By choice, we do not
to modify them but we convert all of them into the definition given in
equation (1) in order to facilitate their comparison. Combining these
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Table 3. Values of H0 in km s−1 Mpc−1.

Method H0(B) H0(V) H0(I)/H0(
′
i
′
) H0(J) H0(H) TRGB/CEPH

± stat ± stat ± stat ± stat ± stat

H96 (no colour correction) 72.9 ± 2.7 71.3 ± 2.2 69.8 ± 2.6 – – TRGB
H96 (with colour correction) 66.6 ± 2.5 66.6 ± 2.1 67.1 ± 2.5 – – TRGB
P99 70.2 ± 2.0 70.1 ± 1.9 68.7 ± 1.8 – – TRGB
F10 – – – 66.5 ± 1.6 69.4 ± 2.1 TRGB
K12 – – – 69.2 ± 1.2 70.3 ± 1.6 TRGB
F19 (Tripp method) 70.0 ± 1.0 – – – – TRGB
R19 70.4 ± 1.2 – – – – TRGB

H96 (no colour correction) 77.0 ± 2.6 76.3 ± 2.1 72.5 ± 2.7 – – CEPH
H96 (with colour correction) 72.4 ± 2.5 72.8 ± 2.0 70.6 ± 2.6 – – CEPH
P99 75.0 ± 2.0 75.4 ± 1.9 72.4 ± 1.8 – – CEPH
F10 – – – 69.1 ± 1.3 74.4 ± 1.6 CEPH
K12 – – – 72.7 ± 1.0 75.2 ± 1.2 CEPH
F19 (Tripp method) 72.4 ± 1.1 – – – – CEPH
R19 73.8 ± 1.2 – – – – CEPH

Figure 2. Red points correspond to H0 values derived from 15 different
methodology/bandpass combinations calibrated using TRGB distances, with
a weighted average and standard deviation of 69.4 ± 1.9 km s−1 Mpc−1.
Blue points correspond to H0 values derived from 15 different method-
ology/bandpass combinations calibrated with Cepheid distances, having a
weighted average and standard deviation of 73.2 ± 2.1 km s−1 Mpc−1.
Black vertical dashed lines represent weighted average values, and their
uncertainties correspond to 1σ .

zero-points with the corresponding absolute magnitudes, we proceed
to compute H0 values using equation (3).

In Table 3 and Fig. 2 we present the 30 H0 values derived from
the 12 methodology/bandpass combinations, using both the TRGB
and the Cepheid calibrations, as described in Appendix A. Given the
systematic differences found for R2 in Section 3.1, we present the
TRGB and Cepheid with different colors. As anticipated, there is a
clear offset between both distributions. From the TRGB calibration,
we obtain a weighted average of 69.4 ± 1.9 (σ ) km s−1 Mpc−1.
Looking in more detail to the distribution, we note that the most
discrepant value is F10(J) with 66.5 ± 1.6, which lies 1.8σ from
the mean. Interestingly, the recalibration by K12 gives a value of

69.2 ± 1.2, and lies comfortably close to the mean value, which
suggests that the F10(J) value may be subject to a significant
systematic uncertainty. Although the H96 values derived with no
colour corrections are formally consistent with the average, they
tend to lie on the high side of the distribution, with a systematic
decrease from the B, V, and I bands. This trend disappears when
using the colour-corrected values 4. The Cepheid calibration yields a
weighted average of 73.2 ± 2.1 (σ ) km s−1 Mpc−1. As in the TRGB
distribution, we note again that the most discrepant value is F10(J)
with 69.1 ± 1.3, which lies 3.2σ from the mean, but the J-band
recalibration by K12 provides a value of 72.7 ± 1.0, solving this
issue. We note again that the H96 methodology behaves better when
using colour-corrected values.

Based on the previous analysis, we show in Fig. 3 our results but
we eliminate the suspicious values, that is, the six H96 values derived
with no colour correction and the two F10(J) values. From this subset
of 11 methodologies/bandpass, we obtain similar averages but with
smaller standard deviations, namely, 69.5 ± 1.5 (σ ) km s−1 Mpc−1

for the TRGB calibration and 73.5 ± 1.5 (σ ) km s−1 Mpc−1 for the
Cepheid calibration. Adding in quadrature the systematic uncertainty
in the TRGB method of 0.033 mag (F19) and in the Cepheid
technique of 0.030 mag (R19) (excluding the systematic uncertainty
in the adopted LMC distance modulus), the systematic offset between
the TRGB and Cepheid calibrations can be clearly seen, with a
significance of 1.6σ .

We can now go a step further and attempt to measure the error
in the mean for each of the two distributions. However, given that
several of the 11 methodology/bandpass combinations considered
above do not use entirely independent data, the resulting H0 values
are not fully independent from each other, thus implying that the
error on the mean cannot be blindly computed from the 11 values. To
get around this issue, we select the three most independent possible
methodologies/bandpasses: P99(V), K12(J), and R19(B). The first

4This improvement is expected due to the fact that the original H96 analysis
did not apply host-galaxy reddening corrections to individual SNe but only the
removal of suspicious SNe having near-maximum colour (BMAX − VMAX) >

0.2, that is, those most likely affected by host reddening. This simple colour
cutoff leaves little room for significant extinction on the parent galaxies but
may introduce a luminosity bias due to unaccounted differential host-galaxy
extinction between the distant and the nearby samples. The application of a
global colour correction between both samples is a statistical approach that
helps to reduce such bias, as clearly shown in Fig. 2.
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Figure 3. Same as Fig. 2 but excluding H96 values with no colour correction
and the F10(J) values. This subset of 22 values yields a weighted average
of 69.5 ± 1.5 km s−1 Mpc−1 for the TRGB calibration and 73.5 ± 1.5
km s−1 Mpc−1 for the Cepheid calibration. The black vertical dashed lines
represent weighted averages, and the blue and red regions correspond to 1σ

uncertainties for TGRB and Cepheid calibrations, respectively.

Table 4. Selected values of the Hubble–Lemaı̂tre constant.

Method H0 TRGB/CEPH
( km s−1 Mpc−1)

P99(V) 70.1 ± 1.9 TRGB
K12(J) 69.2 ± 1.2 TRGB
R19(B) 70.4 ± 1.2 TRGB

Weighted mean 69.9 ± 0.8 TRGB

P99(V) 75.4 ± 1.9 CEPH
K12(J) 72.7 ± 1.0 CEPH
R19(B) 73.8 ± 1.2 CEPH

Weighted mean 73.5 ± 0.7 CEPH

two data sets are fully independent as they do not have any SN
in common in the Hubble flow used to determine the ZP. The last
two data sets are not fully independent, but only 11 per cent of the
Supercal sample employed by R19 overlap with the CSP sample used
by K12. We reproduce such values in Table 4, and we present the
weighted mean and the error in the mean. For the TRGB calibration,
we obtain H0 = 69.9 ± 0.8, while for the Cepheid method, we
derive H0 = 73.5 ± 0.7 km s−1 Mpc−1. Adding in quadrature
the systematic uncertainty in the TRGB method of 0.033 mag
(F19) and in the Cepheid technique of 0.030 mag (R19) (excluding
the systematic uncertainty in the adopted LMC distance modulus),
this exercise reveals a significant 2.0σ systematic difference in the
calibration of R2. However, if R1 and R2 are held fixed, the different
formalisms developed for standardizing the SN peak magnitudes
yield consistent results. This study demonstrates that SNe Ia have
provided a remarkably robust calibration of R3 for over 25 yr!

We turn now to the challenge of estimating the systematic error
in H0 based on SNe Ia, taking advantage of the large number of
methodology/bandpass combinations presented in this study. To
address this issue, we compare H0 values derived from the same
subset of nearby objects. This approach allows us to isolate the
systematics of these formulations from those introduced by the
sample of nearby SNe that each methodology draws from the parent
population of nearby SNe. We purposely exclude from this study
the F10(J) value as well as those obtained using H96 and no colour
correction for the reasons mentioned above. With such constraints,
we are able to carry out this test using nine SNe in common to
nine methodology/bandpass combinations calibrated with Cepheid
distances. The H0 values calculated with these constraints are shown
in Fig. 4. The weighted mean H0 = 74.8 has an associated standard
deviation of 2.0, which is mainly dominated by the statistical
uncertainties of the small sample of nearby SNe (n = 9). The χ2

ν

value of 1.25 indicates that the statistical uncertainties are capable
of accounting for most of the dispersion. An small extra uncertainty
of 0.2 km s−1 Mpc−1 lowers χ2

ν to unity, which can be attributed
to systematic uncertainties in these methods. An upper limit to the
systematic uncertainties can be estimated from the standard deviation
which amounts to 2.0 km s−1 Mpc−1, although the majority of it can
be attributed to the statistical uncertainties. We repeated the same
analysis but using the TRGB distances. In this case, the sample of
nearby SNe drops to only n = 5, the standard deviation is 2.3
km s−1 Mpc−1, and χ2

ν is identical to unity.

4 C O N C L U S I O N S

We assess the robustness of the two highest rungs of the CDL for
SNe Ia and the corresponding determination of the Hubble–Lemaı̂tre
constant. In this analysis, we hold fixed the first rung of the CDL
(R1) as the distance modulus to the LMC, 18.48 ± 0.02, determined
to a 1 per cent precision level using DEB stars (Pietrzyński et al.
2019). For the second rung (R2), we analyse the two currently most
competitive methods, the TRGB and Cepheid luminosity calibration
of SNe Ia in nearby galaxies. Finally, for the third rung of the CDL
(R3), we analyse various modern digital samples of SNe Ia in the
smooth Hubble flow, such as the Calán-Tololo, CfA, CSP, Supercal
data sets, and six prescriptions to standardize their optical and NIR
peak luminosities. We apply each of these six prescriptions to one or
more bandpasses, leading to a total of 15 determinations of H0 from
all possible combinations of bandpasses and methodologies when
using the TRGB calibration, and 15 additional determinations for
the Cepheid calibration. This metadata analysis allowed us to draw
the following conclusions:

(i) No matter which SN sample, bandpass, or methodology is
employed for standardizing the SN luminosities, in all cases, the F19
TRGB calibration yields smaller H0 values than the R19 Cepheid
calibration, a direct consequence of the systematic difference in
the distance moduli calibrated from the TRGB and Cepheid meth-
ods. From the TRGB calibration, we obtain a mean value of H0

= 69.5 ± 1.5 km s−1 Mpc−1 (σ ), whereas from the Cepheid method,
we find H0 = 73.5 ± 1.5 km s−1 Mpc−1. Adding in quadrature the
systematic uncertainty in the TRGB method of 0.033 mag (F19)
and in the Cepheid technique of 0.030 mag (R19) (excluding the
systematic uncertainty in the adopted LMC distance modulus), the
systematic offset between the TRGB and Cepheid calibrations can
be clearly seen, with a significance of 1.6σ (see Fig. 3).

(ii) Selecting the three most independent possible methodolo-
gies/bandpasses (the V band by P99, the J band by K12, and the
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Figure 4. H0 values derived from nine methodology/bandpass combinations, for each of which we used the same common sample of nine nearby SNe calibrated
with Cepheid distances. The average value of 74.8 ± 2.0 km s−1 Mpc−1 is shown as the vertical dashed line, and the 1σ uncertainty is represented by the grey
region.

B band by R19), we obtain H0 = 69.9 ± 0.8 and 73.5 ± 0.7
km s−1 Mpc−1 from the TRGB and Cepheid calibrations, respec-
tively. Adding in quadrature the systematic uncertainty in the TRGB
method of 0.033 mag (F19) and in the Cepheid technique of 0.030
mag (R19) (excluding the systematic uncertainty in the adopted LMC
distance modulus), this subset reveals a significant 2.0σ systematic
difference in the calibration of R2.

(iii) If R1 and R2 are held fixed, the different formalisms de-
veloped for standardizing the SN peak magnitudes yield consistent
results, with a standard deviation of 1.5 km s−1 Mpc−1, that is, SNe Ia
are able to anchor R3 to a level of 2 per cent precision. This internal
agreement yielded by SNe Ia, either using the TRGB or Cepheid
calibrations, is remarkable as it comprises light curves of increasingly
quality, starting with the Calán-Tololo BVI sample, the first digital
survey carried out in the early 1990s, various releases of the CfA
project, and the most modern CSP data set obtained over recent years
with a uniform photometric system over a wide range of optical and
NIR bandpasses. This study demonstrates that SNe Ia have provided
a remarkably robust calibration of R3 for over 25 yr.
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Rodrı́guez Ó., Clocchiatti A., Hamuy M., 2014, AJ, 148, 107

Rust B. W., 1974, PhD thesis, Oak Ridge National Lab
Saha A., Labhardt L., Schwengeler H., Macchetto F. D., Panagia N., Sandage

A., Tammann G. A., 1994, ApJ, 425, 14
Saha A., Sandage A., Labhardt L., Schwengeler H., Tammann G. A., Panagia

N., Macchetto F. D., 1995, ApJ, 438, 8
Saha A., Sandage A., Labhardt L., Tammann G. A., Macchetto F. D., Panagia

N., 1996, ApJ, 466, 55
Saha A., Sandage A., Tammann G. A., Labhardt L., Macchetto F. D., Panagia

N., 1999, ApJ, 522, 802
Sandage A. R., 1970, Phys. Today, 23, 34
Sandage A., Saha A., Tammann G. A., Labhardt L., Panagia N., Macchetto

F. D., 1996, ApJ, 460, L15
Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103 (SF11)
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525 (SFD98)
Scolnic D. et al., 2015, ApJ, 815, 117
Stahl B. E. et al., 2019, MNRAS, 490, 3882
Stritzinger M. et al., 2002, AJ, 124, 2100
Stritzinger M. et al., 2010, AJ, 140, 2036
Stritzinger M. D. et al., 2011, AJ, 142, 156
Sullivan M. et al., 2010, MNRAS, 406, 782
Suntzeff N. B., 2000, in Holt S. S., Zhang W. W., eds, AIP Conf. Ser. Vol. 522,

Cosmic Explosions: Tenth Astrophysics Conference. Am. Inst. Phys.,
New York, p. 65

Suntzeff N. B. et al., 1999, AJ, 117, 1175
Tonry J. L., Blakeslee J. P., Ajhar E. A., Dressler A., 1997, ApJ, 475, 399
Tripp R., 1998, A&A, 331, 815
van Leeuwen F., Feast M. W., Whitelock P. A., Laney C. D., 2007, MNRAS,

379, 723
Vilardell F., Ribas I., Jordi C., Fitzpatrick E. L., Guinan E. F., 2010, A&A,

509, A70
Wells L. A. et al., 1994, AJ, 108, 2233
Wong K. C. et al., 2019, MNRAS, 498, 1420

APPENDI X A :

This Appendix describes six prescriptions that allow one to calculate
standardized absolute peak magnitudes for SNe Ia. We apply these
recipes to the set of nearby SNe that possess either Cepheid or TRGB
distances from R19 and F19, respectively. In the first four cases, we
employ the published prescription for measuring, in the first place,
the standardized apparent peak magnitudes, after which we subtract
the corresponding distance modulus. In the last two cases, we omit the
first step since the standardized apparent magnitudes are available in
the literature. In each case, we proceed to compute the corresponding
values of H0 by combining the absolute magnitudes with the zero-
point of the Hubble diagram derived, in each case, from SNe Ia in
the Hubble flow.

A1 The H96 methodology

The H96 methodology was developed to analyse the sample of 29
distant SNe Ia obtained in the course of the Calán-Tololo project,
which constituted the first sample of SNe in the Hubble flow observed
with modern linear CCD detectors. Maximum light magnitudes
in the BVI bands and the decline rate parameter �m15(B) were
measured for each SN (Hamuy et al. 1996b). A Hubble diagram
was obtained for each band, after correcting the peak magnitudes
for the Galactic reddening provided by BH82, K terms (Hamuy et al.
1993a), and decline rate �m15(B). Although the individual SNe were
not corrected for host-galaxy reddening, three outlier objects were
removed from the initial sample having the pseudo-colour (BMAX −
VMAX) > 0.2, that is, those most likely affected by host reddening.
This simple colour cutoff left little room for significant extinction on
the parent galaxies. In fact, the weighted average pseudo-colour of
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the 26 remaining SNe, 0.007 ± 0.013 (σ/
√

N ), is quite normal for
unextinxguished SNe Ia. All of the above led to Hubble diagrams with
remarkably low dispersions of 0.17, 0.14, and 0.13 mag in B, V, and
I, respectively, thus opening the path to high-precision cosmology
(H96). Cepheid distances measured with HST by Sandage, Saha,
and collaborators to the host galaxies of SNe 1937C, 1972E, 1981B,
1990N (Saha et al. 1994, 1995, 1996; Sandage et al. 1996) allowed
the calibration of the Calán-Tololo Hubble diagram and derive a
value of 63 ± 5 km s−1 Mpc−1 for the Hubble–Lemaı̂tre constant.

A1.1 Absolute magnitudes

We use now the H96 methodology to determine absolute magnitudes
for the 18 nearby SNe Ia with TRGB distances published by F19,
in the same manner as done for the distant SNe. A requisite to
include such SNe in the re-analysis of the Calán-Tololo data is that
each object must have available photometry in the Landolt standard
photometric system (Landolt 1992), which means that the reduced
magnitudes include a photometric colour term (of course, this colour
term is not correct for SNe, and an S-correction (Stritzinger et al.
2002) is normally needed, but since we are applying the original H96
formula, no correction is needed for this purpose). Two of the nearby
SNe, SN 2007on and SN 2007sr, do not fulfill this condition. For
the remaining SNe, we measure their BVI peak magnitudes directly
from the data, using a simple Legendre polynomial, as explained in
Section 3. Following H96, we exclude all SNe with BMAX − VMAX

> 0.2, namely SN 1989B and SN 1998bu, which reduced to 14, the
number of SNe with TRGB distances.

Table A1 summarizes our measurements for such nearby SNe
(14 in B and V, and 8 in the I filter), including their TRGB
distances, peak magnitudes, decline rate, E(B − V) from the NASA
Extragalactic Database (NED), the source for the photometry, and the
SN peak absolute BVI magnitudes corrected for Galactic reddening
and decline rate (to the fiducial value of �m15(B) = 1.1). The
uncertainty in an individual absolute magnitude is the result of
adding in quadrature the uncertainties in peak magnitude, Galactic
extinction, distance modulus, decline rate, the slope of the peak
magnitude–decline rate relation, and an additional term amounting
to 0.05 mag that we attribute to the fact that the SN magnitudes
were not corrected for S terms (Suntzeff 2000; Stritzinger et al.
2002). Although the lack of S-correction constitutes a systematic
uncertainty for an individual magnitude, they should tend to behave
randomly for the ensemble of data points.

For each of the BVI bands, we proceed to compute the weighted
mean absolute magnitude corrected for �m15(B) (MMAX, corr), the
weighted standard deviation (σ ), the standard error of the mean
(σM = σ/

√
n), and the error of the weighted mean. Note that the

standard deviations for the local SNe are 0.27 mag in B, 0.23 in V,
and 0.21 in I, that is, ∼0.09 mag greater, in all three bands, than
the scatter yielded by the SNe in the Hubble flow, which ranges
between 0.17 and 0.13 mag. Possible explanations for the increase
in the scatter could be due to unaccounted host-galaxy extinction
corrections in the nearby sample or uncertainties in the host galaxies
distances.

In view that the H96 method applied a simple colour cut to
correct the SNe for host-galaxy extinction, it proves relevant to
compare the colours of the nearby SNe with those in the Hubble
flow. We analyse first the TRGB sample of 14 nearby SNe. For this
data set, the weighted mean BMAX − VMAX colour, after correcting
for Galactic extinction (SF11), is 0.037 ± 0.019 (σ/

√
n). For the

distant sample, the corresponding colour is -0.010 ± 0.013. It is
possible that this difference could be due to unaccounted differential Ta
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The value of the Hubble–Lemaı̂tre constant 1105

host-galaxy extinction between the distant and the nearby samples.
Hence, we decide to compute mean absolute magnitudes by forcing
the nearby sample to have the same bluer colour of the distant
sample. This required decreasing the previous MMAX, corr values by
(0.037 + 0.010)× Aλ/E(B − V), where AB = 4.16, AV = 3.14, and
AI = 1.82. Table A1 includes mean absolute magnitudes corrected
for colour.

Now we apply the H96 technique to nearby SNe with Cepheid
distances published by the SH0ES program. Again, to be consistent
with H96, we restrict the sample of nearby SNe to those with E(B
− V) <0.2 and BVI magnitudes in the Landolt standard system.
These two restrictions permit us to apply this method to 17 nearby
SNe in B and V, and 9 SNe in the I filter. Table A2 presents the
relevant parameters of the SNe, the distance moduli published by
R16 to which we added a global correction of -0.029 mag (= log
73.24/74.22) in order to place them in the R19 Cepheid scale, and the
resulting mean absolute magnitude corrected for �m15(B). This set
of 17 nearby SNe with Cepheid distances has a mean BMAX − VMAX

colour, corrected for Galactic extinction (SF11), of 0.022 ± 0.018
(σ/

√
n), that is, redder than the −0.010 ± 0.013 colour of the distant

sample. Table A2 includes mean absolute magnitudes computed by
forcing the nearby sample to have the same colour of the distant
sample.

A1.2 The Hubble–Lemaı̂tre constant

Having determined absolute magnitudes, it is straightforward to
compute H0 with the formula

log H0 = 0.2 (MMAX,corr − ZP′ + 25), (A1)

where MMAX, corr is the mean absolute magnitude of the nearby
SNe corrected for decline rate and foreground extinction (given in
Tables A1 and A2), and ZP

′
is the zero-point of the Hubble diagram.

The zero-points of the BVI Hubble diagrams derived by H96 were
−3.318, −3.329, and −3.057, respectively. These values need to be
corrected owing to the fact that the Galactic extinction applied by H96
to the distant sample (BH82) differs from the new calibration (SF11)
that we use for the nearby SNe. Given that the BH82 calibration
yielded a mean E(B − V) correction of 0.031 mag for the ensemble
of 26 distant SNe, and the new calibration of SF11 yields a somewhat
greater correction of 0.047 mag, we have to decrease the zero-points
of the Hubble diagrams to −3.384, −3.379, and −3.087 in B, V, and
I, respectively.

We analyse first the TRGB sample of nearby SNe. Given the
discussion above about the colour difference between the nearby and
distant samples, we decide to calculate two sets of solutions: one
ignoring the colour difference between both samples and one that
forces both samples to have the same colour. Without taking into
account colour differences, we obtain H0(B) = 72.9, H0(V) = 71.3,
and H0(I) = 69.8. Correcting for colour differences between the
nearby (redder) and distant (bluer) samples, the resulting H0 values
are lower than those derived without correcting for colour difference
and much more consistent among the three filters: 66.6, 66.6, and
67.1 for B, V, and I, respectively. If there was significant differential
reddening between the nearby and distant sample, we should observe
a dependence of the H0 value as a function of wavelength, which is not
the case. Hence, it is encouraging that the colour correction yields
values nearly independent on the band considered. The resulting
values for H0 are summarized in Table 3, with and without colour
correction.

Now we analyse the Cepheid sample of nearby SNe in the same
manner as above for the TRGB sample. Without considering colour

differences we derive H0(B) = 77.0, H0(V) = 76.3, and H0(V)
= 72.5. Forcing both data sets to match the same colour, we obtain H0

values of 72.4, 72.8, and 70.6 for B, V, and I, respectively, which are
internally consistent within the statistical uncertainties. The resulting
values for H0 are summarized in Table 3. As can be seen in this
table, the values derived using the H96 methodology are in excellent
agreement with those derived from modern and larger data sets such
as the CSP or Supercal. The Hubble flow from 1996 was sufficient to
derive the modern value of the Hubble–Lemaı̂tre constant. We only
had to wait until a better calibration of the distance to Cepheids and
an improved reddening map were made.

A2 The P99 methodology

The P99 methodology improved the previous work by H96 by
determining host-galaxy reddening to individual SNe through three
novel independent methods: one based on the fact that the B − V
colour 30–90 d past V maximum evolve in a similar manner for
most SNe Ia (also known as the ‘Lira Law’; Lira 1996), a second
one using a calibration of the BMAX − VMAX colour with �m15(B),
and a third that calibrates the VMAX − IMAX colour with �m15(B).
These techniques were tested using 62 SNe: 29 from the Calán-
Tololo project, 20 objects from the CfA work (Riess et al. 1999),
and 13 well-observed nearby SNe, whose peak magnitudes had been
previously corrected for Galactic extinction using the calibration of
SFD98, and for K terms (Hamuy et al. 1993a).

When applied to a sample of 17 ‘low host-galaxy reddening’
SNe with decline rates of 0.85 <�m15(B)<1.7, a well-behaved peak
magnitude–decline rate relation emerged, which was modelled with
a quadratic function of the form �m15(B) = a [�m15(B) −1.1] + b
[�m15(B) −1.1]2 with dispersions of 0.11, 0.09, and 0.13 mag in
BVI, respectively, clearly lower than the ones obtained by H96 in the
BV bands.

After applying these corrections due to host-galaxy reddening to
the 40 SNe in the Hubble flow (z >0.01), P99 obtained Hubble
diagrams in the BVI bands, with dispersions of ∼0.14 mag. The
resulting BVI Hubble diagrams were combined with the six SN peak
magnitudes calibrated with Cepheid distances (Saha et al. 1999;
Suntzeff et al. 1999), which led to a value of H0 = 63.3 ± 2.2 ± 3.5
km s−1 Mpc−1.

A2.1 Absolute magnitudes

Now we apply the P99 technique to nearby SNe with TRGB
distances. To be consistent with P99, we restrict the sample of nearby
SNe to those meeting the following two requirements: (1) having BVI
photometry in the Landolt standard photometric system, and (2) lying
in the range 0.85 <�m15(B)<1.7. This restriction permits us to apply
this method to 15 nearby SNe in B and V, and 10 SNe in the I filter.

We follow the same procedure described in P99, that is, we
measure peak magnitudes, decline rates, and host-galaxy reddening
directly from the light curves (in the same manner described above
in A1.1), which are summarized in Table A3. The mean magnitudes
for the ensemble of SNe (shown at the bottom of Table A3) are
characterized by dispersions between 0.15 and 17 mag, that is, 0.04
mag greater than those yielded by the distant samples, possibly due
to uncertainties in the TRGB distances.

Now we apply the P99 technique to nearby SNe with Cepheid
distances, restricting the sample to those SNe with BVI magnitudes in
the Landolt standard system lying in the range 0.85 <�m15(B)<1.7.
This restriction permits us to apply this method to 18 nearby SNe in
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B and V, and 10 SNe in the I filter. Table A4 presents the relevant
parameters of the SNe along with the distance moduli published by
R16 to which we add a global correction of -0.029 mag (= 5 log
73.24/74.22) in order to place them in the R19 Cepheid scale.

A2.2 The Hubble–Lemaı̂tre constant

For the P99 implementation the value of H0 can be obtained with the
formula

log H0 = 0.2 (MMAX,corr + ZP′), (A2)

where MMAX, corr is the mean absolute magnitude of the nearby SNe
corrected for decline rate, foreground, and host-galaxy extinction
(given in Tables A3 and A4), and ZP

′
is the zero-point of the Hubble

diagram.
The zero-points of the BVI Hubble diagrams derived by P99 were

28.671, 28.615, and 28.236, respectively. We note that P99 used the
SFD98 corrections for Galactic reddening, whereas the values in
Tables A3 and A4 are in the modern SF11 calibration, which could
be a potential source of systematic error for the derivation of H0.
However, we checked that this difference has a negligible effect in
our results (0.002 mag difference in E(B − V) for the full sample of
62 SN host galaxies).

Combining the SN peak magnitudes calibrated with TRGB dis-
tances with the zero-points of the BVI Hubble diagrams derived by
P99, we obtain H0 values of 70.2, 70.1, and 68.7 km s−1 Mpc−1 in
BVI, respectively, in good internal agreement, given their statistical
uncertainty of ± 2 km s−1 Mpc−1 (see Table 3).

Now we apply the P99 technique to nearby SNe with Cepheid
distances. The resulting values for H0 range between 72 and 75
km s−1 Mpc−1 (see Table 3). There is an excellent match with the
values obtained using the H96 method, thus confirming that the 26
Calán-Tololo SNe were not significantly extinguished by host-galaxy
dust compared to the nearby SNe calibrated with the Cepheid method.

A3 The F10 methodology

The decade of the 90s meant a breakthrough for the measurement
of the expansion rate of the Universe using SNe Ia, thanks to the
gathering of digital CCD photometry of several dozens of SNe
in the Hubble flow. However, the analysis of such data promptly
revealed that the transformation of the instrumental magnitudes to
the standard photometric system was rendered challenging owing
to the non-stellar nature of the SN spectral energy distributions.
Differences of several hundreds of a magnitude were noticed in the
light curves of the same objects observed with different instruments
(Suntzeff 2000; Stritzinger et al. 2002). An additional difficulty in
the standardization of SNe Ia as distance indicators arose from the
effects of dust extinction in the SN parent galaxies, which, despite the
efforts to determine them from the observed SN colours, introduced
significant uncertainties more strongly on the bluer wavelengths.
These problems were addressed by the Carnegie Supernova Program
(CSP) launched in 2004 (Hamuy et al. 2006) from Las Campanas
Observatory (LCO), which, after nearly a decade of effort, led to the
gathering of high-quality optical/NIR (uBgVriYJHK) lightcurves of
134 SNe Ia light curves in the Hubble flow with stable instrumental
systems, namely, the Swope 1-m and the du Pont 2.5-m telescopes.

Contreras et al. (2010) published the first data release (DR1) of
34 SN light curves observed between 2004 and 2006. Since the
observations were consistently obtained with the same instrumental
bandpasses, the instrumental magnitudes were converted to the
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The value of the Hubble–Lemaı̂tre constant 1109

natural system through the application of a zero-point and no colour
term, thus avoiding the difficulty of transforming the data to the
standard photometric system.

Following on the approach of P99, this high-quality data set
allowed F10 to derive an improved derivation of the ‘Lira law’, as
well as better relationships between near-maximum reddening-free
colours and �m15(B), with a precision between 0.06 and 0.14 mag
(see their table 3). Each of these 10 calibrations allowed them to
derive precise colour excesses and study in depth the reddening law
caused by host-galaxy dust.

The colour excesses were then used to re-examine the correlation
of reddening-corrected absolute peak magnitudes versus decline rate,
in the same manner as in P99, and re-assess the precision to which
SNe Ia could be used as standardizable candles. As shown in their
equation (7) the following two-parameter model was adopted:

μ̃ = mX − MX(0) − bX[�m15(B) − 1.1] − RYZ
X E(Y − Z), (A3)

where the three measured variables are mX, the peak apparent
magnitude of the SN in a given band X corrected for K terms and
Galactic reddening (SFD98), E(Y − Z), the colour excess due to host-
galaxy dust obtained from bands Y and Z, the decline rate �m15(B),
and the distance modulus μ̃ derived from the host-galaxy redshift
and the cosmological parameters 
� = 0.72, 
M = 0.28, and H0

= 72 (see their equation 5). In this model, there are three fitting
parameters: the slope of the luminosity versus decline rate, bX, the
slope of the luminosity versus colour excess, RYZ

X , and the peak
absolute magnitude of the SNe Ia with �m15(B) = 1.1 and zero
colour excess, MX(0). Their Table 5 shows results of the fits for 10
(X,Y,Z) combinations, from the 23 ‘Best-observed’ SN subsample,
which are characterized by rms dispersions between 0.12 and 0.15
mag. These fits are restricted to the range 0.7 <�m15(B)<1.7 over
which the colour excess calibrations are valid.

A3.1 Absolute magnitudes

Table A5 summarizes the input parameters for the six nearby SNe
having TRGB distances and for which we are able to apply the
F10 technique, that is, SNe with (1) NIR photometry available in
the natural CSP system and (2) having decline rates within the
range 0.7 <�m15(B)<1.7. Two of these six SNe were observed
by the CSP (SN 2007af and SN 2012fr), two were observed with
other instruments but were transformed to the Swope system via
S-corrections (SN 2001el and SN 2006dd), one was observed with
the FLWO/PAIRITEL instrument and converted from the 2MASS
into the CSP system using the offsets determined by Contreras et al.
(2010) (SN 2012cg), and one observed with the LCO du Pont WIRC
instrument (SN 2002fk), which is virtually identical to the CSP
photometric system. We measure peak magnitudes, decline rates,
and colour excesses directly from the light curves, from which we
compute standardized absolute peak magnitudes as follows:

Mcorr
X = mX − AGAL − bX[�m15(B) − 1.1] − RYZ

X E(Y − Z) − μ,

(A4)

where μ is the TRGB distance modulus. The resulting values are
given in Table A5. The mean absolute magnitudes are shown at the
bottom of Table A5 for the J and H bands (we omit the results for the
remaining bands which only have two SNe calibrated with the TRGB
method). The nearby SNe yield a dispersion in the standardized
absolute magnitudes of 0.13 and 0.16 mag in J and H, respectively,
in good agreement with the expected values yielded by the distant
sample. Ta
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Now we apply the same technique for the nine SNe having
Cepheid distances and J and H photometry. Four of these nine
SNe were observed by the CSP (SN 2007af, SN 2012fr, SN 2012ht,
and SN 2015F), one was observed with other instruments but was
transformed to the Swope system via S-corrections (SN 2001el),
three were observed with the FLWO/PAIRITEL instrument and
converted from the 2MASS into the CSP system using the offsets
determined by Contreras et al. (2010) (SN 2005cf, SN 2011by, and
SN 2012cg), and one was observed with the LCO du Pont WIRC
instrument, which is virtually identical to the CSP photometric
system (SN 2002fk). Table A6 presents the relevant parameters of
the SNe along with the distance moduli published by R16 to which
we add a global correction of -0.029 mag (= 5 log 73.24/74.22) in
order to place them in the R19 Cepheid scale.

A3.2 The Hubble–Lemaı̂tre constant

Armed with the SN standardized peak magnitudes, we turn now
to the determination of the value of H0 by means of the following
expression:

H0(X) = 72 × 100.2[Mcorr
X

−MX (0)], (A5)

where Mcorr
X is the mean absolute magnitude in a given band X

corrected for foreground extinction, decline rate, and colour excess,
derived from the nearby SNe, while MX(0) is the standardized
peak absolute magnitude derived by F10 from the distant SNe Ia,
namely −18.44 ± 0.01 and −18.38 ± 0.02 in J and H, respectively.
The resulting values using the TRGB distance moduli are H0(J)
= 66.5 ± 1.6 and H0(H) = 69.4 ± 2.1 km s−1 Mpc−1(see Table 3).
Adopting the Cepheid distances, we obtain H0(J) = 69.1 ± 1.3
and H0(H) = 74.4 ± 1.6 km s−1 Mpc−1, respectively (see Table 3).
We note that there is a 2.6σ difference between both values. As
shown in the next section, the updated NIR CSP calibration by K12
significantly alleviates this tension between the J and H bands.

A4 The K12 methodology

K12 re-analysed the standardization of SNe Ia in the NIR, in a similar
manner as F10, but limiting the CSP sample to the 27 best-observed
SNe, namely, those having pre-maximum coverage in optical bands
and particularly the subsample of 13 objects also having having
pre-maximum NIR observations. The latter condition is particularly
relevant since, as shown by F10, the extrapolation of peak magnitudes
using NIR template light curves could introduce significant errors.

The correlation between peak absolute luminosity and decline rate
was investigated using the same equation first proposed by P99:

μ̃ = mX − MX(0) − bX[�m15(B) − 1.1] − RXE(B − V ), (A6)

where the measured quantities are mX, the peak apparent magnitude
of the SN in a given band X (X = Y,J,H) corrected for K terms and
Galactic reddening (SFD98), �m15(B), the decline rate measured
from the B band, and E(B − V), and the colour excess due to host-
galaxy reddening derived from the near-maximum reddening-free
BMAX − VMAX colour derived by F10. As in F10, the left-hand term of
this equation is the distance modulus μ̃ derived from the host-galaxy
redshift and the cosmological parameters 
� = 0.72, 
M = 0.28,
and H0 = 72. In this model, RX is the total-to-selective absorption
coefficient for band X, a fixed parameter of RY = 1.18, RJ = 0.89,
RH = 0.57, for an adopted RV = 3.1 dust extinction law. In this
model there are two fitting parameters: the slope of the luminosity
versus decline rate relation, bX, and the peak absolute magnitude of
the SNe Ia with �m15(B) = 1.1, and zero colour excess, MX(0). Ta
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The value of the Hubble–Lemaı̂tre constant 1111

Their table 5 shows results of the fits for the three NIR bands (Y,
J, H) and five different subsamples of SNe. Here we use subsample
3, which uses SNe Ia with first observations starting within 5 d
after NIR peak brightness and excludes the highly reddened and
fast-declining events. The correlations are characterized by rms
dispersions between 0.09 and 0.12 mag. These fits are restricted to the
range 0.7 <�m15(B)<1.7 over which the colour excess calibration
is valid.

A4.1 Absolute magnitudes

We measure peak magnitudes, decline rates, and colour excesses for
the six nearby SNe having TRGB distances and for which we are able
to apply the K12 technique, that is, SNe with (1) NIR photometry
available in the natural CSP system and (2) having decline rates
within the range 0.7 <�m15(B)<1.7. We compute standardized
absolute peak magnitudes as follows:

Mcorr
X = mX − AGAL − bX[�m15(B) − 1.1] − RYZ

X E(Y − Z) − μ,

(A7)

where μ is the TRGB distance modulus. Table A7 summarizes the
input parameters and their standardized absolute peak magnitudes
for all six SNe. The mean value is shown at the bottom of Table A7
for the J and H different bands (we omit the Y band as there are
only two nearby SNe with TRGB distance). The nearby SNe yield
dispersions in the corrected absolute magnitudes of 0.09 and 0.12
mag, similar to those obtained by the distant sample.

Now we apply the K12 technique to the sample of nine nearby
SNe with Cepheid distances and NIR photometry in the CSP natural
system, and decline rates within the range 0.7 <�m15(B)<1.7.
Table A8 presents the relevant parameters of the SNe along with
the distance moduli published by R16 to which we add a global
correction of -0.029 mag (= 5 log 73.24/74.22) in order to place
them in the R19 Cepheid scale, and their corresponding standardized
absolute peak magnitudes.

A4.2 The Hubble–Lemaı̂tre constant

As in F10, the value of the Hubble–Lemaı̂tre constant can be
calculated using the following expression:

H0(X) = 72 × 100.2[Mcorr
X

−MX (0)], (A8)

where Mcorr
X is the mean standardized absolute peak magnitude in

a given band X corrected for foreground extinction, decline rate,
and colour excess, derived from the nearby SNe, while MX(0) is
the standardized peak absolute magnitude derived by K12 from the
distant SNe Ia, namely −18.552 ± 0.002 and −18.390 ± 0.003 in J
and H, respectively.

As can be seen in Table 3, the values for H0 obtained for J and
H bands are 69.2 ± 1.2 and 70.3 ± 1.6, respectively. Adopting the
Cepheid distances, the resulting values for H0 from the J and H
bands are 72.7 ± 1.0 and 75.2 ± 1.2 km s−1 Mpc−1, respectively.
As anticipated in the previous section, the K12 recalibration of the
J-band SN Ia luminosity clearly alleviates the tension between the J-
and H-band calibration derived from F10.

A5 The F19 methodology

F19 recently revisited the determination of H0 from 99 CSP-I distant
SNe using the light-curve analysis developed by B18, in which the SN
magnitudes are modeled using the light-curve fitter SNooPy (Burns Ta
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et al. 2011, 2014), which delivers for each SN its peak magnitudes
corrected for K terms and Galactic reddening, and sBV, which is the
colour-stretch parameter (equivalent to the decline rate �m15(B)).
As described by B18, the standardization of the SN luminosities is
performed using two approaches, the ‘Reddening’ and the ‘Tripp’
models . The former has the form

mX = P 0 + P 1(sBV − 1) + P 2(sBV − 1)2 + μ(z, H0, C)

+RXE(B − V ) + αM(log
M∗
M�

− M0). (A9)

Similarly to F10, this model computes peak magnitude corrections
for decline rate (the linear and quadratic sBV terms), and for host-
galaxy reddening using the colour excess E(B − V) derived from
optical and NIR colours of each SN, but incorporates an additional
correction due to the SN host-galaxy stellar mass, M∗, obtained
from the H-band magnitude of the host galaxy. In this equation, mX

is the SN observed peak magnitude in band X and μ(z, H0, C) is
the distance modulus computed from the SN host-galaxy redshift,
given a set of cosmological parameters H0 = 72 km s−1 Mpc−1, 
m

= 0.27, and 
� = 0.73 (see equation 9 of B18). In this model,
there are five fitting parameters: the two polynomial coefficients that
describe the luminosity versus stretch dependence, P1 and P2, the
slope of the luminosity versus colour excess, RX, the slope of the
luminosity versus host-galaxy mass, αM, and P0 (the peak absolute
magnitude of an SN with sBV = 1, E(B − V) = 0, M∗ = 1011M�).
As shown by B18, the ‘Reddening’ approach applied to the CSP
SNe yields standardized absolute magnitudes with characteristic
dispersions (σ X) between 0.08 and 0.12 mag, with the exception
of the u band where the scatter is ∼ 0.16 mag.

The second approach used by F19 is the ‘Tripp’ model that has
the form

mX = P 0 + P 1(sBV − 1) + P 2(sBV − 1)2 + μ(z, H0, C)

+RX(B − V ) + αM(log
M∗
M�

− M0). (A10)

The main difference between the ‘Tripp’ and the ‘Reddening’ models
is in the way the host-galaxy reddening is addressed. Here the colour
excess is replaced by B − V, that is, the colour of the SN at peak. In
other words, the reddening correction in the ‘Tripp’ approach does
not require to know the intrinsic colour of the SN, but neglects the fact
that the intrinsic colour varies with decline rate. Thus, since the B −
V colour is affected both by the intrinsic and dust extinction effects,
the inferred value of the RX parameter cannot be directly interpreted
as a dust extinction law. As shown by B18 the ‘Tripp’ approach
applied to the CSP SNe yields standardized absolute magnitudes
with characteristic dispersions (σ X) between 0.11 and 0.13 mag with
a slight decrease toward longer wavelengths, except for the u band
where the scatter is significantly higher ∼ 0.22 mag.

A5.1 Absolute magnitudes

F19 presented in column 6 of Table 3 standardized apparent peak
magnitudes in the B band for 27 nearby SNe, using the ‘Tripp’ model.
We employ such data in order to calculate absolute peak magnitudes
using the 18 nearby SNe that have TRGB distances, from which
we derive a mean value of MB

MAX,corr = −19.223 ± 0.029, which
compares well with the −19.225 ± 0.029 published by F19. Then
we repeat the same procedure but this time using the 19 nearby SNe
with Cepheid distances, which yield MB

MAX,corr = −19.150 ± 0.033,
after adding a correction of −0.029 mag (= 5 log 73.24/74.22) in
order to place this value in the R19 Cepheid scale.
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A5.2 The Hubble–Lemaı̂tre constant

F19 applied the two approaches described by B18 to a subset of
99 CSP distant SNe with BiJHK light curves and meeting the
requirements E(B − V) <0.5 and sBV >0.5, and presented in Table 5
individual H0 values for the BiJHK filters, using both the ‘Reddening’
and the ‘Tripp’ models. Here we attempt to reproduce their results but
we face various problems, namely (1) F19 published standardized
apparent peak magnitudes for the nearby SNe only for the single
case of the B-band and the ‘Tripp’ model (see their table 3), and (2)
F19 did not publish the zero-points of the distant Hubble diagram
for any of the BiJHK bands. Hence, we are only able to calculate
the value of H0 for that single case and presuming that F19 used the
same zero-point published by B18, namely P0(B) = −19.162 (see
their table 1). For this purpose, we employ the formula,

H0(B) = 72 × 100.2[MB
MAX,corr−P 0(B)]

, (A11)

where we compute MB
MAX,corr using the same data published in table 3

of F19 (mCSP
B′ and μTRGB) and adopt P0(B) from B18. Our result,

presented in Table 3, H0(B) = 70.0 ± 1.0, is 0.5 per cent higher
than the published value by F19, namely 69.7 ± 1.4 km s−1 Mpc−1,
thus implying that F19 did not exactly use the zero-point derived by
B18. Given the relevance of this topic, it is important that F19 make
available all the necessary ingredients required to reproduce their
results.

We repeat the same exercise but this time adopting the Cepheid
distance moduli listed in table 3 of F19 (with the only caveat that
we add a correction of −0.029 mag in order to place such values in
the R19 Cepheid scale), from which we obtain H0(B) = 72.4 ± 1.1
(see Table 3). This value can be compared to the corresponding
value obtained by B18 using the same ‘Tripp’ model, duly modified
to the R19 scale, namely, H0(B) = 73.7 ± 2.1 km s−1 Mpc−1.
The question that arises is: What causes this 1.3 km s−1 Mpc−1

difference? Although it may not seem statistically significant, it
proves concerning considering that both used the same method for
standardizing the CSP peak magnitudes, so that the difference likely
originates in the the P0(B) parameter, whose error (usually less than
0.01 mag) has an impact of less than 0.3 km s−1 Mpc−1 in H0(B) (see
equation A11).

A6 The R19 methodology

R16 made a determination of the Hubble–Lemaı̂tre constant from a
sample of 19 nearby SNe with Cepheid distances (the R16 Cepheid
scale), combined with a sample of 217 distant SNe Ia observed with
optical filters in the course of the CSP and CfA surveys. Their
u

′
g

′
r

′
i
′
UBVRI light curves were re-calibrated using the ‘Supercal’

method developed by Scolnic et al. (2015) with the purpose to place
different SN samples on a single, consistent photometric system.

The resulting light curves were analysed with the SALT2 light-curve
fitter model which delivers SN peak magnitudes standardized using
a colour and a stretch parameter similar to �m15(B).

Adopting this formalism, R16 obtained a B-band Hubble diagram
with a zero-point of aB = 0.71273 ± 0.00176. When combined
with the Cepheid distances to 19 nearby SNe obtained by the
SH0ES program, R16 derived a value of H0(B) = 73.24 ± 1.74
km s−1 Mpc−1, anchored to NGC 4258, the Milky Way, and the
LMC. More recently, R19 presented an improved determination of
H0 from Hubble Space Telescope (HST) observations of Cepheids
in the LMC. Using only the LMC DEBs to calibrate the Cepheid
luminosities, R19 derived a 1.34 per cent greater value than R16,
namely,H0(B) = 74.22 ± 1.82 km s−1 Mpc−1.
A6.1 Absolute magnitudes

R16 presented in Table 5 standardized apparent peak magnitudes
in the B band (column 3) for the 19 SNe with Cepheid distances
(column 5). We employ such data in order to calculate absolute
peak magnitudes, from which we derive a mean value of MB

MAX,corr

= −19.251 ± 0.036 in the R16 Cepheid scale. Unfortunately, R19
did not publish the individual Cepheid distances re-calibrated to the
LMC distance alone. Despite this difficulty, we manage to add a
correction of -0.029 mag (= 5 log 73.24/74.22) to the R16 distance
moduli in order to place them in the R19 scale, from which we derive
a mean absolute magnitude MB

MAX,corr = −19.222 ± 0.036. Now we
repeat the same procedure but this time using the subset of 10 nearby
SNe with TRGB distances (F19), from which we obtain MB

MAX,corr

= −19.326 ± 0.038, which is identical to that obtained by F19.

A6.2 The Hubble–Lemaı̂tre constant

As mentioned above, R19 obtained H0(B) = 74.22 ± 1.82
km s−1 Mpc−1, when using solely the LMC DEBs to calibrate the
Cepheid luminosities. Here we attempt to reproduce their result using
their equation (9):

logH0(B) = M0
B + 5aB + 25

5
, (A12)

where M0
B is the mean standardized B-band peak magnitude

−19.222 ± 0.036 in the R19 Cepheid scale and aB is the zero-point
of the B-band Hubble diagram, 0.712 73 ± 0.00 176. Our result,
presented in Table 3, H0(B) = 73.8 ± 1.2, is 0.5 per cent lower than
the published value by R19, most likely due to the fact that we do not
have access to the individual R19 Cepheid distances. Applying this
formula to the mean magnitude −19.326 ± 0.038 obtained from the
10 TRGB distances, we obtain H0(B) = 70.4 ± 1.2 km s−1 Mpc−1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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