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ABSTRACT
The granulation background seen in the power spectrum of a solar-like oscillator poses a serious challenge for extracting
precise and detailed information about the stellar oscillations. Using a 3D hydrodynamical simulation of the Sun computed with
CO5BOLD, we investigate various background models to infer, using a Bayesian methodology, which one provides the best fit
to the background in the simulated power spectrum. We find that the best fit is provided by an expression including the overall
power level and two characteristic frequencies, one with an exponent of two and one with a free exponent taking on a value
around six. We assess the impact of the 3D hydro-code on this result by repeating the analysis with a simulation from STAGGER

and find that the main conclusion is unchanged. However, the details of the resulting best fits differ slightly between the two
codes, but we explain this difference by studying the effect of the spatial resolution and the duration of the simulation on the fit.
Additionally, we look into the impact of adding white noise to the simulated time series as a simple way to mimic a real star. We
find that, as long as the noise level is not too low, the results are consistent with the no-noise case.
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1 IN T RO D U C T I O N

When fitting the power spectrum of a solar-like oscillator in order
to extract information about the oscillations, it is important to
properly account for the stellar background attributable to near-
surface convection, since this may otherwise bias the results (see
for instance, Kallinger et al. 2014; Kamiaka et al. 2019). Several
different descriptions of the background exist with slightly varying
components, but common to all of them is a contribution from white
noise in addition to the stellar background, which consists of a
contribution from stellar activity as well as at least one component
arising from surface granulation.

A classic background model was proposed by Harvey (1985) based
on the flux coming from a granule being described as an instantaneous
rise followed by an exponential decay, resulting in a Lorentzian
profile in the power spectrum. He suggested that the background
should be composed of three granulation components in addition to
a component from activity and one from white noise. This description
was later modified to allow for a variable exponent ci (Harvey et al.
1993):

B(ν) =
4∑

i=0

Ai

1 + (2πντi)
ci

+ B0 . (1)

Here, Ai is the power, ν is the frequency, τ i is the characteristic time-
scale, and B = 0 is the flat white noise contribution. Modifications
to equation (1) have been proposed by, for instance, Karoff (2008)

� E-mail: lundkvist@phys.au.dk

and tested by, for example, Mathur et al. (2011) and Kallinger et al.
(2014).

Kallinger et al. (2014) used Kepler data of red giants to compare
eight different background models and determine which was the best
fit to the data using Bayesian model comparison. They favoured a
model with two background components, which was also found to
be the case for main-sequence solar-like stars by Karoff et al. (2013).
However, the true shape of the stellar background remains elusive
due to the fact that convection and its imprint on the power spectrum
is not fully understood (see for instance, Kallinger et al. 2014, and
references therein)

In order to tackle this question from a different angle, we have
investigated how well nine background models fit a simulated solar
power spectrum made with the 3D hydrodynamics code CO5BOLD

(COnservative COde for the COmputation of COmpressible COn-
vection in a BOx of L Dimensions, L = 2, 3; Freytag et al. 2012,
used here with L = 3). The CO5BOLD solar simulation is described in
Section 2 along with the background models and the fitting that we
use. The results of the model comparison is the topic of Section 3,
while we discuss the results and the tests that we have carried out to
ensure that our method is robust in Section 4, and we finish with our
conclusions in Section 5.

2 ME T H O D

2.1 CO5BOLD solar simulation

We have used a solar simulation from CO5BOLD with (mostly) 30
second sampling lasting for a total of ∼4.5 d of solar time. The
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The power spectrum of solar granulation 2513

Figure 1. Top: CO5BOLD simulated time series of the Sun (the Reference
model). Bottom: Power spectrum computed from the CO5BOLD time series
with a heavily smoothed version overplotted in black.

radiation-hydrodynamics code CO5BOLD solves the equations of hy-
drodynamics coupled to the radiative transfer equation for a stratified,
chemically homogeneous medium. In the present context, we are
using the ‘box-in-a-star’ set-up where a small but representative
volume located in the solar surface layers is simulated. The bottom
boundary allows for the free in and outflow of matter, the top
boundary is transparent to wave motions, while the lateral boundaries
are periodic. All boundaries are transparent to radiation. The total flux
permeating the simulation volume is controlled by the heat content
of material entering the box from below. CO5BOLD stores periodically
the full flow state, and so-called mean-files, which contain horizontal
averages of various flow and radiation quantities. The mean-files are
used here for further analysis. More information on the code can be
found in Freytag et al. (2012).

From the CO5BOLD mean-files, we extracted the model time (in
seconds) and the horizontal mean of the emergent flux in the
simulation (in erg cm−2 s−1). We then turned this into relative
flux in ppm (parts per million) similar to what is often done with
observations (e.g. from Kepler; see, for instance, eq. 6 of Handberg
& Lund 2014).

Using this flux time series, we have computed a power density
spectrum using the fast implementation of the Lomb–Scargle peri-
odogram (Lomb 1976; Scargle 1989) by Press & Rybicki (1989).
Note that we have chosen to study a single patch of the Sun and
thus not create a disc-integrated power spectrum as detailed by
Ludwig (2006) as this in our case does not impact the overall shape
of spectrum, which is what we are interested in (see Appendix A
for further details). The flux time series and the power spectrum are
shown in Fig. 1. In the following, we use this Reference model power
spectrum to test which of the nine different background models (see
Table 1) best reproduces the shape of the power spectrum.

2.2 Background models

The set of background models, B, that we are testing are from
Kallinger et al. (2014) with the addition of a single model (model

Table 1. The background models, Bi (ν), i ∈ {A, B, . . . , I }, used in this text.
Note that Kallinger et al. (2014) include a ξ also on models D and H.

Model Equation Reference

A ξa2/b

1+(ν/b)2 Kallinger et al. (2014)

B ξa2/b

1+(ν/b)4 Kallinger et al. (2014)

C ξa2/b
[
1+(ν/b)2]2 Kallinger et al. (2014)

D a2/b

1+(ν/b)l
Kallinger et al. (2014)

E ξa2/b

1+(ν/b)2 + ξc2/d

1+(ν/d)2 Kallinger et al. (2014)

F ξa2/b

1+(ν/b)4 + ξc2/d

1+(ν/d)4 Kallinger et al. (2014)

G ξa2/b
[
1+(ν/b)2]2 + ξc2/d

[
1+(ν/d)2]2 Kallinger et al. (2014)

H a2/b

1+(ν/b)l
+ c2/d

1+(ν/d)k
Kallinger et al. (2014)

I a2

1+(ν/b)2+(ν/d)k
This work

I). The nine models consist of five models with one granulation
component and four with two components, and the first four and
the following four have the same functional form of the granula-
tion component(s). Table 1 lists all the background models used
here. For each background model, a and c are the amplitudes of
the granulation components, b and d designate the characteristic
frequencies, ν is the frequency, l and k are exponents, and ξ is a
normalization factor (chosen as in Kallinger et al. 2014) such that
the power of the granulation component corresponds to the area
under the super-Lorentzian function in the power density spectrum:
∞∫
0

(ξ/b)/(1 + (ν/b)c)dν = 1. For models D, H, and I, the value of ξ

cannot be determined analytically, and thus we simply omitted the ξ

factor as we are not concerned with the actual amplitude values in
this work.

It can be seen that models A and E consist of the classical Harvey
model, models B and F have super-Lorentzian component(s) with
the exponent fixed to 4, models C and G have a slightly different
functional form, and models D and H also consist of super-Lorentzian
component(s), but with a free exponent. Model I is a hybrid between
the single- and two-component models in that it only has a single
component, but contains two characteristic frequencies with each
their associated drop-off slope (2 and free, respectively).

Since we are working with a simulation and not actual obser-
vations, we have changed a few of the details with respect to the
background fit as compared to Kallinger et al. (2014). First, we do
not incorporate an apodization factor (due to a finite integration time;
Chaplin et al. 2011), since our time series points are not integrated
over the sampling time, but ‘instantaneous’ measurements. Second,
we do not include an activity term in our background description,
since the simulation does not include this feature. Third, no Gaussian
is included to take the solar-like oscillations into account as these are
not significantly excited in our power spectrum (we have box modes
of low height that we disregard). Fourth, we do not include a white-
noise component in our background model as our simulation does not
contain this either (see for instance, Frandsen et al. 2007). Instead,
we include the mirroring effect around the Nyquist frequency, νNyq,
since this, due to the absence of white noise, is clearly seen in the
simulated power spectrum. As a consequence, what is actually fitted
to the power spectrum is of the following form:

Bi(ν) = Bi(ν) + Bi(2 · νNyq − ν), i ∈ {A,B, . . . , I }, (2)

with the background models B listed in Table 1.
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2.3 Fitting

We fit the background models in Table 1 (through equation 2) to our
10-point binned power spectrum in a Bayesian manner similarly to
what was done by Davies & Miglio (2016). In order to do this and
be able to obtain estimates of the parameters, we need, in addition
to the model, priors, a method for evaluating the likelihood and a
Markov chain Monte Carlo (MCMC) sampler that will allow us to
sample the posterior probability density (p(�|D,M)). The posterior
probability density for a set of parameters (�), given observed data
(D) and a model (M) is given by Bayes theorem:

p(�|D,M) = p(�|M)p(D|�,M)

p(D|M)
. (3)

Here, p(�|M) is the prior probabilities of the model parameters,
p(D|�,M) is the likelihood of the data given a specific choice
of parameters, and p(D|M) is the normalization factor known as
the model evidence or the marginal likelihood. It is determined
by integrating the numerator in equation (3) (see e.g. Handberg &
Campante 2011; Gronau, Singmann & Wagenmakers 2017a) over
the entire parameter space:

p(D|M) =
∫
�

p(�|M)p(D|�,M)d� . (4)

From the posterior probability density, parameter estimates can be
obtained by marginalizing over (i.e. integrating out) the remaining
parameters. We take as our parameter estimate the median of the
marginalized posterior probability density and use the 16 per cent
and 84 per cent quantiles to give the 1σ uncertainties.

Below we will address our choice of priors, the MCMC sampler
used, the likelihood function, and the employed method for model
comparison.

2.3.1 Priors

Very similar and only weakly informative priors were used for each
of the parameters in the background models (see Appendix B for
details). For the amplitudes and characteristic frequencies (a, b, c,
and d) these were lognormal priors, while for the exponents (l and
k) they were normal distributions. The only parameter for which
we used an informative prior was the Nyquist frequency, where
we opted for a normal distribution with a width of 0.001 · νNyq ≈
16.4 μHz. This was done because we know the value of the Nyquist
frequency well for our simulation, and we found that if we allowed
it to vary too much, some of the chains would land on an unphysical
value. This was caused by the fact that by changing the Nyquist
frequency, because of the mirroring effect around this point in the
power spectrum, the slope of the high-frequency end of the model
power spectrum could be changed, which would allow for a better fit
for a given background model with a pre-defined exponent.

2.3.2 MCMC details

For the MCMC sampling, we use the PYTHON interface to STAN,
PYSTAN1 which employs the No-U-Turn sampler variant of Hamil-
tonian Monte Carlo. This provides the posterior distributions for
the parameters. We employ four chains each taking 50 000 steps,
half of which is taken as the burn-in and subsequently removed.
After the burn-in has been removed, each chain trace is inspected

1https://pystan.readthedocs.io/en/latest/

to make sure that a sufficient part of the chain has been removed.
It was also checked if the posterior distributions showed a close
resemblance to the priors, something which happens when the data
are not informative.

2.3.3 The likelihood function

For numerical stability, we map the log of the likelihood using
the expression by Handberg & Campante (2011) for uncorrelated
frequency bins (j) in the power spectrum:

ln p(D|�,M) =
∑

j

ln
(
f (Dj,�,Mj )

)
. (5)

Given that we have binned our power spectrum, it will obey a χ2

probability distribution with 2s degrees of freedom with s being
the number of binned data points. Thereby, we have the probability
density (Appourchaux 2003, 2004; Handberg & Campante 2011):

f (Dj,�,Mj ) = ss−1

(s − 1)!

Ds−1
j

Mj (�)s
exp

(
− sDj

Mj (�)

)
. (6)

This expression can then be combined with equation (5) to yield the
log-likelihood.

2.3.4 Model comparison

To compare models in a Bayesian manner, it is crucial to know the
marginal likelihood, i.e. the normalizing constant in the posterior
probability density (equation 3).

The model probability for model Mi , i ∈ {1, 2, . . . , m}, given
the data D can be obtained as (Berger & Molina 2005; Gronau et al.
2017b)

p (Mi |D) = p (D|Mi) p (�|Mi)
m∑

j=1
p

(
D|Mj

)
p

(
�|Mj

) . (7)

Here, p (�|Mi) can be recognized as the prior model probability, and
p (D|Mi) as the marginal likelihood (model evidence) of modelMi .
When comparing models, equation (7) allows us to obtain the relative
plausibility of a given model, i.e. the change in beliefs regarding the
relative plausibility of the models induced by the data.

Assuming that our priors will not guide us to prefer one model
over another, we can disregard the priors in equation (7) (Handberg
& Campante 2011) whereby we end up with pi ≡ p (Mi |D) =
zi/

∑
j

zj with z being the marginal likelihood normalized by a

reference value z0 to simplify the computations (following Kallinger
et al. 2014). Thus, in order to be able to compare the competing
background models, we compute the log marginal likelihood using
our own PYTHON implementation of the BRIDGESAMPLING package2

(Gronau et al. 2017a).

3 R ESULTS

3.1 Fitting the CO5BOLD Reference model

Fig. 2 shows each of the fitted background models plotted on top of a
smoothed version of the simulated solar power spectrum. In several
cases, the one- and corresponding two-component models essentially
overlap, because one of the components in the two-component model

2https://CRAN.R-project.org/package=bridgesampling
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The power spectrum of solar granulation 2515

Figure 2. Smoothed simulated solar power spectrum from CO5BOLD (Refer-
ence) with each of the fitted background models overplotted using the median
value for each parameter.

Table 2. Marginal likelihood (z) and model prob-
ability (p) for the nine different tested background
models using ln (z0) = −4426 as a reference value.

Model ln (z/z0) p

A − 12 990 <10−200

B − 2702 <10−200

C − 3118 <10−200

D − 255 ∼10−111

E − 12 996 <10−200

F − 2701 <10−200

G − 3118 <10−200

H − 199 ∼10−86

I 0.17 ∼1

has a very small amplitude. The same can be seen in the case of model
B/F in Kallinger et al. (2014). In fact, in the cases of models E, F, and
G the data do not support the addition of an extra component. This
can be seen from the returned posteriors for these models, where one
of the components in each case almost reproduces the input priors.

We take as our reference model, model I, which we find to
be the background model that best describes our simulated solar
power spectrum. This can be seen from the model probabilities
listed in Table 2, which have been determined as described in
Section 2.3.4.

Fig. 3 shows a corner plot for the preferred background model I
made using CORNER.PY3 (Foreman-Mackey 2016). This plot shows
the sampled parameter space and thus reveals any degeneracies
between the parameters as well as if a parameter shows a bimodal
nature. It can be seen that each of the distributions appear single
peaked with a clearly defined central value. Some correlations are
present between the various parameters, in particular the overall
amplitude of the granulation signal is anticorrelated with the values
of the characteristic frequencies. This is not surprising given that
the fitting tries to preserve total power; a shift of the cut-off
to higher frequencies will then mean that the amplitude at low
frequencies must become smaller. The parameter estimates and
associated uncertainties of the characteristic frequencies and the free
exponent are listed in the first row of Table 4. The result implies

3https://corner.readthedocs.io/en/latest/

that, at least for the Sun, model I with a free exponent close to six
provides the best fit to the granulation background in the intensity
power spectrum.

However, it is unclear how this result is affected by the exact
simulation that we have used. Therefore, in the following subsections
we will describe several tests that we have carried out to assess the
sensitivity of our results to the chosen simulation, in addition to
investigating one key difference between real and simulated power
spectra, namely the absence of white noise in the simulation. Table 3
below gives some relevant details about the various simulations used
for the tests. The corresponding power spectra can be seen in Fig. 4.
Note that two power spectra are present for model d in this figure,
one called ‘patch’ and one called ‘integrated’. These two have been
computed in slightly different ways (as mentioned in Section 2.1) and
are the subject of Appendix A. In the following, we choose to use
the integrated one (similarly for the power spectra of hydro models
g, j, and c600), but this has no effect on the results.

3.2 Comparing to STAGGER simulation

The primary test that we have carried out, pertains to the choice of
3D hydrodynamical code. In order to assess the impact of this, we
have fitted all of the background models listed in Table 1 to a power
spectrum made from a simulated solar time series from the STAGGER

code (Collet, Magic & Asplund 2011). The STAGGER hydrodynamics
code uses a ‘box-in-a-star’ set-up with open boundaries in the
vertical direction and horizontally periodic boundary conditions.
In the vertical direction, the grid has non-equidistant spacing with
higher resolution at the photosphere. Details on the specific version
used here can be found in Nordlund, Galsgaard & Stein (1994),
Amarsi et al. (2018), and Collet et al. (2018). This simulated solar
time series is somewhat shorter, but has a sampling that is almost
identical to the one in the Reference CO5BOLD time series.

It is evident from Fig. 4 that the box modes stand out more
clearly in the STAGGER simulation than in the reference CO5BOLD

simulation. Because they tend to drive the background fit, we tried
several different fits to investigate the best way to address their
presence in the Stagger power spectrum. We tried simply leaving
them in, cutting out the region with the most prominent box modes
(2800–5800 μHz), and adding one or two Lorentzian profiles to
account for the most prominent box mode(s). In the end, owing
to the importance of the Lorentzian wings even far from the box
mode(s), we decided to use the Lorentzian profile(s). We fitted all
nine models, both including one and two Lorentzian components
to the Stagger power spectrum, and we found that in both cases
background model I was the preferred model, i.e. the background
model yielding the highest model probability, as was the case for
our Reference CO5BOLD simulation (and furthermore it provided the
most robust fit). Table 4 (top two entries) lists the values of the
characteristic frequencies and the free exponent determined in the
fitting of the power spectra from CO5BOLD and STAGGER. In the
latter case, the parameters for model I including two Lorentzian
components are given as this version presented a higher marginal
likelihood than including just one Lorentzian.

It can be seen from these results that the free exponent turns out
identical for the two simulations, while the characteristic frequencies
are somewhat different. This means that the high-frequency slope is
similar in the two power spectra, but the detailed distribution of
power is different. It is reassuring that although the input physics
differ between the two codes, the slopes are consistent as this relates
to characteristics of the granular flow, while the overall distribution
of power can be affected by the details of the simulation.
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2516 M. S. Lundkvist et al.

Figure 3. Corner plot for model I fit to the Reference CO5BOLD power spectrum showing the sampled space and contour lines (corresponding to 0.5σ , 1σ , 1.5σ ,
and 2σ ) in the 2D plot and the median and 1σ values in the histograms. The plot shows that the amplitude and characteristic frequencies are anticorrelated.

Table 3. Details about the solar simulations used in this section. The sampling time given is the median in the case of the Reference model. The last dimension
relates to the vertical direction while the first two represent the horizontal directions. The spatial resolution has been computed as sizei/Ni for the two horizontal
directions. In the vertical direction, for all models but the Reference one, the grid has non-equidistant spacing, and the listed resolution is the one at optical
depth unity (for STAGGER, at the optical surface). The top and bottom five layers in the vertical direction that STAGGER uses for computing derivatives and
interpolating near the boundaries have been disregarded. Also given is how the radiative transfer was treated, where ‘12 bin’ refers to opacity binning with 12
bins.

Simulation (code) Duration Sampling Nr of grid points Size Spatial resolution Radiative Sect.
(ks) (s) Nx × Ny × Nz (Mm3) (km3) transfer

Ref (CO5BOLD) 407.9 30 200 × 200 × 250 11.2 × 11.2 × 5.25 56.0 × 56.0 × 21.0 Grey Reference
Model d (CO5BOLD) 264.0 10 189 × 189 × 150 18.6 × 18.6 × 8.5 98.4 × 98.4 × 18.2 Grey 3.3, A
Model g (CO5BOLD) 300.0 10 378 × 378 × 300 18.6 × 18.6 × 8.5 49.2 × 49.2 × 9.0 Grey 3.3
Model j (CO5BOLD) 42.0 10 534 × 534 × 424 18.6 × 18.6 × 8.4 34.8 × 34.8 × 6.4 Grey 3.3
Model c600 (CO5BOLD) 23.4 10 250 × 250 × 207 8.0 × 8.0 × 2.3 32.0 × 32.0 × 10.0 12 bin 3.3
Stagger (STAGGER) 94.4 30 240 × 240 × 230 6.0 × 6.0 × 3.6 25.1 × 25.1 × 7.0 12 bin 3.2

Thus, regardless of our choice of 3D hydrodynamical code,
model I is the preferred background model, and the free exponent is
unchanged (within the uncertainties). However, we see differences
in the details of the fit. In order to investigate if these differences

between the Reference CO5BOLD power spectrum and the Stagger
power spectrum can be reproduced by changing key characteristics of
the simulation, we study the effects of changing the spatial resolution
and the total duration of the simulation in the following.
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Figure 4. Smoothed version of the power spectra used in this work. They
have been scaled to match in the 1–2 mHz range. The legend gives the meaning
of the different colours (refer to Table 3). Notice that all power spectra have
been binned heavier than what was done in the fitting (and the ones from
models c600 and j more than the others because of the larger amount of
scatter).

Table 4. Best-fitting (median) parameters with 1σ uncertainties for the
background model I fit to the Reference CO5BOLD power spectrum as well as
the S tagger power spectrum and the power spectra used in Section 3.3. The
number in parentheses following the simulation name indicates the number
of Lorentzians included in the fit to account for box modes.

Simulation (fit type) b d k

Ref (0L) 1332+82
−75 2243 ± 26 5.97 ± 0.03

Stagger (2L) 740+76
−73 2919+97

−99 6.01+0.09
−0.08

Model d (1L) 1176+109
−94 1958+37

−38 5.84 ± 0.08

Model g (0L) 1471+105
−95 2505 ± 35 5.84 ± 0.04

3.3 Effect of spatial resolution

The second test, detailed in this subsection, concerns the potential
effect of the spatial resolution of the simulation, in particular on the
parameters of background model I. In order to investigate this, we
use models d, g, j, and c600 (see Table 3) in addition to our Reference
model. Note that to distinguish between the 3D hydro models and
the employed background models (in Table 1), we use lower case
letters for the hydro models (such as d and j) and upper case letters
(such as H and I) for the background models.

Models d, g, and j are identical in set-up and d and g comparable in
duration, but the spatial resolution is different. Model d has a lower
spatial resolution (the size of the box with respect to the number of
grid cells along a given dimension) than model g that again has a
lower spatial resolution than model j. Model c600 has a short duration
and small simulation box. The spatial resolution is comparable to
model j, but the treatment of radiative transfer is more detailed than
in the other CO5BOLD models.

Returning to Fig. 4, it can be seen that the slope at high frequencies
(around 5–6 mHz) is similar in the different power spectra, but that
the ‘flattening’ at the highest frequencies occur earlier, the lower the
spatial resolution of the simulation. However, the most noticeable
difference between the power spectra is the amount of high-frequency
power (note that the power spectra have been scaled to match in
the 1–2 mHz region). We see that the power spectra from model d
have the least power around 5–6 mHz, followed by the Reference

model power spectrum, the power spectrum from model g, the power
spectrum from model j, and then the STAGGER and c600 ones. This
is consistent with an overall trend that the amount of high-frequency
power increases with increasing horizontal spatial resolution, that
is the better the surface granules are resolved in the simulation.
An exception to this relation is the STAGGER and c600 simulations,
which are close in both power around 5–6 mHz and horizontal spatial
resolution with STAGGER having the highest resolution and c600 the
largest amount of power. However, given how close they lie and
the differences between the two simulations, this is not a cause for
concern.

We have fitted background model I to each of the four power
spectra: model d (integrated), model g, model j, and model c600,
where we cut the power spectra at the Nyquist frequency of the
reference power spectrum in order to be able to compare the fits
directly. However, the flattening of the model d power spectrum
already becomes pronounced at ∼6 mHz because of the low spatial
resolution. As a consequence, we decided to cut this spectrum at 8
mHz instead. For power spectra from hydro models d and g, we made
fits including various numbers of Lorentzians to account for the box
modes and picked the fit with the highest marginal likelihood. The
values of the characteristic frequencies and the free exponent can be
seen in the bottom two lines of Table 4.

In the case of model c600, we chose to not bin the power spectrum
because of the low number of points. However, this results in a fairly
noisy power spectrum, which shows no evidence of two characteristic
frequencies. Thus, the result from fitting background model I to the
c600 power spectrum is not very convincing, but it is worth noting
that the slope at high frequencies (the free exponent) is consistent
with a value around six (k = 6.04 ± 0.09). The same is true in the
case of model j (k = 5.92 ± 0.08).

From Table 4 it is evident that the characteristic frequencies are
sensitive to the differences between the hydro models with a trend
that d is increasing with increasing spatial resolution. This is also
in agreement with what we see from the fit to the STAGGER model.
Furthermore, the free exponent in the background description appears
to be fairly robust against changes in the spatial resolution. Even in
the case of hydro model d, which has the lowest spatial resolution, the
free exponent is less than 2σ smaller than for the Reference model
and STAGGER. Thus, we can conclude that the differences between
our Reference power spectrum and the one from STAGGER is likely
due to a different spatial resolution. Furthermore, it seems that unless
the spatial resolution is very low, it will not have an impact on the
high-frequency slope in the power spectrum.

3.4 Effect of changing the duration

The third test that can be done is to study the effect of changing the
length of the time series used to compute the power spectra. We split
the time series of the Reference CO5BOLD simulation into shorter
segments (eights, quarters, thirds, and halves) based on the total
duration and computed power spectra for each of these segments. It
should be noted that since the last ∼3 per cent of the Reference time
series is computed with a higher sampling rate, the end segments
will contain more points than the other ones. The power spectra
for the four quarters, each with a duration comparable to that of the
STAGGER simulation, and the two halves are plotted in Fig. 5, where it
can be seen that the overall appearance of the power spectrum is only
affected to a small extent by changing the duration of the underlying
time series. In particular, it can be noted that the differences between
the power spectra in Fig. 4, most importantly the amount of high-
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Figure 5. Smoothed version of power spectra computed from segments of
the reference CO5BOLD time series. The time series have lengths of 25 per cent
and 50 per cent of the total duration. It can be seen that the duration and the
actual segment of the time series used to compute the power spectrum only
has a very minor impact on the shape of the spectrum.

Figure 6. Value of the free exponent k as a function of the value of the flat
component that was added to background model I. The different symbols
indicate the duration of the segment used to compute the power spectrum
(see the legend for details). The anticorrelation is evident along with a trend
that the shorter the time series segment, the lower is the resulting value of the
fitted free exponent k.

frequency power, cannot be attributed to the varying length of the
time series used.

Background model I was fit to each of the 17 power spectra in
order to investigate how changing the duration impacts the parameter
estimates. From this it is evident that the free exponent k and to a
lesser extent the characteristic frequency d show an overall positive
correlation with the length of the segment. However, d and k are
positively correlated (see Fig. 3), so it is not surprising that both
parameters show this trend. When studying the individual fits to
the power spectra, it is evident that lower power levels at very high
frequencies (beyond ∼10 mHz) result in higher values of k. This
makes sense because a steeper slope can be ‘accommodated’ by the
fit, when the amount of power at the highest frequencies is lower.

In order to confirm this degeneracy, we added a flat (i.e. frequency
independent) component to model I to capture the amount of power
at very high frequencies. This led to fits that have a higher marginal
likelihood and display the anticorrelation between the power and the
exponent k, as depicted in Fig. 6. The plot further hints at the above-
mentioned correlation between the segment length and the value of k,
independent of the amount of highest-frequency power in the power

spectrum. This, along with the impact on the other model parameters
of changing the duration of the time series, is also visible in Fig. 7,
which shows the parameter estimates and uncertainties for each of
the computed power spectra.

It is clear from the figure that the values of the amplitude and
the first characteristic frequencies are consistent regardless of which
segment is used, with the values from the shorter segments showing
larger uncertainties as expected. While the second characteristic
frequency and the free exponent also show larger uncertainties for the
shorter segments, they also exhibit a step-like behaviour or an overall
degeneracy between segment length and the parameter value as noted
above. This could hint at a missing high-frequency component in the
model I background model. However, as power spectra of real stars
display white noise in this part of the spectrum, any component at
these high frequencies will be negligible compared to the white noise
component. We will address the effect of white noise in the following.

3.5 Adding noise

The last test to address is the use of background model I and the
Reference CO5BOLD time series to investigate the effect that adding
white noise to the time series has on the model parameters. This
is interesting since a real star would show this component in the
power spectrum. We used the same variant of model I as introduced
in Section 3.4, namely model I plus a flat component. The added
noise was Gaussian white noise with zero mean, which was added
to the relative flux time series (having fluctuations on a scale of 6.5
× 103 ppm). The standard deviation of the normal distribution, that
the noise was drawn from, was varied between 0 and 104 ppm. The
impact on the determined parameters of model I can be seen in Fig. 8.

Overall, the effect of adding noise is that the scatter and uncer-
tainties increase, as is evident from the top three panels in the figure.
Of these, the characteristic frequency d is the one that shows the
largest scatter. This can be attributed to the fact that as the noise
level increases, it is the second ‘knee’ on the curve that is most
prominently washed away, and thus d becomes much harder to
determine. Further, the preceding section showed that d exhibits some
degree of correlation with the free exponent k, something which can
also be seen in Fig. 8 at the lowest noise levels. In fact, the behaviour
at the lowest noise levels is similar to what was found in Section 3.4,
where d and more prominently k show the trend of lower values
as the value of the flat component of model I (the white noise)
increases. That this trend with k is similar, can be confirmed by
comparing the left side of the bottom panel in Fig. 8 to Fig. 6. Thus,
when the noise level is negligible compared to the intrinsic scatter
(below ∼1000 ppm), we see the degeneracy between k and the flat
component of the background description (added to account for the
noise) that was also evident in Fig. 6.

As the noise level increases, the value of k settles around six,
which is fully consistent with the standard model I no-noise case
and the other simulations described in Sections 3.2 and 3.3. This
supports the above statement that once the white noise dominates
over this ‘extra’ component mentioned in the previous section (from
∼1000 ppm), i.e. when the simulated power spectrum becomes more
‘real star-like’, then k is essentially constant.

Thus, we can conclude that adding white noise, even at levels
comparable to and greater than the intrinsic scatter in the time
series, does not have a significant impact on the parameter values for
background model I. It is not the goal of this analysis to determine
the free parameter k as it will be estimated when using background
model I, but the results suggest that for real stars with realistic noise
levels, it will be in the vicinity of six.
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Figure 7. Value of the amplitude (top), characteristic frequencies (middle), and free exponent (bottom) when adding a flat component to background model I.
The plot shows the derived values for each power spectrum indicating which segment of the time series was used to compute it. The shaded area in each panel
gives the value (including 1σ uncertainties) found for the full time series. The vertical dashed lines separate results for different segment lengths.

Figure 8. Value of the amplitude, characteristic frequencies, and free
exponent of background model I with an added white-noise component as
a function of the amount of white noise added to the CO5BOLD time series.
Top panel shows the amplitude, middle panels show the frequencies, and the
bottom panel gives the free exponent. The open circle in each panel shows
the model I results without any noise for reference (from Section 3.1). Also
shown is the noise-free Reference time series fitted with a model including a
white-noise component (same results as those shown as the outermost point
in Fig. 7). The dashed line in the bottom panel shows an exponent of 6.0.

4 D ISCUSSION

Based on background models A and E, B and F, and C and G
presented in Section 3.1, a two-component model is not preferred
over a one-component model, something which is not the case for real
stars observed by Kepler (Karoff et al. 2013; Kallinger et al. 2014).
That our simulated data lend little support to a two-component model
can be seen by eye upon inspection of Fig. 2, since the Reference
power spectrum displays no kink at ∼1500 μHz (half the solar νmax),
a depression is known to arise if the background in this region of
the power spectrum is composed of two components (Kallinger et al.
2014). In fact, inferring from the model probabilities in Table 2, the
only model that provides a satisfactory match to the simulated power

spectrum is model I, a model that was not included in either of the
above-mentioned works.

In order to investigate how our findings hold up in a real star
and to compare our results to a single star from Kallinger et al.
(2014), we used our set-up to test the different background models
listed in Table 1 on the red giant Kepler star KIC 7949599. Here, we
included in the total model the background model (without mirroring
around the Nyquist frequency), an activity component (similar to
model A), a Gaussian envelope (for the p modes), and a flat white-
noise contribution in addition to the apodization factor. We find
that background model I is still the preferred background descrip-
tion when considering the marginal likelihood (model evidence)
for each model, in agreement with the results obtained from the
simulations.

For the Reference CO5BOLD power spectrum, the parameter esti-
mate of the free exponent (k) in background model I is 5.97 ± 0.03
(refer to Table 4). This result is not far from the values found by
Harvey et al. (1993) when studying Ca II K line observations of
the solar chromosphere (5.0 and 5.6 associated with chromospheric
bright points and granulation overshoot, respectively). Additionally,
Karoff (2012) studied the solar power spectrum up to 3200 μHz
(from Virgo@SOHO). Here, he found an exponent of 6.2 for the
faculae component, something which is also in agreement with our
determined value.

It is interesting to note that the second of the free exponents
(the one relevant at the higher frequencies, as the free exponent
in model I) in model H turns out to be in the vicinity of six
(5.75+0.04

−0.03) when fitting this model to the reference CO5BOLD power
spectrum. This is similar to the free exponent of model I, but it
is in contrast to an exponent close to four, which was found by
Kallinger et al. (2014) in their fits to red giants from Kepler. However,
when we fit the star KIC 7949599, which is the one detailed in
the paper by Kallinger et al. (2014), our results for model H agree
with theirs within 1σ for most parameters (and within 2σ for the
rest), while model I still retains an exponent significantly closer to
six. It is unclear whether this difference is caused by the different
evolutionary state of the star (the Sun as compared to a red giant), to
a difference between the simulation and the real data or something
else.
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In regards to the duration of the time series, it is worth noting
that the value of the free exponent determined using the STAGGER

simulation is in agreement with that found from the Reference
CO5BOLD one, although the duration of the former is similar to
the ‘quarter-length’ time series discussed in Section 3.4. This can
be understood by considering the spatial resolution. We have seen
in Section 3.4 that when the time series segments are shorter, the
amount of power at the highest frequencies increase along with a
decrease of k. However, in the case of the Stagger model the higher
spatial resolution in comparison to the CO5BOLD model means that the
flattening at the highest frequencies occur at even higher frequencies
than for the CO5BOLD model. This in turn likely means that small
shifts in the overall power level at the highest frequencies, do not
have as large an effect on the fitting.

5 C O N C L U S I O N

In this paper, we have investigated the granulation background in a
CO5BOLD simulation of the Sun. We have found that the background
is best described by an expression containing a single power level
and two characteristic frequencies: a

1+(ν/b)2+(ν/d)k
(our model I) with

the free exponent k taking on a value around six.
We have investigated how this conclusion is affected by using

different simulations, having different spatial resolutions or different
durations, and the conclusion is that the result is robust to these
effects. Additionally, we added noise to our CO5BOLD simulation,
which except for the cases with very low noise, also does not change
our finding. Thereby, we suggest that model I, at least for a simulated
Sun, gives a good representation of the granulation background seen
in power spectra.

However, the difference between our simulated power spectrum
fitted with model I and the well-established results found for real
stars by, for instance, Kallinger et al. (2014) and Karoff et al. (2013)
is striking and something that warrants further investigation. It could
simply be because we only studied a single simulated star, where
the other works dealt with more stars, but the simulation and real
stars are also rather different, for instance in terms of magnetic
fields, activity, and stellar oscillations. The difference could also
point to the fact that the simulations are not perfect and maybe do
not reproduce the granulation background in the power spectrum
as well as expected. This could be studied further by carrying out
a similar analysis using simulations of, for instance, a red giant
star, and by comparing model I and model H for a suite of real
stars.
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APPENDI X A : D I FFERENCE I N SHAPE
BETWEEN PATCH AND DI SC-I NTEGRATED
POWER SPECTRU M

In this work, we assume that using the power spectrum computed
from just a single patch as opposed to a disc-integrated one will not
affect our results. In order to test this, we compared the result of
fitting the model I background to two different power spectra both
coming from the same 3-d CO5BOLD solar simulation, but one based
on the average horizontal flux in the box (patch) and one modified
following Ludwig (2006) (disc integrated). The two power spectra
can be seen in Fig. A1, where a small overall shift of the power level
can be seen (as discussed in Ludwig 2006).

In comparison to the Reference CO5BOLD power spectrum analysed
in the main text, the power spectra in Fig. A1 show more prominent
box modes. In order to account for this, we fitted the model I
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Figure A1. Smoothed simulated power density spectrum of hydro model
d computed using a single patch (black) and disc integrated in a manner
following Ludwig (2006) (grey). It can be seen that the overall shape is
unchanged.

background and a Lorentzian profile simultaneously to allow for
the fitting of the dominant box mode at ∼3.1 mHz.

All of the fitting parameters are found to be consistent within
1σ , in particular the free exponent is 5.8 in both cases, which is in
excellent agreement with what was found from the other solar models
examined in this work. Thus, we can confirm our assumption that
the overall shape of the granulation background, described by the
free exponent and the characteristic frequencies, is not affected to a
detectable amount by our choice to work with the power spectrum
from a single patch rather than scaling it to a full disc.

A P P E N D I X B: PR I O R S U S E D IN TH E
BAYESI AN APPROACH

As stated in Section 2.3, we employed weakly informative lognormal
priors for the amplitudes and characteristic frequencies and normal
distributions for the free exponents. In the case of the Nyquist
frequency, we employed normal prior centred on the Nyquist fre-
quency estimated from the simulation with a width of 0.001 times
the estimated frequency because of the very well-defined value.

Table B1 gives the priors used in the model comparison for the
Reference simulation.

Table B1. Priors used for the Reference CO5BOLD simulation.

Parameter Distribution Central value Width

a Lognormal 1.52 0.3
b Lognormal 2.58 0.3
c Lognormal 1.53 0.3
d Lognormal 3.38 0.3
l Normal 4.0 0.1
k (Model H) Normal 4.0 0.1
k (Model I) Normal 6.0 0.1
νNyq Normal 1.665 × 104 0.001

This paper has been typeset from a TEX/LATEX file prepared by the author.
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