
MNRAS 501, 1013–1027 (2021) doi:10.1093/mnras/staa3672
Advance Access publication 2020 November 25

Testing general relativity on cosmological scales at redshift z ∼ 1.5 with
quasar and CMB lensing

Yucheng Zhang ,1‹ Anthony R. Pullen,1,2 Shadab Alam ,3 Sukhdeep Singh,4 Etienne Burtin,5

Chia-Hsun Chuang ,6 Jiamin Hou,7 Brad W. Lyke,8 Adam D. Myers,8 Richard Neveux,5

Ashley J. Ross ,9 Graziano Rossi10 and Cheng Zhao 11

1Center for Cosmology and Particle Physics, Department of Physics, New York University, 726 Broadway, New York, NY 10003, USA
2Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
3Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
4Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720, USA
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ABSTRACT
We test general relativity (GR) at the effective redshift z̄ ∼ 1.5 by estimating the statistic EG, a probe of gravity, on cosmological
scales 19 − 190 h−1Mpc. This is the highest redshift and largest scale estimation of EG so far. We use the quasar sample with
redshifts 0.8 < z < 2.2 from Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 16
as the large-scale structure (LSS) tracer, for which the angular power spectrum C

qq
� and the redshift-space distortion parameter

β are estimated. By cross-correlating with the Planck 2018 cosmic microwave background (CMB) lensing map, we detect the
angular cross-power spectrum C

κq
� signal at 12 σ significance. Both jackknife resampling and simulations are used to estimate

the covariance matrix (CM) of EG at five bins covering different scales, with the later preferred for its better constraints on
the covariances. We find EG estimates agree with the GR prediction at 1 σ level over all these scales. With the CM estimated
with 300 simulations, we report a best-fitting scale-averaged estimate of EG(z̄) = 0.30 ± 0.05, which is in line with the GR
prediction EGR

G (z̄) = 0.33 with Planck 2018 CMB + BAO matter density fraction �m = 0.31. The statistical errors of EG with
future LSS surveys at similar redshifts will be reduced by an order of magnitude, which makes it possible to constrain modified
gravity models.

Key words: gravitation – gravitational lensing: weak – cosmic background radiation – large-scale structure of Universe –
cosmology: observations – cosmology: theory.

1 IN T RO D U C T I O N

The expansion of the Universe was first discovered by measuring
the redshifts and relative distances of galaxies (Hubble 1929).
One of the milestones in cosmology in the past decades has been
the detection of a negative deceleration parameter and hence the
accelerated expansion of the Universe at late times from supernovae
observations (Riess et al. 1998; Perlmutter et al. 1999). Many
theoretical models of cosmology and gravity have been proposed to
explain the cosmic expansion and acceleration (see e.g. Silvestri &
Trodden 2009, and references therein), among which �-cold dark
matter (�CDM) has been regarded as the standard model for its

� E-mail: yucheng.zhang@nyu.edu

simplicity and success in explaining a wide range of cosmological
observations, including the CMB (cosmic microwave background)
surveys (e.g. Planck Collaboration VI 2018) and galaxy redshift
surveys (e.g. Alam et al. 2017b). �CDM takes general relativity
(GR) as the true theory for gravity on both galactic and cosmological
scales, and assumes the existence of the cosmological constant (�),
a special form of dark energy (DE) whose spatially uniform energy
density does not evolve with cosmic expansion, and CDM, along
with ordinary (baryonic) matter. Although the expansion history can
be well described by �CDM-GR by fine-tuning the relative density
ratios of the energy components, the nature of dark matter (DM) and
DE are not well understood and their properties are hard to detect
with observations. On the other hand, some modified gravity (MG)
models (see e.g. Carroll et al. 2005; Sotiriou & Faraoni 2010; Dvali,
Gabadadze & Porrati 2000), which can predict the same expansion
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history of the Universe as �CDM-GR with or completely without
assuming the existence of DE, have been developed to challenge GR
as the true theory for gravity on cosmological scales. There have
been some great reviews of the two approaches, see, for example,
Peebles & Ratra (2003) for the cosmological constant and DE, Clifton
et al. (2012) for MG, and Joyce, Lombriser & Schmidt (2016) for a
comparison.

Despite the degeneracy between �CDM-GR and MG models in
explaining the cosmic expansion, their predictions of the growth
of the DM large-scale structure (LSS) are usually distinguishable.
Combining the gravitational lensing ∇2(	 − 
) and the divergence
of the peculiar velocity θ , Zhang et al. (2007) proposed a statistic EG

as a function of redshift and scale, to probe gravity on cosmological
scales. Lensing is related to the underlying matter overdensity
δ through the Poisson equation which depends on the gravity
model (see e.g. Hojjati, Pogosian & Zhao 2011). On linear scales, θ =
−fδ, where f is the linear growth rate. In real surveys, instead of the
DM field, the direct observables are the LSS tracers, for example,
galaxies or quasars. The distribution of these tracers is connected
to the underlying matter perturbation field with the clustering bias
b, which varies with the physical properties of the tracers that are
targeted in a particular survey. Defined as the ratio between ∇2(	 −

) and θ , EG has the advantage of being independent of b and the
variance of the matter density field σ 8. Interested readers may refer
to Ishak (2019) for a comprehensive review on various cosmological
tests of GR, including the EG statistic.

The estimation of EG requires data from both gravitational lensing
and redshift surveys. Accurate estimates of tracers’ redshifts are
necessary in order to do the 3D clustering analysis, from which
the growth of the structure can be probed. Thus spectroscopic
redshift surveys are usually preferred. For photometric surveys,
Giannantonio et al. (2016) proposed a statistic DG, which does not
require the estimation of the growth rate. However, this quantity
cannot be directly used to discriminate GR and MG models. Using
galaxy–galaxy lensing and luminous red galaxies (LRGs), EG has
been measured over scales � 70 h−1Mpc at redshifts in 0.2 < z <

0.6 (Reyes et al. 2010; Blake et al. 2015; de la Torre et al. 2017;
Alam et al. 2017a; Amon et al. 2018; Singh et al. 2018; Blake et al.
2020). Besides tracing the lensing signal with background galaxies,
Pullen, Alam & Ho (2015) proposed to use the CMB lensing map,
which allows the estimation of EG at higher redshifts and larger
scales (Pullen et al. 2016; Singh et al. 2018).

In this work, using quasars and CMB lensing, we test �CDM-GR
on cosmological scales 19 − 190 h−1Mpc at the effective redshift
z̄ ∼ 1.5, which is the highest redshift and largest scale EG estimation
so far. Quasars, also known as quasi-stellar objects (QSOs), are active
galactic nuclei (AGN) with very high luminosity, which makes them
good candidates to trace LSS at higher redshifts (e.g. 1 < z < 2). As
part of the primary motivation of constraining EG, we also investigate
the reliability of quasars as a tracer of the DM in both auto- and
cross-clustering analyses. The redshift range of the quasar targets
is very close to the peak of CMB lensing kernel at z ∼ 2, so we
should expect a promising cross-correlation signal, which is usually
harder to be detected than the autocorrelation. Assumptions of the
cosmology and gravity models have to be made in order to do certain
estimations and generate the simulations needed. So for now it is
very difficult to design one blind test for various gravity models.
To do a rigorous estimation of EG based on other MG models, the
corresponding changes have to be made for either simulations or
analytic calculations (see e.g. Hojjati et al. 2011).

The paper is organized as follows. In Section 2, we review the
EG theory and describe the estimator we use. The quasar and CMB

data, simulations and jackknife resampling for the estimation of
covariance matrices (CMs) are described in Section 3. Section 4
includes analytic models, estimators, systematics, and calibrations
for the angular power spectra. Section 5 describes our estimation of
the quasar two-point correlation function (2PCF) and the maximum-
likelihood fitting of the redshift-space distortion (RSD) parameter.
We present all the estimates and our final results in Section 6 and
conclude in Section 7.

For our self-consistency test of GR, wherever needed, we assume
a flat �CDM fiducial cosmology with Planck 2018 CMB+BAO
parameters (Planck Collaboration VI 2018): �m = 0.3111 ± 0.0056,
�ch2 = 0.11933 ± 0.00091, �bh2 = 0.02242 ± 0.00014, ns =
0.9665 ± 0.0038, H0 = 67.66 ± 0.42, and σ 8 = 0.8102 ± 0.0060.

2 EG FORMALI SM AND ESTI MATO R

In this section, we briefly review the EG theory and describe the
estimator used in this work. We assume a flat Universe described
by the perturbed Friedmann–Robertson–Walker (FRW) metric in
conformal Newtonian gauge,

ds2 = a(τ )
[
(1 + 2	)dτ 2 − (1 + 2
)dx2

]
, (1)

where 	 and 
 are the scalar perturbations to the time and spatial
components of the metric. The statistic EG is defined in Fourier
Space (Zhang et al. 2007) as

EG(k, z) =
[ ∇2(	 − 
)

−3H 2
0 (1 + z)θ

]
k

= k2(	 − 
)

3H 2
0 (1 + z)θ

, (2)

where H0 is the Hubble constant and θ = ∇ · v/H (z) is the diver-
gence of the comoving peculiar velocity field. In linear perturbation
theory, θ = −fδ, where f is the linear growth rate and δ is the matter
perturbation. For GR, assuming no anisotropic stress (
 = −	) and
using Poisson equation ∇2	 = 4πGa2ρmδ, we have

EGR
G (z) = �m,0

f (z)
, (3)

where �m, 0 = ρm, 0/ρcrit, 0 is the fraction of matter density today with
ρcrit,0 = 3H 2

0 /8πG, and f(z) � �m(z)γ with γ � 0.55 and

�m(z) = �m,0(1 + z)3

�m,0(1 + z)3 + (1 − �m,0)
(4)

at late times. Notice that EGR
G (z) is scale-independent and only

relies on the relative fraction of matter density in the Universe.
For different MG models, EG can have different amplitudes or be
scale-dependent (Zhang et al. 2007; Pullen et al. 2015).

The angular estimator for EG at the effective redshift z̄ can be
constructed as (Pullen et al. 2015)

ÊG(�)
∣∣
z̄

= c2

3H 2
0

C
κq

�

C
θq

�

∣∣∣∣∣
z̄

� �(z̄)
C

κq

�

β(z̄)Cqq

�

, (5)

where c is the speed of light, κ and q denote the CMB lensing
convergence and quasar overdensity maps respectively. C�’s are the
angular power spectra, β = f/b is the RSD parameter given by the
ratio of the linear growth rate and the clustering bias, and � is an
analytic factor,

�(z̄) = 2c

3H 2
0

H (z̄)fq (z̄)

(1 + z̄)W (z̄)
, (6)
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where fq (z̄) is the normalized redshift distribution of the quasar
sample at the effective redshift and W(z) is the CMB lensing kernel.
fq(z) and W(z) work as the radial projection kernels for q and κ fields
when we transform the 3D power spectra P(k, z) into angular C�’s,
as shown in equations (17) and (19). To convert C

θq

� to the directly
measurable C

qq

� , the approximation made in equation (5) which
includes the substitution of a certain redshift-dependent factor with
the effective value at z̄ is not perfect. This can cause a systematic bias
around 5 per cent to our EG estimation. Following Pullen et al. (2016)
and assuming a scale-independent linear bias b(z), we introduce the
calibration factor

C� = c

2

W (z̄)(1 + z̄)

H (z̄)fq (z̄)

C
mq

�

Q
mq

�

, (7)

where

C
mq

� ≡
∫ z2

z1

dzχ−2(z)
H (z)

c
f 2

q (z)b(z)Pm

(
� + 1/2

χ (z)
, z

)
, (8)

and

Q
mq

� ≡ 1

2

∫ z2

z1

dz(1 + z)χ−2(z)W (z)fq (z)b(z)Pm

(
� + 1/2

χ (z)
, z

)
,

(9)

where χ (z) is the radial comoving distance at redshift z, Pm is the
matter power spectrum, and Limber approximation kχ � � + 1/2
has been used. Due to the limited size of the quasar sample, it
is hard to study the redshift evolution of the bias by cutting the
redshift range into a few smaller bins. Here, we just take a constant
bias at the effective redshift, that is, b(z) � b(z̄). We also tried an
extended Baryon Oscillation Spectroscopic Survey (eBOSS) quasar
bias model presented in Laurent et al. (2017), and the difference
is negligible considering that the systematic bias calibrated by C�

is only around 5 per cent of the EG signal. Another systematic bias
concern is the non-linear quasar bias and the imperfect connection
between quasars and the matter field at small scales, which is hard to
model and needs to be corrected with N-body simulations. However,
for the scales (≥ 19 h−1Mpc) we are considering, this systematic
bias should be negligible (Pullen et al. 2016; Singh et al. 2018).

The correspondence between multipoles � and linear scales χ⊥ at
a certain redshift is given by χ⊥ = 2 πχ ( z)/�. With equation (5), we
can estimate ÊG(�) for a range of multipoles. These multipoles are
binned into a few bandpowers in practice, with more details discussed
in the estimation of C�’s (Section 4.2). In the end, we find the best
fit (denoted as ĒG) of the overall amplitude of ÊG(�) to compare
to the GR prediction. To make the discussion coherent, we present
our fitting method along with our estimates of the CM for EG(�) in
Section 6.4.

3 DATA A N D C OVA R I A N C E S

In this section, we describe the quasar and CMB lensing data used
in this work. We also discuss the simulations and the jackknife
resampling method used to estimate the CMs.

3.1 Quasar catalogues

We use the quasar sample for clustering analysis from the fourth
phase of the Sloan Digital Sky Survey (SDSS-IV, Blanton et al. 2017)
eBOSS (Dawson et al. 2016) Data Release 16 (DR16, Ahumada et al.
2019), which is observed with the Sloan Foundation 2.5-m Telescope
located at the Apache Point Observatory (Gunn et al. 2006) with
double-armed spectrographs (Smee et al. 2013). The construction

Figure 1. The overlapped sky coverage of Planck 2018 CMB lensing and
eBOSS DR16 quasar NGC (upper) and SGC (lower) clustering catalogues.
NGC (SGC) covers about 2929 (1815) deg2. The orientation of the regions
are shown in J2000 coordinates. For jackknife resampling, NGC and SGC
are divided into 56 and 35 equally weighted regions, respectively.

Table 1. The overlapped sky coverage fraction of eBOSS DR16 quasar
catalogues and Planck 2018 CMB lensing, and the corresponding number of
quasars. The (weighted) mean and median redshifts agree with each other
(see the text), denoted as z̄. The last column shows the number of quasars
which are in the original eBOSS DR16 catalogues but not covered by the
Planck CMB lensing footprint, and hence these targets are not included in
the data analysis.

Cap fsky (per cent) Number of quasars z̄ Number of masked

NGC 7.1 210 881 1.51 7328
SGC 4.4 116 249 1.52 9250

of these eBOSS DR16 clustering catalogues for quasars from the
complete SDSS DR16 quasar (DR16Q) catalogue (Lyke et al. 2020)
is described in Ross et al. (2020), along with the catalogues for LRGs
and emission-line galaxies (ELGs). The quasar sample comprises
the north galactic cap (NGC) and the south galactic cap (SGC),
which correspond to two separate regions on the sky. Since jackknife
resampling is used for covariance estimation (see Section 3.3), we
only use the sky region covered by both the quasar and CMB lensing
surveys (Fig. 1). The sky coverage fraction and number of quasars
are shown in Table 1. This overlapped coverage masks out around
3.4 per cent quasars in NGC and 7.4 per cent quasars in SGC. Even
without jackknife resampling, using this total mask is still reasonable
since the removed quasars do not have the corresponding lensing
signal anyway.
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Figure 2. Number density redshift distribution of eBOSS DR16 quasar
clustering catalogues (with the overlapped sky coverage with CMB lensing
applied, see the text). NGC has a higher number density than SGC, which
results in lower shot noise.

Using the HEALPIX (Górski et al. 2005) pixelization, we construct
the quasar overdensity map with

δi = ni

n̄
− 1 , (10)

where i is the pixel index, ni = ∑
q ∈ iwq is the weighted number

count of quasars for each pixel, and n̄ is the the average over
all covered pixels. The weight for each quasar is given by wq =
wsys · wcp · wnoz, where wcp · wnoz corrects for the spectroscopic
completeness due to close pairs and redshift failures across fibres,
and wsys accounts for the imaging systematics. Additionally, for the
estimation of the correlation function, wFKP is also applied to opti-
mize the clustering statistics (Feldman, Kaiser & Peacock 1994). The
determination of all these weights is described in detail in Ross et al.
(2020).

The redshift distribution of the two catalogues are shown in Fig. 2,
where we see that NGC has a higher number density than SGC. So
the shot noise due to the Poisson distribution of the quasars, which
is inversely proportional to the number density, is lower for NGC
than SGC. The quasars are observed in redshift bin 0.8 < z < 2.2,
for which we need to determine the effective redshift for our angular
analysis. The recommended definition of the effective redshift in
eBOSS DR16 clustering analysis is given by

zeff =
∑

i,j wiwj (zi + zj )/2∑
i,j wiwj

, (11)

which is proposed for the measurement of the 2PCF and the
summation is conducted over pairs with separation distance 25 ≤
s ≤ 120 Mpc−1h. With this definition, Hou et al. (2020) find zeff �
1.48 for the full clustering quasar sample. For both NGC and SGC
quasar samples used in this work, we find that the mean, weighted
mean (

∑
iwizi/

∑
iwi) and median redshifts agree with each other,

with the value shown as z̄ in Table 1. Although the overlapped
mask removes some quasars, these redshift values almost remain the
same. The tiny difference in the definitions of the effective redshift is
completely negligible compared with the statistical accuracy. Thus
for simplicity, in this work, we take the effective redshift at z̄ = 1.5
for both NGC and SGC.

3.2 CMB lensing map

The gravitational lensing convergence (κ) map used is the minimum-
variance estimate with CMB temperature and polarization measure-

ments (Planck Collaboration VIII 2018), reconstructed and provided
as part of the Planck 2018 data release (Planck Collaboration I 2018).
The map covers about 70 per cent of the sky and is provided in
spherical harmonics κ�m’s up to � = 4096. However, in this work, we
only use the multipoles in 8 ≤ � ≤ 2048. We do not use the multipoles
� > 2048 due to the significant reconstruction noise at those very
small scales. Since we are only considering well-defined linear scales
100 ≤ � ≤ 1000 for the angular cross-power spectra estimation of
quasar and CMB lensing, contributions from those much smaller and
non-linear scales should be negligible compared with the statistical
errors.

3.3 Covariance matrices

CMs are needed for constructing the likelihood functions used in
the posterior distribution sampling of the parameters, for example,
RSD parameters and scale-averaged ĒG. Like any other statistics,
an accurate estimation of the CM relies on a large number of
samples. In this work, we estimate the CMs in two ways. One is
using simulations, and the other is jackknife resampling, which only
depends on the data itself.

For simulations, we run all of them through the same data
analysis pipeline as we do for the real data, with which we can
then construct the CM for any statistical quantity in the procedure.
We use 300 simulated κ maps coming with Planck 2018 CMB
lensing analysis (Planck Collaboration VIII 2018), in which the
lensing reconstruction noise is included. For the eBOSS quasar
sample, Zhao et al. (2020) generated 1000 effective Zel’dovich
approximation mock catalogues (EZ mocks, Chuang et al. 2015).
The fiducial cosmology for generating the mocks is flat �CDM
with parameters: �m = 0.307115, �b = 0.048206, h = 0.6777,
σ 8 = 0.8225, and ns = 0.9611. These are slightly different from
the Planck 2018 CMB + BAO parameters we are assuming, but
the influence on the CMs should be negligible. Combining these
simulated κ maps and EZ mocks, we have 300 sets of independent
simulations for our EG analysis. These lensing maps and quasar
mocks are not correlated, which results in zero mean signal and
lower error estimates (equation 20) for the cross correlation C

κq

� . As
discussed in Section 6.2, the contribution of C

κq

� signal to the error
distribution of itself is negligible compared with the noise level in the
autocorrelation of the current surveys. However, the C

κq

� signal is im-
portant in the CM estimation for functions of it like EG, which can be
seen from the Gaussian error propagation. We discuss our approach
to fix this issue in Section 6.4, where the estimates of CMs for EG(�)
are presented. Although using realistic simulations is a reliable way
to estimate CMs since we can run as many simulations as needed
(with enough computing resources), it should still be reiterated that
simulations depend on the fiducial model, where extra consider-
ation is necessary for the purpose of testing different models on
the data.

Another CM estimation method which only relies on the data sam-
ple is jackknife resampling. In this work, we divide the overlapped
sky coverage of quasar and CMB lensing into N equally weighted
regions and make leave-one-out jackknife samples by taking one
region out each time. This process leaves us N correlated re-samples
of the original full data. We do the analysis for each of these jackknife
samples, with each result denoted as a vector x, for example, the
correlation function or power spectrum. Then, the CM of x is given
by

Cov(xi, xj ) = N − 1

N

N∑
k=1

(
x

(k)
i − x̄i

)(
x

(k)
j − x̄j

)
, (12)
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where x̄ is the mean of all the jackknife estimates, which are labelled
with index k. Compared with the normal unbiased sample CM
estimation, a factor of (N − 1)2/N is multiplied, which corresponds
to the fact that the jackknife samples are not independent. Jackknife
resampling has the advantage of being dependent only on the data,
which hence naturally includes all the systematics and noise in the
observations. However, the maximum number of jackknife samples is
limited by the largest scale to be probed. In this work, by requiring the
linear scale of each region to be at least two times the largest scale we
are interested in, we are able to use 56 (35) jackknives for NGC (SGC)
(Fig. 1). We make sure that jackknife resampling is unbiased by
comparing the mean of all the jackknife estimates with the estimate
using the full data sample. It turns out that for the statistics in this
work, they are always consistent. However, the number of jackknives
used may not be enough to give us accurate estimates of the CMs,
especially the off-diagonal terms (i.e. cross-correlations between
different scales), whose relative strength compared with variances
(diagonal terms) can be quantified with the correlation matrix,

Corr (C)ij = Cij√
CiiCjj

, (13)

where C denotes the CM.
The estimated Ĉ for a multivariate Gaussian vector with a limited

number of samples follows the Wishart distribution, which is an
unbiased estimate of the true CM, C. However, Ĉ−1, the inverse of
Ĉ, which obeys the inverse Wishart distribution, is a biased estimate
of C−1 due to the error in Ĉ. This can be corrected with a simple
factor (Hartlap, Simon & Schneider 2007),

Ĉ−1
unbiased =

(
1 − Nd + 1

Ns − 1

)
Ĉ−1 , (14)

where Nd is the size of the data vector and Ns is the number of
samples. Furthermore, the error in Ĉ propagates to the CM of the
model parameters in the maximum-likelihood fitting (Dodelson &
Schneider 2013). This can be corrected by multiplying the factor

M = 1 + B(Nd − Np)

1 + A + B(Np + 1)
(15)

to the CM of the parameters (Percival et al. 2014), where Np is the
number of parameters and

A = 2

(Ns − Nd − 1)(Ns − Nd − 4)
,

B = Ns − Nd − 2

(Ns − Nd − 1)(Ns − Nd − 4)
. (16)

It should be noticed that the above corrections are derived for
independent samples like the simulations, which may not be the
proper solution for jackknife samples (Taylor, Joachimi & Kitching
2013). However, more detailed discussion is out of the scope of this
paper, which we leave for future work. Specifically in this work, two
CMs are used for fitting purposes. One is for the 2PCF of quasars in
RSD fitting and the other is for the fitting of EG(�) over scales.

4 A N G U L A R P OW E R SP E C T R A

In this section, we describe the theoretical models and estimators for
the angular power spectra. We also discuss the influence of possible
systematics and the corresponding calibrations applied.

4.1 Theory

The analytic expressions for the angular power spectra can be derived
by integrating the 3D power spectra P(k, z) over the wavenumber k,
with proper radial projection kernels F(χ ) applied. At high �’s (e.g. �
> 10 is good enough for the wide redshift bin of the quasar sample),
the spherical Bessel functions j�(kχ ) vary fast compared with F(χ ),
which picks out the scale k � (� + 1/2)/χ (z). Based on this, the
Limber approximation replaces the j� with the Dirac delta function,
which significantly speed up the numerical evaluation of the integral.
In what follows, this approximation is always applied.

The CMB lensing × quasar cross-power spectrum reads

C
κq

� = 1

2

∫ z2

z1

dzχ−2(z)W (z)fq (z)P∇2(	−
)q

(
� + 1/2

χ (z)
, z

)
, (17)

where χ (z) is the radial comoving distance at redshift z, W(z) =
χ (z)[1 − χ (z)/χ (zCMB)] is the CMB lensing kernel with zCMB �
1100, fq (z) = 1

N
dN
dz

is the normalized quasar redshift distribution,
and P∇2(	−
)q (k, z) is the 3D cross-power spectrum of the two fields.
Assuming GR and using the Poisson equation to replace the lensing
convergence with matter perturbation, equation (17) can be written
as

C
κq

� = 3�m,0H
2
0

2c2

∫ z2

z1

dzχ−2(z)(1 + z)W (z)fq (z)

×Pmq

(
� + 1/2

χ (z)
, z

)
. (18)

Similarly, the quasar auto-power spectrum is given by

C
qq

� =
∫ z2

z1

dzχ−2(z)
H (z)

c
f 2

q (z)Pqq

(
� + 1/2

χ (z)
, z

)
, (19)

where H(z) is the Hubble parameter at redshift z. On linear scales,
the quasar overdensity field δq(k, z) is connected to the underlying
matter perturbation δm(k, z) with a local bias, δq(k, z) = b(z)δm(k,
z), where b(z) is the linear bias of the quasar sample at redshift z. In
general, b(z) could also be scale-dependent due to primordial non-
Gaussianity (PNG, Dalal et al. 2008), which introduces an additional
scale-dependent part whose amplitude is parametrized by fNL. This
scale dependence for local PNG decreases rapidly (∝ k−2) with
scale, and given the latest constraint fNL = −0.9 ± 5.1 reported
by Planck Collaboration IX (2020), we should be allowed to assume
a scale-independent bias. It is worth mentioning that our estimators
of the angular power spectra (Section 4.2 below) do not directly
rely on these theoretical predictions, and a redshift dependent b(z)
model may only matter in the C� calibration, as discussed below
equation (7).

Later in our analysis it will be useful to have analytic expressions
for statistical errors of C

κq

� and C
qq

� . Assuming κ and q to be Gaussian
fields, the sample variance of C

κq

� can be approximated as

σ 2(Cκq

� ) = 1

(2� + 1)f κq

sky

[
(Cκq

� )2 + (Cκκ
� + Nκκ

� )(Cqq

� + N
qq

� )
]

= (r2
� + 1)

(2� + 1)f κq

sky

(Cκκ
� + Nκκ

� )(Cqq

� + N
qq

� ) , (20)

where r� ≡ C
κq

� /[(Cκκ
� + Nκκ

� )(Cqq

� + N
qq

� )]1/2 is known as the
cross-correlation coefficient, Nκκ

� is the lensing reconstruction noise,
N

qq

� is the shot noise, and f
κq

sky is the overlapped sky coverage fraction
of the surveys. Similarly, we have the variance for C

qq

� ,

σ 2(Cqq

� ) = 2

(2� + 1)f q

sky

(Cqq

� + N
qq

� )2 . (21)
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When the multipoles �’s are averaged into bandpowers p’s (as dis-
cussed below) weighted by inverse variance (i.e. minimum variance
average of Gaussian random vectors assuming no covariances), the
uncertainty for the binned signal is given by

σ (Cp) =
⎡
⎣∑

�∈p

σ−2(C�)

⎤
⎦

−1/2

. (22)

These analytic uncertainties, which include the well-known lensing
reconstruction and shot noise, have been widely used in doing
forecasts. So it would be useful to have them as references and
compared to the statistical errors estimated with simulations and
jackknife resampling.

4.2 Estimators

Due to the noise and computational complexity, it is neither necessary
nor possible to estimate C� for each multipole. Thus, we bin the
multipoles into bandpowers, denoted with subscript p.1 Here, we
briefly describe the estimators we use for Cκq

p and Cqq
p .

We estimate Cκq
p with the pseudo-C� (PCL) estimator,

Ĉκq
p =

∑
p′

[
M−1

]
pp′ D̂

κq

p′ , (23)

where M is the binned mode coupling matrix computed with the
masks of the two fields and D̂κq

p is the binned cross-power spectrum
of the masked full sky maps,

D̂κq
p =

∑
�∈p

w�

(
1

2� + 1

�∑
m=−�

κ∗
�mq�m

)
, (24)

where w� is the normalized weight of each multipole inside the
bin, and κ�m and q�m are the harmonics of the masked (i.e. with
pixel values set to 0 if not covered) κ and q maps. We use the
fast implementation NAMASTER 2 (Alonso et al. 2019) to do the
computation. For the maps used in this work, the results of this more
complicated PCL estimator are consistent with the results given by
the simpler version Ĉκq

p � D̂κq
p /f

κq

sky, where the couplings between
modes due to the geometry of the masks are ignored.

For the cross-correlation, the noise in the two maps from separate
surveys are usually uncorrelated and only contributes to the statistical
error without causing systematic bias. However, the situation is more
complicated for the auto correlation because the noise may not be
correlated to the signal but is obviously correlated with itself and
hence can significantly bias the signal. Thus for the estimation of
Cqq

p , instead of the PCL estimator, we use the optimal quadratic
minimum variance (QMV) estimator which marginalizes over the
noise (Tegmark 1997). We denote the pixelated quasar overdensity
map with an 1D vector x and the corresponding CM with C. Defining
the quadratic vector

Q̂p = 1

2
x†C−1 ∂C

∂Cp

C−1x , (25)

and the Fisher matrix

Fpp′ = 1

2
Tr

(
C−1 ∂C

∂Cp

C−1 ∂C
∂Cp′

)
, (26)

1To be clear, we use p in this subsection. But for simplicity and consistency
with the theory, we still use subscript � for the bandpowers in the following
sections.
2https://github.com/LSSTDESC/NaMaster

the estimator can be constructed as

Ĉqq
p =

∑
p′

[
F −1

]
pp′ Q̂p′ . (27)

The shot noise is properly fitted and marginalized in the estimation.
In this work, x includes ∼106 pixels, which makes it computationally
impossible to invert C directly. We use the conjugate gradient method
to iteratively evaluate C−1x and the trace for the Fisher matrix.
This optimal QMV estimator has been used in previous CMB and
galaxy power spectra analysis, and we refer our readers to the ref-
erences (Padmanabhan, Tegmark & Hamilton 2001; Padmanabhan,
Seljak & Pen 2003; Padmanabhan et al. 2007; Hirata et al. 2004,
2008; Ho et al. 2008) for more details.

4.3 Systematics and calibrations

Compared with the theoretical predictions in equations (18) and (19),
the estimated power spectra can be biased due to several aspects, most
of which are hard to be corrected in the estimators above and hence
extra calibrations might be needed. For the quasars, the observed
flux and measured redshift from the photometric and spectroscopic
surveys are distorted due to the foreground density perturbation and
RSD. There can also be bias due to redshift smearing. For the CMB
survey, the temperature map can be contaminated by foregrounds,
for example, dust emission and point sources. Here, we mainly
focus on the bias caused by the distortion of quasar catalogues. The
possible systematics due to contamination in CMB are discussed in
Appendix A, where it is shown that the bias to Ĉ

κq

� is negligible.
Our observed targets are distorted by the gravitational lensing

of the foreground density perturbations. First, compared with the
intrinsic value, the flux of an individual source can be either increased
or decreased by lensing. This can cause bias to the flux or magnitude-
based target selection of the clustering catalogue. Also, the observed
angular distribution of the targets can be magnified. These effects
can be quantified by the magnification bias s (Liu et al. 2014; Hui,
Gaztañaga & Loverde 2007), which can be measured with the slope
of the cumulative apparent magnitude function,

s = d log10 nq (m < m∗)

dm

∣∣∣∣
m=m∗

, (28)

where m∗ is the faint magnitude limit of the survey and nq(m <

m∗) is the number of quasars that are apparently brighter than
the survey limit. Depending on the value of s and the linear
bias b, our estimates of the power spectra can be more or less
biased (Dizgah & Durrer 2016). Following Yang & Pullen (2018,
see Section 2 and Appendix A therein for the expressions using
Limber approximation), we do the calibration by adding correction
terms �Ĉ

κq

� and �Ĉ
qq

� to our estimates from equations (23) and (27).
Besides s and b, these corrections also depend on the measured CMB
lensing auto-power spectrum Ĉκκ

� . The target selection for eBOSS
quasars includes the magnitude cutoff for two frequency bands, g <

22 or r < 22 (Myers et al. 2015). Looking into the apparent point
spread function (PSF) magnitudes, we find that the overall cut-off
is mainly dominated by the r band. With equation (28), we get s �
0.1 for both NGC and SGC. The corrections are around 13 per cent
for C

κq

� and 7 per cent for C
qq

� , which results in about 5 per cent
calibrations in EG(�).

RSD describes the distortion in the observed radial positions of the
targets due to peculiar velocities. Although the redshift details are
mostly erased in the projection of 2D angular maps and 3D clustering
is usually used in RSD analysis (as discussed in the next section),
RSD could still bias the angular power spectra mainly due to the

MNRAS 501, 1013–1027 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/1/1013/6006288 by guest on 19 April 2024

https://github.com/LSSTDESC/NaMaster


Testing GR with quasar and CMB lensing 1019

flow at the cut-off boundaries of the redshift bin. Starting from the
additional RSD component in the window function (see equation 27
in Padmanabhan et al. 2007) and using Limber approximation, the
bias on C

κq

� due to RSD can be described with a higher order term,

C
κq,r

� = 3�0
mH 2

0

2c2

∫ z2

z1

cdz

H (z)
K(�, χ )f (z)χ−2W (z)Pm

(
� + 1/2

χ
, z

)
,

(29)

where f(z) is the linear growth rate and

K(�, χ ) ≡ 2�2 + 2� − 1

(2� − 1)(2� + 3)
φ(χ )

− �(� − 1)√
2� − 3(2� − 1)

√
2� + 1

φ

(
� − 3/2

� + 1/2
χ

)

− (� + 1)(� + 2)√
2� + 1(2� + 3)

√
2� + 5

φ

(
� + 5/2

� + 1/2
χ

)
, (30)

where φ(χ ) = fq (z) H (z)
c

is the normalized quasar redshift distribu-
tion as a function of the comoving distance. Similarly, the bias on
C

qq

� can be described with two extra terms,

C
qq,r

� =
∫ z2

z1

cdz

H (z)
K(�, χ )

H (z)

c
χ−2f (z)b(z)Pm

(
� + 1/2

χ
, z

)
(31)

and

C
qq,rr

� =
∫ z2

z1

cdz

H (z)
K2(�, χ )

H (z)

c
χ−2f 2(z)Pm

(
� + 1/2

χ
, z

)
.

(32)

For the multipoles we are considering, 100 ≤ � ≤ 1000, we
find C

κq,r

� /C
κq

� < 10−4, Cqq,r

� /C
qq

� < 10−4, and C
qq,rr

� /C
qq

� < 10−8,
where C

κq

� and C
qq

� are the true power spectra in equations (17)
and (19). So the bias due to RSD is completely negligible. This is
expected since the redshift bin 0.8 < z < 2.2 for the quasar sample is
wide, while the distortion only happens around the edges of the bin.
Similarly, the bias due to redshift smearing error from the redshift
fitting pipeline should also be negligible for these angular power
spectra.

5 R EDSHIFT-SPAC E D ISTO RTION

We estimate the RSD parameter β of the quasar sample at the
effective redshift by fitting an analytic model to the monopole and
quadrupole of the configuration space 2PCF.

5.1 Two-point correlation function

The 2PCF is estimated with the standard Landy & Szalay (1993)
estimator,

ξ = 〈DD〉 − 2〈DR〉 + 〈RR〉
〈RR〉 , (33)

where D is the data catalogue, R is the random catalogue, and
〈 〉 denotes the normalized pair count between two catalogues. We
sample the pair counts in ( s, μ) bins, where s is the separation
distance and μ is the cosine of the angle between the line-of-sight
(LOS) and separation vectors. We use a bin size of 5 h−1Mpc for s
and 0.01 for μ. The multipoles are extracted by expanding the 2PCF
in Legendre polynomials,

ξ (s, μ) =
∑

�

ξ�(s)L�(μ) , (34)

where

ξ�(s) = 2� + 1

2

∫ 1

−1
ξ (μ, s)L�(μ)dμ . (35)

The two lowest order even multipoles, monopole ξ 0(s) and
quadrupole ξ 2(s), are used in the following fitting process. The non-
zero quadrupole results from the peculiar velocity due to gravity and
contains the information about the growth of the structure and RSD.
For jackknife resampling, the pair count process is optimized to get
the results for all samples in one run.3 For the large number of mocks,
we count the pairs with CORRFUNC 4 (Sinha & Garrison 2020).

5.2 CLPT-GS model

The analytic model of the 2PCF we use is a combination (Wang,
Reid & White 2013) of the Convolution Lagrangian Perturbation
Theory (CLPT, Carlson, Reid & White 2012) and the Gaussian
Streaming (GS) model (Reid & White 2011). In the GS model, the
correlation function in redshift space is given by

1 + ξ (s, μ) =
∫

dy
1 + ξ (r)√
2πσ 2

12(r, μ)
exp

{
− [sμ − y − μv12(r)]2

2σ 2
12(r, μ)

}
,

(36)

where the real space correlation function ξ (r), pairwise velocity
v12(r) and velocity dispersion σ 2

12(r, μ) are outputs from CLPT
modified by the growth rate f, and the first- and second-order
Lagrangian bias, F

′
and F

′′
. On linear scales, the (Eulerian) bias

and RSD parameter are given by b = 1 + F
′
and β = f/b respectively.

F
′
and F

′′
can also be constrained with a single overdensity parameter

ν through peak-background split (White 2014),

F ′ = 1

δc

[
aν2 − 1 + 2p

1 + (aν2)p

]
,

F ′′ = 1

δ2
c

[
a2ν4 − 3aν2 + 2p(2aν2 + 2p − 1)

1 + (aν2)p

]
, (37)

where a = 0.707 and p = 0.3 with the Sheth–Tormen mass
function (Sheth & Tormen 1999), and δc = 1.686 is the linear critical
overdensity of spherical collapse. To account for the finger-of-god
(FoG) effect and redshift smearing error, σ 2

12 is modified by adding a
nuisance term σ 2

tot = σ 2
FoG + σ 2

z , where σ FoG and σ z are degenerate in
this model. CLPT takes the matter power spectrum as a input, which
is calculated using CAMB5 (Lewis, Challinor & Lasenby 2000) with
our fiducial cosmological parameters. This CLPT-GS model has been
used in the RSD analysis of CMASS galaxies in 0.43 <z < 0.7 (Alam
et al. 2015), BOSS DR12 galaxies in 0.2 < z < 0.7 (Satpathy et al.
2017), and eBOSS DR14 quasars in 0.8 < z < 2.2 (Zarrouk et al.
2018).

5.3 Parameters distribution sampling

Given the data and analytic model of the 2PCF, we construct a
multivariate Gaussian likelihood function,

L(θ |ξ̂ ) ∝ exp

[
−1

2

(
ξ (θ ) − ξ̂

)T
Ĉ−1

(
ξ (θ ) − ξ̂

)]
, (38)

where ξ̂ is the data vector consists of ξ̂0 and ξ̂2, Ĉ is the estimated CM
of ξ , and ξ (θ ) is the output of the CLPT-GS model described above

3https://gitlab.com/shadaba/CorrelationFunction
4https://github.com/manodeep/Corrfunc
5https://camb.info
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Figure 3. Correlation matrices (equation 13) of ξ0, 2, a 1D vector consists
of monopole and quadrupole, estimated with jackknife resampling (left) and
1000 EZ mocks (right) for NGC (upper) and SGC (middle). ξ0 and ξ2 sample
points with separation distances 30 ≤ s ≤ 135 are included (Fig. 6), which
gives 42 data points in total. The lower panel shows the ratio of the 1 σ errors
estimated with the two methods, that is, σ jackknife/σmock.

with the set of free parameters denoted as θ . We estimate Ĉ with
1000 EZ mocks and do the correction as described in Section 3.3.
As a comparison, Ĉ is also estimated with jackknife resampling. We
plot the correlation matrices of Ĉ with both methods and the ratio
of the statistical errors in Fig. 3. We can see that compared with
the mocks, jackknife resampling tends to overestimate the statistical
errors and the relative strength of the covariances (i.e. the off-diagonal
terms). Considering that the number of jackknives we are using
is not very large, which hence may not be able to give us well-
constrained estimates, here we use the simulated Ĉ in the likelihood
function. The set of free parameters θ includes the RSD parameter
β, the overdensity parameter ν, and a nuisance velocity dispersion
term σ tot. Flat priors are used for these parameters and the posterior
distribution is sampled using Markov Chain Monte Carlo (MCMC)
with EMCEE 6 (Foreman-Mackey et al. 2013).

6 R ESULTS

In this section, we first discuss the methods of combining NGC and
SGC. Then, we present our estimates of the angular power spectra
C

κq

� and C
qq

� , and the RSD parameter β. These are then combined
into EG(�) at the five bandpowers, with which we find the best-fitting
scale-independent ĒG estimate.

6.1 Combination of NGC and SGC

As mentioned in Section 3.1, the quasar sample comprises two
catalogues, which correspond to two separate regions on the sky,

6https://github.com/dfm/emcee

namely NGC and SGC. A proper combination of the two caps,
which we denote as NS, should give us better constrained estimates.
Throughout the data analysis pipeline in this work, this process can
be conducted at several stages.

First, at the raw data level, the simplest approach is to put the two
caps together before doing any estimation. For the quasar overdensity
map, we may simply use all the quasars in the two catalogues to
make one map or merge the two overdensity maps into one. For
the estimation of the correlation function, we may combine the pair
counts in the Landy & Szalay estimator. However, we do not do
the combination at this data level since NGC and SGC are observed
with different photometric calibrations and have different number
densities (Fig. 2), which result in different shot noise and other
possible systematics. For the estimation of C

qq

� , where the shot noise
contributes much more than the signal at smaller scales, this simple
combination of two maps with different shot noise is not optimal.

Instead of combining the data of the two caps directly, we measure
C�’s and β separately for the two caps, which are then averaged to
get the estimates for NS. This process is conducted for the full
data sample, simulations and jackknife samples. Assuming no cross-
correlation between the two caps, the average is weighted with
inverse variances, which are estimated with the 300 simulations. For
jackknife resampling, 91 = 56 + 35 jackknife estimates for NS are
constructed by averaging each of the jackknife estimates from one
cap with the full estimate from the other cap. It is worth mentioning
that the jackknife estimates for NS are not constructed by simply
stacking NGC and SGC estimates together, since the 91 jackknives
should make up a complete sample from which one jackknife region
is left out each time. This also requires that we are using equal
weights when making jackknife regions for NGC and SGC separately
in order to make sure that they are statistically equivalent. Adhering
to the advantage of being dependent only on the data, the variances
used in these averages are also estimates from jackknife resampling
instead of simulations or analytic uncertainties. These variances for
jackknives should also be rescaled with the ratio of fsky’s between the
leave-one-out jackknife mask and the full mask, while the difference
is negligible.

At last, we may also do the average with estimates of EG(�) or ĒG

for the two caps. As long as the error distributions of C�’s, β and
EG are approximately Gaussian, this should be consistent with the
method above.

6.2 Cκq
� and Cqq

�

We consider the multipoles 100 ≤ � ≤ 1000 for our analysis of
the angular power spectra and EG(�). This corresponds to the linear
scales 19 < χ⊥ < 190 h−1Mpc with the radial comoving distance
χ (z = 1.5) = 3029 h−1Mpc given our fiducial cosmology. We do not
consider smaller scales since EG is well defined only on linear scales.
The largest scale that can be probed is limited by the spatial size of the
sample and the trade-off between the number of jackknives. These
multipoles are binned into five evenly spaced bandpowers on the log
scale, and thus � indices for the estimates denote the bandpowers. We
do not use narrower bins because the low signal-to-noise ratio (S/N)
of C

qq

� bandpowers at small scales could result in outliers in the EG(�)
estimates with the 300 simulations, whose error distribution would
no longer be appropriate for estimating the Gaussian CM. Also, EG

as a ratio of noisy quantities can be biased, hence using wider bins
with smaller errors is preferable.

The estimates of C
κq

� and C
qq

� are shown in the upper panels
in Figs 4 and 5 respectively, with the statistical 1 σ errors given
by simulations. For reference, we also plot the analytic models
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Figure 4. CMB lensing convergence κ × quasar overdensity q angular cross-
power spectra. The crosses are estimates using Planck 2018 CMB lensing
map and eBOSS DR16 quasar clustering catalogues. We shifted the data
points of NGC and SGC horizontally in the plot for reading convenience. For
reference, we also plot the analytic model (equation 18) with a linear bias b =
2.32 fitted from C

qq
� /C

κq
� . The statistical 1 σ errors are estimated with 300

simulations. The middle panel includes the comparison of error estimates for
NS using simulations and jackknife resampling with the analytic uncertainties
(equation 20). Individual and cumulative S/Ns for NS over the bandpowers
are shown in the lower panel, where the cumulative S/N starts from the
smallest scale (i.e. highest �) and the covariances between scales are included
(equation 39).

discussed in Section 4.1, with a linear bias b fitted from C
qq

� /C
κq

� .
It is worth noticing that for C

qq

� estimates with quasar mocks, NGC
and SGC are not very well consistent on the largest scale bandpower.
This might be caused by observational effects like completeness
levels or systematic weights that are different for the two caps.
A better understanding requires more simulations with different
possible systematics applied, which we leave for future work. We
do not have C

κq

� signals with simulations since as mentioned, our
simulated κ maps and quasar mocks are not correlated. Besides
simulations, the statistical errors are also estimated with jackknife
resampling. In the middle panels, we show the comparison of the
error estimates from both methods with the analytic uncertainties in
equations (20) and (21), where the quasar bias and shot noise are
derived from data. As expected, the error estimates are mostly higher
than the analytic uncertainties where only the lensing reconstruction
and shot noise are considered. Even though our simulated κ maps
and quasar mocks are not correlated, the underestimation in σ (Cκq

� )
is negligible due to the low cross-correlation coefficient r� < 0.2 (see
equation 20). We measure the marginalized S/N over scales with the
full CM

S/N (C�) =
(∑

�,�′ C�C−1
��′ C�′

)1/2
(39)

to quantify the overall strength of the signal, where as mentioned
above the summation runs over the five bins for the estimates.
The individual S/N for each bandpower and the cumulative S/Ns

Figure 5. Quasar overdensity angular auto-power spectra, with similar
information as Fig. 4. The shaded area denotes the average and 1 σ error
bar of estimates from 300 EZ mocks. The analytic model in equation (19)
is plotted for reference, with the same bias used in Fig. 4. The analytic
uncertainty is computed with equation (21).

starting from the highest-� band are shown in the lower panels.
For C

κq

� , both methods give similar errors and hence comparable
S/Ns. While for C

qq

� , jackknife resampling errors are higher than that
from simulations. We are not doing any fittings with these angular
power spectra, so more comparisons between the two methods are
discussed in Section 6.4, where the CMs for EG(�) are presented.
With the simulated CMs, we get overall S/N(Cκq

� ) = 12.5 and
S/N(Cqq

� ) = 14.0 for NS. Although the S/N for each band depends
on our binning scheme, the overall value should remain roughly the
same.

6.3 RSD parameter

We show the estimated monopole and quadrupole of the 2PCF of
the quasar catalogues in Fig. 6, along with the best-fitting CLPT-
GS model and the 1000 EZ mocks. Data points with separation
distances 30 ≤ s ≤ 135 h−1Mpc are included in the RSD fitting. We
do not use smaller scales s < 30 h−1Mpc where the CLPT-GS model
has not been validated. We apply larger scale cut-off to optimize the
model calculation (Alam et al. 2015) and remove any very large
scale systematic in the QSO sample (Castorina et al. 2019). Also, the
contribution to our RSD fitting for the scale-independent parameters
from these larger scales should be negligible due to the large errors.
The goodness of fitting is given as χ2/d.o.f. = 35/40 (45/40) for NGC
(SGC).

The posterior distributions with flat priors (i.e. likelihood func-
tions) of the RSD parameter β, the overdensity parameter ν, and the
nuisance velocity dispersion parameter σ tot are shown in Fig. 7. For β

and ν, while slight skewness is observed, the distributions are approx-
imately Gaussian around the maximum-likelihood estimates. This
skewness might be caused by the strong cross-correlation with σ tot

at large values, as we can tell from the banana-shaped contours. These
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Figure 6. The monopole and quadrupole of the 2PCF with the best-fitting
CLPT-GS model. The crosses are estimates using eBOSS DR16 quasar NGC
(upper) and SGC (lower) clustering catalogues. The grey shaded area denotes
the mean and 1 σ error of the 1000 EZ mocks used to estimate the CM in
equation (38). Notice that the overall sky mask with CMB lensing has been
applied on both the data and EZ mock catalogues. The two vertical dashed
lines enclose the data points used in RSD fitting, with separation distances
30 ≤ s ≤ 135 h−1Mpc.

covariances with velocity dispersion might be better constrained
with an optimized modelling that breaks the degeneracy between
the FoG effect and the redshift smearing error. For σ FoG, a scale-
dependent analytic model would be more accurate. The constraint
on σ z could also be improved by constructing an informative prior
based on redshifts measured with different methods. The best-fitting
estimates for the marginalized distribution of each parameter along
with the confidence intervals are summarized in Table 2. Though the
confidence intervals inferred from posterior distributions are quoted
for reference, these are not propagated to the error estimation of
EG(�). As mentioned in Section 3.3, to estimate the full CM for
EG(�), we also need to run all the simulations through the data
analysis pipeline, including the RSD fitting process. For the 300
EZ mocks, the average along with the standard deviation of the
best-fitting estimates are fσ 8 = 0.380 ± 0.055 for NGC and fσ 8 =
0.366 ± 0.067 for SGC, which are consistent with the fiducial value
fσ 8 = 0.381 given the cosmological parameters used in the EZ mock
simulation. The analysis of MCMC chains including the plots and
statistics is conducted with the usage of CHAINCONSUMER 7 (Hinton
2016).

For our consistency test of �CDM-GR on the data, we are
allowed to fix the fiducial cosmological parameters in this RSD
fitting process since the Planck 2018 results are measured to very
high accuracy, and a flat prior based on this will not really change

7https://github.com/samreay/ChainConsumer

Figure 7. Posterior distributions of the parameters in RSD fitting, sampled
with MCMC. The properties of the marginalized distributions of individual
parameters are summarized in Table 2.

Table 2. The maximum-likelihood estimates of the RSD parameters with flat
priors, where the 68.3 per cent confidence intervals are quoted with L(θ−) =
L(θ+).

Parameter β ν σ tot

Prior [0, 1] [1, 3] [0, 16]

NGC 0.449+0.091
−0.063 2.047+0.056

−0.072 7.2+2.1
−4.3

SGC 0.474+0.093
−0.082 1.991+0.081

−0.089 0.63+3.89
−0.58

the marginalized distribution of the RSD parameters given the
statistical accuracy. If the true parameters are statistically different
from Planck results or �CDM-GR is not a proper model, we should
be able to see the deviation of EG(�) estimates from the �CDM-
GR prediction with Planck parameters. From β and ν, we can also
infer the posterior distribution of the linear growth rate, which gives
f σ8 = 0.424+0.064

−0.047 for NGC and f σ8 = 0.430+0.058
−0.057 for SGC. Our

estimates are consistent with the eBOSS DR16 consensus result
of the quasar sample, f σ c

8 (zeff = 1.48) = 0.462 ± 0.045, which is
a combination of the configuration space (Hou et al. 2020) and
Fourier space (Neveux et al. 2020) analysis. The possible sources
of difference include the overlapped mask with CMB lensing, fixed
Alcock–Paczynski (AP, Alcock & Paczynski 1979) parameters and
a different analytic model used in this work. The combination of
ξ (s) and P(k) analysis could also help reduce the systematics in the
consensus result (Smith et al. 2020). A more detailed discussion of
models and systematics in RSD fitting is out of the scope of this
work, thus we refer our readers to the series of papers presenting
the eBOSS final data release (eBOSS Collaboration et al. 2020).
In the RSD analysis of eBOSS DR14 quasar catalogue using the
same CLPT-GS model (Zarrouk et al. 2018), a shift on the linear
bias �bσ 8 = 0.037 was observed when F

′′
was set free instead of

fixed. So besides the main analysis using ν and peak-background
split, we also do a test by running the RSD fitting with free F

′
and

F
′′

parameters on the data sample. For the RSD parameter we are
interested in, we get β = 0.445+0.090

−0.059 for NGC and β = 0.458+0.101
−0.069

for SGC, which are consistent with the values in Table 2.
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Figure 8. EG estimates using Planck 2018 CMB lensing map and eBOSS
DR16 quasar clustering catalogues. The data points for NGC and SGC
are shifted horizontally in the plot for reading convenience. The green
solid line and shaded area is the �CDM-GR prediction using the Planck
2018 CMB + BAO matter density parameter and 1 σ uncertainty, �m =
0.3111 ± 0.0056. The 1 σ error bars are estimated using simulations, with
the comparison to errors given by jackknife resampling shown in the middle
panel as σ jackknife/σ simulation. As in Figs 4 and 5, the individual and cumulative
S/Ns of the bandpowers are shown in the lower panel.

6.4 EG estimates

We combine our estimates of C
κq

� , C
qq

� , and β into EG(�) following
equation (5), with the calibration in equation (7) applied, which
shifts the EG(�) signals lower for about 5 per cent. We find the factor
�(z̄ = 1.5) � 0.74 for both caps and NS.The EG(�) estimates for
the bandpowers are shown in Fig. 8, where the 1 σ statistical errors
for individual bins are determined using simulations. These errors
are also estimated using jackknife resampling, with the comparison
shown in the middle panel. We see that EG(�) estimates at all the
five bandpowers agree with the GR prediction at 1 σ level, and we
could not see an obvious scale-dependence pattern. Unlike the power
spectra (Figs 4 and 5), the theoretical EG model does not depend
on the clustering bias and is thus independent of the estimates,
which makes the comparison between theory and observations more
straightforward. Since the RSD parameter β is assumed to be
scale-independent, the fluctuations of EG(�) estimates are mainly
determined by the ratio C

κq

� /C
qq

� (see Fig. B1). As discussed in
Section 6.1, to get EG(�) estimates for NS, we can combine NGC
and SGC at either the {C�

′s, β} level or EG(�) level. The NS signals
shown in Fig. 8 are derived using the first method, which are
consistent with that using the second method. For the scale-averaged
ĒG discussed below, besides fitting EG(�) of NS, we can also do the
fitting for NGC and SGC separately and then combine the results to
get ĒG for NS. We have tried all these methods, and the results are
consistent within 3 per cent, which is expected as for all the statistical
quantities, the error distributions are approximately Gaussian and the

Figure 9. Estimated correlation matrices (equation 13) of EG(�) with
jackknife resampling (upper) and 300 simulations (lower) for NGC, SGC,
and the combination, NS. The number of jackknife samples is 56 for NGC,
35 for SGC, and 91 for NS.

two spatially separated caps should not be correlated for the scales
we are considering.

Given the consistency between the EG estimates at all the five
scale bins and the scale-independent �CDM-GR prediction, we
further improve the constraint on EG by fitting a constant ĒG over
the five bins. We infer the best-fitting value of ĒG by maximizing
the multivariate Gaussian likelihood function,

L(ĒG) ∝ exp

{
−1

2

[
ÊG(�) − ĒG

]T
Ĉ−1

[
ÊG(�) − ĒG

]}
, (40)

where Ĉ is the estimated CM of EG(�). For this linear fitting model,
the max-L point can be analytically written as

ĒG =
∑

�,�′ Ĉ−1
��′ ÊG(�′)∑

�,�′ Ĉ−1
��′

, (41)

with the statistical error

σ
(
ĒG

) = M ×
(∑

�,�′ Ĉ−1
��′
)−1/2

, (42)

where the summation runs over the five bandpowers for the estimates,
Ĉ−1

��′ is the �, �
′

element of Ĉ inverse with the correction in
equation (14) applied, and M is the calibration factor in equation (15).
As discussed in Section 3.3, we estimate Ĉ with both jackknife resam-
pling and simulations. One defect of the simulations is that the κ maps
and quasar mocks are not correlated. While the impact on σ (Cκq

� )
is negligible compared with the current lensing reconstruction and
shot noise (see Section 6.2), the C

κq

� signal does matter in the CM of
EG(�). To fix this issue, we shift the centre of the error distribution
of the 300 simulated C

κq

� ’s from zero to the expected signal with
a fiducial quasar bias measured from the data. By doing this, the
distribution of the simulated C

κq

� ’s should be roughly equivalent to
what we would get if the simulations were correlated.The correlation
matrices (equation 13) of Ĉ from both methods are shown in Fig. 9,
and the square root ratios of the diagonal terms are shown in the
middle panel in Fig. 8. We see that Ĉ’s given by both methods
include non-negligible cross-correlations between scales. This can
be caused by the fact that we are using one scale-independent β

estimate for all bandpowers, which introduces the same variation
for all of them and hence contributes to the covariances. To test if
Ĉ’s given by jackknife or simulations are well constrained, we take
another approach of estimating ĒG by fitting the ratio R� ≡ C

κq

� /C
qq

�
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Table 3. EG estimates at the effective redshift z̄ = 1.5 averaged over scales
19 ≤ χ⊥ ≤ 190 h−1Mpc with Planck 2018 CMB lensing map and eBOSS
DR16 quasar clustering catalogues. Best-fitting results for NGC, SGC, and
the combination NS with simulated Ĉ are quoted with 1 σ statistical errors.
The deviations from �CDM-GR prediction EG(z = 1.5) = 0.3346 with
�m, 0 = 0.3111 are also presented. The last row includes the best-fitting
estimates using Ĉ from jackknife resampling, which are not reported as our
final results due to the possible poor constraints on the CMs (see the text).

Cap NS NGC SGC

EG 0.295 ± 0.054 0.309 ± 0.068 0.272 ± 0.087
Deviation 0.74 σ 0.38 σ 0.72 σ

EG with Ĉjk 0.253 ± 0.050 0.283 ± 0.066 0.214 ± 0.076

over the five scale bins first, which is then divided by the scale-
independent β. In that case, CM for R� instead of EG(�) is estimated
but final ĒG estimates should be consistent if CMs in both approaches
are well constrained. More details are included in Appendix B. It is
shown that the covariances of R� are much weaker (Fig. B2) than that
of EG(�) (Fig. 9), which is expected without the same β variation for
all bins. The two approaches give consistent final results with Ĉ’s
given by simulations. While with jackknife resampling, the final ĒG

estimates are more different, especially for SGC. One reason might
be that the numbers of jackknives, with only 35 samples for SGC,
are not enough to get converged estimates. Also, for the two caps,
the observational systematics in the imaging used to target quasars
are different, which may result in different unknown bias. The poor
constraint on Ĉ for either or both of EG(�) and R� can then bias our
fitting for ĒG.

We summarize our best-fitting estimates of the scale-averaged ĒG

in Table 3. Considering the result of the test above and the fact
that the simulations we are using are designed to be as realistic as
possible, that is, including all the known systematics, we take the
estimates with simulated Ĉ as our primary results. Although the
signals are different, the statistical errors given by the two methods
are almost the same. We report a best-fitting ĒG(z � 1.5) = 0.295 ±
0.054 estimate for NS, which is about 0.74 σ lower than the �CDM-
GR prediction with Planck 2018 CMB + BAO �0

m. For the two
separate caps, they agree with each other and NGC is more consistent
with the GR prediction with a 0.38 σ deviation. For reference, the
likelihood functions of ĒG are shown in Fig. 10.

7 C O N C L U S I O N S

EG is a promising probe of gravity on cosmological scales by
combining gravitational lensing and LSS, with the advantage of being
independent of the tracer bias and σ 8. In this work, we estimate EG

at the effective redshift z ∼ 1.5 over scales 19 − 190 h−1Mpc with
the Planck 2018 CMB lensing convergence map and SDSS eBOSS
DR16 quasar clustering catalogues. This is the highest redshift and
largest scale where EG has been estimated so far. We show that
quasars are promising DM LSS tracers for both auto correlation
clustering analysis and cross-correlation with the weak gravitational
lensing signal reconstructed from CMB. Our results are in line with
the �CDM-GR prediction within 1 σ confidence interval. Some
previous estimates of EG at lower redshifts and results in this work
are summarized in Fig. 11. The statistical errors are still too large
to discriminate between different gravity models. This work extends
the redshift baseline of testing GR with EG, while there is still a gap
between z ∼ 0.6 and ∼ 1.5, where EG has not been explored mainly
due to the lack of promising LSS tracers considering the drop in the
CMB lensing kernel.

Figure 10. Likelihood functions of scale-averaged EG, with CMs estimated
using simulations. The green line with shaded area corresponds to the �CDM-
GR prediction with the Planck 2018 CMB + BAO matter density and 1 σ

uncertainty, �m, 0 = 0.3111 ± 0.0056.

Figure 11. Some previous EG estimates and the results of this work. For
reading convenience, some results are slightly shifted horizontally. For the
results in this work, the NS is plotted at the effective redshift z = 1.5.
The data points with white marker face colour are estimated using CMB
lensing while others are estimated with galaxy–galaxy lensing. The solid
line is the �CDM-GR prediction (equation 3) with �m, 0 from Planck 2018
CMB + BAO cosmological parameters.

There are still a few concerns which can be improved in the
future with larger data samples. First, the redshift range 0.8 < z

< 2.2 of the quasar sample in this work is wide, and the effective
redshift description may not be perfect. We tried to split the sample
into smaller redshift bins, and study the redshift evolution of all the
quantities. However, limited by the size of the sample, the S/Ns are
too low to give us reliable estimates. Second, we used both jackknife
resampling and simulations to estimate the CM for EG(�), with the
latter taken for the final result reported. However, we know that both
these two methods have limitations. Although the simulations are
designed to be realistic, it is still possible that there are unknown
systematics that contribute to the covariances. For future surveys
with a larger sky area, a larger number of jackknives would serve
as a reliable comparison. At last, so far the statistical error bars
are still very large, which make it difficult to do a selection of
different gravity models. Also, a rigorous self-consistency test of
any gravity model requires the corresponding fiducial cosmology
and simulations. Besides, it is necessary to have simulated CMB
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lensing maps and galaxy/quasar mocks that are truly correlated for
future surveys where lensing reconstruction and shot noise will be
lower and the contribution to the CM from cross-correlation will no
longer be negligible.

Planck has been a very successful CMB survey which gives the
best constraints on the cosmological parameters so far. The next stage
CMB surveys, for example, CMB-S4 (CMB-S4 Collaboration 2016)
and Simons Observatory (SO; SO Collaboration 2019), will produce
even more accurate maps with higher resolution and lower noise.
BOSS and eBOSS in SDSS has made the largest catalogues of LSS
tracers in the Universe. While DR16 is the last data release of the
series, more and larger LSS surveys are in progress. In the coming
few years, the Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration 2016) survey will target about 17 million ELGs in
the redshift range 0.6 ≤ z ≤ 1.6, which will be able to fill the
gap in Fig. 11. Redshifts of 1.7 million quasars with z < 2.1 as
LSS tracers will also be measured over a sky area of 14 000 deg2,
which corresponds to fsky � 34 per cent. Compared with the eBOSS
sample used in this work, the sky coverage and angular number
density are increased by a factor of 3 and 1.7 respectively. Some
analytic forecasts of constraining EG with future CMB and LSS
surveys are discussed in Pullen et al. (2015), where we can see that
the S/N in this work can be improved by an order of magnitude with
the DESI quasar sample. With all these promising future surveys,
modern cosmology will be able to explore the origin and evolution
of the Universe with higher and higher precision.
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APPENDI X A : C MB CONTAMI NATI ON
SYSTEMATIC BIAS

In this section, we consider the foregrounds, including dust and point
sources, that might contaminate the CMB temperature maps. These
sources can leave signatures in the CMB lensing map and hence bias
our cross-correlation signal with quasars.

We use the galactic dust emission map constructed in Schlegel,
Finkbeiner & Davis (1998). For point sources, we make angular
maps for several Planck point source catalogues, including galac-
tic cold clumps (Planck Collaboration XXVIII 2016), Sunyaev–
Zel’dovich (Sunyaev & Zeldovich 1980) sources (Planck Collabora-
tion XXVII 2016), and compact sources (CS; Planck Collaboration
XXVI 2016) at 100, 143, and 217 GHz. Following Pullen et al.
(2016), we estimate the biases to Ĉ

κq

� by these possible sources

Figure A1. The estimated bias �Ĉ
κq
� to the CMB lensing × quasar cross-power spectrum caused by possible contamination sources in the CMB temperature

map.
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with

�Ĉ
κq

� = Ĉκc
� Ĉ

qc

�

Ĉcc
�

, (A1)

where c is any of the contamination maps, and the errors are given
by

σ 2
(
�Ĉ

κq

�

) = (
�Ĉ

κq

�

)2

[
σ 2(Ĉκc

� )

(Ĉκc
� )2

+ σ 2(Ĉqc

� )

(Ĉqc

� )2

]
. (A2)

The estimates are shown in Fig. A1. We find that the biases are
consistent with zero, with statistical errors that are much lower than
our Ĉ

κq

� signal (Fig. 4). This is expected since the most foreground-
contaminated area of the dust emission map, that is, the Galactic
plane, and the sky regions of many point sources have already been
masked out in the Planck maps. Compared with the previous analysis
for cross-correlating CMASS galaxies (Pullen et al. 2016) with
Planck 2015 CMB lensing map, the removal of the contamination
has been improved for Planck 2018 data release. A similar analysis
has also been conducted for eBOSS DR14 quasars (Han et al. 2019).

APPENDIX B: TEST O N FITTING EG(�) OV ER
SCALES

Here, we take a slightly different approach on fitting EG(�) over
scales (i.e. the five bandpowers) for the scale-averaged ĒG, which
also serves as a test on the reliability of estimating the CMs with
simulations and jackknife resampling.

Figure B1. R� (equation B1) estimates, with similar information as in Fig. 8.
The shaded area in the upper panel is the best-fitting value over scales with
1 σ error, for each of the two caps and the combination.

Figure B2. Estimated correlation matrices, similar as Fig. 9 but for R�

(equation B1).

Table B1. Scale-averaged EG estimates, similar as Table 3, but with the
approach discussed in Appendix B.

Cap NS NGC SGC

EG with Ĉsim 0.294 ± 0.057 0.308 ± 0.073 0.272 ± 0.092
EG with Ĉjk 0.267 ± 0.045 0.291 ± 0.062 0.240 ± 0.066

With our EG(�) estimator given by equation (5) and assuming a
scale-independent RSD parameter β, EG(�) could be scale-dependent
only through the ratio of the angular power spectra,

R� ≡ C
κq

� /C
qq

� . (B1)

Thus fitting EG(�) as discussed in Section 6.4 should be equivalent
to fitting R� over scales first, whose best-fitting estimate is then
combined with β into ĒG. The Gaussian likelihood function and best-
fit value are in the same form as that for EG(�) (equations 40 and 41),
with EG(�) replaced by R�. The key point is that the corresponding Ĉ
is now the CM for R�. We present the estimates and the correlation
matrices of R� in Figs B1 and B2. Compared with that for EG(�)
(Fig. 9), the cross-correlations between scales are weaker, which is
expected since using the same scale-independent β value for all bins
of EG(�) introduces covariances.With the C� (equation 7, which are
almost the same value for the five bins) calibration factor applied,
we summarize the final scale-independent ĒG estimates with this
second approach in Table B1. Compared with the results in Table 3,
the estimates with simulated CMs are well consistent while those
with jackknife resampling CMs differ by 3 per cent for NGC and
12 per cent for SGC. This disagreement in jackknife resampling can
be caused by the small number of samples, which may not be enough
to give us accurate CMs for either or both of EG(�) and R�. On
the other hand, for simulations, the consistency between the two
approaches indicates that the CMs should be well constrained.
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