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ABSTRACT
The paper presents the results of three-dimensional (3D) modelling of the structure and the emission of accretion columns
formed above the surface of accreting strongly magnetized neutron stars under the circumstances when a pressure of the photons
generated in the column base is enough to determine the dynamics of the plasma flow. On the foundation of numerical radiation
hydrodynamic simulations, several 3D models of accretion column are constructed. The first group of the models contains spatially
3D columns. The corresponding calculations lead to the distributions of the radiation flux over the sidewalls of the columns which
are not characterized by axial symmetry. The second group includes the self-consistent modelling of spectral radiative transfer
and two-dimensional spatial structure of the column, with both thermal and bulk Comptonization taken into account. The changes
in the structure of the column and the shape of X-ray continuum are investigated depending on physical parameters of the model.
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1 IN T RO D U C T I O N

The location of the emitting regions of accreting strongly magnetized
neutron stars is controlled by the magnetic field, which is often
assumed to be dipole in solving the problems. If the axis of a dipole
does not pass through the neutron star centre, the modelling of an
emitting structure cannot be performed under the assumption of
axial symmetry of the problem, which is three-dimensional (3D)
in this case. The same is rightful when the accretion channel near
the neutron star surface has a transverse section of comparatively
complicated form. These are the reasons for considering 3D models
of radiation-dominated accretion columns, whose two-dimensional
(2D) structures were calculated earlier (Davidson 1973, Wang &
Frank 1981, Postnov et al. 2015). The numerical solutions presented
below give the impression of the quantitative deviation of the
shock form from the 2D axially symmetric one and lead to the
2D distributions of radiative flux over the column sidewall. The
consequences of the presented consideration can be useful for
the investigation of properties of spatially one-dimensional (1D)
solutions (Becker & Wolff 2007, Farinelli et al. 2012, Farinelli et al.
2016, West, Wolfram & Becker 2017a, b), as well as for the modelling
and interpretation of the observed pulse profiles of X-ray pulsars
emission.

Another kind of 3D problems is related with a transition to
simultaneous modelling of the dynamics of the matter and the
radiative transfer. The solution procedure offered does not involve
the frequency-integrated energy equation. One can notice this im-
mediately comparing the results of Section 2, where spatially 3D
computations are described, with the results of Section 3, devoted
to the modelling of spatially 2D radiation-dominated shocks with
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simultaneous calculation of spectral radiation energy density at each
point of the column. Thus, hereafter a self-consistent solution will be
understood as a set of functions that are a solution of one and the same
system of equations and describe the velocity of the plasma flow, the
electron temperature distribution, and the radiation spectrum within
a column.

Both approaches are based, first of all, on the assumption that
the matter flow satisfies the hydrodynamic limit. The Compton
scattering is considered as the main process of the energy exchange
between the plasma and the radiation field. The basic equations under
consideration describe the propagation of the radiation not only along
the magnetic field but also in transverse directions, governing the
mound-like structure of the shock and determining the corresponding
distributions of the radiation flux over the column sidewall.

Section 4 contains some remarks and conclusions.

2 THREE-DI MENSI ONA L
R A D I AT I O N - D O M I NAT E D SH O C K S

2.1 The relations between main equations

Under the circumstances of the radiation-dominated accretion
columns, the structure formed above the magnetic poles has a
significant optical depth to the Thomson scattering, and the radiative
pressure is much higher here than the gas one. These things allow
to believe that the diffusion approximation is applicable to describe
the radiative transfer, and that the pressure tensor is isotropic. In
all frames considered below, the neutron star is at rest. Then, the
radiation flux within the column can be written as

F = −D∇u + 4

3
u�, (1)
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and the momentum equation has the form

nemp(�·∇)� = −1

3
∇u, (2)

where u denotes the frequency-integrated radiation energy density, �
is the bulk velocity of the matter, ne is the electron number density, mp

is the proton mass, and D is the diffusion coefficient. The gravitation
and the gas pressure are neglected in the equation (2). The considered
physical situation satisfying the limit pg/pr � 1, where pg and pr

denote the gas pressure and the radiation one, respectively, allows
one not only to set p = pr = u/3 in equation (2) but also not to
consider further the equations of state for both electron and ion gas
components.

Let us assume that magnetic field is uniform inside the computa-
tional domains. The velocity vector will be supposed to be collinear
to the magnetic field vector, which corresponds to situation when
the matter is confined in the transverse directions by a magnetic
field whose pressure far exceeds any other within the problem. The
stationary continuity equation then reads as

nemp� = S, (3)

where � = |�|, S = Ṁ/A, with Ṁ is the mass accretion rate per one
neutron star magnetic pole and A is a column transverse section area.
The integration of equation (2) yields

� = �0 − u

3S
. (4)

Here, �0 is the absolute value of the velocity at a height, where one
can set u = 0 (far above the neutron star surface).

The stationary equation for the frequency-integrated radiation
energy density (Blandford & Payne 1981) has the form

∇ · (D∇u) − �∇u − 4

3
u∇·�+ uneσT

mec
(4kTe − 〈ε〉) = 0, (5)

where k is the Boltzmann constant, me is the electron mass, Te is the
electron temperature, the scattering cross-section is set to be equal
to the Thomson value, σ T, and the mean (energy-weighted) value
〈ε〉 of the photon energy, ε, is related with angle-averaged photon
occupation number n as follows,

〈ε〉 =
∫

ε4ndε∫
ε3ndε

. (6)

After substituting in equation (5) the temperature (Zel’dovich &
Levich 1970)

Te = 1

4k

∫
ε4ndε∫
ε3ndε

, (7)

which is equal to the electron one in the approximation of the
local Compton equilibrium, the term corresponding to the energy-
integrated Kompaneets operator (Kompaneets 1956) becomes equal
to zero, so that

∇ · (D∇u) − 4

3
u∇·�− � · ∇u = 0. (8)

The term n2 is neglected in expression (7). From equation (8), it
follows that

∇ ·
(

−D∇u + 4

3
u�

)
= 1

3
� · ∇u, (9)

and thus the energy equation can be written as

∇ · F = −nemp� · ∇
(
�2

2

)
. (10)

Previous (2D) calculations are based on the solution of the energy
equation of type of equation (10) making use of the velocity value
determined by the momentum equation and taking into account the
continuity equation (Davidson 1973 and references to this work). The
denoted relation between equations (5) and (10) plays a determinative
role for constructing the solutions, presented in Section 3.

2.2 Geometry

It is reasonable to carry out spatially 3D calculations in Cartesian
coordinates. Let us introduce them in such a way that the axis z

will have the direction opposite to the velocity of the flow. Let the
idealized neutron star surface being approximated by the plane inside
the computational domains intersect the xy plane, and let α denote the
angle between these planes (α < π/2). Meanwhile, let the neutron
star surface intersect the z axis in the half-space z > 0.

Two kinds of column geometry are considered numerically in the
current section.

Cylindrical filled column. Consider the column in the model of
circle truncated cylinder with radius r0, the continuity equation
includes the area A = πr2

0 in this case. Let the axis of the cylinder
be superposed with the z axis, and the straight line originated by the
intersection of the xy plane and neutron star surface be the tangent to
the cylinder sidewall at the point x = r0, y = 0, z = 0.

The value of r0 being determined by the Alfven radius rA,

r0 = βrns

√
rns

rA
, (11)

where rns is the neutron star radius, is not defined strictly since the
factor β ∼ 1 depends on the freezing depth of the accreted plasma
in the magnetosphere and the geometry of the accretion flow beyond
the Alfven surface.

Unclosed hollow column. On the base of descriptions of possible
accretion column geometry (Basko & Sunyaev 1976, Meszaros 1984,
Mushtukov et al. 2015, Postnov et al. 2015), in the present work
the modelling has been carried out also for another case. This last
corresponds to the arch-like form of the channel transverse section
and is realized in the frame of consideration of two circle cylinders
with the axes parallel to the z axis. Namely, let the axis of cylinder
of radius r0 be superposed with the z axis, and the axis of cylinder
of radius r0 + br0 intersect the xy plane at the point x = s, y =
0, with br0 < s < (2 + b)r0. Then the directrices of cylinders lying
in the same plane intersect at two points with the same abscissa x∗.
Consider the arcs lying on the same side of the chord passing through
the intersection points in the case of x∗ < 0. For the definiteness, let
us choose two longer arcs and consider the figure enclosed between
them. Thus, the column sidewalls are generated by the generatrices of
cylinders crossing these arcs, and the continuity equation (3) includes
in considering case the area A of specified figure. It can be calculated
as a difference between areas of two corresponding circle segments:

A = A2 − A1, where A1 = r2
0
2 (ψ1 − sin ψ1), A2 = (r0+br0)2

2 (ψ2 −
sin ψ2), with ψ1 = 2 arccos( x∗

r0
), ψ2 = 2 arccos( x∗−s

r0+br0
). The straight

line originated by the intersection of the xy plane and neutron star
surface will be the tangent to column sidewall at the point x = r0 +
br0, y = 0, z = 0.

The modelling is feasible as well in the geometry of closed hollow
columns (when |s| ≤ br0, and A = (2 + b)bπr2

0 ). The case of s =
0 and α = 0 corresponds to 2D problem of ring-kind geometry,
considered numerically by Postnov et al. (2015). The numerical
consideration of so-called spaghetti-like geometry (Meszaros 1984)
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can be reduced to the modelling of a set of radiation-dominated
columns while the approach described above is applicable.

2.3 Computations

Let us now describe the solution of the system of equations containing
(1), (3), (4), and (10), and coming to the one partial differential
equation of the elliptic type.

The transition to the dimensionless variables is performed by the
changes:

x̃ = σTS

mpc
x, ỹ = σTS

mpc
y, z̃ = σTS

mpc
z, Q = �

2

�20
, (12)

where c is the speed of light, and �0 being now specified equals to
the free-fall velocity at the upper boundary,

�0 =
√

2GMns

rns + z0
, (13)

with G is the gravitation constant and z0 is the coordinate of the
upper boundary; hereafter, it is set that rns = 106 cm and the neutron
star mass Mns = 1.5M
.

The question of the specific form of the diffusion coefficient was
not considered above. Its definition is related with the method of
describing scattering in the strong magnetic field used by Wang &
Frank (1981), Becker & Wolff (2007), and West, Wolfram & Becker
(2017a). This modification of the grey approximation is aimed at
the effective accounting on the radiative transfer of the angular and
frequency dependence of scattering cross-sections for ordinary and
extraordinary modes.

The approximation is constructed by analysing the frequency
dependence of non-relativistic scattering cross-sections derived by
Canuto, Lodenquai & Ruderman (1971). One can consider two
narrow ranges of the angle θ of the initial direction of the wavevector
with respect to the magnetic field vector. Let the condition ε � hνL

be satisfied, where νL is the plasma frequency and h is the Planck
constant. For θ that are close to 0, the cross-sections read as (Canuto
et al. 1971, Lodenquai et al. 1974)

σj � σT

(
ε2

(ε + (−1)j εB )2
+ 1

2
sin2 θ

)
, (14)

where the cyclotron energy εB = heB/(2πmec), e is the elementary
charge, j = 1 for the extraordinary mode, and j = 2 for the ordinary
one. For θ that are close to π/2,

σ1 � σT

(
ε2

(ε − εB )2
+ cos2 θ

)
, (15)

σ2 = σT sin2 θ.

It can be seen from these expressions that while, for ε � εB ,
σ1 � σT(ε/εB )2 in both directions, σ 2 � σ T in the direction across
the magnetic field and σ2 � σT(ε/εB )2 along the magnetic field; for
ε � εB , σj = σT, j = 1, 2. From here one can see the anisotropic char-
acter of the scattering in the highly magnetized plasma, the effective
account of which is based thus on the judicious parametrization of
the value of ratio (ε∗/εB )2, where the mean energy ε∗ < εB (Wang &
Frank 1981) replaces its specific value ε. Thus, the main components
of the diffusion tensor, describing the propagation of photons across
and along the magnetic field, are taken to be equal to

D⊥ = c

3σTne
(16)

and

D‖ =
( εB

ε∗

)2
D⊥, (17)

respectively. In the calculations, it is set that (εB/ε∗)2 = 10, except-
ing two cases described in the next section.

Notwithstanding the huge values of the scattering cross-sections
on the cyclotron resonance, the radiation pressure force distinguishes
significantly from its values in the case of non-magnetized atmo-
sphere, as Gnedin & Nagel (1984) showed, only in superficial
layers (the plane homogeneous hot magnetized atmosphere was
being investigated). It is possible to believe, consequently, that the
cyclotron photons are not able to influence the dynamics of the flow
dramatically.

The specific value of magnetic field strength is not involved explic-
itly in the scattering cross-sections under the current consideration.
Therefore, the values of r0 and D‖ will be varied independently.

Turning now to the equations (1), (3), (4), and (10), after the
substitutions one can write in the dimensionless form the following
equation:

∂2Q

∂x̃2
+ ∂2Q

∂ỹ2
+ D‖

D⊥

∂2Q

∂z̃2
− ∂

∂z̃

(
8
√

Q − 7Q
)

= 0. (18)

The numerical solution of this equation is carried out by the time
relaxation method, which consists in searching the stationary solution
of the problem for parabolic equation including the same spatial
operator as the original elliptic equation. The difference schemes
are explicit, and the rectangular equidistant meshes are used. The
second derivatives are approximated by central three-point finite-
difference patterns, and the first derivatives are approximated by
central differences. All the calculations described in the current
and next sections are performed using the programs written in C
language, the computer based on Intel Core i9-9900KF CPU is
exploited.

Since the main fraction of the kinetic energy of the matter
transforms into the radiation energy in the shock, near the star surface,
the appropriate condition is Q = 0, which leads to the infinite density
of the matter at this boundary (the neutron star surface is impenetrable
for the matter flow). For numerical reasons, it can be assumed that
the radiation energy density at the bottom boundary is slightly (1–
3 per cent) less than the maximal value 3S�0. At the upper boundary,
it is set that Q = 1. The value of z0 is chosen enough to be affected on
the solution for the shock structure. The radiation leaves the column
and emerges to the surrounding space freely, so that in dependence
on required accuracy, one can use the condition

Q = 1, (19)

or the condition for the projection of the radiation flux vector on to
the direction of a normal unit vector n to the outer side of column
surface,

Fn = κcu. (20)

Here, κ = const � 1, and Fn = −D ∂u
∂n

, where ∂u
∂n

is a directional
derivative of u in the n direction. For computational reasons, the
condition (20) is realized at the side surfaces of the unclosed
hollow column, and the condition (20) with κ = 2/3 is set in the
model of the filled column. The numerical realization of boundary
condition (20) is performed making use of the forward or backward
(in dependence on coordinate quarter) three-point finite-difference
patterns approximating the first derivatives.
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Figure 1. Three-dimensional structure of the radiation-dominated accretion
column simulated in the geometry of the filled truncated cylinder (a) and
unclosed narrow circlet (b). The level surfaces of quantity Q (0.9, 0.8, ...) are
shown for α = 30◦; the other parameters are specified in the main text. The
neutron star surface is represented by the grey plane.

2.4 Results

The examples of 3D structures of accretion columns obtained by
solving equation (18) are shown in Fig. 1. The structure of the filled
column is displayed in Fig. 1a, where the set of surfaces of equal
quantity Q is plotted. For the specific computation, the following
values of the parameters are used: the mass accretion rate Ṁ17 =
Ṁ/(1017 g s−1) = 1, the inclination angle α = 30◦, and the column
radius r0 = 5 × 104 cm.

Fig. 1b shows the level surfaces of Q obtained due to numerical
simulations in unclosed hollow column geometry for the same set

Figure 2. Two-dimensional slices of 3D structure of the shocks in the xz
plane: the filled column (a) and unclosed hollow column (b). The contours of
equal Q are shown from 0.9 to 0.1 (from top to bottom) with interval 0.2 for
α = 15◦ (dashed lines) and α = 30◦ (solid lines).

of parameters, with b = 0.1 and s = 0.15r0. The code provides, in
principle, the arbitrary spatial orientation of the emitting region.

Two-dimensional slices of the column structure in the xz plane
are shown in Fig. 2. They demonstrate graphically the extent of
asymmetry of solutions in the case of the filled column (Fig. 2a) and
hollow unclosed column (Fig. 2b).

Fig. 3 shows calculated in the xz plane distributions of the
modulus of the dimensionless component of the radiation flux F̃x =
Fx/(S�20/2) = ∂Q/∂x̃ along the column sidewall. In the figures, zns

denotes the vertical coordinate of the neutron star surface at current
x and y. At fixed Ṁ and A, the solution for Q does not depend on
�0 when the first-type boundary condition (19) is set at the side
surface. Therefore, it is useful to represent the radiation flux in
units of S�20/2. Since D⊥ ∝ �0

√
Q, the realization of conditions

of the type (20) at the side boundary introduces the dependence
of the solution on �0. The variation of �0 in the common-sense
ranges entails the slight change of the shock width near the column
sidewall.
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(a)

(b)

Figure 3. The modulus of the dimensionless component F̃x of radiation flux
calculated at the sidewalls in the xz plane and plotted against the height z −
zns above the neutron star surface for the filled (a) and unclosed hollow (b)
column. The dependencies are shown for α = 15◦ (dashed lines) and α =
30◦ (solid lines). Two lower lines correspond to the left boundaries, and two
upper ones, to the right boundaries of 2D slices (see Fig. 2).

The quantities

f (α) =
∫ |Fx(−r0, 0, z, α)|dz∫

Fx(r0, 0, z, α)dz
(21)

for the filled column and

f ′(α) =
∫ |Fx(r0, 0, z, α)|dz∫
Fx(r0 + br0, 0, z, α)dz

(22)

in the circlet-like geometry may be considered as the measures of
the azimuthal anisotropy of the column emission in the dependence
on the angle value at fixed accretion rate and ceteris paribus. For the
presented calculations, the particular values are f(15◦) � 0.81, f(30◦)
� 0.59, f

′
(15◦) � 0.76, and f

′
(30◦) � 0.60. In the case of the boundary

condition (19), when the quantity Q at the sidewalls does not depend
on the height, the emergent flux is calculated at the internal nodes
of the grid closest to the boundary nodes (without using the latter).
This allows to avoid distortions near the base of the column: in
the immediate vicinity of the boundary, the radiation energy density
behaves qualitatively as if condition of type (20) were specified
there.

It is possible to define similar relations through the integral
emission of the column sidewalls. Let �1 and �2 be the sections
of the filled column sidewall that are separated by the yz plane and
thus lie in different half-spaces, x < 0 and x > 0, respectively.
Moreover, let 1 denote the surface of the interior sidewall of the

hollow column (corresponding to the radius r0) and 2, the surface
of the outer one. Then, the ratio of the luminosities of the specified
surfaces in each case will read as

�(α) =

“
�1

Fn(x, y, z, α)d�1“
�2

Fn(x, y, z, α)d�2

(23)

and

�′(α) =

“
1

Fn(x, y, z, α)d1“
2

Fn(x, y, z, α)d2

. (24)

In all expressions (21)–(24), the dependence of the flux component on
the angle α should be understood as the dependence on the problem
parameter determining the geometry of the computational area and
affecting the solution.

The calculations give �(15◦) � 0.92, �(30◦) � 0.83, �
′
(15◦)

� 0.95, and �
′
(30◦) � 0.87. Fig. 4 displays 2D distributions of

F̃n (normalization is prior) over the column surface. The angular
coordinate λ is the azimuthal angle counted in the xy plane. The
panels in Fig. 4b do not show the regions with λ > 115◦ where the
channel is too thin to linger the radiation in the medium long enough
and stop the flow at a significant height: here the plasma falls freely
nearly to the neutron star surface causing almost zero diffusion flux
from the side boundary.

The solutions illustrate the importance of taking into account the
radiation diffusion across the magnetic field, accompanied by the
process of advection in the vertical direction. The main contribution
to the luminosity is caused by the photons coming from the side
surface of the column not very far from neutron star surface and
forming a fan beam. The investigation of the properties of observed
pulse profiles is a problem deserving a separate consideration. To
compare theoretical results with observational data and construct
the conclusions concerning the influence of spatial asymmetry, one
should take into account the angular distribution of the sidewall
emission, which is directed mainly towards the neutron star surface.
The questions of the emergent radiation spectra and the distribution
of spectral radiation flux over the column surface will be considered
in the grey approximation in the following section.

3 TH E P H OTO N E N E R G Y A S A TH I R D
C O O R D I NAT E

3.1 The equations and boundary conditions

The spatial and time evolution of the angle-averaged photon occupa-
tion number in the moving compressible medium can be described
in the diffusion approximation by the kinetic equation (Blandford &
Payne 1981, Lyubarskii & Syunyaev 1982)

∇ · (D∇n) − � · ∇n + neσT

mecε2

∂

∂ε

[
ε4

(
n + kTe

∂n

∂ε

)]

+ ∇ · � ε
3

∂n

∂ε
= ∂n

∂t
, (25)

from which equation (5) and, as a consequence, equation (18) are
derived. Equation (25) takes into account the diffusion, advection,
and thermal and bulk Comptonization. To describe the thermal
Comptonization in strongly magnetized plasma, the mean cross-
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Figure 4. The distributions of the normal component of radiation flux F̃n

over the column sidewalls for the filled (a) and unclosed hollow (b) geometry,
α = 30◦. The upper of the panels (b) corresponds to the inner sidewall, and
the bottom panel, to the outer one.

section determined by the cross-sections along and across the
magnetic field can be introduced (Becker & Wolff 2007).

Now consider the axially symmetric filled column in the model
of circle cylinder. Introducing cylindrical coordinates centred at the
axis of the cylinder so that z = 0 at the neutron star surface (the z

axis is again directed towards the flow), let us now solve in these
coordinates the system including equation (25), that turns out to be
3D in rzε space, instead of equation (10), which contains through
the flux only total radiation energy density. Thus, the problem is to
solve the stationary system of equations (25), (2), (3), and (7) (∂ n
/∂ t = 0), which is reduced to the system (25), (4), and (7) when the
gravitation is neglected (the present case).

The velocity (4) is determined making use of the quantity u =∫
uεdε, where uε = 8πε3n/(c3h3). The expression for the temper-

ature (7) is a consequence of solving the Fokker–Planck equation
for thermal electrons having a stationary distribution function and
interacting with non-equilibrium radiation, which is assumed to be
isotropic.

At the upper boundary, at the height z = z0, the veloc-
ity component �z = −� is determined by the free-fall velocity
value,

�z(r, z0) = −�0. (26)

The components of the spectral radiation flux are written
as follows:

Fε, r = −D⊥ ∂uε

∂r
, (27)

Fε, z = −D‖ ∂uε

∂z
+ �zuε − �zε

3

∂uε

∂ε
. (28)

Free escape of the photons from the column leads again to the
following condition at the sidewall:

Fε, r (r0, z) = 2

3
cuε(r0, z). (29)

Since the solution of the momentum equation is written under the
condition u(r, z0) = 0, at the upper boundary, it is reasonable to set

uε(r, z0) = 0. (30)

The condition −D‖ ∂uε

∂z
= 2

3 cuε is also appropriate and becomes
equivalent to condition (30) far above the shock, where the velocity
is approximately constant. At the central axis,

∂uε(0, z)

∂r
= 0. (31)

The physical meaning of these relations corresponds to their
frequency-integrated analogues. At the bottom boundary, the approx-
imate condition u(r, 0) = 3S�0 is used, which means that �(r, 0) = 0.
Then at this boundary, one can set

aT 4
0 = u(r, 0), (32)

where a = 8π5k4/(15h3c3) is the radiation constant. Determining
from here the value of T0, one can suppose the blackbody bottom
boundary condition for spectral radiation energy density:

uε(r, 0) = 8πε3

c3h3

1

exp
(

ε
kT0

)
− 1

. (33)

It is also assumed (Farinelli et al. 2012) that there are no photons at
the boundaries of the photon energy grid, ε1 = 0.1 keV and ε2 =
500 keV, so that

uε(ε1) = uε(ε2) = 0. (34)

3.2 Computations

The stationary solution of the system described above is constructed
by the iterative procedure based on the time relaxation method.
At each time-step, the electron temperature, velocity, and spectral
radiation energy density are determined alternatively by expressions
(7) and (4), and from equation (25), respectively. As the initial
distribution of the spectral radiation energy density, the blackbody
spectrum with temperature 0.1 keV is used.

To realize the numerical modelling, it is reasonable to introduce
the new variables. Using the logarithmic scale, let us determine the
photon energy as the function of the dimensionless variable ξ , so
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that ε = ε0eξ , where ε0 = 1 keV. Then, the spectral radiation energy
density per unit of ξ is equal to

uξ = uε

dε

dξ
= 8πε4

0 e4ξ

c3h3
n. (35)

For computational reasons, it is convenient to write the equations for
the function ũξ = e4ξ n. The dimensionless variables are now defined
by the relations:

r̃ = r

R0
, z̃ = z

R0
, R0 = 104 cm;

�̃z = �z
�0

; θ = kTe

ε0
; t̃ = t

t0
, t0 = σTṀR2

0

�0cmpπr2
0

. (36)

In terms of these variables, equation (25) can be written as follows:

1

r̃

∂

∂r̃

(
r̃D̃⊥ ∂ũξ

∂r̃

)
+ ∂

∂z̃

(
D̃‖ ∂ũξ

∂z̃

)
− �0t0

R0
�̃z

∂ũξ

∂z̃

+ t0f0〈σ̃ 〉
|�̃z| θ

∂2ũξ

∂ξ 2
+

(
1

3

�0t0

R0

∂ �̃z

∂z̃
+ t0f0〈σ̃ 〉

|�̃z|
(
eξ − 5θ

)) ∂ũξ

∂ξ

+
(

t0f0〈σ̃ 〉
|�̃z| 4θ − 4

3

�0t0

R0

∂ �̃z

∂z̃

)
ũξ = ∂ũξ

∂ t̃
. (37)

Here ,

D̃⊥,‖ = t0

R2
0

D⊥,‖, 〈σ̃ 〉 = 〈σ 〉
σT

=
√

D⊥

D‖ ,

φ0 = cσTṀ

�0mpπr2
0

, f0 = ε0

mec2
φ0, (38)

the quantities D⊥ and D‖ are determined by expressions (16)
and (17), respectively (the ratio D‖/D⊥ will be varied for particular
calculations). The quantity 〈σ 〉 in calculations is supposed to be the
geometrical mean of the values of cross-sections in the directions
along and across the magnetic field.

The main computational problem is the solution (on each time-
step) of the equation (25) [equation (37)]. Since the implicit alternat-
ing direction scheme (one of its modifications was used, for example,
in the work of Farinelli et al. 2012 for the case ‘1 spatial coordinate +
photon energy’) in 3D case (‘2 spatial coordinates + photon energy’)
is generally speaking unstable, it is possible to apply the locally
1D implicit scheme (Samarskii 2001), which is based on the so-
called method of summary approximation. However, this scheme
is only conditionally stable in the case of considering equation
(that can be shown, for example, with von Neumann method). The
explicit schemes implying parallel computations can also be used.
During the creation of this work in different time, both variants were
being tested and used, depending on the exploited computational
powers. The results presented here are achieved making use of the
rectangular, equidistant in dimensionless variables meshes and the
explicit scheme which includes the set of finite-difference operators
corresponding to the original equation (37).

The approximation of the spatial diffusion terms can be performed
making use of the distinct finite-difference pattern functionals for
the calculation of the half-mesh value of the diffusion coefficient
(Samarskii 1962). Here, the arithmetical mean is used (so that
D̃

⊥,‖
i±1/2 = (D̃⊥,‖

i + D̃
⊥,‖
i±1)/2, i is the node number). For example, the

operator of spatial diffusion along the magnetic field is expressed
making use of the finite-difference pattern h−2(D̃‖

i+1/2(ũξ, i+1 −
ũξ, i) − D̃

‖
i−1/2(ũξ, i − ũξ, i−1)), where h is the mesh step.

The approximation of the diffusion terms is also possible after
preliminary differentiation because of their continuity. In this variant,
second derivatives are approximated by central tree-point patterns,

and first derivatives in the terms ( D̃⊥
r̃

+ ∂D̃⊥
∂r̃

) ∂ũξ

∂r̃
and ∂D̃‖

∂z̃

∂ũξ

∂z̃
are

approximated by second-order central differences.
The second ξ derivative is approximated by a central tree-point

pattern. The terms containing the first ξ derivatives are approximated
making use of upwind differencing and accounting for general rules
leading to the conditional stability of the scheme. The absence of
computational instabilities is controlled during the converging over
the entire computational domain.

3.3 Results

The resultant velocity distributions are shown (in terms of quantity
Q for uniformity) in left-hand panels of the Fig. 5 (for Ṁ17 = 1)
and Fig. 6 (for Ṁ17 = 2). Simultaneously with 2D velocity profiles,
the calculations lead to 2D profiles of the Compton temperature (7)
displayed in Figs 5 and 6 (right-hand panels) and to the sidewall
emergent radiation spectra showed in Fig. 7, where the column
sidewall spectral luminosity

Lε = 2πr0

∫
Fε, r (r0, z)dz (39)

is plotted for the different sets of problem parameters.
Current solutions for the velocity of the flow are in a very good

conformity with the mound-like 2D shock structures obtained by
solving the system including energy equation (10) (i.e., by solving
equation (18) in axially symmetrical case).

Each of the Figs 5 and 6 demonstrates the modifications in the
shape of the front of the shock at fixed accretion rate that occur
when the accretion column radius is varied at fixed D‖ (Figs 5a, b
and Figs 6a, b) or when D‖ changes at fixed radius (Figs 5b, c and
Figs 6b, c).

For the convenience, let each simulation (set of model parameters)
be denoted by the number. At Ṁ17 = 1: ‘1’ D‖ = 10D⊥, r̃0 = 6; ‘2’
D‖ = 10D⊥, r̃0 = 8; and ‘3’ D‖ = 4D⊥, r̃0 = 8. At Ṁ17 = 2: ‘4’ and
‘5’ D‖ = 10D⊥, ‘6’ D‖ = 4D⊥; the column radius is related with Ṁ

in each case as

r̃0 = r̃0|Ṁ17=1 Ṁ
1/7
17 . (40)

The temperature (7) is close to the electron one established in the
area of the shock mainly by the Compton interaction with radiation
at the time-scale (Zel’dovich & Levich 1970)

tC ∼ mec

σTu
. (41)

At a given r, the temperature has a minimum located in the settling
zone under the shock (excluding the external radii where, in fact,
this zone absents). That is in a qualitative (and quantitative, in the
order of magnitude) agreement with the 1D profiles, presented by
West et al. (2017a) and West, Wolfram & Becker (2017b) (see plots
for their TIC). The distributions of the temperature (7) depend on the
shock wave profile, so the value Te changes in the radial direction
for any fixed z (unless z does not significantly exceed the maximum
shock height). The temperature value corresponding to the bottom
boundary (independent of r) is dropped in the figures.

In the region of the shock, the time-scale (41) is significantly (by
several orders of magnitude) less than both the time of diffusion of
photons to the column boundary and the time of energy exchange
between matter and radiation due to free–free processes. Thus, the
local Compton equilibrium is a good approximation here. In the
region that is external with respect to the shock, due to a decrease
in the total radiation energy density, tC begins to increase with
increasing Q and becomes comparable with the mentioned time-
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Three-dimensional modelling of accretion columns 571

Figure 5. Contours of equal Q (from 0.9 to 0.1 with interval 0.1, from top to bottom) and profiles of the electron temperature (7) in the model of spatially 2D
cylindrical accretion column, that are the result of self-consistent modelling for different sets of model parameters: ‘1’ (a, d), ‘2’ (b, e), and ‘3’ (c, f).

scales. Therefore, only in this region, where Q � 1, the electron
temperature does not attain the values given by expression (7).
However, the number of scattering events that photons undergo in
this region is significantly less compared to the number of scatterings

experienced in the shock wave, where the mean free path of photons
is very short. Thus, one can believe that an overestimation of
temperature above the shock does not significantly distort the effect
of thermal Comptonization upon spectrum formation.
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572 M. I. Gornostaev

Figure 6. Same as Fig. 5, but for the mass accretion rate Ṁ17 = 2, for different sets of model parameters: ‘4’ (a, d), ‘5’ (b, e), and ‘6’ (c, f).

The current solutions (Fig. 7) demonstrate the dependence of the
form of emerging radiation spectra on the magnitudes of velocity
divergence and temperature in the shock. In the model under
consideration, the temperature and the velocity are not independent
and take on the values that provide an appropriate rate of the escape

of photons from the column. It seems that a widening of the shock
conditionates the increase of characteristic bulk Comptonization
time-scale (∇ · �)−1. In considering case, at fixed mass accretion
rate (and at fixed D⊥ and D‖), this alteration is determined by the
accretion column radius.
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Figure 7. Spectra of radiation from sidewalls of accretion columns, calcu-
lated simultaneously with velocity and temperature profiles plotted in Figs 5
and 6. The results correspond to different sets of the model parameters:
‘1’ (solid line), ‘2’ (dashed), ‘3’ (dot-dashed), ‘4’ (dot-double-dashed), ‘5’
(double-dot-dashed), and ‘6’ (dotted).

The increase of mass accretion rate up to the value Ṁ17 = 2 leads
to a narrowing of the shock and, consequently, to the growth of
the value of the bulk Comptonization rate ∇ · �. The characteristic
electron temperature slightly decreases with increasing Ṁ (compare,
for example, Figs 5d and 6d). In calculations ‘3’ and ‘6’ (Figs 5 f and
6f), the temperature is practically invariable near the column axis.

The difference between the spectra at Ṁ17 = 1 is not very
pronounced; the maxima are at ε � 20 keV. The spectra ‘4’ and ‘6’
having the maxima at ε � 9.5–10 keV remind the upper power-law
solutions in fig. 1 of Lyubarskii & Syunyaev (1982) at high energies
(ε ∼ 10–50 keV), before the exponential cutoff. Meanwhile, the
spectrum ‘5’ has a distinct maximum at ε � 15 keV.

There is also a qualitative agreement with the solutions of spatially
1D equation (25), which have been obtained numerically by Farinelli
et al. (2012) for the phenomenological power-law velocity profiles,
� ∝ zη, where index η is one of the parameters of the problem. A
decrease of η (flattening the velocity profile) leads to a hardening of
spectrum tail at fixed column optical depth, electron temperature, and
other parameters. This result was improved by Farinelli et al. (2016),
where the additional terms have been introduced to the spatially
1D equation (25) accounting approximately bremsstrahlung and
sources of the fresh photons within the column volume. Nevertheless,
the primary part of seed photons is generated under the neutron
star surface, where free–free mechanisms play the essential role.
Conversely, due to relations between the characteristic time-scales
mentioned above, in the current approach, free–free interactions
within the column are assumed not to be affected significantly on
the radiation transfer in the shock wave, where the kinetic energy
of the plasma flow is converted into radiation energy mainly via
Compton mechanism.

In order to characterize the shape of the spectra shown in Fig. 7, the
soft and hard X-ray colours (hardness ratios) determined by X-ray
luminosity in specific energy bands as (e.g., Reig & Nespoli 2013)

SC1 = L7−10 keV

L4−7 keV
, SC2 = L5−12 keV

L1−3 keV
, HC = L15−30 keV

L10−15 keV
, (42)

have been calculated. The values are shown in Table 1 which
demonstrates that the changes of the model parameters (including
mass accretion rate) can lead to the variations in the hardness of
spectrum of the direct column emission. At fixed D‖, the spectrum
becomes softer with increasing Ṁ .

Table 1. X-ray colours of the calculated spectra.

Spectrum (set of SC1 SC2 HC
model parameters)

1 1.88 37.05 3.87
2 1.88 36.78 3.68
3 1.82 33.68 3.55
4 1.21 12.01 1.89
5 1.51 20.74 2.64
6 1.24 12.49 1.87

Figure 8. Spectral flux from the column sidewall plotted in the dependence
on the height. Here, F̃ε, r = Fε, r (r0, z, ε)/(erg s−1 cm−2 keV−1). The results
correspond to simulations ‘1’ (a) and ‘4’ (b).

The radial component of spectral radiation flux calculated along
the column sidewall, Fε, r(r0, z, ε), is plotted in Fig. 8 for the cases of
Ṁ17 = 1 and Ṁ17 = 2 corresponding to calculations ‘1’ and ‘4’. The
maximal value of this quantity ∼ 1026 erg s−1 cm−2 keV−1 holds for
all simulations ‘1’–‘6’.

4 R E M A R K S A N D C O N C L U S I O N S

The transition to 3D modelling is inevitably accompanied with
increasing number of parameters of the problem, and only several
particular results have been considered above. The numerical compu-
tations of Section 2 indicate the extent of the distinction of solutions
from axially symmetric models and lead to the 2D asymmetric
distributions of the flux over the surface of the column, which can

MNRAS 501, 564–575 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/564/5986638 by guest on 09 April 2024



574 M. I. Gornostaev

Figure 9. Contours of equal Q in 2D column models (from 0.9 to 0.1, from
top to bottom with interval 0.1). Panels (a) show the solutions for the filled
column at accretion rate Ṁ17 = 3: r̃0 = 5, left-hand panel and r̃0 = 10, right-
hand panel. Panels (b) show the solutions for the hollow column at accretion
rate Ṁ17 = 5. Left-hand panel: r̃0 = 5, b = 0.2; middle panel: r̃0 = 10, b =
0.2; right-hand panel: r̃0 = 10, b = 0.1.

be applied to the modelling of the observable pulse profiles of the
emission of X-ray pulsars.

The height of the shock in the model of narrow unclosed hollow
column is relatively small compared to the value in the filled-
cylinder one. The radiation leaves the sidewalls predominantly near
the neutron star surface independently of the geometry. The spectral
distribution of this emission is determined by the solution of spectral-
dependent problem, which still contains the set of simplifications
related mainly to using grey diffusion coefficients. Nevertheless,
the results are important for a comparison of the column structure,
resultant from the frequency-integral approaches (Davidson 1973,
Postnov et al. 2015) and the results presented in the Section 3,
containing, furthermore, 2D distribution of the electron temperature
computed in the assumption of the local Compton equilibrium and the
spectrum calculated in each point of the column. The conformity of
solutions for the velocity signifies the correspondence of the obtained
spectra to previous 2D shock models.

In the work of Lyubarskii & Syunyaev (1982), the shape of
spectra was investigated in the dependence on the parameter related
with the value of separability constant and hence with the rate of

escape of photons from the column. Considering the spatially 1D
kinetic equation, the authors are not interested in certain distribution
of the occupation number over the emitting region surface, which
is necessary for the accurate modelling of the beam of column
emission. In the current work, it is shown that the equations lead
to the exact 2D solution for the structure (within the framework of
the model assumptions) simultaneously with the determination of Te

and the modelling of the spectral radiative transfer, without solving
preliminary problems of determining the structure of the column.

It is clear that changing mass accretion rate may lead to significant
modifications of the form of spectra at high energies ε > kTe and
variations in the soft hardness ratios as well.

In the frames of both approaches described in the current paper (cf.
2 and 3), the distribution of dimensionless velocity �/�0 (or quantity
Q) does not practically depend on the specific value of the velocity
at the upper boundary (see Section 2). One can see that immediately
from equation (18) which includes the value of mass flux S.

In considering models, the shock height being measured, for ex-
ample, along the column axis to the spatial middle of the transitional
zone does not significantly depend on the column radius at fixed mass
accretion rate. In the case of an axially symmetric ring-like column
transverse section with inner radius r0, the height depends on the ratio
b of thickness of the channel, br0, to r 0, but also does not depend
on the specific value of the radius. In order to show this numerically,
and for higher accretion rates than considered above, let us adduce
several solutions for the structure of axially symmetrical columns.
These results are obtained by the numerical solution of equation (18)
in cylindrical coordinates (2D case). The boundary conditions consist
with described in Section 2, and at the right boundaries, within the
framework of both models, the condition for the radial component
of radiation flux of type of condition (20) is set. At the axis of the
filled column, ∂u/∂r = 0. Fig. 9 indicates the modifications of the
shock form for the filled column (a) and hollow column (b) (the
values of Ṁ are chosen from the reasons to illustrate all effects
distinctly).

The mentioned statements correspond to simple analytic rea-
soning, described also by Mushtukov et al. (2015) and Postnov
et al. (2015). Actually, the equiparation of the radiation diffusion
and matter settling times for the shock of height H indicates that
H ∝ Ṁ and H ∝ bṀ for the filled and hollow-cylinder geometry,
respectively. From Fig. 9, however, it follows that the dependence
takes place also for the width of the shock (unaccounted for in the
qualitative relations above) which rises with r0, when the pre-shock
density of the flow (at constant �0) decreases (see also Figs 5a, b
and 6a, b). The shock width rises, moreover, with increasing D‖

(Figs 5b, c and 6b, c). In all calculations illustrated by Fig. 9, it
is set that D‖ = 10D⊥. Since the column radius depends on the
magnetic field strength, such a property may be of interest in the
framework of models implying a connection between variations in
cyclotron resonance scattering feature energy with Ṁ and changes
of characteristic height of the shock.
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