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ABSTRACT
There is a growing set of observational data demonstrating that cosmic rays exhibit small-scale anisotropies (5◦–30◦) with
amplitude deviations lying between 0.01–0.1 per cent that of the average cosmic ray flux. A broad range of models have
been proposed to explain these anisotropies ranging from finite-scale magnetic field structures to dark matter annihilation. The
standard diffusion transport methods used in cosmic ray propagation do not capture the transport physics in a medium with
finite-scale or coherent magnetic field structures. Here, we present a Monte Carlo transport method, applying it to a series
of finite-scale magnetic field structures to determine the requirements of such fields in explaining the observed cosmic ray,
small-scale anisotropies.
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1 IN T RO D U C T I O N

Observations of cosmic rays in the TeV–PeV energy range have
demonstrated both small- and large-scale anisotropies. The large
(>60◦) and small-scale anisotropies have been observed by a large
number of instruments (Amenomori et al. 2005, 2006; Guillian
et al. 2007; Abdo et al. 2008; Aglietta et al. 2009; Abdo et al.
2009; Amenomori et al. 2010; Munakata et al. 2010; Abbasi
et al. 2010; Cui 2011; Abbasi et al. 2011; Aartsen et al. 2013).
The large-scale dipole anisotropy is reasonably well fitted by the
asymmetries in nearby sources smoothed by the subsequent diffusion
of these cosmic rays (Erlykin & Wolfendale 2006; Blasi & Amato
2012; Pohl & Eichler 2013; Sveshnikova, Strelnikova & Ptuskin
2013). It is possible that magnetic fields in the heliosphere could
affect the anisotropy (Desiati & Lazarian 2013; Schwadron et al.
2014).

The small-scale anisotropies are much more difficult to explain.
These small-scale anisotropies typically have size scales between
5◦–30◦ and amplitudes between 0.01–0.1 per cent of the background
cosmic ray flux (Blasi & Amato 2012). A number of models
have been proposed to explain such anisotropies. For example,
anisotropies could arise from a nearby, as yet undetected, supernova
remnant (Salvati & Sacco 2008), perhaps mediated by a local,
coherent magnetic field or asymmetry in the propagation (Drury
& Aharonian 2008; Malkov et al. 2010; Biermann et al. 2013).
Another set of proposals argue that properties of the heliosphere
can drive the observed anisotropies (Drury & Aharonian 2008;
Lazarian & Desiati 2010; Desiati & Lazarian 2013). More exotic
models have also been proposed invoking strangelet production or
dark matter annihilation (Harding 2013; Kotera, Perez-Garcia & Silk
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2013). More recently, a series of models have proposed that turbulent
magnetic fields are sufficient to explain the anisotropies (Giacinti &
Sigl 2012; Ahlers 2014).

Magnetic fields generated in turbulence are believed to exist on all
scales, from the smallest scales in the Kolmogorov spectrum to the
largest eddy scales (Kulsrud & Zweibel 2008; Saveliev, Jedamzik
& Sigl 2012; Krasheninnikov 2013; Kritsuk, Ustyugov & Norman
2017; Kim, Kim & Ostriker 2020). In the Milky Way, this leads to
magnetic field structures ranging from well below the parsec scale
up to a kiloparsec (Kulsrud & Zweibel 2008; Saveliev et al. 2012;
Krasheninnikov 2013). If the scale of the magnetic fields were limited
to the smallest turbulence scales, particle transport within these
fields could be treated in the diffusion limit where the magnetic
fields are treated as a scattering term with a net energy loss as is
done in codes like GALPROP (Strong, Moskalenko & Ptuskin 2007).
This treatment does not accurately model any possible larger scale,
coherent structures in the magnetic field.

However, transport methods that can model both small- and large-
scale fields face numerical challenges. For instance, the method
described in Fryer et al. (2007) and Harding, Fryer & Mendel (2016)
allows for transport in one of two extreme solutions for each spatial
zone: either dominated by small scales (isotropic scattering limit) or
dominated by coherent fields. In this paper, we generalize the Monte
Carlo method from Fryer et al. (2007) and Harding et al. (2016) to
allow for more general magnetic field profiles that include both small-
and large-scale features. As in Harding et al. (2016), we focus on a
magnetic field configuration that studies the interaction of a single
point source for cosmic ray production with a coherent magnetic field
of varying strength relative to the small-scale field (sufficiently small
with respect to the spatial scale that the interaction can be treated as
isotropic). With this study, we hope to determine the magnetic field
properties needed to explain the observed anisotropies in the cosmic
ray flux more realistically.
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In Section 2, we describe the properties of our grid, particles and
magnetic field configurations. In Section 3, we describe the methods
we use for particle propagation and their differences from previous
work. In Section 4, we describe the verification tests we used on
the code. In Section 5, we study the propagation of cosmic rays in
a box to apply this code to a cosmic ray transport application. In
Section 6, we study the observational implications of these transport
calculations. Finally, in Section 7, we conclude with a discussion of
the properties needed to produce cosmic ray anisotropies.

2 C O D E D ESC R IPTION AND INITIAL
C O N D I T I O N S

2.1 Grid geometry and particle properties

The setup of our grid is similar to that used by Harding et al. (2016).
We define a 3D grid of cubic zones, with physical properties that are
constant within each zone. The grid we use is a 150 × 150 × 150 pc
grid, divided into 50 zones of 3 × 3 × 3 pc. Though the zone size is
arbitrary, it is set to be much larger than the cosmic ray scattering
length and Larmor radius of particle motion. We define the tally plane
as being the upper x face of the grid, at x = 150 pc. The particles
are propagated from a chosen starting location through this grid until
they hit one of the grid faces or until they are absorbed into the ISM
(interstellar medium).

The current code physics is currently limited to the propagation
of protons, which are expected to be the dominant form of cosmic
rays that create the observed anisotropies in the TeV–PeV energy
range (Harding et al. 2016). We assume a point source for cosmic
rays placed in the centre of the simulation grid, emitting particles in
random directions according to an isotropic distribution. All particles
are assumed to stay travelling at relativistic velocities (v ≈ c). We
tested primarily particles with energy of 10 TeV, which is at the
lower end of the energies observed for cosmic ray anisotropies.
Additionally, we did one study in which we varied the cosmic ray
energy to higher energy values, up to 100 PeV. Note that the proton
mean-free path is what sets the fundamental scale of the computed
solutions and there is a straightforward relationship between proton
energy and proton mean-free path shown in equation (6). Variation
of the assumed proton energy has been used as our primary means to
study the impact of scaling the proton mean-free path. In principle,
these particles lose energy due to Coulomb scattering, ionization, and
other processes, as was studied in Harding et al. (2016). However,
for the size scale and conditions in their, and our simulation grid,
they found that energy losses of protons were minimal (∼1–10 MeV
over the course of their entire propagation) and, for the calculations
in this paper, we do not include energy losses.

2.2 Magnetic fields

The code is designed so that the properties of the magnetic field can
be varied in each zone. This includes the small-scale magnetic field
amplitude and the coherent magnetic field amplitude and direction.
For the calculations in this paper, we focus on a bimodal distribution
of field structures: small-scale fields with size scales well below the
zone size, and coherent magnetic fields that are equal to or greater
than the zone size. In the extreme case of no coherent magnetic field,
we can transport using a statistically sampled isotropic magnetic field
direction equivalent to a symmetric diffusion coefficient. Focusing
on a single coherent field allows us to test the ability of the code to
model small- and large-scale magnetic field structures combined in a
single zone and to study in detail the effects of these global structures

on the transport. This setup is a considerable improvement over the
grid design used by Harding et al. (2016), whose setup only allowed
for either a turbulent field or a coherent field in each zone of the
grid.

For our simulations, we assume that the entire grid is filled with
a small-scale magnetic field component of constant amplitude Bt =
3 μG. This field is assumed to be produced in the smallest turbulence
scales and is much smaller than our simulation grid scale. With
our grid size scales, a typical cosmic ray undergoes many pitch-
angle scatterings as it transports through the grid. The time for
energy evolution is much longer than the scattering time-scale for
our high-energy protons (Schlickeiser & Miller 1998). As discussed
above, this long energy-evolution time-scale and the relatively small
simulation grid size means that, although the proton undergoes
many ‘scatterings’, its energy does not vary considerably as the
particle transports through the grid (Harding et al. 2016). Under
these conditions, we can mimic the cosmic ray interaction with the
small-scale fields as isotropic and assume the energy is constant
during this period. Therefore, we can model the turbulent magnetic
field through a random vector sampled at every particle step through
the simulation:

cos(θ ) = 2χ1 − 1, (1)

φ = 2πχ2, (2)

where χ i are standard deviates between 0 and 1. Converting these ex-
pressions to Cartesian coordinates gives a three-component, random
vector.

In addition to this turbulent field, we define six grid zone
boundaries that bound a region that includes a coherent magnetic
field component. This single coherent field is only speculative but
is meant to approximate some of the features of the broad range of
magnetic field scales that may exist in the ISM. Inside this region,
the coherent field component has a constant magnitude and direction
given by Bg(x, y, z) = (Bg, 0, 0). Clearly, modelling the coherent
magnetic field in this way is an oversimplification of the net effects
large-scale magnetic field structures in the ISM would have, but it
allows us to test the importance of these possible large-scale coherent
fields. We study a variety of different configurations for the box
region containing the coherent component to the magnetic field. We
have chosen to keep the y and z coordinates of the box zone numbers
constant at 108 pc < y,z < 120 pc. The geometry of the coherent field
region is varied using the x zone value of the box, for which we vary
the offset from the tally plane and the extent of the box. We tested
box extents of 6 and 24 pc and varied the box offset from the tally
plane from 0 to 18 pc. This is in contrast to Harding et al. (2016),
whose coherent magnetic field region spanned the entire x length of
the simulation space. A comparison of this is shown in Fig. 1.

The amplitude of the coherent magnetic field is varied as a fraction
of the maximum amplitude of the small scale field. The exact values
for the three parameters studied are shown in Table 1.

3 PARTI CLE PROPAG ATI ON

In this section, we describe the propagation of particles through our
code. The methods we use are similar to those used in Harding
et al. (2016). At the beginning of the particle’s lifetime, its starting
location is determined by the input source location and its initial
direction is sampled randomly from an isotropic distribution. It
is then propagated through the grid using one of two methods,
depending on whether it is in the coherent magnetic field region
or not.
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Figure 1. Comparison of a few of our simulation setups to that used by Harding et al. (2016). The source of cosmic rays is placed in the centre of our simulation
grid, shown by the red star. Along a rectangular path, shown by the blue box, we place a coherent magnetic field on top of the small-scale field. The amplitude
of this coherent magnetic field is varied as a fraction of the amplitude of the small-scale field. We vary the length of the coherent magnetic field and its offset
from the tally plane, shown by the green region. The top left plot shows Harding’s setup, running the length of the simulation space, while the other three show
some variations of the box offset and extent which we use.

Table 1. Shows the full set of test configurations we
chose. Altogether there were 42 different coherent mag-
netic field configurations.

Variable Tested values

Extent (pc) 6, 24
Offset (pc) 0, 3, 6, 9, 12, 15, 18
Bg/Bt 0.1, 0.5, 1.0

In Harding et al. (2016), the methods used included a direct
transport Monte Carlo method if the particle was in the coherent
magnetic field region and, if not, a Discrete Diffusion Monte Carlo
(DDMC) method (Evans et al. 2003). Given the simplicity of the
magnetic field configuration, such an approach is reasonable. This

DDMC approach reproduces the results of simple diffusion transport
schemes such as GALPROP (Strong et al. 2007). While we were able
to use a DDMC algorithm very similar to that used by Harding et al.
(2016) for the majority of our grid, the direct transport method did not
allow for the magnetic field configurations that include the isotropic,
turbulent field component in addition to the coherent field component
inside the box.

To study these hybrid regions, we modified the transport method
used by Harding et al. (2016) to account for particle propagation
inside the coherent field region. We tested two different methods for
this hybrid transport/diffusion Monte Carlo algorithm. Outside the
coherent field region, the particles were propagated using a DDMC
method similar to that used by Harding et al. (2016). In Section
3.1, we first discuss the direct transport Monte Carlo scheme which
was used in Harding et al. (2016) and which is the basis for our
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hybrid transport method. In Section 3.2, we discuss the Monte Carlo
diffusion approximation which we employ for most of the grid.
Finally in Section 3.3, we discuss the two methods we use for our
coherent field region in order to account for both components to the
magnetic field.

3.1 Particle transport Monte Carlo methods

A particle transport Monte Carlo code tracks the particle motion as
the particle goes through a zone and passes into the next. Particles
within a magnetic field of strength B propagate according to the
equation of motion:

dv

dt
= c

rL
v × B̂, (3)

where B̂ is the direction of the net magnetic field, v is the direction
of the particles velocity, and rL is the Larmor radius of the particle
motion. This causes particles to move in a circular path of radius rL

around the magnetic field line, perpendicular to it. The component of
the particle’s initial velocity parallel to the magnetic field line does
not change. Particles within a magnetic field of strength B, energy E,
and charge Ze have a Larmor radius of (Schlickeiser 2002):

rL = 1.1 × 10−3Z−1

(
E

TeV

)(
B

μG

)−1

pc. (4)

Solving equation (3) is computationally difficult due to the number
of directional changes the particles make spiraling around the mag-
netic field lines. Therefore, the approach that Harding et al. (2016)
and many others take is to approximate the particle motion as simply
following the field line it experiences. Using this approximation,
one step through the simulation is a step over which the amplitude
and direction of the total magnetic field is constant. Effectively,
the particle’s velocity vector is either parallel or antiparallel to the
magnetic field line, depending on its initial direction in approaching
it. The particle’s position can then be reset as:

x(t) = x0 + (v0 · B)

B
B̂t, (5)

where x0 is the particle’s previous position, v0 is the initial direction
of the particle’s velocity when approaching the field line, B̂ is the
magnetic field direction, and t is the time the particle took for the
step. The full path length traversed by the particle is ct.

Equation (5) is assumed to be a valid approximation if the Larmor
radius is on par with or smaller than the path length of the particle,
under the assumption that solving equation (3) directly would be
unlikely to move the particle into a region with a different magnetic
field. We note that it is possible that solving equation (3) explicitly
can alter the particle motion, and should be studied in future work.

The time t that a particle is expected to take for one step is
dependent on the mean-free path of the particle motion. By describing
the turbulent magnetic field interaction as a scattering term, we can
also describe the distance to scattering interaction. The scattering
mean-free path describes how far the particle is expected to travel
before encountering a change in the turbulent component of the
magnetic field, and is determined by the particle energy and the
strength of the magnetic field. It is given by (Schlickeiser & Miller
1998; Fryer et al. 2007)

λsc = 2 × 107

(
λmax

1 cm

)1/2 (
B

0.1 mG

)−1/2 (
E

10 TeV

)1/2

cm, (6)

where λmax is the scale length of the turbulent magnetic field, B is
the amplitude of the total magnetic field (turbulent and coherent),

and E is the proton energy. We use λmax = 1015 cm, as was done
in Harding et al. (2016). For the cosmic ray energies we consider,
magnetic field scattering is the only significant particle interaction,
and other interactions such as proton–proton scattering are negligible.
Therefore, we take the total mean-free path to be equal to the
scattering mean-free path: λ = λsc. Particles with a mean-free path λ

follow an exponential probability distribution for their motion, P(x)
= e−x/λ, where x is the distance travelled in one step. Solving this
distribution for its cumulative distribution function (CDF) gives the
expression χ = 1 − e−x/λ, where χ is a random variable sampled
between 0 and 1. This can be re-arranged to obtain a distance travelled
for that step, along with the time it took for the particle to go that
distance:

t = x/c = −ln(χ )

(
λ

c

)
. (7)

3.2 Discrete diffusion Monte Carlo

In regions with only a turbulent magnetic field, we can treat the
transport in the diffusion approximation and we use a DDMC method
which is very similar to that used by Harding et al. (2016). In
these regions, particle motion changes direction too quickly for it
to be computationally feasible to track the particle motion directly.
However, particles in an isotropic magnetic field exhibit ‘random
walk’ motion, with their displacement proportional to the square root
of their traveltime. DDMC methods combine a number of smaller
random walk steps that the particle would take into a larger step
based on this principle. Rather than picking a distance to collision
using equation (7), we instead pick a traveltime and then sample a
particle distance travelled in that time.

For a 3D random walk, the probability of moving distance R after
N steps is (Rycroft & Bazant 2005; Harding et al. 2016)

P (R) = 4πR2

(
3

2πNa2

)3/2

exp

(−3R2

2Na2

)
, (8)

where a is the expectation value for displacement in a single step.
To approximate the transport motion, we relate the number of steps,
N, to the total distance travelled by the particle and the average
step size: N = ct/λ. The expected distance travelled in one step a =√

〈x2〉 − 〈x〉2 =
√

〈x2〉 is calculated from the transport equation
probability function to be a = √

2λ. Putting in these values gives the
expression:

P (R) = 4πR2

(
3

4πctλ

)3/2

exp

(−3R2

4ctλ

)
. (9)

This expression does not lend itself to sampling directly via an
inversion technique, so we instead cast it in a hybrid form using both
inversion sampling and rejection sampling techniques. Specifically,
we break the full probability distribution P(R) into two components,
g(R) and h(R). Defining the constant C = 3/(4ctλ), it can be seen
that:

P (R) ∝ Re
−2C

3 R2
Re

−C
3 R2 = g(R)h(R). (10)

The function g(R) is the 2D random walk probability distribution,
while h(R) has the correction for the full 3D solution (Rycroft &
Bazant 2005).

To sample the complete function, we first sample a value Rsamp

via inversion of the CDF for g(R), and then choose to accept Rsamp

based on a rejection sample of the function h(R). The efficiency of the
rejection step is 80 per cent, and does not dramatically increase the
computational cost of each run. However, for algorithm simplicity,
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Figure 2. Shows the normalized probability density functions using C =1 for
the full 3D random walk distribution P(R) (equation 9), the 2D approximation
we use g(R) (equation 11), and the 3D correction h(R). The red points show
the average value of R sampled for P(R) and g(R).

most of our runs employ an approximate sampling technique where
the rejection step is removed. To justify this, we compared select
test cases using the complete function and discovered that, within
our error range, there was no noticeable difference in results when
the rejection step was removed. This is largely because g(R) is a
close approximation to P(R) in terms of mean diffusion distance
properties. The primary effect of removing the rejection check was
to slightly decrease the diffusive component’s mean-free path. This
results in a slight enhancement of the influence of the diffusive field
component relative to the coherent field component. As such, using
the 2D approximation to the full 3D solution provides a conservative
estimate of the influence of coherent magnetic fields on the cosmic
ray flux. These results can be seen intuitively from Fig. 2, which
shows the three functions P(R), g(R), and h(R) for C=1. Plotted over
P(R) and g(R) in the red points is the average value of R sampled
for the two distributions. The function g(R) has a lower peak and
is skewed farther towards lower distances than P(R), leading to a
slightly lower average value of R sampled.

With this approximation, the employed probability distribution
function is given by:

P (R) = Re
−2C

3 R2
, (11)

which yields a sampled distance given by:

R =
√

−ln(χ )2ctλ. (12)

The values we use for t are t = 1000 and 2 yr, depending on the
particle’s situation. We discuss this more in Section 4.

If the particle’s travel takes it to the edge of a zone wall before the
end of its step, it stops and checks whether it is going into the region
with a coherent magnetic field. If it is, it goes to the edge of the zone
and exits the diffusion loop, with a traveltime of x/c. Otherwise, it
continues its journey along the path until it either hits another zone
wall or finishes its time-step. Therefore all particles will keep going
until they either reach the end of the sampled distance or hit the
edge of a zone in which the transport mechanism is necessary. For
each substep along its sampled distance that it hits a zone wall, the
particle’s remaining time along its current path is recalculated as the
difference between its originally sampled time and its substep time
along that path. Once the particle reaches the end of its time-step, its
direction is resampled.

Note that, although equations (1) and (2) are used in both a
transport method and DDMC method to approximate the turbulent
magnetic field, they have a different meaning for the two. Because
the transport algorithm approximates the particle motion directly,
the randomly sampled direction represents the direction of the
turbulent magnetic field influence for that particle step. In the
diffusion algorithm, this vector represents a direction of particle
travel over many steps, through many different magnetic field
lines.

3.3 Modified transport Monte Carlo: two methods

For the region inside the coherent magnetic field, there is no clear
analytic solution to describe the particle motion, arising from the
fact that we can neither assume the diffusion approximation or
assume the particle flows along field lines. Instead, the solution lies
somewhere between these two extremes. For the particle transport
Monte Carlo method, the magnetic field direction is sampled, and
the next direction of particle motion is based on the particle’s initial
velocity direction with respect to this vector. In contrast, for the
diffusion approximation, the particles direction change after many
steps is sampled; hence the particle’s previous direction of travel does
not matter. Therefore, for the region containing the coherent magnetic
field, we explored two methods for modelling the particle motion
which attempt to ‘combine’ the transport and diffusive methods in
different ways. Both of these methods give solutions for particle
transport that are somewhere between the isotropic magnetic field
solution and the transport solution.

The first method we explored (‘Method 1’) forces particles to
follow either transport motion or diffusive motion inside the coherent
magnetic field box. For every step, we sample a random number r
between 0 and 1 and compare that to the coherent field amplitude
ratio (g = Bg/(Bg + Bt)). If r < g, then the particle uses transport
motion and follows the coherent magnetic field with one of two
directions, based on the velocity of its previous step. If r > g, then
the travel direction is sampled randomly. Thus, for example, if the
amplitudes of the coherent and turbulent field are the same (Bg/Bt =
1.0), then g = 0.5, and a particle that travels inside the box will follow
transport motion about half of the time and random walk motion the
other half.

The second method we explored (‘Method 2’) uses a direction of
travel which is the vector sum of the coherent magnetic field vector
and the turbulent magnetic field vector. The turbulent magnetic field
vector is randomly sampled. The coherent field vector, however, in
this case, represents the direction the field line would give the particle
rather than the field line direction itself. It is one of two directions;
either parallel to the field or antiparallel to it, based on the particle’s
previous direction of travel.

A consequence of using a time-step t = 1000 yr outside the
coherent magnetic field box is that it was inadequate to simply use
the transport solution inside the coherent field box and the diffusion
approximation outside. The boundary conditions of the transport
solution require that when particles leave the transport box they do
not resample their direction; which means they are biased to move
away from the box. The distance which particles have to travel to
recover random walk motion can be relatively large in our case, since
with a time-step t = 1000 yr the average distance a particle travels in
one diffusion step is R(t) = 0.78 pc. This causes a deficit of particles
inside the coherent magnetic field region.

In order to rectify this situation, we made two modifications to
stop the particles that entered the coherent field region from quickly
propagating away from it. First, we put a ‘sheath’ of one grid zone
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Figure 3. Shows, for the isotropic magnetic field verification, the rms distance errors from the analytic solution calculated at each time of the 100 runs done.
The plot on the left uses just the DDMC algorithm, while the plot on the right uses the hybrid DDMC/transport algorithm. The line shows the average of these
points at each time. The average error never reaches 1 percent and tends to level out around 80 000 yr. The distribution of points at every time never spans more
than 4 percent.

around the coherent magnetic field in which the particles followed
the transport solution, if they had just exited the field region. Second,
once the particles had exited the sheath region into the diffusion
regime, they used a time-step of t = 2 yr rather than t = 1000 yr. These
modifications allowed us to get the correct precision for particles that
entered the field region while running the particles that never entered
the field region quickly.

4 C O D E V E R I F I C AT I O N

4.1 Isotropic magnetic field traveltime

One testable property of an isotropic magnetic field is that the particle
motion follows a certain distance distribution. Because the mean-
free path of the particle motion is the same everywhere, the particles
should always follow a root mean square (rms) distance distribution
for their traveltime following equation (12) of R(t) = √

2ctλ. To
confirm our code reproduces this property, we extended the simula-
tion box to calculate a broad particle distribution.

In order to make this simulation run faster with a larger transport
box, we set the mean-free path in every grid zone to λ = 0.01pc,
which is approximately the mean-free path of a 100 TeV–1 PeV
proton in a 3 μG magnetic field (our run simulations, with 10 TeV
protons, have a mean-free path of approximately λ = 0.001pc. We
specified a ‘box region’ given by 42 pc < y,z < 102 pc and 90 pc <

x < 150 pc, in which the packets must follow the transport solution;
just as would be done if there was a coherent magnetic field in this
region. With this setup, about 65 percent of the total number of
particles run entered this region at some point during their lifetime,
and they spent on average 12 percent of their lifetime in the box
region.

In total, we did 100 runs of the code, each with 10000 particles.
Each particle’s position was recorded every 20 000 yr. Fig. 3 shows
the difference between the rms distance traversed for the 10 000
particles of a run at each time and the analytic solution at that time.
Each point on the plot represents a separate run. The line represents
the average of these 100 points at each time. This test was done for
both just DDMC and the IMC/DDMC hybrid.

As can be seen, the points for the IMC/DDMC hybrid method does
not reproduce the exact solution (averaging above 0). However, the
average is below 1 per cent, and does not show a strongly increasing
trend with time. The distribution of the points never exceeds 4
percent. For this paper, this error lies below the numerical uncertainty
in our Monte Carlo statistics (Section 4.2) and the errors from our
methods are always less than these statistical errors.

4.2 Statistical uncertainties

The goal of this paper is to study the effect of a coherent magnetic
field on the particle flux at the tally plane. Although it alters the
flux across this entire boundary, the primary affect is at the position
of the coherent magnetic field box (in the space 108 pc < y,z <

120 pc). With a finite set of particles, statistical uncertainties often
dominate the errors in a Monte Carlo approach. To test this, we first
ran the particles through a purely isotropic magnetic field, using the
diffusion algorithm alone. We then defined the particle flux F for
a magnetic field model i as being the ratio between the number of
particles that hit this region Nhit, i to the number that hit this region
in the isotropic run Nhit, back, relative to the total numbers of particles
Ntot, i and Ntot, back run for both:

F =
Nhit, i
Ntot, i

Nhit, back
Ntot, back

= Ntot, back

Ntot, i

Nhit, i

Nhit, back
, (13)

Statistical errors in Monte Carlo methods cause different runs to
give slightly different numbers for this quantity. However, a set
of runs with the same magnetic field configuration should form
roughly a Gaussian distribution for the computed value of F, with
95 per cent of the values within 2σ of the mean. Because for every
box configuration we only wanted to do one run, we had to relate the
1σ value εF of this distribution to an uncertainty measure in a single
run based on the number of particle counts.

For counting statistics, the uncertainty in a counted number of
particles is equal to the square root of the number of particles for
the statistic. We can therefore compute upper and lower uncertainty
bounds for the computed flux above the background using counts for
the number of particles that exit the box region and counts that exit
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Monte Carlo CR transport 3503

Figure 4. Distributions for the uncertainty test described in the text, showing histogram of flux uncertainties obtained for 100 runs of the two methods. The
vertical red line in each plot marks the average computed mean of the data and the other tick markers show the 1σ , 2σ , and 3σ intervals around the mean. Note:
the obtained fluxes are different for the cases due to the different methods used, which is discussed more in Section 5.

the box region for the background run:

Fup = Ntot, back

Ntot, i

Nhit, i + √
Nhit, i

Nhit, back − √
Nhit, back

, (14)

Flow = Ntot, back

Ntot, i

Nhit, i − √
Nhit, i

Nhit, back + √
Nhit, back

. (15)

The difference between these two quantities 	F gives another
measure for the 1σ uncertainty interval around the computed value
for the flux above the background: F ± 1σ = F ± 	F/2 = F ±
(Fup − Flow)/2. In order to see whether 	F/2 computed for one run
was approximately equal to what the value of εF would be for the
distribution, we set up a test configuration used in the full set of runs;
a box extent of 24 pc, offset of 0 pc, and Bg/Bt = 1.0; and did 100
separate particle runs for this same configuration. We did this for
both Methods 1 and 2.

For both configurations, we computed the mean flux μ and
standard deviation σ in the flux for the set of runs. We found that
using these quantities, the data accurately fit a Gaussian distribution.
We also confirmed that the average computed value of 	F/2 for the
set very closely matched the 1σ value εF of the Gaussian distribution,
and consequently the average computed value of 	F/2F for the set
was close to the value of σ /μ from the Gaussian distribution; in fact,
for the tests, they were only about 10 per cent apart from each other.
For our production runs we wanted to be within 10 per cent of the
‘correct’ value of F, with 95 per cent certainty; so, for every box
configuration, we ran enough particles such that the 2σ value 2εF/F
= 	F/F was less than 0.1.

Fig. 4 shows histograms of the computed flux F above the
background for the configuration tested for Methods 1 and 2 along
with a Gaussian fitted to the mean and standard deviations for each.
Table 2 shows the results of the data from the Gaussian distribution.

5 R ESULTS

With this code, we can calculate the range of effects varying the
coherent magnetic field properties outlined in Section 2.1. Fig. 5
shows two contour plots of the particle flux a coherent magnetic
field produces above the background at the tally plane. As can be
seen, the coherent magnetic field produces a noticeable flux above

Table 2. Describes the data found by the uncertainty test described in the text.
The second column shows the mean value of 	F/2F for the set of 100 runs
for each configuration (computed for each run individually). The next column
shows the ratio between the mean and standard deviation for the Gaussian
distribution of all the flux values computed. The fourth column shows the
percentage difference between these quantities, and the final column shows
percentages within range of the mean for the Gaussian distribution of the flux
values.

M 〈	F/2F〉 σ /μ 〈	F/2F 〉−(σ/μ)
(σ/μ) 1σ , 2σ , 3σ

1 5.60e-2 5.08e-2 10.22 62, 96, 100
2 5.60e-3 5.05e-3 10.91 70, 95, 99

the background, shown by the yellow and green patches in the upper
right corners of the plots. These patches span 4 × 4 grid zones in our
case, and the flux F previously discussed contains the relative sum
of all of the extra particles in this region.

In these plots, the likelihood of the particles to follow the direction
of the coherent field can clearly be observed. One noticeable feature
of the plots is that the effect on the tally plane is not always
simply a higher flux (darker patch) on the contour plot. Rather, the
magnetic field configurations with a stronger effect tend to form
a ‘ring’ of increased flux due to the likelihood of the particles
to follow the coherent field when they encounter it in the outer
zones of the coherent field region. Another feature of the stronger
magnetic field configurations is the decreased flux surrounding
the box and extending up into the right corner of the plot. This
shadowing effect was also observed in Harding et al. (2016), and is
due to a lack of particles scattering past the coherent field without
entering it and getting ‘trapped’. Because our coherent field box
contains a turbulent component, there is some expectation that the
shadowing effect would be muted, but it is still present in many
cases.

The computed flux results of our code are shown in Fig. 6.
The plot on the left shows the results using ‘Method 1’ while the
plot on the right shows the results using ‘Method 2’. The figure
shows the computed flux above the background F for every box
extent, tally plane offset, and coherent magnetic field ratio tested.
Each colour shows a different coherent magnetic field box extent,
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3504 M. F. Axen et al.

Figure 5. Shows two examples of the particle flux above the background F for our simulation runs. Both were done using the same coherent magnetic field
configuration of Bg/Bt = 1.0, box extent = 24 pc, and box offset = 0 pc, but the left-hand plot was computed using Method 1, while the right-hand plot was
computed using Method 2. The coherent magnetic field region can be seen by the yellow and green patches in the upper right corner of the plots.

Figure 6. Shows the results of our code, with the particle flux above the background defined in Section 4.2 as a function of the coherent field offset from
the tally plane. Each colour represents a different box extent, which was tested for three different values of the magnetic field. The dotted lines shows values
computed using the methods of Harding et al. (2016). Every run is done to 10 per cent uncertainty. The points show the computed values, with the dots being
points whose uncertainty range is above the background, while the stars have an uncertainty range below the background.

with each colour having three different lines representing the three
different coherent magnetic field ratios. The dotted lines are put in
for comparison and were computed using the methods of Harding
et al. (2016); that is, no turbulent magnetic field in the coherent
field box. In general, the topmost line of one colour is the highest
coherent magnetic field and the coherent field decreases moving
down in height; this holds up except for the lower points close to
the background of F = 1, where statistical uncertainty causes more
variation.

These results demonstrate the large effect of a coherent magnetic
field component on the particle flux above the background. Indeed,
one can see from Fig. 6 that for all runs done in the study of
coherent magnetic field amplitude, coherent field box length, and
coherent field box offset from the tally plane, there was a noticeable
flux observed above the background level; and above the observed
anisotropy level. Only a few of the runs with the lowest flux values
did not have a 2σ range above F = 1, which signifies a 95 per cent
chance of a noticeable observed flux. These points are shown by
crosses instead of dots in Fig. 6.

5.1 Method differences

Both of the hybrid transport methods, Methods 1 and 2, produce the
same, generally predictable trends for the variation of the tested box
configuration variables. Increasing the coherent magnetic field ratio,
increasing the box length, and decreasing its distance from the tally
plane all increase the observed flux at the plane. However, the two
methods do produce quantitatively different results from each other,
depending on the coherent magnetic field ratio used.

In addition to our main configuration parameter space, we did one
study where we picked a single box offset of 0 pc and extent value
of 6 pc and varied the value of the coherent magnetic field ratio for
10 different values, ranging from 0.1 to 1.0. This is shown in Fig. 7.
It can be seen that, for higher magnetic field ratios (Bg/Bt � 0.6),
Method 2 predicts a higher particle flux above the background than
Method 1 while, for lower magnetic field ratios (Bg/Bt � 0.6), Method
1 predicts a higher particle flux above the background than Method
2. This means that over the span of magnetic field ratio values we
tested for the main study, Method 2 has a much broader range in
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Figure 7. Shows the results of varying the magnetic field ratio for one box
geometry configuration (extent = 6 pc and offset = 0 pc).

predicted flux values (because higher coherent magnetic field ratios
predict a higher particle flux above the background in general).

These differences can be seen in the dependence of the results on
the spatial distribution of the coherent magnetic field. Fig. 8 shows
the particle flux at tally plane as a function of the distance away from
the centre of the box region (108 pc < y,z < 120 pc). The top two
plots were computed using Method 1, and the bottom two plots were
computed using Method 2. The left-hand column uses a coherent
magnetic field ratio of Bg/Bt = 0.5, while the right-hand column uses
a coherent magnetic field ratio of Bg/Bt = 1.0. As can be seen, for the
higher magnetic field ratio, Method 2 produces a higher particle flux
around the box region, and a greater deficit outside. However, for the
lower field value, Method 1 still has an observable flux around the
box while it is much harder to see for Method 2.

The differences between these two methods provide an indication
of the uncertainty in the predicted particle anisotropy at the tally
plane. For our tests, Method 1 predicts an anisotropy for all box
geometries with Bg/Bt = 0.5 and 1.0, and for most of the geometries
with Bg/Bt = 0.1. Method 2, on the other hand, only predicts an
anisotropy for all box configurations with Bg/Bt = 1.0; all of the
configurations with Bg/Bt = 0.1 and many with Bg/Bt = 0.5 are
not predicted to be high enough to be seen within our 10 per cent
simulation errors.

5.2 Variation of cosmic ray energy

Finally, we tested one magnetic field configuration using higher
energy particles, for both Methods 1 and 2. We tested 100 TeV, 1 PeV,
10 PeV, and 100 PeV particles. The magnetic field configuration we
chose to test was a box extent of 24 pc, offset of 0 pc, and coherent
magnetic field ratio of Bg/Bt = 1.0. We found that the trend is that
higher energy particles produce a smaller flux above the background
in the box. This is shown in the Fig. 9. The reason for this likely has
to do with the higher energy particles having a longer path length,
which means they are more likely to ‘escape’ from the coherent
magnetic field.

6 O BSERVATIONA L IMPLICATIONS

We now attempt to approximate the effect that a coherent magnetic
field might have on the observed cosmic ray flux at Earth. Though we
have demonstrated theoretically that a coherent magnetic field can

create anisotropies in the cosmic ray flux across a tally plane, this
does not correlate exactly to the anisotropies observed in the cosmic
ray arrival direction at Earth. The observed flux at a point requires
tallying the angular distribution of the flux as well. For statistical
results, Section 5 tallied the entire flux. In this section, we also study
the angular distribution.

To understand the angular distribution of the material on our tally
plan, we ran one configuration where we also tallied the velocity
u of the particles as they hit the plane. We ran particles using
the configuration tested for Method 1 with a box extent = 24 pc,
offset = 3 pc, and Bg/Bt = 1.0 (though any of the runs with an offset
greater than 0 pc could have been used). For every particle that hit
the plane, we calculated cos(θu) = û · n̂, where n̂ = [1, 0, 0] and θu

is the angle between its velocity and the plane surface normal. We
then tallied the number of particles between cos(θu) and cos(θu) +
	cos(θu) for values of cos(θu) between 0 and 1. We used 15 bins in
cos(θu), so 	cos(θu) = 1/15.

We found that the velocity distribution of the particles being
emitted from the plane follows the relationship 1

F (û) ∝ û · n̂ = cos(θu). (16)

The results of this test are shown in Fig. 10. Each point represents a
total number of particles emitted in one bin. In addition to showing
the calculation done for the entire tally plane, we also show the same
calculation for two regions on the plane; one that is the box region
used to compute the flux, and another region that is in the opposite
corner of the plane. All lines are normalized to the number of particles
that were considered for that region. These details are to emphasize
the fact that although these regions have different total numbers of
particles and particle density, they all follow the same distribution
in momentum. The main difference between the different regions is
the offset of the points from the best-fitting line; the opposite corner
region has a higher offset than the box region or entire plane because
there are less particles being considered, leading to higher statistical
error.

We can use the angular distribution of the particles at the tally
surface inferred from this study to calculate the observed flux
in the observer frame (as a function of viewing angle). To do
so, we determine an observer location (‘position of the Earth’)
at coordinates [xe, ye, ze]. We calculate each particle’s position
in spherical coordinates [φ, θ ] from its Cartesian coordinates [xp,
yp, zp] on the tally plane using tan(φ) = (yp − ye)/(xp − xe) and
tan(θ ) = (zp − ze)/(xp − xe). Each particle is then in a spherical
grid zone 
z, where each zone 
z bounds a 2D region in [φ, θ ]
space. By summing only these angle-dependent contributions from
the tally surface, we calculate the observed sky distribution for part
of the sky that can be mapped from the tally plane. For each spherical
grid zone 
z, we tallied the proportional flux of particles that would
arrive at the Earth point from that zone as

R(
z) ∝
N
z∑
i=1

cos(θe), (17)

where the sum is over all of the N
z
particles that hit the plane in

the zone 
z and θ e is the angle between the surface normal and the
vector connecting the particle hit position to the Earth point. For
the plots we present, the Earth point is at position [xe, ye, ze] =
[168, 114, 114] pc, and the angular resolution in both dimensions are

1This is a Lambertian distribution in angle, which is expected for particles
following isotropic scattering motion.
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Figure 8. Shows the number of particles at the Earth sky as a function of box offset and radial distance from the centre of the box region. The top plots were
computed using Method 1 and the bottom plots were computed using Method 2. The left-hand column uses a magnetic field ratio of Bg/Bt = 0.5, while the
right-hand column uses a magnetic field ratio of Bg/Bt = 1.0. Both have a box extent of 24 pc.

Figure 9. Shows the results of varying the energy for one box geometry and
magnetic field ratio (extent = 6 pc, offset = 0 pc, and Bg/Bt = 1.0).

	θ = π /50 and 	φ = π /50 (50 angular bins each), with θ ∈ [0, π ]
and φ ∈ [0, π ]. To demonstrate the cosmic ray flux in a way that is
commonly done observationally, and reduce the effect of the higher
noise floor due to the geometric effect of the angular bins, for each
solid angle bin we chose to consider the difference between the flux
and the background run flux rather than the ratio:

F (
z) = R(
z) − Rback(
z) ∝
N
z∑
i=1

cos(θe) −
Nback,
z∑

i=1

cos(θe), (18)

Figure 10. Shows the number of particles emitted in certain different
directions as a function of cos(θ ), run for one box configuration. We show the
results for the entire x= 150 pc plane (red), as well as the box region alone
(blue) and one other region at a different location in the grid (green). Each
line is normalized to the number of particles being considered in that region.
The black lines are a linear fit to the red points.

where here all calculations were done using the same number of
particles originally started for both the main and the background runs
(Ntot, i = Ntot, back), since the number of particles will not normalize
out in these plots.

Fig. 11 illustrates this process for one box configuration using
Method 2. The top two panels show R(
z) and Rback(
z) computed
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Figure 11. Plots of R(
z) (top left), Rback(
z) (top right), and F(
z) (bottom) using Method 1 and Bg/Bt=1.0, box extent = 24 pc, and box offset = 3 pc.

using equation (17). The higher particle counts in the bottom right
corners of these panels appear because of the geometric location of
the earth sky point compared to the tally plane and the location of
the cosmic ray source. The placement of the earth sky point near
the top left corner of the tally plane causes more zones on the plane
to be included in the lower right angular bins, and fewer in the top
left angular bins. Additionally, there are more particle counts in the
tally plane zones near the cosmic ray source. In the bottom panel,
computed using equation (18), these effects are removed and the
location of the coherent magnetic field can clearly be seen by the
higher particle flux.

Finally, we calculate for each plot a generic noise level σ
, where
σ
 = |min(F (
z))|. This simply means that the noise level for
all of the angular bins for one plot is the magnitude of the most
negative value computed, or the flux in the angular bin where the
isotropic run had the highest flux above the main run. Though the
uncertainty is technically a function of angular zone, this method
is a simple way to calculate the uncertainty, and is an overestimate
for most of the grid. Plotting F (
z)/σ
 allows us to neglect the
proportionality constant in these expressions, as it should be the same
for F(
z) and σ
. The results are presented in Figs 12 and 13, which
show contour plots of F (
z)/σ
 at the earth point for Methods 1
and 2.

Each row in the figure shows the effect of varying one of the
magnetic field configuration parameters; the box extent, coherent

magnetic field ratio, and earth sky offset. In these plots, the coloured
region in the upper left corner shows the location of the coherent
magnetic field box. The effect of varying the three magnetic field
configuration parameters produced what might be the expected
changes on the background flux at the Earth sky. Increasing the
box extent, decreasing its distance from the sky, and increasing the
coherent magnetic field ratio produce a higher particle flux observed
on the sky. This is in contrast to Harding et al. (2016), where all
coherent magnetic field values produce the same result as there is no
turbulent field in the box to drive the particles out. We have varied
the observer position and the magnitude of the anisotropy varies, but
not significantly.

The anisotropies presented here are much higher than the observed
anisotropy in the cosmic ray flux, implying that the strength of the
coherent magnetic fields can be much lower than what we assumed.
Even so, we are assuming the magnetic field energy in the coherent
fields is much less than that of the small-scale structures. The strength
of our coherent magnetic fields was not chosen to match the observed
anisotropies, but to demonstrate the role such magnetic fields can
play on the flux observed at the earth. Statistical limitations of
our Monte Carlo method required higher coherent magnetic field
strengths than those needed to explain the observations. Finally, we
note that limitations with our grid setup, such as particles not being
allowed to scatter back across the tally plane, may also have a minor
effect on our results.
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Figure 12. Shows plots of F(
z)/σ
 for different box configurations using Method 1. The different rows show the effects on the Earth sky image of varying
the box extent, coherent magnetic field ratio, and offset. The top row uses box extent values of 6 and 24 pc, while keeping Bg/Bt = 1.0 and offset = 3 pc. The
middle row uses values of Bg/Bt = 0.1, 0.5, and 1.0, while keeping the box extent = 24 pc and box offset = 3 pc. The bottom row uses box offset values of 15,
9, and 3 pc, while keeping the box extent = 24 pc and Bg/Bt = 1.0.

7 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, we have extended the work of Harding et al. (2016) to
include more realistic magnetic field structures which included both
an isotropic and an anisotropic component. Additionally, we varied
our magnetic field structures in a different way than was previously
studied, varying the length of the field structure and moving it away
from the tally plane. To accomplish this hybrid solution, we propose
two methods which ‘combine’ the standard transport and diffusion
algorithms usually used. One of these methods involved the particles
switching off between the two methods, picking the method of travel
based on a probabilistic approach. The other method involved the
addition of two vectors intended to represent the two components of
the magnetic field separately.

We have shown that the anisotropies in the particle flux at the tally
plane are much easier to create than might be expected, no matter
which method is used. In particular, with a strong enough coherent
magnetic field component, there are noticeable anisotropies above
the background for all coherent field length-scales and offset values

tested. Because the length-scale of the coherent field is so much larger
than the mean-free path of particle motion, even a weak coherent
magnetic field component can give the particle a strong enough
directional push over time to move it into the box region at the tally
plane. Additionally, even magnetic field structures removed from the
plane can cause a noticeable particle flux above the background.
This is because the coherent magnetic field alters the particle
transport, effectively creating what appears to be a new cosmic ray
source.

Finally, we took the results at the tally plane and used them to make
a construction of what an observer at Earth might see. Though this
method had many limitations, we showed that the stronger, closer
magnetic field configurations produce a noticeable anisotropy. Many
other works have found a similar effect to the results presented here
and in Harding et al. (2016). In several studies (Giacinti & Sigl
2012; Ahlers 2014; Ahlers & Mertsch 2015; López-Barquero et al.
2016), it was shown that anisotropies in the flux can arise from
local turbulent magnetic field structures. Our simulations were only
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Figure 13. Shows plots of F(
z)/σ
 for different box configurations using Method 2. The different rows show the effects on the Earth sky image of varying
the box extent, coherent magnetic field ratio, and offset. The top row uses box extent values of 6 and 24 pc, while keeping Bg/Bt = 1.0 and offset = 0 pc. The
middle row uses values of Bg/Bt = 0.1, 0.5, and 1.0, while keeping the box extent = 24 pc and box offset = 0 pc. The bottom row uses box offset values of 2, 1,
and 0 pc, while keeping the box extent = 24 pc and Bg/Bt = 1.0.

sensitive to anisotropies that are much larger than those observed.
The fact that modest coherent magnetic fields can produce strong
anisotropies show that the features needed to explain the observed
fields can be quite small and the small amplitudes of the observed
cosmic ray anisotropies place limits on the nature of these coherent
magnetic fields.

We stress that although we have made improvements over pre-
vious studies modelling cosmic ray transport, we have not done
the ‘ultimate’ treatment of the fields. This involves resolving the
turbulent magnetic field structure and using this in combination
with the coherent field, directly solving the Lorentz equation of
motion for every particle step. Although such full treatments are
beyond computational power for large grids, it is possible to use
small-scale calculations to improve on the recipes (Methods 1
and 2) used here. We defer this more detailed study for a later
paper.

Another way to reduce the uncertainties in this study would
be to obtain better measurements of the magnetic field structures
in the solar neighbourhood. With these structures, the cosmic ray
anisotropies may be better understood.
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