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ABSTRACT
For the B-type supergiant κ Cassiopeiae (HD 2905), variabilities with periods between several hours and a few days have been
observed both photometrically and spectroscopically. A recent study of this star by Simón-Dı́az et al. has revealed variability
with a dominant period of 2.7 d. To understand this variability, we present a linear non-adiabatic stability analysis with respect
to radial perturbations for models of κ Cassiopeiae. Instabilities associated with the fundamental mode and the first overtone are
identified for models with masses between 27 and 44 M�. For selected models, the instabilities are followed into the nonlinear
regime by numerical simulations. As a result, finite amplitude pulsations with periods between 3 and 1.8 d are found. The
model with a mass of 34.5 M� exhibits a pulsation period of 2.7 d consistent with the observations. In the nonlinear regime, the
instabilities may cause a substantial inflation of the envelope.
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1 IN T RO D U C T I O N

In several B-type stars, photometric as well as spectroscopic
variabilities have been observed (see e.g. Waelkens et al. 1998;
Saio et al. 2006; Aerts et al. 2010; Balona et al. 2011; Sae-
sen et al. 2013; Rivinius, Baade & Carciofi 2016). Particularly,
high-quality observations taken from space-based telescopes (e.g.
MOST, COROT, Kepler, BRITE) have considerably enhanced our
understanding of variabilities in B-type stars. Variability together
with episodes of enhanced mass-loss have also been observed in
some B-type supergiants (see e.g. Kraus et al. 2015; Haucke et al.
2018).

κ Cassiopeiae or HD 2905 is a B-type supergiant situated in the
constellation Cassiopeia. The presence of an astrosphere around κ

Cassiopeiae was revealed by observations taken with the Infrared
Astronomical Satellite (van Buren & McCray 1988). Further high-
resolution infrared observations taken with the Spitzer Space Tele-
scope reveal that the astrosphere of κ Cassiopeiae seems to have
arcuate structure with several cirrus-type filaments (see Gvaramadze
et al. 2011; Katushkina et al. 2018). From the existence and
structure of the astrosphere around κ Cassiopeiae, Katushkina et al.
(2018) conclude and suggest that this star might be a runaway
star.

Similar to other B-type supergiants, κ Cassiopeiae exhibits vari-
abilities and mass-loss. Using photometry with a 36 cm Cassegrain
telescope, Elst (1979) has reported a variability with a period of
2.19 h for this star. However, Percy (1981) could not confirm this 2
h variability. Rather, he identified a variability with a period of the
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order of 7 d. Contrary to the findings of Percy (1981), observations
taken at the UP State Observatory (now known as ARIES, Nainital) as
reported by Badalia & Gurm (1982) indicate rapid variabilities with
two periods of 1.7 and 1.4 h, respectively. Using photometry data
of the Hipparcos catalogue, Koen & Eyer (2002) have found 2675
new variable stars including the supergiant κ Cassiopeiae. These
authors claim a photometric variability with a period of 2.6 d in this
star. The supergiant κ Cassiopeiae is also observed by the BRITE
satellites. However, so far pulsations have not yet been found in the
preliminary analysis of the collected data (Rybicka, Zocłońska &
Tomić 2018). Based on 1141 high-resolution stellar spectra taken
in a time span of approximately 2900 d, Simón-Dı́az et al. (2018)
have recently reported the presence of variabilities with periods
mainly in the range between 2.5 and 10 d for κ Cassiopeiae. A
dominant period of 2.7 d present both in the spectral lines and in the
Hipparcos space photometry has been identified by these authors.
Although Simón-Dı́az et al. (2018) have suggested that the variabil-
ities might be associated with gravity modes or motions caused by
subsurface convection, the cause of these variabilities is not properly
understood.

Thus, with the motivation to understand the dominant variability
of 2.7 d in κ Cassiopeiae, we shall present here a linear non-
adiabatic stability analysis of models for κ Cassiopeiae. The result
of instabilities will then be determined by following them into
the nonlinear regime for selected unstable models using a fully
conservative numerical scheme. This paper falls into five sections
where a description of the models used is given in Section 2,
and the linear stability analysis together with its results are dis-
cussed in Section 3. The nonlinear simulations and their results
are presented in Section 4. A discussion and conclusions follow in
Section 5.
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Figure 1. Evolutionary tracks of stars with solar chemical composition and
having masses in the range between 30 and 45 M�. The observed location of
κ Cassiopeiae in the Hertzsprung–Russell diagram is marked by a thick dot.

2 MO D E L S F O R κ CASSIOPEIAE

Although the star κ Cassiopeiae has been the subject of several stud-
ies (see e.g. Underhill 1979; Percy 1981; Hayes 1984; Katushkina
et al. 2018), its fundamental parameters (in particular its mass) are
not precisely known. For the present investigation, we adopt the
effective temperature (Teff = 24 600 K) and luminosity (log L/L�
= 5.69) estimated by Simón-Dı́az et al. (2018) using high-resolution
spectra of κ Cassiopeiae. These values are close to those determined
by Kudritzki et al. (1999), Smartt et al. (2002), and Evans et al.
(2004). Due to the uncertainty of the mass, we consider a range of
models with masses between 27 and 44 M�. This mass range covers
the mass of 33 M� suggested for κ Cassiopeiae by Searle et al.
(2008) on the basis of stellar evolution calculations. Evolutionary
tracks for models having solar chemical composition and masses
of 30, 35, 40, and 45 M� respectively are shown in Fig. 1 where
a thick dot corresponds to the observed position of κ Cassiopeiae
in the Hertzsprung–Russell (HR) diagram. These tracks have been
generated by the ‘mad star’ stellar evolution code.1 The position of
κ Cassiopeiae in the HR diagram suggests that models representing
this star have masses below and close to 40 M� (see Fig. 1).

The amplitudes of radial eigenmodes decay exponentially from the
stellar surface to the core. Thus, the latter may be disregarded when
studying stellar stability (see e.g. Glatzel & Kiriakidis 1993; Glatzel,
Kiriakidis & Fricke 1993; Saio 2011; Yadav & Glatzel 2016, 2017a).
Accordingly, our present study is restricted to envelope models of
κ Cassiopeiae thus disregarding any influence of nuclear energy
generation and nucleosynthesis. The envelope models with solar
chemical composition (X = 0.70, Y = 0.28, and Z = 0.02; where X,
Y, and Z represent the mass fraction of hydrogen, helium, and heavy
elements, respectively) are constructed by integrating the stellar
structure equations as an initial value problem from the photosphere
up to a sufficiently deep inner boundary (typically corresponding to
a temperature of the order of 107 K). For the photosphere, Stefan–
Boltzmann’s law and a standard prescription for the photospheric
pressure (see e.g. section 11.2 of Kippenhahn, Weigert & Weiss 2012)
are used as initial boundary conditions. Rotation as well as magnetic
fields are disregarded and OPAL opacity tables (Rogers & Iglesias
1992; Iglesias & Rogers 1996; Rogers, Swenson & Iglesias 1996)

1www.astro.wisc.edu/∼townsend/static.php?ref = ez-web

are used for the opacity. For the onset of convection, Schwarzschild’s
criterion is used and the convection is treated according to standard
mixing length theory (Böhm-Vitense 1958) with 1.5 pressure scale
heights for the mixing length.

3 STA BI LI TY ANALYSI S

To perform a linear stability analysis with respect to radial pertur-
bations for models of κ Cassiopeiae with parameters as discussed
in Section 2, we have used the linearized perturbation equations
given by Gautschy & Glatzel (1990b). This set of pulsation equa-
tions with four boundary conditions form a fourth-order eigenvalue
problem which is solved using the Riccati method in a similar
way as described by Gautschy & Glatzel (1990a). The solution
of this system of equations leads to an infinite set of modes with
complex eigenfrequencies (σ r + iσ i). For convenience, they will be
normalized with the global free fall time (

√
R3/3GM; where R is

the stellar radius, G denotes the gravitational constant, and M stands
for the stellar mass) of the corresponding model. The real part of
the eigenfrequency corresponds to the pulsation frequency, whereas
the imaginary part provides information about damping or excitation
of the mode. In the normalization adopted, negative imaginary parts
(σ i < 0) indicate excitation and instability while positive imaginary
parts (σ i > 0) represent damping and stability. Interaction between
pulsation and convection is still poorly understood. For simplicity,
we have therefore used the ‘frozen in approximation’ as introduced
by Baker & Kippenhahn (1965) in the present analysis. In this
approximation, the Lagrangian perturbation of the convective flux
is assumed to vanish. In previous studies (Glatzel & Mehren 1996;
Yadav & Glatzel 2017b), it was found to hold as long as energy
transport is dominated by radiation diffusion.

The results of the linear stability analysis are presented in terms
of eigenfrequencies as a function of stellar mass in Fig. 2, where
the real parts – corresponding to the pulsation frequency – are
shown in Fig. 2(a) and the imaginary parts – indicating excitation
or damping – are given in the Fig. 2(b). Negative imaginary parts
(σ i < 0) correspond to excitation and instability. Real parts of the
eigenfrequencies of excited modes are indicated by thick blue lines
in Fig. 2(a). From Fig. 2, we deduce that all models considered with
masses between 27 and 44 M� are unstable, where the instability
affects the two lowest order modes (fundamental mode and first
overtone). Similar to previous studies (e.g. Yadav & Glatzel 2017b),
the growth rate and strength of the instabilities increase with the
luminosity to mass ratio (see Fig. 2b). For higher order modes,
mode coupling phenomena (for more details see, Gautschy & Glatzel
1990b), in particular avoided crossings can be identified in the modal
diagram given in Fig. 2.

Although in many cases the results of the linear stability analysis
are not substantially affected by the choice of the outer boundary
conditions, their influence for the models considered here needs to
be discussed. The outer boundary conditions for the perturbation
equations are ambiguous because the outer boundary of the stellar
model does not coincide with the physical outer boundary of the star.
In fact for some stellar models, the choice of the outer boundary
conditions was found to influence the presence of instabilities
originating from regions close to the stellar surface (see e.g. Yadav &
Glatzel 2016; Yadav, Kühnrich Biavatti & Glatzel 2018). In order
to check the dependence on the outer boundary conditions of the
results of the linear stability analysis for the models considered
here, we have therefore performed the linear stability analysis of our
models with different outer boundary conditions requiring zero heat
storage and the gradient of compression to vanish there (for a detailed
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Figure 2. Real (a) and imaginary (b) parts of the eigenfrequencies as a function of mass for models of κ Cassiopeiae having solar chemical composition, an
effective temperature of Teff = 24 600 K and a luminosity of log L/L� = 5.69. The eigenfrequencies are normalized with the global free fall time-scale. Thick
blue lines in (a) and negative imaginary parts in (b) correspond to unstable modes. For the outer boundary conditions, vanishing of the Lagrangian pressure
perturbation and the validity of Stefan–Boltzmann’s law have been adopted.

discussion of these boundary conditions see Grott, Chernigovski &
Glatzel 2005). These outer boundary conditions are used also for
the subsequent numerical simulations following the instabilities into
the nonlinear regime. The results of the linear stability analysis with
these alternative boundary conditions are given in Fig. 3. Comparing
Fig. 3 with Fig. 2, we note that for the stellar models considered the
choice of the outer boundary conditions is of minor importance. The
unstable modes found in Fig. 2 are also present in Fig. 3. Both the
growth rates and the range of instabilities are almost identical for
the different boundary conditions. However, an additional unstable
mode is present in Fig. 3 for models with masses below 28 M�.

The pulsation periods of various modes are given as a function
of mass in Fig. 4. Similar to Figs 2 and 3, blue thick lines represent
unstable modes. A red horizontal line corresponds to the period
of 2.7 d observed in κ-Cassiopeiae. The pulsation period of the
unstable fundamental mode lies between 3.9 and 1.6 d for the
models considered while the period of the unstable first overtone
lies below 2.3 d. From Fig. 4, we thus deduce that models with
masses between 34 and 34.5 M� provide (linear) pulsation periods
close to the observed period of 2.7 d.

4 INSTA BILITIES IN THE N ONLINEAR
R E G I M E

The presence of at least two unstable modes in models of
κ Cassiopeiae has been found on the basis of a linear stability
analysis. In order to determine the final fate of unstable models,
the instabilities have to be followed into the nonlinear regime.
As discussed by Yadav & Glatzel (2017b) instabilities of stellar
models may lead to finite amplitude pulsations, eruptions of surface
layers or the rearrangement of the stellar structure. To follow the
instabilities into the nonlinear regime for selected unstable models
of κ Cassiopeiae, we have used the numerical scheme described by
Grott et al. (2005). This numerical scheme provides the extremely
high precision necessary for the simulation of finite amplitude
pulsations and instabilities in the nonlinear regime. In particular,
the energy balance is satisfied with extremely high precision. For
the importance of a correct energy balance in the context of stellar
pulsations we refer the reader to earlier studies (see e.g. Grott
et al. 2005; Glatzel & Chernigovski 2016; Yadav & Glatzel 2017b).

Accordingly, we have examined here the evolution of the error in the
energy balance during the simulation of the evolution of an instability
from hydrostatic equilibrium through the linear phase of exponential
growth into the nonlinear regime. In the nonlinear regime, shock
waves are expected to form. To handle the discontinuities caused by
shocks, an artificial viscosity is introduced. It vanishes except close
to a discontinuity. For details, the reader is referred to Grott et al.
(2005) and Yadav & Glatzel (2017b).

4.1 Validation of the numerical scheme

Apart from satisfying the energy balance with high precision, we
require the numerical scheme used for following instabilities into the
nonlinear regime to represent the results of the independent linear
stability analysis. For validation, we require the numerical code to
start from a model in hydrostatic equilibrium and to pick up the
physical instability with the period and growth rate as pre-determined
independently by the linear analysis from numerical noise without
any external perturbation. To prove this property of the scheme, we
present the evolution of an instability from hydrostatic equilibrium
through the linear phase of exponential growth into the nonlinear
regime for a model with a mass of 34 M� in Fig 5. The linear stability
analysis for this model of κ Cassiopeiae provides an unstable mode
where the real part of the associated eigenfrequency σ r = 1.01
corresponds to a pulsation period of 2.72 d. The imaginary part of
the eigenfrequency σ i = −0.11 represents the growth rate of the
mode. This period and growth rate should appear in the linear phase
of the numerical simulation. As a result of the simulation the absolute
velocity of the outermost grid point is given as a function of time
in Fig. 5. The evolution of the instability starts from hydrostatical
equilibrium with a numerical noise of the order of 10−4 cm s−1.
Without any external perturbation the code picks up an oscillatory
exponentially growing instability: This is the expected linear phase
of exponential growth. Both the growth rate and the pulsation
period of 2.8 d observed in the simulation are consistent with the
eigenfrequency provided and pre-determined by the linear stability
analysis. After the linear phase the velocity amplitude saturates and
the evolution finally enters the nonlinear phase of finite amplitude
pulsations. Thus, the numerical code has been shown to pick up
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Figure 3. Same as Fig. 2 but for boundary conditions consistent with those used in the subsequent nonlinear simulations.

Figure 4. Periods of various modes in models of κ Cassiopeiae. Thick blue
lines correspond to unstable modes and the red line denotes the observed
dominant period of 2.7 d. Models in the mass range between 34 and 34.5 M�
exhibit an unstable fundamental mode with a period close to the observed
value.

the correct physical instability without any external manipulation.
Additional numerical instabilities do not seem to be present.

4.2 Results of the nonlinear simulations

All models for κ Cassiopeiae with masses in the range between 27
and 44 M� are unstable according to the linear stability analysis.
In order to determine the final fate of the unstable models, we have
followed the instabilities into the nonlinear regime for selected cases.
The results of the nonlinear simulation for a model with a mass of
27 M� are shown in Fig. 6: radius (a), temperature (b), and absolute
velocity (c) at the outermost grid point are given as a function of time.
The evolution of the velocity (starting from hydrostatic equilibrium)
shows that the code picks up the instability from numerical noise
with an amplitude of the order of 10−4 cm s−1, the subsequent
linear phase is characterized by oscillatory exponential growth. A
saturation of the velocity amplitude is found, when the nonlinear
regime is reached. In this phase the envelope is inflated (see Fig. 6a)
and the radius of the outermost grid point increases approximately
by a factor of nine compared to its initial hydrostatic value. As a
consequence, the temperature at the outermost grid point drops to ≈
5000 K and the simulation had to be stopped, since opacity data were

Figure 5. Validation of the numerical scheme: For a numerical simulation the
absolute velocity of the outermost grid point is shown as a function time. The
simulation starts from hydrostatic equilibrium, undergoes the linear phase of
exponential growth, and finally ends in nonlinear saturation. For the model
considered, the linear stability analysis provides an unstable mode with a real
part of the eigenfrequency of σ r = 1.01 corresponding to a pulsation period
of 2.72 d and an imaginary part of the eigenfrequency of σ i = −0.11. In the
linear phase, the growth rate observed in the numerical simulation in (a) is
consistent with the value for σ i as determined by the linear theory (slope of
the arrow). Moreover, the pulsation period of 2.8 d deduced from (b) in the
linear phase of the simulation is close to the value of 2.72 d obtained from
the linear analysis.
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Figure 6. Evolution of an instability into the nonlinear regime for a model of κ-Cassiopeiae (HD 2905) having a mass of 27 M�: radius (a), temperature (b),
and absolute velocity (c) of the outermost grid point are given as a function of time. Note that in this case the instability leads to a substantial inflation of the
model. As a consequence, the pulsation period is increased compared to the linearly determined value.

no longer available. The maximum velocity reached in the nonlinear
regime amounts to 224 km s−1 and corresponds to 43 per cent of
the escape velocity of the model (517 km s−1). We note that some
simulations of instabilities in models for massive B-type stars have
provided evidence for the instability driven maximum velocity to
exceed the escape velocity of the corresponding models (see Glatzel
et al. 1999; Yadav & Glatzel 2016) which implies direct mass-loss
due to instabilities. With the reservation that the simulation is not
yet complete, we find for the model of κ Cassiopeiae considered
the maximum velocity to remain well below the escape velocity.
However, the substantial inflation of the envelope in the nonlinear
regime may be taken as another indication for mass-loss.

The evolution of instabilities into the nonlinear regime for a model
with a mass of 32 M� is illustrated in Fig. 7: radius (a), absolute
velocity (b), and temperature (c) at the outermost grid point together
with the variation of the bolometric magnitude (d) are presented as a
function of time. The velocity of the outermost grid point starts from
numerical noise in hydrostatic equilibrium and finally saturates after
the linear phase of exponential growth in the nonlinear regime 80 d
after start with a maximum velocity close to 126 km s−1. Thus finite
amplitude pulsations are the result of the instability in this model,
which may also be deduced from the evolution of the radius (Fig. 7a).
The final mean value of the radius is approximately 30 per cent larger
than the initial hydrostatic value and the inflation of the radius is
associated with a decrease of the temperature (Fig. 7c). We emphasize
that the temperature at the outermost grid point referred to here is
not necessarily related to the effective temperature of the model,
since the relative position of the photosphere may differ from its
initial hydrostatic location, in particular, when inflation is significant.
Moreover, it may vary during the pulsation cycle. The variation of
the bolometric magnitude (d) exhibits a well-defined period of 3 d.

Similar to the model with a mass of 32 M�, we have followed the
instability into the nonlinear regime for the model with a mass of
34.5 M�. The results for this model presented in Fig. 8 are similar to
those obtained for 32 M�. The velocity saturates with a maximum
value of 110 km s−1 in the nonlinear regime and the inflation of
the radius (Fig. 8a) is less pronounced than for 32 M�. A period
of 2.7 d for the final finite amplitude pulsations is obtained from
the variation of the bolometric magnitude (c). It agrees with the
observed dominant period of κ-Cassiopeiae (HD 2905) reported by
Simón-Dı́az et al. (2018).

Quantities associated with outermost grid point are generally used
to study envelope inflation, pulsation period and energy budget
during simulation in nonlinear regime. However, quantities linked
with outermost grid point may not represent the photospheric values.
Therefore for model with mass 34.5 M�, radius (a), absolute velocity

(b), temperature (c), and density (d) associated with grid points
near the photosphere are given in Fig. 9. To identify the location
of photospheric grid point in our simulations, we have used Stefan–
Boltzmann relation. The outermost grid point where total flux is equal
to σ T4 (here σ and T are Boltzmann constant and temperature,
respectively) has been taken as an approximate location of the
photosphere. As found in Fig. 8, a period of 2.7 d is also present in the
variation profile of the mentioned quantities in Fig. 9. Compared to
the hydrostatic value of radius (see Fig. 8a), the model exhibits finite
amplitude pulsation with slightly inflated mean radius (≈ 2.87 × 1012

cm). The maximum-to-minimum variation in bolometric magnitude
is found to be approximately 0.2 mag which is larger than the value
determined by Simón-Dı́az et al. (2018) using HIPPARCOS data.

Apart from 2.7 d variability, Simón-Dı́az et al. (2018) have found
additional frequencies in the range of 0.1 and 0.4 d−1. Comparison
of the shape of the observed bolometric magnitude profile with
theoretically determined bolometric magnitude profile has to be
done with caution as the latter is resulting from a single instability
corresponding to a linear period of 2.7 d while several frequencies
are present in the observed profile. Maximum-to-minimum variation
of absolute velocity associated with this grid point (Fig. 9b) is around
240 km s−1 which is considerably larger than the values (30 km s−1)
determined by Simón-Dı́az et al. (2018) using photospheric spectral
lines such as Si III and Si IV. These authors have also reported that the
amplitude of variability increases from deep photospheric lines to the
lines formed in stellar winds. During the finite amplitude pulsation
phase, temperature varies in the range of 26 820 and 17 500 K
with variation mostly between 17 800 and 20 000 K (see Fig. 9c).
From spectroscopic analysis, Simón-Dı́az et al. (2018) find surface
temperature in the range of 23 700–25100 K with average value of
24 600 ± 300 K. The value of artificial viscosity parameter can affect
the temperature variation during the finite amplitude pulsation as
shown by Yadav & Glatzel (2017b). Variation profile of density
(Fig. 9d) exhibits sharp peaks with a separation 2.7 d.

Results of the numerical simulation for models with masses of 38,
40, and 42 M� are presented in Figs 10–12, respectively. In these
figures, the radius (a) and the absolute velocity (b) at the outermost
grid point together with the variation of the bolometric magnitude (c)
are given as a function of time. The velocity starts from numerical
noise at the level of 10−4 cm s−1 and finally saturates in the nonlinear
regime with maximum values of 95, 109, and 108 km s−1 for the
models with masses of 38, 40, and 42 M�, respectively. Thus, the
instabilities of models with masses of 38, 40, and 42 M� lead to finite
amplitude pulsations with periods of 2.2, 2.0, and 1.8 d, respectively
(see Figs 10c, 11c, and 12c). From Figs 10(a), 11(a), and 12(a), we
still deduce a slight inflation of the radius in the nonlinear regime.
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Figure 7. Evolution of an instability into the nonlinear regime for a model of κ-Cassiopeiae (HD 2905) with a mass of 32 M�: radius (a), absolute velocity (b),
and temperature (c) at the outermost grid point and variations of the bolometric magnitude (d) are given as a function of time. This model finally exhibits finite
amplitude pulsations with a period of 3 d.

Figure 8. Same as Fig. 7 but for a model of κ-Cassiopeiae (HD 2905) with a mass of 34.5 M�: radius (a), absolute velocity (b) at the outermost grid point and
variations of the bolometric magnitude (c) are given as a function of time. This model finally exhibits finite amplitude pulsations with a period of 2.7 d, which
exactly matches the observed dominant period of the star.

5 D ISCUSSION AND CONCLUSION

In order to understand the variabilities observed in κ Cassiopeiae
(see e.g. Simón-Dı́az et al. 2018), we have performed a linear
non-adiabatic stability analysis for models of this supergiant. All
models considered with masses in the range between 27 and 44 M�
are unstable. The instabilities are associated with low-order modes
(fundamental mode and first overtone) while higher order modes
are damped (see Fig. 2). As expected, growth rate and strength of
the instabilities increase with the luminosity to mass ratio. If the
luminosity to mass ratio exceeds 104 in solar units (which holds
for all models considered here), dynamical instabilities are to be
expected (see e.g. Glatzel 1994). In particular, strange modes and
associated instabilities are typically found in stellar models with
luminosity to mass ratios in excess of 104 (solar units). In general,
strange modes are related to mode coupling phenomena appearing
as instability bands and avoided crossings. Prominent examples are
models of massive zero-age main sequence stars (Yadav & Glatzel
2017a), Wolf Rayet stars (Kiriakidis, Glatzel & Fricke 1996), and

HdC stars (Gautschy & Glatzel 1990b). In modal diagrams of models
for κ Cassiopeiae (see, e.g. Fig. 2), mode coupling phenomena can be
identified for higher order modes. However, they are not associated
with instability bands. On the other hand, mode coupling effects do
not seem to be involved in the unstable low-order modes which
appear to be ordinary low-order p-modes. However, to identify
the physical origin of the instabilities found here as driven by
resonances (mode coupling, strange modes) or by the κ-mechanism
requires application of the non-adiabatic reversible approximation
(Gautschy & Glatzel 1990b). We intend to present a corresponding
analysis in a forthcoming paper. The stability analysis was repeated
with different boundary conditions (see Fig. 3) to test their influence
on the results. In fact, for models of κ Cassiopeiae the choice of
boundary conditions is largely irrelevant, at least as long as the
instabilities and the range of unstable models are concerned. The
pulsation frequency of the unstable fundamental mode lies between
3.9 and 1.6 d for masses of the stellar model between 27 and 44 M�.

In order to determine the final fate of the unstable models, the in-
stabilities have been followed into the nonlinear regime by numerical
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Figure 9. Finite amplitude pulsation with a period of 2.7 d in the model with a mass of 34.5 M�. Variations in radius (a), absolute velocity (b), temperature (c),
and density (d) are given to a grid point close to the photosphere.

Figure 10. Evolution of an instability into the nonlinear regime for a model of κ-Cassiopeiae (HD 2905) with a mass of 38 M�: radius (a) and absolute velocity
(b) at the outermost grid point and variations of the bolometric magnitude (c) are given as a function of time. This model finally exhibits finite amplitude
pulsations with a period of 2.2 d.

Figure 11. Same as Fig. 10 but for a model with a mass of 40 M�. Here the instability leads to finite amplitude pulsations with a period of 2 d.

simulation for selected cases. Any simulation of stellar instabilities
and finite amplitude stellar pulsations requires an extremely high
accuracy which can be achieved only by a fully conservative
numerical scheme. In particular, the energy balance needs to be
correct to a very high degree of precision. We have adopted a
numerical scheme which meets all these requirements (for details see

e.g. Grott et al. 2005; Yadav et al. 2018). In order to ensure that the
code picks up and follows the physical instabilities, it was validated
by comparing periods and growth rates of the instabilities appearing
in the simulation (in the linear phase of exponential growth) with the
independently pre-determined values provided by the linear stability
analysis (see Section 4.1). For models with masses below 29 M�, the
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Figure 12. Same as Fig. 10 but for a model with a mass of 42 M�. Here the instability leads to finite amplitude pulsations with a period of 1.8 d.

instabilities lead to a substantial inflation of the radius (see Fig. 6).
For higher masses, finite amplitude pulsations with periods between 1
and 3 d are the final fate of the unstable models considered. Ground-
and space-based observations of κ Cassiopeiae, Simón-Dı́az et al.
(2018) have revealed a variability with a dominant period of 2.7 d
for this object. On the other hand, finite amplitude pulsations with
a period of 2.7 d are found as the final result when simulating the
evolution of the instability into the nonlinear regime of the model for
κ Cassiopeiae with a mass of 34.5 M�. Thus the observed variability
with a period of 2.7 d may be explained by the instability of the
fundamental radial mode of an object with a mass of 34.5 M�. In
addition to the 2.7 d period, the variability of κ Cassiopeiae exhibits
additional periods in the range between 2.5 and 10 d (Simón-Dı́az
et al. 2018). According to our linear stability analysis the model with
the lowest mass (27 M�) provides two unstable modes with periods
of 2.3 and 3.9 d respectively. Thus both from the linear analysis
and the nonlinear simulations we conclude that variabilities with
periods above 3.9 d cannot be explained by radial unstable modes of
κ Cassiopeiae. Variabilities with periods above 3.9 d might be due to
gravity modes. Their study requires a linear non-adiabatic stability
analysis with respect to non-radial perturbations which will be the
primary objective of an extension of the present study. Earlier studies
of κ Cassiopeiae report on variabilities on time-scales between 1 and
2 h (see e.g. Elst 1979; Badalia & Gurm 1982). However, variability
with short periods (of the order of hours) has not been found by
Simón-Dı́az et al. (2018). Thus, the existence of long-lived short-
period variabilities in κ Cassiopeiae is yet to be confirmed. In this
context, observations of TESS may contribute significantly to our
understanding of the variabilities in κ Cassiopeiae.

From this study which has been restricted to considering radial
perturbations we infer that the dominant variability of κ Cassiopeiae
with a period of 2.7 d may be understood as a radial mode pulsation.
However, we note that the theoretical light curve is differing from
the observed light curve of Simón-Dı́az et al. (2018). Shape and
amplitude of the theoretical light curve depends on parameters
including the number of unstable modes, strength of present in-
stabilities and value of artificial viscosity parameter. This study is a
first step to understand the variability of 2.7 d using linear stability
analysis in combination with nonlinear simulations. To compare the
light curve, we need to perform extensive nonlinear simulations.
Additional observed variabilities of this star need further attention.
In particular, variabilities with periods above 10 d being compatible
with g-mode pulsations have been observed in κ Cassiopeiae (Simón-
Dı́az et al. 2018). Moreover, in addition to radial instabilities, non-
radial instabilities have been identified in models of B-type stars (e.g.
Gautschy & Saio 1993; Glatzel & Mehren 1996; Saio et al. 2006;
Saio 2011). Therefore, to complete and improve our understanding of
variabilities in κ Cassiopeiae, a linear non-adiabatic stability analysis

with respect to non-radial perturbations is inevitable. These issues
will be presented in a forthcoming paper.
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