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ABSTRACT
The non-linear mass is a characteristic scale in halo formation that has many applications across cosmology. Naively, computing
it requires repeated numerical integration to calculate the variance of the power spectrum on different scales and determine which
scales exceed the threshold for non-linear collapse. We accelerate calculation of both the non-linear mass and the rms amplitude
of the power spectrum σ (R) by working in configuration space and approximating the correlation function as a polynomial
at r ≤ 5 h−1 Mpc. This enables an analytic rather than numerical solution for the non-linear mass, accurate across a variety
of cosmologies to 0.1–1 per cent in mass (depending on redshift) and 20–60× faster than the standard numerical method. We
also present a further acceleration of the non-linear mass (400–1000× faster than the standard method) in which we determine
the polynomial coefficients using a Taylor expansion in the cosmological parameters rather than re-fitting a polynomial to the
correlation function. Our method is also 500× faster than the standard method for σ (R) for a typical case of NR = 100 desired
R values, with timing essentially independent of NR. Our approach can be used for quick calculation of the halo mass function,
halo mass–bias relation, and cosmological calculations involving the non-linear mass.

Key words: methods: numerical – cosmology: theory.

1 IN T RO D U C T I O N

Computing the spatial scale on which the density fluctuations have
variance of order unity is a common problem in cosmology. In
bottom-up structure formation, fluctuations are small on large scales
and become progressively larger on smaller scales. As the density
fluctuations approach unity, perturbation theory (PT)-plus-biasing-
based models of the clustering (Bernardeau et al. 2002) break down,
and density fluctuations begin to collapse into dark matter haloes.

The non-linear scale RNL is the characteristic scale at which these
processes occur. Its technical definition is the scale at which the rms
of the density field fluctuations, σ R, reaches δc = 1.686 (Bryan &
Norman 1998; Child et al. 2018), the linear-density threshold for
spherical tophat collapse in an Einstein de-Sitter universe (Gunn &
Gott 1972); in a � cold dark matter (�CDM) universe, δc has a
very mild dependence on cosmological model and halo formation
redshift (Lacey & Cole 1993; Eke, Cole & Frenk 1996; Nakamura
& Suto 1997; Mead 2017), which we neglect in this work. The non-
linear scale RNL can also be converted into a non-linear mass MNL

by multiplying by the background density ρbgd.1

� E-mail: krolewski@berkeley.edu, akrolews@uwaterloo.ca (AK);
zslepian@ufl.edu (ZS)
1The background density may be either the matter density or the critical
density, but does not contain a factor of �c ∼ 200, the final-state overdensity
of a virialized halo. This is because the non-linear mass is defined with
reference to the linear density threshold for the initial conditions of collapse.

The non-linear mass depends weakly on cosmology, with the
cosmology dependence arising from the small-scale power spectrum.
Beyond the dependence on the amplitude σ 8 and the spectral slope ns,
RNL is most sensitive to �m. Increasing �m decreases the elapsed time
in radiation domination. This leads to less suppression of small-scale
modes entering the horizon during radiation domination, ultimately
increasing small-scale power. The small-scale power spectrum is also
sensitive to �b, both because baryons slow the growth of structure
after matter-radiation equality but before decoupling (equation E-
6 in Hu & Sugiyama 1996), and because the baryonic Jeans scale
suppresses power at k ≥ 300 h Mpc−1.

The non-linear mass has broad applications across cosmology.
Most importantly, it is the characteristic scale of halo formation
in a scale-free power-law cosmology (Kravtsov & Borgani 2012)
and is consequently the characteristic mass scale for self-similar
scaling relations in galaxy clusters (Kaiser 1986; Bryan & Norman
1998; Norman 2010; Kravtsov & Borgani 2012). Although the non-
linear mass is not exactly the characteristic halo mass scale in a
�CDM power spectrum, it is a good enough approximation that
deviations from self-similar scalings are often parametrized in terms
of it (Kravtsov & Borgani 2012). As an important determinant of halo
formation, the non-linear mass is the key scale in the halo growth
rate (Wechsler et al. 2002), the concentration–mass relation (Child
et al. 2018), assembly bias (Dalal et al. 2008), the mass–bias relation
(Seljak & Warren 2004), and spin alignment between haloes and
filaments (Hahn et al. 2007a,b).

Due to these broad applications, the non-linear mass plays a role in
modelling non-linear structure growth via the halo model (Ma & Fry
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2000; Abazajian et al. 2005; Cataneo et al. 2020) and parametrizing
the halo mass function to obtain σ 8 (Seljak et al. 2005). The non-
linear mass appears in the scale-dependent bias model of Jose, Lacey
& Baugh (2016), which has been used to model the clustering of
high-redshift galaxies (Jose et al. 2017; Harikane et al. 2018). The
non-linear mass also appears in fitting formulae for the triaxiality of
haloes (Jing & Suto 2002). These formulae have in turn provided
priors on haloes’ axial ratios when fitting strong lensing data (Oguri
et al. 2005). The non-linear mass features in cosmological constraints
from the highly non-linear regime, including weak lensing halo
mass profiles (Umetsu et al. 2020) and cluster abundances (Bocquet
et al. 2019). For instance, in the baryon-feedback model of Mead
et al. (2015), which is included in the KiDS weak lensing analysis
(Hildebrandt et al. 2020), the amplitude of feedback depends on the
mass–concentration relation. While the mass–concentration relation
of Bullock et al. (2001) used by Mead et al. (2015) does not depend
on the non-linear mass, other mass–concentration relations do (Child
et al. 2018), so modified feedback models generically can involve
the non-linear mass.

We now outline how one might naively calculate the non-linear
mass, explain why this is inefficient, and sketch this work’s approach
to accelerate the calculation of both the non-linear mass and of σ R.
In the standard method, one computes a numerical integral for σ R

at each point in R traversed by a numerical root-finder solving the
equation σ R = δc. The combination of the numerical integration and
the root-finding makes RNL slow to calculate.

In this work, we present a scheme to greatly accelerate calculation
of the non-linear mass and σ R. Our method uses the algebraic solution
of a cubic equation to determine RNL, thereby bypassing both the
numerical integration and the root-finding. In particular, we work in
configuration space and fit a polynomial to the correlation function on
small scales. σ R is a compactly supported integral over the correlation
function, so these fitted coefficients immediately give us the integral’s
value as a cubic in RNL. The equation σ R = δc can then be solved
analytically. Our method is accurate to <1 per cent on the non-linear
mass for a variety of cosmologies, an order of magnitude faster than
the standard method, and can be further accelerated by an additional
order of magnitude using a Taylor series to determine the polynomial
coefficients of the correlation function. It is also 500× faster than the
standard method for computing σ R for a typical case of 100 desired
R values, and is therefore also useful for quick calculations of the
halo mass function and halo mass–bias relation.

All numerical work in this paper uses the best-fitting cosmology
from the Planck 2018 release (Planck Collaboration et al. 2020) with
�m = 0.3096, �b = 0.04897, ns = 0.9665, σ 8 = 0.8102, mν =
0.06 eV and h = 0.6766.2 Consistent with past work (e.g. Child et al.
2018), we use the linear power spectrum of cold dark matter plus
baryons, since haloes do not respond to neutrinos (Costanzi et al.
2013; Castorina et al. 2014, 2015; Villaescusa-Navarro et al. 2014).
Our PYTHON code is publicly available.3

2 ME T H O D A N D I M P L E M E N TAT I O N

In this section, we review the calculation of the variance of the density
field in Section 2.1, present our algebraic method in Section 2.2, and
show the solution to the cubic in Section 2.3.

2If one computes σ 8 using our fiducial CDM-plus-baryons P(k), one obtains
0.8138, in contrast to the Planck value of 0.8102, which is calculated for P(k)
including CDM, baryons and neutrinos.
3https://github.com/akrolewski/NonlinearMassFaster

2.1 Variance of the density field

The variance of the linear density field at a point �x and redshift z

within a sphere of radius R is

σ 2
R(�x, z) = V −2

R

∫
d3�r d3�r ′ 
(R − |�r|)
(R − |�r ′|)δlin

× (�x + �r, z)δlin(�x + �r ′, z). (1)

Note that this expression is equivalent to writing �x − �r and �x − �r ′ as
the arguments of δlin, since the minus signs from the transformations
from �r to −�r and �r ′ to −�r ′ would cancel each other out. 
 is a
Heaviside function, unity where its argument is positive and zero
otherwise. In 3D, the Heaviside function of radius is simply a
spherical tophat. VR = 4πR3/3 is the volume of a sphere of radius R.

The statistical homogeneity of the density field implies translation
invariance, and we may therefore write the average over �x as

σ 2
R(z) ≡ 〈

σ 2
R(�x, z)

〉 = 1

V

∫
d3 �x σ 2

R(�x, z)

= V −2
R

∫
d3�r d3�s 
(R − |�r|)
(R − |�r + �s|)ξ (s, z), (2)

where �s = �r ′ − �r , with ξ is the linear matter correlation function:

ξ (s, z) ≡
∫

d3 �x δlin(�x + �r, z) δlin(�x + �r + �s, z)

=
∫

d3 �x δlin(�x, z) δlin(�x + �s, z) (3)

and δlin is the linear density field. The equality in the second line
follows by change of integration variable. To obtain the second
equality in equation (2), we inserted equation (1) for σR(�x, z) and
integrated over d3 �x, first using the definition of ξ in equation (3). By
recasting equation (2) as a convolution we obtain

σ 2
R(z) = V −2

R

∫
d3�s ξ (s, z) [
(R) � 
(R)] (�s), (4)

where ‘star’ denotes convolution.4 The convolution inside the square
brackets is evaluated at an offset �s and is itself an integral over
the dummy variable �r; for clarity we have suppressed this latter
argument. Equation (4) shows that the variance is thus just the integral
of the correlation function against a kernel given by the convolution
of two spherical tophats at an offset �s.

The overlap of the two spheres forms a lens. Consequently, we can
evaluate the convolution using the formula for the volume of a lens
produced by overlapping two spheres of radius R, offset from each
other by s:5

[
(R) � 
(R)] (�s) = Vlens(s; R) = π

12
(4R + s)(2R − s)2. (5)

In the limit s → 0, i.e. when the two spheres share a common centre,
this expression recovers the volume of a sphere.

Inserting equation (5) in equation (4) yields

σ 2
R(z) = 4πV −2

R

∫ 2R

0
s2ds ξ (s, z)Vlens(s; R)

= π2

3
V −2

R

∫ 2R

0
s2ds ξ (s, z)(4R + s)(2R − s)2

= π2R3

3V 2
R

∫ 2

0
y2dy ξ (yR, z)(4R + yR)(2R − yR)2. (6)

4This formula offers a geometric way to show that the overlap integral of
two spherical Bessel functions j1(kR)j1(ks) scales as the volume of the lens
formed by the overlap of two spheres.
5https://mathworld.wolfram.com/Sphere-SphereIntersection.html
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Figure 1. Different pieces of the integral (7). The dashed black line is the
kernel K(y) defined in equation (8); and the short-dashed, dot–dashed, and
solid lines (various colours) are y2ξ (yR) at R = 1, 2, and 3 Mpc/h. The
dominant contribution to σ 2

R comes from intermediate y, where both K(y) and
y2ξ (yR) are non-zero.

To obtain the third equality we changed variables to s = yR, s2ds =
R3y2dy. Simplifying the last line we obtain the formula of Zehavi
et al. (2005), quoted there without proof but obtained by direct
integration:6

σ 2
R(z) =

∫ 2

0
dy y2 ξ (yR, z) K(y), (7)

with

K(y) =
(

3 − 9y

4
+ 3y3

16

)
. (8)

We will refer to K(y) as defined in equation (8) as the ‘kernel’ for the
remainder of this work. We plot the components of equation (7) in
Fig. 1, including the kernel and y2ξ (yR, z = 0) for different values of
R. Since K(y) is nearly zero at y > 1.5 and y2ξ (yR) is nearly zero at
y < 0.5, much of the integral comes from intermediate values of y.

2.2 Solving for the non-linear scale

The standard approach to computing RNL is to use the convolution
theorem to perform the convolution (equation 4) as a product in
Fourier space, i.e.

σ 2
R(z) =

∫
k2dk

2π2

[
3j1(kR)

kR

]2

P (k, z), (9)

where the quantity in square brackets is the square of the Fourier
transform of a spherical tophat. One would then use numerical root-
finding to solve the equation σRNL (z) = δc = 1.686. In this paper we
take δc to be a redshift and cosmology-independent constant.

6D. Eisenstein (private communication).

In a non-EdS universe, δc has a mild dependence on cosmology
and redshift, deviating less than 3 per cent from its EdS value (Mead
2017). Our method could be modified to account for this dependence.
The redshift dependence of δc could be absorbed into D(z), and the
cosmology dependence is small enough to be neglected. A change
in the dark energy equation of state �w = 0.1 changes δc (z = 0)
by <0.5 per cent (using fig. A1 of Mead 2017 to convert �w to an
approximate change in δc). For many applications, one could thus
neglect the cosmology dependence of δc entirely.

A more substantial change is to define the non-linear scale
as σRNL (z) = 1 (Norman 2010), which will clearly require re-
computation of RNL. As discussed in Section 4, we expect that our
method is slightly more accurate for the choice that σRNL (z) = 1
than for the choice that σRNL (z) = 1.686, because RNL has weaker
cosmology-dependence for smaller δc, in turn allowing us to choose
a more appropriate fitting range that leads to a better polynomial
approximation.

Our method evaluates σ 2
R from equation (7) in configuration

space and fits a low-order polynomial to the small-scale correlation
function, leading to an analytic integral that enables algebraic
calculation of RNL. This is an order of magnitude faster than the
standard method to compute RNL from numerical integrals of the
power spectrum.

Our method offers two advantages that substantially accelerate
the calculation of the non-linear scale. First, the configuration space
integral is easier to handle than the Fourier space integral, which
has an infinite upper bound and BAO wiggles that require a larger
number of k steps for accurate sampling. Secondly, the correlation
function on small scales is smooth and can be approximated by a
low-order polynomial (Fig. 2). This allows the σ 2

R integral to be
evaluated analytically and RNL then computed algebraically.

To obtain an analytic expression for σ 2
R for a polynomial correla-

tion function, we start with the middle line in equation (6); separating
the integrals term by term we find

σ 2
R(z) = D2(z) R−3

{
3
∫ 2R

0
ds s2ξ (s) − 9

4R

∫ 2R

0
ds s3ξ (s)

+ 3

16R3

∫ 2R

0
ds s5ξ (s)

}
, (10)

where we explicitly separate the redshift-dependent piece of the
linear correlation function, the square of the linear growth factor
D2(z), and hereafter use ξ (s) to mean ξ (s, z = 0). We use the small-
scale limit of the linear growth factor appropriate for a massive
neutrino cosmology with mν = 0.06 eV (Hu & Eisenstein 1998).
While growth is scale-dependent in a massive neutrino cosmology,
the scales relevant to the non-linear mass are much smaller than
the neutrino free-streaming scale. Thus the effect of neutrinos
on these scales is very nearly a constant rescaling. As a result,
separating the scale and redshift-dependence of P(k, z) is a very
good approximation.

We perform the integral in equation (10) analytically by expanding
s2ξ (s) as a polynomial:

s2ξ (s) =
nmax∑
n=0

cns
n. (11)

We chose a polynomial because it allows the integral in equation (7)
to be done analytically and provides a good fit to the correlation
function over the restricted range required (s ≤ 5 h−1 Mpc).

Inserting the expansion (11) into equation (10) and performing the
integrals, we obtain the following expression for σ 2

R , which we set

MNRAS 500, 4439–4447 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/4439/5989726 by guest on 24 April 2024



4442 A. Krolewski and Z. Slepian

Figure 2. Top: Difference between s2ξ lin(z = 0) and the third-order
polynomial fit to it. The differences in fitting quality are negligible among
different cosmologies. We recover the exact correlation function to rather
high accuracy, generally sub per cent over most of its domain; larger errors
occur at small scales which contribute little to the fractional σ 2

R integral, as
shown in the bottom panel. Bottom: Fractional buildup of σ 2

R (equation 7) as
a function of s ≡ yR. Since the integral extends to y = 2, the curves cut off at
respectively yR = 2, 4, and 6 for R = 1, 2, and 3 Mpc h−1. For a wide range
in R, the integral turns out to be most sensitive to exactly the region in which
our fit performs best, 1 < s < 5 h−1 Mpc.

equal to δ2
c :

σ 2
RNL

(z) = D2(z)
nmax∑
n=0

cnR
−3
NL

{
3

2n+1

n + 1
Rn+1

NL − 9

4RNL

2n+2

n + 2
Rn+2

NL

+ 3

16R3
NL

2n+4

n + 4
Rn+4

NL

}

= D2(z)
nmax∑
n=0

2n+1cnR
n−2
NL

{
9

n3 + 7n2 + 14n + 8

}
= δ2

c .

(12)

We transform equation (12) from a sum of inverse powers to a
polynomial by multiplying through by R2

NL:

R2
NLδ2

c

D2(z)
=

nmax∑
n=0

2n+1cnR
n
NL

{
9

n3 + 7n2 + 14n + 8

}
. (13)

This is an order-nmax polynomial in RNL. Quartics and lower-
order polynomials have a closed form solution, but quintics and
higher-order polynomials do not (this is known as the Abel–Ruffini
theorem). Therefore, if nmax ≤ 4, we can solve in closed form for
RNL.

We find that nmax = 3 is sufficient to reproduce s2ξ (s) to per cent-
level accuracy (Fig. 2), implying that an algebraic solution for RNL

exists. While Fig. 2 only shows the fit to the correlation function
in the Planck 2018 cosmology, s2ξ (s) can be approximated equally
well by a cubic across a wide range of cosmologies. Because the
cubic provides a good fit across a wide range in s, the analytic
approximation of σ R from integrating equation (10) provides a very

Figure 3. Comparison between exact σR from the Fourier integral (blue;
equation 9) and our algebraic method (black; equation 14). Both calculations
are done at z = 0; results for σR(z) will be very similar, except that the
horizontal axis will be scaled by RNL,fid(z)/RNL,fid(z = 0). The thin black
dashed line gives σR = δc = 1.686; thus, RNL is where the thicker curves
cross the dashed line. While the solid and dashed curves disagree at small
scales, the agreement is almost perfect near where σR = 1.686.

good match to the numerical solution from the Fourier-space integral
at R > 0.5 h−1 Mpc at z = 0 (Fig. 3).

We found that the cubic provides the best balance between
simplicity and accuracy: a quadratic approximation is considerably
less accurate, whereas a quartic offers only minimal improvement.
Other possibilities, such as omitting the constant and linear terms or
requiring the constant term to be positive, degrade the accuracy of
the fit. While a piecewise function (e.g. a smoothing spline) can
reproduce s2ξ (s) to arbitrary accuracy, the upper bounds in the
integrals in equation (10) are no longer linear multiples of R, and
thus contribute an R−6 term in equation (12). If nmax ≥ 1, this yields
a fifth-order polynomial with no analytic solution in equation (14).

Equation (11) must approximate s2ξ (s) well at s < 2RNL(z),
since this is the upper bound of the integral in equation (10). To
avoid the circularity of requiring RNL to fit the cn, we fit the cn

to s < 1.9RNL,fid(z), where RNL,fid is RNL in the fiducial Planck
2018 cosmology. We empirically find that using an upper cutoff
of 1.9RNL,fid(z) leads to 20 per cent better accuracy than using
2RNL,fid(z). This slightly up-weights smaller and intermediate scales
that contribute more to the σ 2

R integral (bottom panel of Fig. 2).
Allowing the fitting range (and thus the cn) to vary in redshift is

critical, because the error on the cubic increases greatly at small s:
this is the sharp drop in the signed deviation between the correlation
function and the cubic fit at s ≤ 0.5 h−1 Mpc in Fig. 2 (or equivalently,
the downturn in σ 2

R at R > 1 h−1 Mpc in Fig. 3). If we calculated
RNL(z = 6) using cn(z = 0), we would be primarily using scales
where the cubic provides an extremely poor fit to s2ξ (s), leading to a
severe loss of accuracy. Instead, we fit over a very restricted s range
at z = 6, ensuring an accurate fit over the vast majority of the relevant
range in s. Because of this rescaling in RNL,fid(z), Figs 2 and 3 at z =

MNRAS 500, 4439–4447 (2021)
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Figure 4. Our method can also be used for very fast calculations of the halo
mass function and mass–bias relation, since it accelerates the computation
of σ (R), a major bottleneck in these calculations. The blue curve shows the
per cent error on σ (R) from the polynomial fit to the correlation function.
To ensure accuracy across a sufficiently wide range in mass, the polynomial
in the correlation function is piecewise (solid and dashed curves). The grey
region (grey hatched region) shows the allowable error in the mass function
(mass–bias relation) of Tinker et al. (2008, 2010), corresponding to half of
the statistical scatter of simulation results about these relations.

0 are very similar to the equivalent figures at high redshift, except
that the s (R) axis will be rescaled by RNL,fid(z)/RNL,fid(z = 0).

Our method can also be used for quick and accurate calculations
of σ (R), which in turn informs the halo mass function (Tinker et al.
2008) and the halo mass–bias relationship (Tinker et al. 2010). Here
the relevant range of scales is larger than for the non-linear mass:
halo masses of 1010–1015 h−1 M
 correspond to radii of 0.3–14.2
h−1 Mpc. We therefore fit the polynomial coefficients out to Rmax,1 =
30 h−1 Mpc.

At small scales, the polynomial approximation breaks down (the
turnover in Fig. 3), and for R < 1.32 h−1 Mpc, we therefore fit a
second set of polynomial coefficients with Rmax,2 = 2.0 h−1 Mpc.
Rmax,2 is determined by the accuracy tolerance on σ (R). In turn,
the σ (R) accuracy requirement comes from the desired accuracy
on the bias or halo mass function. The fitting function of Tinker
et al. (2010) is accurate to 6 per cent for the bias, and the fitting
function of Tinker et al. (2008) is accurate to 5 per cent for the halo
mass function. Therefore, we require that our method adds additional
errors of 3 per cent in the bias and 2.5 per cent in the mass function,
such that the quadrature sum of the fitting error from Tinker et al.
(2008, 2010) and from our method is nearly the same as the fitting
error. We compute the derivatives of bias and number density with
respect to σ for halo density contrast � = 200 and z = 0 (our
results are nearly the same at the highest redshift considered, z = 6).

We then use error propagation to convert from error on bias or mass
function to error on σ (R). In Fig. 4, we show that our scheme achieves
sufficient accuracy at 0.32 < R < 13.65 h−1 Mpc, or equivalently
1.19 × 1010 < M < 9.05 × 1014 h−1 M
.

2.3 Detailed solution of the cubic

In this section, we explicitly show how one obtains RNL algebraically.
Evaluating equation (13) with nmax = 3 yields

9

4
R−2c0 + 6

5
R−1c1 + c2 + 36

35
R c3 = δ2

c

D2(z)
. (14)

To simplify what follows, we define coefficients ai that incorporate
both the cn and their numerical pre-factors in equation (14), as

a0 = 9c0

4
, a1 = 6c1

5
, a2 = c2, a3 = 36c3

35
. (15)

We now rewrite equation (14) in standard cubic form

R3 + α2R
2 + α1R + α0 = 0 (16)

with the αi given as

α0 = a0

a3
, α1 = a1

a3
, α2 = a2 − 1/D(z)2

a3
. (17)

We can obtain the solution using Cardano’s formula for the cubic.7

We find the roots Ri as:

R1 = −1

3
α2 + (S + T ),

R2 = −1

3
α2 − 1

2
(S + T ) + 1

2
i
√

3(S − T ),

R3 = −1

3
α2 − 1

2
(S + T ) − 1

2
i
√

3(S − T ). (18)

We define the auxiliary variables Q, R, D, S, and T as

Q ≡ 3α1 − α2
2

9
, R ≡ 9α2α1 − 27α0 − 2α3

2

54
,

D ≡ Q3 + R2, S ≡ 3
√

R +
√

D, T ≡ 3
√

R −
√

D. (19)

We choose the real and positive root. Note that despite the presence
of i in R2 and R3, they need not be complex because S and T are also
complex and can render the factor involving i real overall.

3 NUMERI CAL I MPLEMENTATI ON

To obtain the non-linear scale using the method outlined in Sec-
tions 2.2 and 2.3, we first need the linear correlation function. We
obtain the correlation function by transforming the linear power
spectrum from CAMB (Lewis, Challinor & Lasenby 2000; Howlett
et al. 2012).8 We use 800 logarithmically spaced sample points per
decade over the range k = 10−3 to 104 h Mpc−1. We use the FFTLog
(Hamilton 2000) algorithm (as implemented in MCFIT;9 Li 2019) to
transform from P(k) to ξ (s), and then linearly interpolate between
the resulting sampling points in s. For consistency with past work
(Child et al. 2018), we use the power spectrum of baryons plus CDM
in our numerical implementation, but the method is general and can
accept an arbitrary linear power spectrum as input.

7https://mathworld.wolfram.com/CubicFormula.html
8http://camb.info
9https://github.com/eelregit/mcfit
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The most time-consuming part of our implementation of the poly-
nomial method is solving for the polynomial coefficients cn. We use
1000 sampling points for the correlation function and determine cn

via linear least-squares. The relevant operations are vectorized so the
performance is not highly sensitive to the number of sampling points.
Consequently, we can choose 1000 points to preserve accuracy yet
not pay much price in speed. The rate-limiting step is matrix inversion
in the linear least-squares fitting; to speed this up, we take advantage
of the fact that the relevant matrix is symmetric, as it is the product
of the Vandermonde matrix and its transpose. We solve the least-
squares equation using the LAPACK linear algebra package routine
DPOTRS (double-precision positive triangular matrix solve), which
uses Cholesky decomposition to efficiently invert a symmetric matrix
(Press et al. 2002).10 This approach is considerably faster than the
NUMPY least-squares package, both by eliminating NUMPY overheads
and by using a faster method specifically appropriate for symmetric
matrices. Since this approach to least-squares fitting uses vectorized
functions and fast linear algebra operations, it is faster than other
similarly accurate alternatives such as fitting a third-order Lagrange
interpolating polynomial to four points of s2ξ (s), despite that this
latter approach requires fewer evaluations of the correlation function.

As an alternative to the time-consuming determination of the
polynomial coefficients, we determine cn using a Taylor expansion
in the cosmological parameters (�m, �b, ns, mν) centred on the
fiducial cosmology. The dependence on σ 8 is straightforward, as it
just rescales the polynomial coefficients by a multiplicative factor.
This expansion assumes the mapping of parameters to power spectra
appropriate for a νCDM cosmology; modifications to the transfer
function, e.g. by warm dark matter or oscillations in the inflationary
potential, will change this mapping and require fitting the polynomial
coefficients rather than using the Taylor series.

To compute the Taylor expansion for each cn, we first compute
correlation functions and cn for four cosmologies per parameter
varied (�m, �b ns, and mν): two with the parameter varied by ±1σ

from the Planck 2018 best-fitting value (with σ = 0.0056, 0.001, and
0.0038, respectively) and two with the parameter varied by ±5σ . For
mν , where Planck provides only a 95 per cent upper limit of 0.12 eV,
we use mν = 0, 0.12, 0.18, and 0.24 eV as our test set (with mν =
0.06 eV as our fiducial value). For each cn and parameter p, we fit
a line cn(p) with the intercept fixed to reproduce cn in the fiducial
cosmology. This allows us to achieve a good fit for a broad range of
cosmologies away from the Planck best-fitting cosmology.

We must re-fit cn at each z to ensure an accurate fit over most
of the relevant range in scale (Section 2.2). Therefore, we must
also determine the Taylor coefficients as a function of redshift. We
measure the first-order Taylor coefficients for the three parameters
for 60 sampling redshifts spaced at �z = 0.1 between z = 0 and
6. We determine the Taylor coefficients at arbitrary z using a step
function taking each z to the nearest �z = 0.1 grid point less than
z. We find that this method yields a sufficiently accurate RNL (due
to the relatively fine spacing in redshift) and is faster than linearly
interpolating between redshifts.

Once the polynomial coefficients are fit, finding the non-linear
scale is straightforward, requiring only algebraic operations. Never-
theless, we make a number of optimizations to the code implementing
this. We store intermediate calculations to reduce computational
expense, use only built-in PYTHON functions or functions from
the MATH library, and use decimals rather than fractions wherever
possible to avoid an additional division.

10http://www.netlib.org/lapack/

We compare the performance of our method to both a straight-
forward implementation of the standard method, using an adaptive
quadrature numerical integration scheme to automatically ensure the
error is within a given tolerance; and to an optimized calculation
performing the integral using either the trapezoid rule or direct
summation, with the sampling points pre-determined to maximize
efficiency. The adaptive quadrature method is representative of stan-
dard methods for computing the non-linear radius in the literature;
e.g. the CORE COSMOLOGY LIBRARY (Chisari et al. 2019)11 uses the
CQUAD routine in GSL, a doubly adaptive routine using Clenshaw–
Curtis rules of increasing degree to calculate the integral at each
level. We also compare to the trapezoid rule method to show that
even with the fastest possible numerical integration settings for the
standard method, our method is still faster.

For the standard method, evaluating the integral in Fourier
space and obtaining RNL via numerical root-finding, we use
SCIPY.INTEGRATE.QUAD, SCIPY’s adaptive integration routine wrap-
ping the FORTRAN QUADPACK library. To maximize performance,
we set the absolute and relative tolerances to 10−2. We find that
this yields RNL accurate to better than 0.5 per cent. We do not
find that transforming to an integral with finite bounds (i.e. via
the transformation kR = (1 + 1/t)3; Mead et al. 2015) improves
performance.

In the optimized implementation of the standard method in Fourier
space, we find that first-order summation is inaccurate and instead use
the second-order trapezoid rule. We use 180 logarithmically spaced
points between kmin = 10−3 h Mpc−1 and kmax = 104 h Mpc−1 to
compute the integral. As with fitting the polynomial coefficients,
the scaling of the integral is relatively insensitive to the number
of sampling points due to the vectorization of most operations.
Therefore, our results will not change much if the number of sampling
points changes.

For the optimized implementation of the configuration space
integral (equation 7), we use 50 sampling points in y and pre-compute
the kernel since it does not change from iteration to iteration of the
root-finding. We evaluate the integral using direct summation over
the 50 points in y. We find that this gives sufficient accuracy (better
than 10−4) and is considerably faster than second-order methods such
as Romberg integration.

We use the SCIPY implementation of Newton’s method to perform
the root-finding. We perform the root-finding in log-space to prevent
the root-finder from attempting to evaluate σ R at negative R. We set
the tolerance to 10−4. We use this method because we find it to be
the fastest and most robust for root-finding.

Finally, we make our PYTHON code publicly available at https:
//github.com/akrolewski/NonlinearMassFaster.

4 R ESULTS AND DI SCUSSI ON

We measure the accuracy of our algorithm for finding RNL and σ R

compared to numerical integration of equation (9) using a large
number of sampling points in k. We also measure the speed of our
algorithm, both when we fit the coefficients cn for every cosmology,
and when we use a Taylor expansion to calculate cn for cosmologies
sufficiently close to Planck 2018. We compare the timing of our
algorithm to optimized versions of the numerical integration and
root-finding method in both configuration and Fourier space. We
find the algebraic method is accurate to 0.1–1 per cent in mass
and offers a factor of 20–60 speedup over the standard method for
RNL, while the Taylor series method is accurate to 1–10 per cent

11https://github.com/LSSTDESC/CCL
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Table 1. Cosmologies used to test our method. The default cosmology is
Planck 2018, and the cosmologies C1–C5 are chosen by randomly drawing
�m, σ 8 and ns from a uniform distribution of width ±2σ centred on the
Planck 2018 values. mν is chosen uniformly between 0 and 0.18 eV (the 3σ

limit on neutrino mass from Planck). Dashes indicate that a given parameter
is unchanged from the row above. Accuracy and timing results for these
cosmologies are given in Figs 5 and 6.

Name σ 8 �m �b ns mnu

σ 8 + 0.06 0.8702 0.3096 0.04897 0.9665 0.06
σ 8 − 0.06 0.7502 – – – –
Planck 2018 0.8102 – – – –
C1 – 0.3129 0.0490 0.9669 0.125
C2 – 0.3185 0.0498 0.9676 0.0515
C3 – 0.3145 0.0479 0.9616 0.0408
C4 – 0.3086 0.0507 0.9591 0.0992
C5 – 0.3004 0.0504 0.9663 0.130

in mass and 400–1000× faster than the standard method for RNL.
The applications described in Section 1 generally require better than
10 per cent accuracy on the non-linear mass, so the accuracy of our
method is sufficient. We also find that our method computes σ (R)
500× faster than the standard method for 100 sampling points in R,
and to 1 per cent accuracy, sufficient to determine the mass function
and the mass–bias relationship to <3 per cent. This is smaller than
the uncertainty in the fitted relations of Tinker et al. (2008, 2010).

We use PYTHON 3.7.7, with NUMPY 1.18.5 and SCIPY 1.5.0. Timing
tests are performed on a dual core 1.8 GHz Intel Core i5 processor.12

We use seven cosmologies to test our method. We start with two
where σ 8 is varied by ±0.06 from its best-fitting Planck 2018
value, matching the tension between Planck and the low-redshift
measurement from KiDS (Hildebrandt et al. 2020).13 We also use
five test cosmologies with �m, �b, and ns drawn from a random
uniform distribution between 2σ less than and 2σ greater than the
Planck 2018 best-fitting value for each parameter. We also draw
mν uniformly between 0 and 0.18 eV, corresponding to the 3σ

upper limit on mν from Planck. These explore at a range in which
many recent simulations lie (Klypin et al. 2016; Klypin & Prada
2018; Villaescusa-Navarro et al. 2020). The parameters for these test
cosmologies are given in Table 1.

Our fiducial method, in which we re-fit the coefficients for each
input power spectrum, is accurate to better than 0.3 per cent in
RNL (1 per cent in MNL) at 0 < z < 6 for all seven of these test
cosmologies (Fig. 5). If we instead use a Taylor expansion about the
Planck 2018 cosmology to generate the coefficients, the accuracy
is somewhat worse, between 1 per cent and 10 per cent in mass.
Therefore, the Taylor series method may be adequate at z ∼ 0,
where it offers 1 per cent accuracy in RNL and 3 per cent accuracy
in mass, but at higher redshifts it is likely best to explicitly re-fit
the polynomial coefficients, depending on the accuracy demands of
one’s application.

We plot RNL(z) in the left-hand panel of Fig. 5 for the Planck 2018
cosmology (RNL,fid) and for the two cosmologies with the largest

12This is a similar architecture to the Cori Haswell nodes at the National
Energy Research Supercomputing Center (NERSC) (see https://docs.nersc.g
ov/systems/cori/), hence the performance numbers outlined here can plausibly
be scaled to get a rough estimate for the performance on a typical recent HPC
system.
13Weak lensing measurements are sensitive to the parameter combination
S8 = σ8

√
�m/0.3. KiDS measures S8 = 0.737+0.040

−0.036 (Hildebrandt et al.
2020); if �m is fixed to 0.3, this implies σ 8 ∼ 0.75.

deviation in RNL(z), C5 and σ 8 + 0.06. At z = 0, RNL in σ 8 + 0.06
(C5) is 7 per cent higher (8 per cent lower) than RNL,fid, increasing
to 25 per cent higher (30 per cent lower) at z = 6. RNL is very small
at high redshift, with RNL(z = 6) ≈ 0.005 h−1 Mpc. This does not
imply that the z = 6 linear power spectrum is valid out to kNL =
2π /0.005 ≈ 1000 h Mpc−1. Rather, the k at which the linear and
non-linear power spectra deviate is smaller than kNL by a factor of a
few.

Because we use RNL in the Planck 2018 cosmology to set the fitting
range, the accuracy of our method should degrade as the cosmology
varies. However, for certain cosmologies and redshift ranges (σ 8 −
0.06 at z < 4, C2 at z < 5, and C1 and C3 at z < 6), the accuracy
is better than the accuracy for Planck 2018. This is because the
mismatch between RNL in these cosmologies and RNL,fid is actually
beneficial, since the (cosmology-dependent) optimal upper bound is
not exactly 1.9RNL. For these cosmologies and redshifts, 1.9RNL,fid

approaches the optimal upper bound at the points where the error
approaches zero (e.g. z ≈ 4.2 for C2).

The RNL error for many of the test cosmologies increases at
higher redshift. This is because RNL is smaller at high redshift, and
thus sensitive to the linear power spectrum at higher k where the
power spectrum is more cosmology dependent.14 This means that
the disagreement between RNL and RNL,fid is larger, leading to a
suboptimal fitting range and inaccurate polynomial coefficients. As
a consequence, if we instead solve for the scale where σ R = 1 (e.g.
Norman 2010), our method will be more accurate because this scale
is larger and less dependent on high k, yielding a better fitting range
and more accurate polynomial coefficients.

We compare the timing for the algebraic method and the numerical
integral plus root-finding method in both configuration and Fourier
space (Fig. 6). If we fit the polynomial coefficients to the correlation
function, our method is faster than the standard Fourier space method
by 20–60×; if we generate the polynomial coefficients from a
Taylor expansion about the Planck 2018 cosmology, our method
is 400–1000× faster than the standard Fourier space method. For
the algebraic method, this speedup also includes the fixed cost of
transforming from P(k) to ξ (r), for which we use FFTLog to improve
efficiency. Since the Taylor expansion method simply outputs the
polynomial coefficients as a linear function of the cosmological
parameters, it does not incur this extra cost, allowing it to be much
faster than the algebraic method. The standard numerical integral plus
root-finding method uses an adaptive integration scheme to ensure
convergence on the numerical integrals. One could optimize for
efficiency using a zeroth or first-order method (direct summation or
trapezoid rule) with pre-determined sampling points. However, doing
so would not be robust to variations in the input power spectrum.

The timing of the standard method has a slightly different redshift
dependence than that of the algebraic method. The step features in
Fig. 6 for the standard method arise from discrete changes in the
number of steps needed to find RNL. On the other hand, the timing
of the algebraic method slightly improves with redshift, as at high z

we fit fewer points to determine the polynomial coefficients.
Our method also allows faster calculation of the halo mass function

and mass–bias relationship. Calculating σ (R) is one of the major
bottlenecks in this calculation, and our method greatly accelerates
its computation compared to standard methods. Even for a single R,
our method is faster than the standard method to compute σ (R) using

14Changing �m and ns tilts P(k) with a pivot at k ≈ 0.1 h Mpc−1. Therefore,
the linear power spectrum is more sensitive to the cosmological parameters
at higher k.
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Figure 5. Left: RNL(z) for the Planck 2018 cosmology (black), and the C5 and σ 8 + 0.06 cosmologies (dark cyan, dotted; green, dashed), which have the largest
discrepancy with the Planck 2018 RNL. Right: Absolute value of the error on RNL (left-hand vertical axis) and the non-linear mass (right-hand vertical axis;
3× the RNL error) as a function of redshift. We compare the accuracy for our seven test cosmologies using the fiducial method, where we re-fit the coefficients
to each cosmology (solid, coloured curves). We also show the Taylor series method, where we use a Taylor expansion about the Planck 2018 cosmology to
generate the coefficients (dashed curves). Each colour stands for one of the seven test cosmologies, and the line style indicates whether we re-fit the coefficients
or determine them from the Taylor series. Cosmological parameters are given in Table 1. At z ∼ 4.2, the error on RNL for C2 changes sign from positive to
negative, leading to the zero-crossing feature in the golden curve (and likewise for the green curve at z ∼ 3).

Figure 6. Comparison between the timing for our implementation of the
algebraic method (solid blue) versus the standard method (vertical-dashed
red). The standard method uses numerical integration with adaptive quadra-
ture in Fourier space, plus root-finding. Optimized versions of the standard
method are shown in dot-dashed black for the integral in Fourier space and
in short-dashed red for the integral in configuration space. In yellow, we
show the fixed cost of the FFTLog-based P(k) to ξ (r) transform (this line is
constant in redshift because the P(k) to ξ (r) transform can be performed once
for all redshifts). We also show the timing of our method if we instead use a
Taylor expansion to generate the coefficients rather than fitting directly to the
correlation function (long-dashed green; bottom-most curve). The algebraic
method is 20–60× faster than the standard method with the integral in Fourier
space (100–300× faster excluding the time for the P(k) to ξ (r) transform).
The 20–60× speedup compares the sum of the solid blue and very short-
dashed golden lines to the short-dashed red line. The Taylor series method
is 400–1000× faster. The algebraic method is still 3–10× faster than the
standard method with simple integration rules (trapezoidal or direct sum) and
sampling points optimized for efficiency (excluding the fixed cost of the P(k)
to ξ (r) transform).

a numerical integral with adaptive quadrature. The standard method
takes 3.7 × 10−3 s per evaluation on our test hardware, whereas
our method takes 1.4 × 10−4 s per evaluation (using the piecewise
polynomial fit to ξ (s) with Rmax,1 = 30 h−1 Mpc and Rmax,2 = 2
h−1 Mpc). Our method also must transform from P(k) to ξ (r), which
takes 5.6 × 10−4 s; therefore, for a single R or halo mass, our method
is 5× faster than the standard method.

However, one often desires the mass function or bias at many dif-
ferent halo masses. Our method scales much better than the standard
method, since each additional point in R or halo mass requires only
a few algebraic evaluations rather than another numerical integral.
Therefore, our method is ∼500× faster than the standard method
to compute the halo mass function or bias at 100 points in mass.
We even find that the optimized trapezoid-rule Fourier space integral
(with no automatic error calculation or convergence testing), which
is the fastest possible integration method in Fourier space, is 8×
slower than our method for 100 sampling points. Therefore, our
method provides a considerable speedup for the halo mass function
and mass–bias relation by avoiding numerical integrals.

5 C O N C L U S I O N S

The non-linear mass is the characteristic scale of halo formation,
defined as the scale on which σ R, the rms of the density field inside a
sphere of radius R, reaches the linear threshold for spherical collapse,
δc = 1.686. We present a method to accelerate computation of the
non-linear mass by an order of magnitude by fitting a polynomial
to the correlation function and evaluating σ R in configuration space.
Our method can be further accelerated by another order of magnitude
by using a Taylor series about the Planck 2018 cosmology for the
correlation function fitting coefficients. Our method also allows for
very fast repeated calculations of σ (R) in mass function and mass-
bias calculations, enabling a speedup of 500× for 100 sampling
points in halo mass. Since nearly all of the evaluation time of our
method is in fixed costs, the speedup factor grows as the number of
sampling points is increased. We make our PYTHON implementation
publicly available at https://github.com/akrolewski/NonlinearMassF
aster.
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Overall, our method is sufficiently accurate for future applications,
with accuracy in the non-linear mass generally exceeding 1 per cent
at z < 6 for a variety of cosmologies. The error on the halo mass
function and mass–bias relation from our method is much smaller
than the statistical scatter on these quantities in Tinker et al. (2008,
2010). The accuracy is better at lower redshift, where RNL is larger
and thus depends on the power spectrum at lower k, where it is less
sensitive to cosmological parameters.

A fast and accurate method to compute non-linear mass will enable
repeated calculations of the non-linear mass. This is useful for a
number of areas in cosmology, including dark matter halo profiles
and shapes, shape of the scale-dependent bias, and halo model
calculations. Other extensions of our method are also possible: while
we accelerate the computation of the variance of the density field
in this paper, we could also potentially apply this method to higher
cumulants of the density field as well.
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