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ABSTRACT
The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies
adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR
transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L∗
galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement
(SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping,
etc. We self-consistently predict observables including γ -rays (Lγ ), grammage, residence times, and CR energy densities to
constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance
confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially
reduce CR residence times (or Lγ ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K
gas within� 10–30 kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible
scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering
rates would violate observations. We show that the most widely assumed scalings for SC models produce excessive confinement
by factors �100 in the warm ionized medium (WIM) and inner CGM, where turbulent and Landau damping dominate. This
suggests either a breakdown of quasi-linear theory used to derive the CR transport parameters in SC, or that other novel damping
mechanisms dominate in intermediate-density ionized gas.
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1 IN T RO D U C T I O N

Understanding the propagation or bulk transport of cosmic rays (CRs)
through the interstellar, circumgalactic, and intergalactic medium
(ISM, CGM, IGM) remains a fundamental and unsolved problem of
critical importance for high-energy particle physics, plasma physics,
and the astrophysics of star and galaxy formation. In the Milky Way
(MW), and (probably) most dwarf and star-forming galaxies, the CR
energy density and pressure are dominated by relatively low-energy
∼ GeV protons, which are likely accelerated in supernovae (SNe)
remnants (with ∼ 10 per cent of the ejecta kinetic energy going into
CRs; Bell 2004). These ∼ GeV CRs are therefore the most important
population governing the interaction of CRs with gas dynamics,
heating and cooling of the ISM, gamma-ray emissivities of galaxies,
star and galaxy formation, and the excitation of various ‘streaming
instabilities’ and resonant Alfvén waves in the plasma (Kulsrud &
Pearce 1969; Mannheim & Schlickeiser 1994; Enßlin et al. 2007;
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Guo & Oh 2008). There has been a tremendous amount of both
analytic (Everett et al. 2008; Socrates, Davis & Ramirez-Ruiz 2008;
Dorfi & Breitschwerdt 2012; Mao & Ostriker 2018) and numerical
(Jubelgas et al. 2008; Uhlig et al. 2012; Wiener, Zweibel & Oh
2013b; Salem & Bryan 2014; Pakmor et al. 2016; Simpson et al.
2016; Ruszkowski, Yang & Zweibel 2017; Girichidis et al. 2018)
work studying these effects. Recent work on galactic scales has
argued ∼ GeV CRs can play an important role, in particular, in the
CGM, by suppressing accretion on to low-redshift ∼L∗ galaxies,
launching or re-accelerating galactic outflows in these systems, and
strongly modifying the phase structure of cool and warm absorption
systems (Salem, Bryan & Corlies 2016; Butsky & Quinn 2018; Chan
et al. 2019; Hopkins et al. 2020b; Ji et al. 2020; Su et al. 2020).

The transport of these low-energy CRs is especially uncertain
because (1) there are limited direct observational constraints; (2) the
gyro-radii of such CRs are extremely small (� 1 au), much smaller
than observationally resolved scales in most of the MW ISM (let
alone other galaxies); (3) the ‘back-reaction’ of the magnetic fields
and gas from CRs (e.g. excitation of Alfvén waves via gyro-resonant
instabilities) is maximized around this energy scale because this is
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where the CR energy density is maximized, and can strongly non-
linearly alter the propagation of the CRs, i.e. they are ‘self-confined’;
and (4) the structure of the ISM/CGM in which the CRs propagate
is uncertain.

For example, in most of the previous literature, constraints on
CR propagation have been inferred assuming a constant (spatially
universal and time-independent) and isotropic diffusivity κ iso, along
with an analytic time-independent model of the MW gas distribution
that ignores any small-scale phase structure. Most constraints are
also based on ‘leaky box’ or ‘flat halo’ diffusion models where CRs
‘escape’ if they go outside a specified volume (historically, a thin
disc with height ∼ 200 pc). But all these assumptions can be order-
of-magnitude incorrect. Small gyro-radii mean diffusion is strongly
anisotropic, and MW star formation and ISM structure is strongly
time-variable on time-scales well below the CR residence time and
spatially variable on scales�kpc. Perhaps most problematic, it is now
firmly established that essentially all galaxies are embedded in mas-
sive, extended CGM gaseous haloes containing most of the baryons,
with smooth, shallow density profiles extending to � 200 kpc (with
scale lengths ∼ 20–50 kpc; see e.g. Tumlinson, Peeples & Werk
2017, and references therein). In analytic or idealized numerical
‘leaky box’ or ‘flat halo diffusion’ CR transport models when a toy-
model ‘halo’ is added (usually a cylinder of height Hhalo ∼ 1–10 kpc),
the inferred κ iso increases with ∼Hhalo (Strong & Moskalenko 2001;
Vladimirov et al. 2012; Gaggero et al. 2015; Cummings et al. 2016;
Guo, Tian & Jin 2016; Jóhannesson et al. 2016; Korsmeier & Cuoco
2016; Evoli et al. 2017; Amato & Blasi 2018), so this effect alone
can increase the ‘required’ diffusivities by factors of ∼100.

Making matters more complicated, recent work has shown
the properties of the gaseous halo itself can depend strongly
on the ∼ GeV CR transport (Butsky & Quinn 2018; Ji et al.
2020). Moreover, in physically motivated CR transport models,
the local diffusivity is typically a strong function of the local
plasma properties (strength of turbulence, magnetic field strength,
density, ionization level), which vary by orders of magnitude on
∼ 0.1–100pc scales within the ISM.

However, several recent breakthroughs have made real progress
possible. (1) Recent γ -ray observations (mostly from Fermi) have
established strong constraints on ∼ GeV CRs in a number of nearby
galaxies, complementing the classical Solar-neighbourhood con-
straints on inferred CR grammage, residence times, and energy den-
sity. Surprisingly, while the most dense starburst systems observed
appear to be proton calorimeters, all ‘normal’ ∼L∗ and dwarf galaxies
observed (the MW, Andromeda/M31, SMC, LMC, M33) have robust
upper limits or detections indicating that at least ∼ 95–99 per cent of
the ∼ GeV CRs must escape without hadronic collisions, requiring
large diffusivities (Lacki et al. 2011; Tang, Wang & Tam 2014;
Griffin, Dai & Thompson 2016; Fu, Xia & Shen 2017; Wojaczyński
& Niedźwiecki 2017; Lopez et al. 2018; Wang & Fields 2018). (2)
Analytic and numerical work explicitly following transport and scat-
tering of CRs on ‘micro-scales’ (e.g. Bai et al. 2015, 2019; Lazarian
2016; Holcomb & Spitkovsky 2019; van Marle, Casse & Marcowith
2019), coupled to improved intermediate-scale ‘effective fluid’ the-
ories (e.g. Zank 2014; Zweibel 2017; Thomas & Pfrommer 2019),
has begun to yield more detailed prescriptions for the ‘effective’
transport coefficients of CRs as a function of local plasma properties
(appropriate on scales much larger than the CR gyro-radius, but much
smaller than the scales of e.g. ISM phases where these properties
change dramatically), for both extrinsic turbulence (ET) and self-
confinement (SC) scenarios. (3) Cosmological galaxy simulations
can now self-consistently model the time-and-space-dependent phase
structure of the ISM together with extended CGM haloes, while

explicitly following CR populations (Chan et al. 2019; Butsky &
Quinn 2018; Hopkins et al. 2020b; Ji et al. 2020; Su et al. 2020).

In this paper, we synthesize these three advances, to directly
constrain proposed micro-physical models of ∼ GeV CR transport.
To properly model observables like grammage, residence time, and
γ -ray emission, we need to forward-model CR production and trans-
port self-consistently in cosmological simulations which can actually
model the ISM/CGM gaseous haloes and phase structure (since these
strongly influence the observables). The Feedback In Realistic Envi-
ronment (FIRE)1 simulations we use here have been shown to repro-
duce MW and dwarf galaxies with CGM phase structure and gas mass
profiles (van de Voort et al. 2016; Hafen et al. 2019; Ji et al. 2020; Su
et al. 2020), outflow properties (Hopkins, Quataert & Murray 2012b;
Hopkins et al. 2013b; Muratov et al. 2015; Hayward & Hopkins
2017), ISM phases and detailed molecular cloud properties (Hopkins,
Quataert & Murray 2012a; Guszejnov, Hopkins & Ma 2017; Gusze-
jnov et al. 2020), morphologies (Wheeler et al. 2017; El-Badry et al.
2018a, b; Garrison-Kimmel et al. 2018), star formation histories and
masses (Hopkins et al. 2014, 2018b; Garrison-Kimmel et al. 2019),
and magnetic field strengths/morphologies (Su et al. 2017, 2018,
2019; Guszejnov et al. 2020), all consistent with state-of-the-art ob-
servations. These simulations reach ∼ pc resolution, which is much
larger than the gyro-radii rL of ∼ GeV CRs, so we cannot a priori pre-
dict the CR scattering rates (or diffusivity/streaming speeds). How-
ever, this resolution is sufficient to begin to resolve two crucial scales:
(1) the scales of the dominant ISM/CGM phase structures and driving
scales of ISM turbulence and (2) the CR ‘mean free path’ or deflection
length λmfp ∼ c/ν (where ν is the CR scattering rate), for the obser-
vationally favoured values of ν. This means that if we have a model
for the effective diffusion coefficient or ‘streaming speed’ of CRs as
a function of local plasma properties (or for the more complicated
hybrid transport parameters that arise in self-confinement theories),
we can self-consistently resolve the full end-to-end CR transport and
the observables above on galactic scales. In our previous work (Chan
et al. 2019; Hopkins et al. 2020b; Ji et al. 2020; Su et al. 2020),
we did this assuming a simplified anisotropic streaming+diffusion
model with a constant parallel diffusivity κ‖ and parallel streaming at
vst = vA (the Alfvén speed). These works showed that one can obtain
converged solutions that reproduce the observed γ -ray constraints as
well as MW grammage/residence-time constraints. We now extend
this to a variety of detailed physical models for CR propagation,
motivated by both ET and SC models for scattering.

In Section 2, we briefly review the simulation numerical methods,
and in Section 3 we review the different micro-physical CR transport
models surveyed. Section 4 presents the results and compares to
present observational constraints. Section 5 discusses and compares
these in more detail, considers which models are ruled out and dis-
cusses what missing physics might reconcile these with observational
constraints, and compares simple analytic or order-of-magnitude
expectations for various quantities. Section 6 briefly compares to his-
torical simulation and analytic models. We summarize in Section 7.

2 M E T H O D S

2.1 Overview and non-CR physics

The simulations here extend those in Chan et al. (2019, Paper
I) and Hopkins et al. (2020b, Paper II), where numerical details
are described. We only briefly summarize these and the non-CR

1http://fire.northwestern.edu

MNRAS 501, 4184–4213 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4184/6009042 by guest on 25 April 2024

http://fire.northwestern.edu


4186 P. F. Hopkins et al.

physics here. The simulations are run with GIZMO2 (Hopkins 2015),
in its meshless finite-mass MFM mode (a mesh-free finite-volume
Lagrangian Godunov method). All simulations include ideal magne-
tohydrodynamics (MHD), solved as described in Hopkins (2016) and
Hopkins & Raives (2016), and fully anisotropic Spitzer–Braginskii
conduction and viscosity (implemented as in Paper II; see also Hop-
kins 2017; Su et al. 2017). Gravity is solved with adaptive Lagrangian
force softening (matching hydrodynamic and force resolution). We
treat cooling, star formation, and stellar feedback following the FIRE-
2 implementation of the FIRE physics (all details in Hopkins et al.
2018b). We follow 11 abundances (Colbrook et al. 2017; Escala
et al. 2018); cooling chemistry from ∼ 10–1010 K accounting for
a range of processes including metal-line, molecular, fine-structure,
photoelectric, and photoionization, including local sources and the
Faucher-Giguère et al. (2009) meta-galactic background (with self-
shielding) and tracking detailed ionization states; and star formation
in gas which is dense (> 1000 cm−3), self-shielding, thermally Jeans-
unstable, and locally self-gravitating (Hopkins, Narayanan & Murray
2013a; Grudić et al. 2018). Once formed, stars evolve according to
standard stellar evolution models accounting explicitly for the mass,
metal, momentum, and energy injection via individual SNe (Ia and II)
and O/B or AGB-star mass-loss (for details, see Hopkins et al. 2018a),
and radiation (including photoelectric and photoionization heating
and radiation pressure with a five-band radiation-hydrodynamic
scheme; Hopkins et al. 2020a). Our models are fully cosmological
‘zoom-in’ simulations, evolving a large box from redshifts z � 100,
with resolution concentrated in a ∼ 1–10 Mpc co-moving volume
centred on a ‘target’ halo of interest. While there are many smaller
galaxies in that volume, for the sake of clarity we focus just on
the properties of the ‘primary’ (i.e. best-resolved) galaxies in each
volume. The galaxies studied are summarized in Table 2.

2.2 CR physics and basic equations

All simulations here also include CRs as described in Papers I
and II. We evolve a single-bin (∼ GeV) of CRs, or (equivalently)
a constant spectral distribution, as a relativistic fluid (energy density
ecr, pressure Pcr = (γcr − 1) ecr with γ cr = 4/3), with a fixed fraction
εcr = 0.1 of the initial SNe ejecta kinetic energy in each explosion
injected into CRs. CRs contribute to the total pressure which appears
in the gas momentum equation according to the local strong-coupling
approximation. Throughout, we denote the CR gyro/Larmor radius
rL ≡ c/� with c the speed of light and � = Z e c |B|/Ecr the gyro
frequency of the CRs (where e is the electron charge and Ecr/Z ≡
γL GeV, with γ L ∼ 1−10 for the CR protons of interest here).

Following Papers I and II, CRs then obey a standard energy and
flux equation (see e.g. McKenzie & Voelk 1982):

∂ecr

∂t
+ ∇ · (u hcr + F) = u · ∇Pcr − 
st − 
coll + Sin (1)

− (γcr − 1)

κ∗
F = ∇‖Pcr + Dt F

c̃2
. (2)

In equation (1), u is the gas fluid velocity, F the CR flux in the fluid
frame, hcr ≡ ecr + Pcr the CR enthalpy, Sin the CR source injection,
and 
st = MIN(vA, vst) |∇‖Pcr| represents ‘streaming losses’, which
arise because gyro-resonant Alfvén waves (unresolved wavelengths
∼rL) are excited by CR streaming (with speed vst, defined below)
and rapidly damp (Wentzel 1968; Kulsrud & Pearce 1969). These

2A public version of GIZMO is available at http://www.tapir.caltech.edu/∼pho
pkins/Site/GIZMO.html

losses are limited to the Alfvén speed vA, as we show below
(see also Paper I and Ruszkowski et al. 2017). The 
coll term
represents collisional (hadronic and Coulomb) losses with 
coll =
5.8 × 10−16 s−1 cm3 (nn + 0.28 ne) ecr (with nn and ne the nucleon
and free electron number densities), following Guo & Oh (2008).
Of 
coll, all Coulomb (the ne term) and ∼1/6 of the hadronic (nn)
losses are thermalized; 
st is thermalized as well. In equation (2),
∇‖Pcr ≡ (b̂ ⊗ b̂) · ∇Pcr = b̂ (b̂ · ∇Pcr) is the parallel derivative, c̃

is the maximum (physical or numerical) CR free-streaming/signal
speed (≥ 1000 km s−1 here), κ∗ is a local effective diffusivity (defined
below), and Dt F ≡ F̂ [∂|F|/∂t + ∇ · (u |F|) + F · {(F̂ · ∇) u}] is
the derivative operator derived in Thomas & Pfrommer (2019) from
a two-moment expansion of the relativistic Vlasov equation for CRs
(assuming a locally gyrotropic CR distribution in the fluid frame and
vanishingly small gyro radii, to O(v2/c2)).3 Because the gyro radii
of GeV CRs are vastly smaller than resolved scales, they move along
the field lines, with F̂ = b̂ by construction.

As shown in Papers I and II and below, the overwhelmingly
dominant uncertainty in CR transport on these scales comes from the
form of κ∗, which we will explore extensively. Variations to other
choices above, e.g. turning off the sink terms 
st or 
coll, otherwise
altering the functional form of the flux equation (2) (or simply solving
a single energy equation, specifying some equilibrium F), varying
c̃ widely, or varying εcr ∼ 0.05−0.2, all have minor or negligible
effects on our results. These are reviewed in Appendix D.

2.3 Effective CR ‘transport parameters’

We explicitly evolve F according to equation (2). However because
the bulk CR flux, by construction, always points along the magnetic
field direction (F̂ = v̂st = −∇̂‖Pcr = ±b̂), one can always write the
instantaneous flux in terms of an effective local scalar diffusion and/or
streaming coefficient, i.e.

F ≡ −κeff ∇‖ecr ≡ v̄st, eff hcr ≡ −κ̄‖ ∇‖ecr + v̄st hcr, (3)

where v̄st = −v̄st (∇‖Pcr)/|∇‖Pcr| is the streaming velocity, defined
to point along the B-field down the CR pressure gradient. In other
words, we can always simply define κeff ≡ |F|/|∇‖ecr|, or re-write
pure-diffusion (vst = 0) as pure-streaming with v̄st → κ̄‖/(γcr �cr)
(where for convenience we define the parallel CR pressure gradient
scale length �cr ≡ Pcr/|∇‖Pcr|), or vice versa (κ̄‖ → γcr v̄st �cr).

In quasi-steady state (Dt F → 0), the Newtonian limit (c̃ suffi-
ciently large), on scales large compared to the CR mean free path/time
(∼ κ∗/c̃), or in the ‘pure streaming+diffusion’ approximation for
the flux (Dt → 0), equation (2) gives F → κ∗∇‖ecr, so κ∗ → κeff =
κ̄‖ + γ vst �cr exactly. For this and other physical reasons (see Paper
I and Jiang & Oh 2018), we therefore write κ∗ = κ‖ + γcr vst �cr in
equation (2), where we refer to the coefficients κ‖(x, t, . . .) and
vst(x, t, . . .) as the local ‘diffusivity’ and ‘streaming speed’, respec-
tively. But we emphasize that these can be arbitrary functions of the
local plasma properties and their derivatives, so equation (1) does not
necessarily behave like a traditional streaming or diffusion equation.

We will explore variations in the functions κ‖ and vst below,
and we will write and refer to both κ‖ and vst, even though once
they are arbitrary functions, their individual values are irrelevant
to the CR propagation (only the combined function κ∗ is mean-
ingful). Our reason for making this distinction between diffusion

3As discussed in Appendix D, the operator Dt in equation (2) is very slightly
different from that adopted in Paper II, but the difference enters at O(1/c̃2)
and has no effect on our conclusions.
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and streaming is largely historical, and we stress that the traditional
differences in ‘diffusive-like’ versus ‘streaming-like’ behaviour only
apply when κ‖ and/or vst are constants. This is explored further in
Appendix B3.

2.4 The Alfvén speed and gyro-resonant wavelengths

Ideal or Braginskii MHD, in which the Alfvén speed is vA = videal
A ≡

(|B|2/4π ρ)1/2, is an excellent approximation on all resolved scales
in the simulations here (even when fion � 1 in e.g. GMCs),4 But
SC models often refer specifically to the Alfvén speed of gyro-
resonant Alfvén waves, which are vastly shorter wavelength (parallel
wavenumbers k‖ ∼ kL = 2π /λL ∼ 1/rL) and therefore can have
frequencies much larger than the collision frequency between ions
and neutrals in GMCs, and so propagate at the ‘ion-Alfvén’ speed
vion

A ≡ (|B|2/4π ρi)1/2 = f −1/2
ion videal

A (Skilling 1975). Such short-
branch waves are rapidly damped when fion � 1, but the models
can account for this. So in general when we refer to vA, we take
vA = videal

A , but we explicitly note when we consider vion
A .

Anisotropic viscosity in hot, dilute gas formally modifies the
Alfvén speed as well (e.g. Kempski, Quataert & Squire 2019), but
the fractional change in Alfvén speed is small for the hot ISM and
CGM.

3 D IFFERENT CR TRANSPORT MODELS
CONSIDERED

Here, we describe the different CR transport models considered in
this paper, summarized in Table 1. For each of these models, we have
run a suite of cosmological simulations with at least galaxies m11i,
m11f, m12i, chosen because these span a range of masses and, at
each mass, show representative effects and scalings of CRs on galaxy
dynamics in Papers I and II. An illustration of the galaxies and their
properties is shown in Fig. 1.

3.1 Constant-diffusivity models

Lacking a physical model, we can simply assume κ‖ = constant.
This is commonly done in empirical models for CR transport,
and we explored such models extensively in Papers I and II. For
the relatively large diffusion coefficients favoured by observations
(κ‖ ∼ 3 × 1029–30 cm2 s−1, see Section 4), we showed in Papers I and
II that adding or neglecting an ‘additional’ CR streaming at trans-
Alfvénic or trans-sonic speeds made only a very small difference to
our conclusions. This follows from our discussion in Section 2.3:
what matters on large scales is not κ‖ or vst individually but the total
transport function κ∗ = κ‖ + γcr vst �cr, where the second (stream-
ing) term is ∼ 4 × 1027 cm2 s−1 (vst/10 km s−1) (�cr/kpc). Thus, even
factor of ∼10 variations in vst around typical trans-Alfvénic values
amount to ∼ 0.1–10 per cent variations in κ∗ (for κ‖ ∼ 1030 cm2 s−1),
compared to the order-of-magnitude variations in κ∗ ∼ κ‖ which fall
within the ‘allowed’ range.

We stress that these models have no particular physical mo-
tivation: they simply provide an empirical reference point for
the transport speeds ‘needed’ (in the ISM and near-field CGM
where e.g. γ -ray emission originates) to reproduce observational
constraints.

4Formally, the ion-neutral ‘strong-coupling’ approximation (ion-neutral colli-
sion times are short compared to resolved time-scales) applies on all simulated
scales (∼ pc or larger).

3.1.1 Model variant: ‘fast’ transport in neutral gas, ‘slow’ in
ionized gas

In SC scenarios, strong ion-neutral damping can produce rapid
transport in primarily neutral gas. In Farber et al. (2018), the authors
attempt to approximate this effect with a ‘two-κ’ model, with a
constant-but-different diffusivity in neutral and ionized gas.5 We
therefore consider a similar model, parametrized as

κ‖ = 3 × 1029 cm2 s−1

(
1 − fion + fion

30

)
(4)

(with vst = vA), so κ‖ = 3 × 1029 or κ‖ = 1028 cm2 s−1 in neutral or
ionized gas, respectively. This is a useful reference model because it
allows us to explore whether CR diffusion must be relatively ‘fast’
in both neutral and ionized gas, or just the densest (neutral) gas.

3.1.2 Model variant: pure-advection and Alfvénic/sonic
streaming-only

If κ∗ → 0 (i.e. κ‖ → 0 and vst → 0), then F → 0 and CRs are
purely advected with gas. It is well established that this cannot
possibly reproduce observations in the MW and nearby galaxies.
If the only CR transport beyond advection were streaming with
trans-Alfvénic or trans-sonic speeds, this is identical to our default
constant-κ‖ models with κ‖ → 0 (and vst ∼ vA). In the MW warm
ISM, with vA ∼ cs ∼ 10 km s−1, this gives effective diffusivities
κeff ∼ vA �cr ∼ 1027 cm2 s−1, much lower than our preferred κeff.
These cases are considered explicitly in Papers I and II, with
vst ∼ 0, vA, 3 vA, 10 vA, vfast, 3 vfast (where v2

fast = c2
s + v2

A is the
fastest ideal-MHD wavespeed), where we showed all produce far
too-slow CR transport and overpredict observed γ -ray fluxes from
nearby galaxies by ∼1–2 dex. So we do not consider these cases
further, except as the obvious limit when κ‖ → 0.

3.2 Extrinsic turbulence scenarios

The CR diffusivity is κeff ∼ c2/3 ν, where ν is the scattering rate
(λmfp ∼ c/ν is the CR mean free path). In the standard picture, CRs
scatter off of magnetic-field fluctuations δB, with a strong preference
for ‘resonant’ fluctuations δB[rL], i.e. fluctuations with parallel
wavenumber k‖ ∼ kL ∼ 1/rL. Simple quasi-linear theory calculations
give the scattering rate ν ∼ � |δB[rL]|2/|B|2 (e.g. Jokipii 1966;
Wentzel 1968; Skilling 1971).

In the simplest possible ‘ET’ model (e.g. Jokipii 1966; Voelk
1975), we can estimate κeff by extrapolating |δB[rL]| from a tur-
bulent power spectrum with (1D) Alfvén Mach number MA =
MA[�turb] ≡ |δB[�turb]|/|B| ≈ |δv[�turb]|/videal

A on some resolved
scale �turb. While very high energy CRs (with large rL) may
scatter significantly on �turb scales directly, we are interested in
low-energy CRs with rL ∼ 10−6 pc. Such scales are smaller than
the damping/viscous scale for fast/acoustic modes, while Alfvénic
modes, although not strongly damped, are highly anisotropic on these
scales, which must be taken into account for estimates of ν (as we do
below). None the less, as a reference model, let us assume a Goldreich
& Sridhar (1995)-type (GS95) cascade (E‖ ∝ k−2

‖ ), giving

κ‖
c rL

∼ |B|2
|δB[k‖ ∼ 1/rL]|2 fturb ∼ M−2

A

�turb

rL
fturb,

κ‖ ∼ 1032 cm2 s−1 M−2
A �turb, kpc fturb, (5)

5They adopted κ‖ = 1029 or 3 × 1027 cm2 s−1 in gas below/above T = 104 K,
using temperature as a proxy for ionization state.
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Table 1. Subset of CR transport models studied. All models include star formation, stellar feedback, MHD, anisotropic conduction, and viscosity.

Name Description Ref. 〈κ iso
eff 〉ν29 Lγ , Xs? 〈ecr〉

CD: Constant-diffusivity models (Section 3.1, equation 3): κ‖ = κ29 1029 cm2 s−1, varied vst ∼ vA

κ29 = 0 κ29 = 0, vst = (0, 1, 3, 4, 1 + β1/2, 3 [1 + β1/2]) vA (Section 3.1.2) a �0.01 × (high) 40
κ29 = 0.03 κ29 = 0.03, vst = (1, 3) vA a 0.015 × (high) 50
κ29 = 0.3 κ29 = 0.3, vst = (0, 1, 3) vA a 0.1 × (high) 8
κ29 = 3 κ29 = 3, vst = (0, 1, 3) vA (favoured models in Papers I and II) a 1 � 1
κ29 = 30 κ29 = 30, vst = vA a 10 � 0.4
κ29 = 300 κ29 = 300, vst = vA a 100 ◦ (low) 0.04
κ ion-neutral κ29 = 3 in neutral gas, =0.1 in ionized gas (Section 3.1.1, equation 4) b 0.05 × (high) 20

ET: Extrinsic turbulence models (Section 3.2, equation 5): κ‖ = M−2
A c �turb fturb, varied fturb

Alfvén-C00 fturb = 0.14 (cs/vA)/ ln(�turb/rL): anisotropic GS95 spectrum of Alfvén modes c 1500 ◦ (low) 0.2
Alfvén-C00-Vs As Alfvén-C00, adding additional ‘streaming’ vst = vA or vion

A – 1500 ◦ (low) 0.2
Alfvén-YL02 fturb = 70 (c/vA)5/11 (�turb/rL)9/11: modified non-resonant Alfvén scattering d >104 ◦ (low) 0.001
Alfvén-Hi fturb = 1000: arbitrarily changed fturb – 400 ◦ (low) 0.02
Alfvén-Max fturb = 1: GS95 Alfvén scattering ignoring gyro-averaging/anisotropy – 1 � 2
Fast-YL04 fturb = f(λdamp): non-resonant fast modes, damped below λdamp e 80 ◦ (low) 0.006
Fast-Max As YL04, neglect ion-neutral and β > 1 viscous damping e 6 � 1
Fast-Mod fturb ∼ 1000 × the ‘Fast-Max’ value (different spectrum, broadening) – 700 ◦ (low) 0.04
Fast-NoDamp fturb = (rL/�turb)1/2: Fast-YL04, ignoring any fast-mode damping – 0.003 × (high) 3
Fast-NoCDamp fturb given by Fast-Max with viscous damping only – 0.03 × (high) 5
Iso-K41 fturb = (rL/�turb)1/3: isotropic, undamped K41 cascade down to <rL f 0.004 × (high) 0.4
Fast-Max+Vs As Fast-YL04, adding additional ‘streaming’ vst = vA or vion

A – 7 � 1

SC: Self-confinement models (Section 3.3, equation 7): κ‖∝� (damping), vst = vion
A , varied �

Default Default scalings for � = �in + �turb + �LL + �NLL, Appendix A – 0.02 × (high) 10
Non-Eqm Replace κ‖, vst with evolved gyro-resonant δB[rL] (Section 3.3.2) – 0.03 × (high) 4
10 GeV Adopt γ L = 10 instead of =1 (typical Ecr/Z ∼ 10 GeV; Section 3.3.3) – 0.03 × (high) 15
videal
A Adopt vA = videal

A instead of vion
A in equation (7; Section 3.3.1) – 0.007 × (high) 15

fQLT−6 Multiply κ‖ in equation (7) by fQLT (weaker growth or stronger damping; Section 3.3.4) – 0.05 × (high) 10
fQLT−6, 10 GeV Combines ‘fQLT−6’ and ‘10 GeV’ models – 0.1 × (high) 8
fQLT−6, videal

A Combines ‘fQLT−6’ and ‘videal
A ’ models – 0.04 × (high) 10

fQLT−100 Multiply κ‖ in equation (7) by fQLT = 100 – 5 � 0.3
fcas−5 fcas = 5 in �turb and �LL – 0.06 × (high) 8
fcas−50 fcas = 50 in �turb and �LL – 2 � 0.3
fcas−500 fcas = 500 – 10 � 0.4

fcas−DA fcas = (�turb/rL)1/10, for a ‘dynamically aligned’ perpendicular spectrum (∼ k
−3/2
⊥ ) – 0.02 × (high) 10

fcas−B73 fcas = MIN(1, M−1/2
A ), for a B73 spectrum above �A – 0.005 × (high) 20

fcas−L16 fcas follows a multicomponent cascade model from L16 g 0.004 × (high) 15

fcas−K41 fcas = M−1/2
A (�turb/rL)1/6 for an isotropic, undamped K41 cascade – 15 � 0.3

NE, fcas−L16 As ‘Non-Eqm’ but with fcas following fcas−L16 model – 0.01 × (high) 4
NE, fQLT−100 As ‘Non-Eqm’ but with fQLT = 100 – 7 � 0.3

ET+SC: Combined extrinsic turbulence and self-confinement (Section 3.4): νtotal = ∑
νi (sum ET+SC terms), vst = vion

A

A+F+SC100 ET:Alfvén-C00 + ET:Fast-Max + SC:fturb = 100 – 2 � 1
A+SC100 ET:Alfvén-C00 + SC:fturb = 100 – 5 � 0.3

Note. Summary of the different CR transport models (models for the effective transport coefficients κ‖ and vst in equation 2). Column include: (1) Name. (2)
Description. (3) References where previously studied. (4) 〈κ iso

eff 〉ν29: time (redshifts z < 0.1, sampled each ∼ 10 Myr) and space (galactocentric radii < 10 kpc)
and angle (isotropic-equivalent) averaged, scattering-rate-weighted effective diffusivity κ iso

eff ≡ |Fcr|/|∇ecr| (in units of 1029 cm2 s−1) in our MW-like (m12i)
simulations. (5) Lγ , Xs: qualitative comparison of the predicted γ -ray luminosity and MW grammage to observational constraints, for dwarf (m11i), intermediate
(m11f), and MW-mass (m12i) galaxies. A � indicates consistency with observations, ‘high’ or ‘low’ indicates the prediction is too high or low. (6) 〈ecr〉, the
time-and-space averaged, volume-weighted mean CR energy density (in eV cm−3) in our MW-like (m12i) simulations at z < 0.1 at approximately the solar
position (averaged in the thin disc in a galactocentric radial annulus from 7–9 kpc with height ±250 pc). Models are grouped by categories (labelled). Models
in red produce excessive confinement and are ruled out by γ -ray observations and MW constraints. Models in cyan produce less confinement than observed:
these are allowed, but cannot dominate scattering. Models in black produce reasonable agreement with the observations. References: (a) Paper I, (b) Farber et al.
(2018), (c) Chandran (2000), (d) Yan & Lazarian (2002), (e) Yan & Lazarian (2004, 2008), (f) Jokipii (1966), (g) Lazarian (2016). Different turbulent power
spectra include GS95 (Goldreich & Sridhar 1995), K41 (Kolmogorov 1941), ‘dynamically aligned’ (Boldyrev 2006), B73 (Burgers 1973).

where �turb, kpc ≡ �turb/kpc, and we absorb all the microphysics of
turbulence and scattering into fturb.

3.2.1 Model variant: turbulent structure assumptions

There is an extensive literature regarding the ‘correct’ form of
equation (5) (or, equivalently, fturb) for ET (see e.g. Zweibel 2013, and
references therein). We cannot possibly be comprehensive here, so we

focus on a few models chosen to bracket a range of possibilities. Note
that the expressions proposed for fturb or κ are often very complicated:
we simplify these to order-of-magnitude scalings for the parameter
space of interest (∼ GeV CRs, etc.).

(i) Alfvén-C00: Chandran (2000) attempt to self-consistently
derive κ∗ in a Goldreich & Sridhar (1995) cascade, accounting for
anisotropy. For all limits relevant here, their result (equation 16
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Table 2. Zoom-in simulation volumes (details in Paper II). All units are physical.

Simulation Mvir
halo M

(NoCR)
∗ M

(CR)
∗ mi, 1000 〈εgas〉sf Notes

name (M�) (M�) (M�) (1000 M�) (pc)

m11i 6.8e10 6e8 (2–7)e8 7.0 1.3 Dwarf galaxy (∼ SMC-mass), with episodic ‘bursty’ star formation
m11f 5.2e11 4.0e10 (1.5–4)e10 12 1.8 Late-type galaxy, with intermediate surface densities
m12i 1.2e12 7.0e10 (2.5–8)e10 7.0 1.4 ∼L∗ galaxy in a ‘massive’ halo, dense CGM and higher surface density

Note. Properties of the ‘primary’ galaxy in each zoom-in volume at z = 0, including: virial mass (Mvir
halo), stellar mass M∗ in the our reference ‘no CRs’

run (M (NoCR)
∗ ) from Paper II, and full range of stellar masses in our runs here with CRs but different transport physics (M (CR)

∗ ), mass resolution (mi, 1000),
Plummer-equivalent force softening at the mean density of star formation (〈εgas〉sf; note the actual softening is adaptive and varies accordingly).

therein) gives fturb ≈ (0.14/ ln (�turb/rL)) (c/vA) ∼ 1000 n
1/2
1 B−1

μG

(where n1 = ρ/(mp cm−3)). Here, fturb � 1 arises because the GS95
cascade has power at kL only for k⊥ � k‖, which leads to an effective
‘reduction factor’ in scattering from gyro-averaging.

(ii) Alfvén-YL02: Yan & Lazarian (2002) dismiss the dom-
inant non-resonant pitch-angle scattering term from Chan-
dran (2000) as spurious, and argue that one should in-
clude only the much weaker resonant scattering term (equa-
tion 17 in Chandran 2000), modified slightly by the factor ∼
�[13/2, (�turb/rL)1/3 (cs/c)2/3] owing to their different assumed form
of the cross-correlation tensor (equation 8 in Yan & Lazarian
2002). This gives fturb ∼ 7 × 10−4 (c/vA)5/11 (�turb/rL)9/11 ∼ 3 ×
106 n0.2

1 B0.4
μG �0.8

turb γ −0.8
L M−2.5

A . This is so large that it produces totally
negligible confinement/scattering.

(iii) Fast-YL04: Yan & Lazarian (2004, 2008) argue that fast
magnetosonic modes could dominate CR scattering despite most
mode angles k̂ being strongly damped below wavelengths λdamp �
rL, if (1) they are isotropic with a shallow power spectrum, (2)
non-resonance broadening enhances transit-time damping (TTD),
and (3) gyro-resonant (k ≈ k‖ ≈ 1/rL) parallel fast modes with
k̂ ≈ b̂ are undamped. Using their assumptions (see Appendix C),
λdamp is then set by the maximum of either collisionless (Lan-
dau) or viscous damping: when collisionless dominates we can
approximate fturb ∼ 2 (π me β/4 mp)1/2 ∼ 0.04 β1/2, and when vis-
cous dominates we have fturb ∼ M5/3

A Re−1/3 (�turb/rL)1/6, where
Re ≡ (MA vA �turb)/νv is the Reynolds number with νv the kinematic
viscosity.6 However, even given these assumptions, efficient confine-
ment by fast modes requires near fully ionized gas (fneutral � fn, 0 ≈
0.001 (n1 β)−3/4 T

1/4
4 (�turb, kpc γL)−1/2) and low β < 1, otherwise

damping of the gyro-resonant fast modes gives extremely large
κ .7 We approximate these ‘cut-offs’ by multiplying fturb by a factor
fcut = exp {(fneutral/fn, 0)4 + (β/0.1)1.5} (see Appendix C).

(iv) Fast-Max: If we make the ad hoc assumption that some other
physics contributes large scattering rates at small pitch angles, or
simply neglect any damping of gyro-resonant parallel fast modes,
then we approximately obtain the ‘Fast-YL04’ model but without
the ‘cut-off’ terms suppressing scattering where fneutral � 10−3 or β

� 1. We consider this model (fcut = 1) for the sake of reference, if the
fast-mode scattering rates for well-ionized, low-β gas were simply
applied everywhere in the ISM.

6We take νv ∼ 1018 cm2 s−1 T
1/2

4 ρ−1
−24 (0.6 fion T 2

4 + 300 fneutral) to be the
sum of Braginskii (dominant in ionized gas) and atomic collisional (dominant
in neutral gas) viscosities (Spitzer & Härm 1953). To interpolate between
collisionless/viscous regimes we simply take the maximum fturb defined by
either.
7See e.g. Yan & Lazarian (2004), who show that any models with β ≥ 1, such
as their ‘hot ionized medium’ (HIM) model, or with non-negligible neutrals,
such as their warm neutral (WNM) or cold cloud (CNM or DC) models, give
κ‖ � 1033 cm2 s−1.

(v) Fast-Mod: Yan & Lazarian (2004, 2008) make a number
of uncertain assumptions in deriving the effect of fast modes.
For example, they assume a fast-mode spectrum ∝k−3/2, but the
simulations in Cho & Lazarian (2003) used to justify this choice are in
several cases more consistent with Kolmogorov (1941) (K41; k−5/3)
or even Burgers (1973) (B73; k−2) spectra (as others have argued
for fast modes in the ISM, e.g. Boldyrev, Nordlund & Padoan 2002;
Schmidt, Federrath & Klessen 2008; Kritsuk et al. 2007; Burkhart
et al. 2009; Pan, Padoan & Kritsuk 2009; Hopkins 2013), the latter
of which would give fturb ∼ 1. They also assume the non-linear TTD
terms are ‘broadened‘ with the maximum possible broadening (given
by the driving-scale δB/|B|, despite rL � λdamp � �turb); modifying
this would increase fturb by a large (exponential) factor (Voelk 1975).
Lacking a more detailed model, we consider a case with fturb equal
to the ‘Fast-Max’ model times 1000.

(vi) Iso-K41: If we entirely ignore anisotropy and damping, and
extrapolate an isotropic Kolmogorov (1941) spectrum from �turb to
rL, we obtain fturb ∼ (rL/�turb)1/3 ∼ 0.001 (γL/BμG �turb, kpc)1/3. This
model is not physically motivated, since the anisotropy of magnetized
turbulence is well understood and observed in the solar wind (Chen
2016), but it provides a useful reference.

We have also run a number of additional variations to gain further
insight: (vii) assuming fixed fturb = 1 (i.e. assume a GS95 cascade, but
ignore the effect of anisotropy on scattering calculated by Chandran
(2000) and Yan & Lazarian (2002)); (viii) fixed fturb = 1000 (not
motivated by a specific model, but for reference); (ix) variations of
model ‘Fast-YL04’ neglecting all damping (even more extreme than
‘Iso-K41’), so fturb ∼ (rL/�turb)1/2 ∼ 10−5.5 (γL/BμG �turb, kpc)1/2; (x)
variation of ‘Fast-YL04’/‘Fast-Max’ neglecting all but collisionless
damping (similar to ‘Iso-K41’); (xi) several variants of ‘Iso-K41’ as
proposed in the literature, e.g. that in Snodin et al. (2016) which gives
fturb ∼ 0.003 + 0.3 (rL/�turb)1/3; (xii) versions of models (i)-(v) with
an additional streaming with both vst = videal

A and vion
A ; (xiii) versions

of (i)–(v) where we assume a Kolmogorov (1941) or Burgers (1973)
spectrum on large (simulation-resolved) scales of MA > 1, down to
the scale �A where MA[�A] = 1, then the specified spectrum below
this scale (as opposed to a single spectrum on all scales), which
modifies fturb by, at most, one power of MA[�turb] ∼ 1.

Note that in all of the models in this section except ‘Fast-YL04’,
we neglect ion-neutral damping/ambipolar diffusion in gas with fion

� 1, which will suppress scattering (increasing fturb) substantially in
molecular clouds. However, we do consider ‘fast transport in neutral
gas’ elsewhere, and in some of the variants here.

3.3 Self-confinement scenarios

In the SC picture, |δB[rL]| is dominated by fluctuations from plasma
instabilities self-excited by the CR flux. CRs stream down their
number density/pressure gradient with speed v̄st, but this excites
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gyro-resonant Alfvén waves (k‖ ∼ kL) with growth rate �grow ∼
� (γL ncr/ni) (v̄st/vA − 1) ∼ vA [|F| − vA hcr]/(eB c rL),8 which in
turn scatter the CRs (suppressing F). A local quasi-steady state arises
in which this growth is balanced by damping of these gyro-resonant
waves with rate �damp, giving �grow ≈ �damp or |F| − vA hcr =
κ‖ |∇‖ecr| ∼ �damp (eB c rL/vA), i.e. CR transport with

κ‖
c rL

≈ 16

3π

(
�cr �eff

vA

) (
eB

ecr

)
fQLT, vst ≈ vA

κ‖ ∼ 6 × 1026 cm2 s−1 γL �−11 �cr, kpc f 1/2
ion n

1/2
1 fQLT

ecr, eV
, (7)

where eB ≡ |B|2/8π is the magnetic energy density, fQLT is a
factor we insert to parametrize any deviations from the quasi-linear
derivation above, and �eff ≈ �in + �turb + �LL + 〈�NLL〉 + �other

represents the damping rate of gyro-resonant Alfvén waves (i.e.
∂|δB|2/∂t ∼ −�eff |δB|2), here de-composed into ion-neutral (�in),
turbulent (�turb), linear Landau (�LL), non-linear Landau (�NLL),
and ‘other’ (�other) terms (see e.g. Skilling 1971; Holman, Ionson
& Scott 1979; Kulsrud 2005; Yan & Lazarian 2008; Enßlin et al.
2011; Wiener, Oh & Guo 2013a; Wiener, Pfrommer & Oh 2017). A
derivation of equation (7) is given in Appendix B, and expressions
for each of the � are given in Appendix A. In the latter equality,
�cr, kpc ≡ �cr/kpc, ecr, eV ≡ ecr/eV cm−3, �−11 ≡ �eff/10−11 s−1. Per
Section 2.3, we can combine the streaming+diffusion terms into a
‘pure streaming’ expression9 with vst → v̄st = vA + κ‖/(γcr �cr):

v̄st → vA

[
1 + 4 c rL �eff eB fQLT

π v2
A ecr

]

∼ vA

[
1 + 0.4 γL �−11 fion n1 fQLT

BμG ecr, eV

]
. (9)

Now our uncertainty in κ∗ is encapsulated in the damping rates �.
We stress that although we can (per Section 2.3) write the CR

transport equations in terms of ‘diffusion+streaming’ coefficients
(equation 7) or ‘pure (super-Alfvénic) streaming’ (equation 9), the
behaviour of equations (7)–(9) is distinct from either a traditional
‘pure diffusion’ (constant-κ) or ‘pure-streaming’ (constant-vst) equa-
tion, because the coefficients themselves depend on ecr and its
gradient (see Appendix B3).

3.3.1 Model variant: choice of Alfvén speed

The Alfvén speed of interest in equations (7)–(9) is that of the gyro-
resonant modes, which as noted in Section 2.3 should naively follow

8Crudely, the Kulsrud & Pearce (1969) gyro-resonant streaming instability
has linear-theory growth rate:

�grow ∼ �

(
γL ncr

ni

) (
v̄st

vA

− 1

)
∼ �

(
ecr

mp c2

) (
mp

ρ

) (|F| − vA hcr

vA ecr

)

∼ �
(vA

c

) (|F| − vA hcr

eB c

)
∼ vA

(|F| − vA hcr

eB c rL

)
, (6)

using ecr ∼ ncr γL mp c2 with ρ ∼ ni mp , eB ∼ ρ v2
A, and v̄st ∼ |F|/hcr.

9It is also common to see equation (9) written in the form

v̄st → vA

[
1 + 4 c rL �eff eB

π v2
A ecr

]
= vA

[
1 + 2

γL π

�eff

�

nion

ncr

]
, (8)

where ecr ≡ γL μ ncr c2, ρion = μ nion, nion and ncr are the ion and CR number
densities. This form is less useful for our purposes, however.

the ion Alfvén speed vion
A = f −1/2

ion videal
A in partially neutral gas. In

our ‘default’ SC model, we therefore adopt vA = vion
A in equation (7)

(consistency requires the same vA appear in the ‘streaming loss’ term

st = vA |∇‖Pcr|). But while the gyro-resonant wave frequencies
are un-ambiguously larger than ion-neutral collision frequencies in
GMCs, other aspects of the assumptions used to derive equations (7)–
(9) (e.g. how to treat gas advection terms and boosts to/from the
frame of the fluid, and how CRs enter the gas momentum equation)
implicitly assume the ‘gas frame’ and ‘magnetic-field frame’ are
the same (which is true on large scales even in GMCs, but breaks
down at the gyro-resonant scales if vion

A � videal
A ). Also other time-

scales (like the CR travel and scattering times) are much longer than
ion-neutral collision times. At a fundamental level, knowing how
different terms are modified in this limit requires re-deriving CR fluid
models such as Thomas & Pfrommer (2019) for a three-fluid (CR,
ion, neutral) system. Lacking this, we simply compare model variants
where we assume ideal MHD scalings, so vA = videal

A in equation (7)
and 
st.

3.3.2 Model variant: non-equilibrium description

Recently, Zweibel (2017) and Thomas & Pfrommer (2019) attempted
to derive non-equilibrium ‘macroscopic’ dynamical equations for
|δB[rL]|, κ , and vst, accounting for un-resolved gyro-resonant
waves by explicitly evolving a sub-grid energy density (eA ± ∼
|δB[rL]|2/4π ) or wave spectrum propagating in the ±b̂ directions. We
have implemented the full set of equations from Thomas & Pfrommer
(2019) and compare it to our default ‘local equilibrium’ assumption
here. Appendix B details the complete set of modifications to our de-
fault equations, but the important difference is that κ∗ is replaced with
the explicitly evolved diffusivities κ±/(c rL) ≈ (16/9π ) (eB/eA±) ∼
(1/3) |B|2/|δB[rL]|2, and the scattering term F/3κ∗ becomes g+
+ g− in the CR flux equation (equation 2). The Alfvén-wave
energy densities evolve as ∂eA±/∂t = ±vA · g± − �eff eA±, where
g± ≡ (F ∓ vA hcr)/3 κ± and vA · g± represents growth from the
gyro-resonant instability. In Appendix B, we show that when the
Alfvén energy subsystem reaches local steady-state (∂eA ±/∂t →
0), which occurs on short time-scales ∼�−1, the non-equilibrium
system reduces to our default CR evolution equations, with κ‖ and
vst following equation (7).

3.3.3 Model variant: CR energy

We can also vary the effective CR energy γ L (=1 GeV in our
default) assumed in our single-bin approximation. This should
represent an effective energy containing most of the CR pressure,
but that could vary between ∼0.5 and 10 GeV, in principle, given
present observational and theoretical constraints. We have run several
variants assuming γ L = 0.1 or 10. However, note that given the
damping rates in Appendix A, κ and vst are either independent of γ L

(depending only on ecr), or scale as γ
1/2
L at most. Thus, even order-

of-magnitude variation in γ L produces only factor ∼2–3 differences
in κeff.

3.3.4 Model variant: different growth or scattering rates

In deriving equation (7) (see also Appendix B), if we either (a)
multiply the gyro-resonant Alfvén-wave damping rates �eff by a
factor f; (b) divide the effective scattering rate ν for a given |δB[rL]|
by f (or equivalently multiply the time-scale for those waves to
isotropize the CR distribution function by f); or (c) divide the
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growth rate of the gyro-resonant modes �grow by f, then κ‖ in
equation (7) is multiplied by f. We call this ‘fudge factor’ fQLT,
which could have its physical origins in any (or a combination) of
the aforementioned effects. Lacking any particular model for fQLT, we
have simply run simulations with fQLT = 1, 6, 100, 1000 (=1 is our
default).

3.3.5 Model variant: turbulent cascade assumptions

While there is relatively little ambiguity in the ion-neutral damping
rate �in, and we will show the non-linear Landau damping �NLL only
dominates in the ISM in models which are excluded by observations,
both the ‘turbulent’ (�turb) and ‘linear Landau’ (�LL) damping
rates scale with the turbulent dissipation/cascade time-scale tcas at
wavelengths ∼rL, which is not well constrained. In Appendix A,
we detail the default model, which, following Farmer & Goldreich
(2004), assumes a K41 cascade on super-Alfvénic scales and a GS95
cascade on scales <�A (�A is the Alfvén scale where δvturb(�A) ∼
vA). This gives �turb = videal

A /(rL �A)1/2 fcas (with �LL ≈ 0.4 β �turb

scaling proportionally), where fcas = 1 for these default assumptions.
However, if we consider different cascade models, we obtain cor-
respondingly different fcas; moreover, the exact damping rates will
depend on the specific temporal and spatial structure of the turbulent
field on these micro-scales, so any analytic model for �turb is an
order-of-magnitude average estimate (where fcas parametrizes our
ignorance).

Our default model assumes fcas = 1. We consider several variant as-
sumptions, including (1–3) arbitrarily increasing fcas = 5, 50, 500;
(4) assuming a supersonic Burgers (1973) spectrum at scales >�A

instead of K41, giving fcas = MIN(1, M−1/2
A ); (5) assuming a

‘dynamically aligned’ ∼k−3/2 spectrum (Boldyrev 2006; see also
Iroshnikov 1963; Kraichnan 1965) instead of GS95 below �A, giving
fcas = (�turb/rL)1/10; (6) assuming a pure (isotropic) K41 cascade
from the driving scale to rL, giving fcas ≈ M−1/2

A (�turb/rL)1/6 (this
is not well motivated but provides a useful ‘upper limit’); and (7)
assuming the multicomponent cascade model from Lazarian (2016)
which adopts isotropic K41 for � > �A with a transition between a
‘weak’ cascade with form following Montgomery & Turner (1981),
Sridhar & Goldreich (1994) on large scales to a GS95 cascade on
smaller scales, giving fcas = MIN[M1/2

A , M7/6
A (�turb/rL)1/6] when

MA < 1 and fcas = MIN[1, M−1/2
A (�turb/rL)1/6] when MA ≥ 1.

3.4 Combined extrinsic turbulence and self-confinement
models

Scattering by self-excited and extrinsic fluctuations are not mutually
exclusive. Their non-linear interplay is poorly understood, but in
quasi-linear theory the scattering rates should add linearly (see
Zweibel 2017), giving κ−1

‖ ∼ κ−1
self + κ−1

extrinsic. We have therefore also
run simulations adopting vst = vA, κ−1

‖ = κ−1
‖, self + κ−1

‖, turb where
κ‖, self follows equation (7) and κ‖, turb follows equation (5), with
several combinations of the ‘variant’ model assumptions. Usually,
one model (typically the ET model) has much-larger κ (much lower
scattering rate), so the prediction simply becomes identical to that of
the model with the lower κ (higher ν). Even in the rare cases where
the two contribute comparably (e.g. using ‘Fast-Max’ for fturb and
fcas = 500), this simply gives similar behaviour to both ‘individual’
models and so does not change any of our conclusions regarding
which scattering processes are observationally allowed. We therefore
discuss these only briefly and defer a more detailed study to the future
work.

4 R ESULTS

4.1 Effective diffusivities and observational constraints

4.1.1 Effective diffusivities

Fig. 2 compares the effective diffusivities κeff ≡ |F|/|∇‖ecr| from a
representative subset of the models in Section 3, at z = 0 in a dwarf
(m11i), intermediate-mass (m11f), and MW-mass (m12i) galaxy.
Among the ET models, as expected, models with larger fturb produce
larger κeff. Some (e.g. model ‘Alfvén-YL02’) produce such high
κeff � 1034 cm2 s−1 they fall above the plot. Models which ignore
anisotropy and/or damping (e.g. ‘Iso-K41’) produce very low κeff; the
‘Fast-NoDamp’ variant ignoring damping entirely produces κeff �
1026 cm2 s−1, well below the plotted range. In the SC models, κeff is
not strongly sensitive to model variations such as the choice of Alfvén
speed or equilibrium versus non-equilibrium description, but varies
systematically with the strength of turbulent damping (increasing
with fcas), in an analogous (inverted) manner to the ET models.

There are few other universal systematic trends: (1) κeff tends to
rise with galactocentric radius, but the strength of this rise varies
widely. (2) There are some radial fluctuations at a given time in κeff:
there is actually considerably more small-scale scatter than this plot
suggests, which depends on how we weight the ‘mean’ κeff, explored
below (Fig. 8). (3) In many SC (but not ET) models, the diffusivities
are systematically higher in lower mass dwarf galaxies (with lower
ρ, |B|, ecr, etc.).

Some models run are not plotted in Fig. 2, as they simply
interpolate between the models shown or give nearly identical results.
For example, increasing γ L to ∼10 in the SC models (Section 3.3.3)
simply increases κeff by a factor ∼1.5–3 at large radii (and less at
�kpc, where ion-neutral damping dominates).

4.1.2 γ -ray luminosities

Fig. 3 compares the predicted ∼ GeV γ -ray emission from each
simulation. This was studied in Papers I and II in detail and we follow
their methodology, mimicking the compiled (plotted) observations
from Lacki et al. (2011), Tang et al. (2014), Griffin et al. (2016), Fu
et al. (2017), Wojaczyński & Niedźwiecki (2017), Wang & Fields
(2018), Lopez et al. (2018). Briefly, we assume 5/6 of the collisional
hadronic losses go to pions, with branching ratio of 1/3 to π0 that
decay to γ -rays with a spectrum giving ∼ 70 per cent of the energy
at > 1 GeV (Guo & Oh 2008; Chan et al. 2019), and integrate
this within apertures (∼ 5–10 kpc) matched to the observations. We
similarly compute the central (�2–5 kpc, taken as 1/2 the half-mass
radius) projected gas surface density �central, and the luminosity from
young/massive stars LSF (using all stars < 100 Myr old, convolved
with appropriate stellar population synthesis for their ages and
metallicities). The ‘calorimetric limit’ line denotes the ratio Lγ /Lsf =
Lcalor/Lsf ∼ 2 × 10−4, which corresponds to the assumption that all
CR energy injected by SNe is lost collisionally in steady state with a
uniform time-constant SFR and SNe rate.

First, let us consider the constant-diffusivity models. These models
and variants are the main focus of Papers I and II (with additional
simulations and more widely varied assumptions related to streaming
and numerics). We echo their conclusion: κ29 ∼ 3−30 is required
to reproduce the observations, with lower κ29 � 1 producing near-
calorimetric predictions even in dwarfs, and κ29 � 100 underpre-
dicting Lγ . We also see model κ ion-neutral rather severely overpredicts
Lγ , comparable to models with constant κ29 ∼ 0.5. We also note
(see Papers I and II for further discussion) that adding additional
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4192 P. F. Hopkins et al.

Figure 1. Images of one of our simulated galaxies (m11f) at present-day (z = 0), in a mid-plane slice with box ∼ 60 kpc on a side (see scale-bar), viewed
face-on. We show the SC-motived model ‘fQLT−100’. Top left: Phase map showing cold neutral (magenta, T � 8000 K), warm ionized (green; 104 � T �
105 K), and hot ionized (T � 105 K) gas. Top centre: Gas density n. Top right: CR energy density ecr. Bottom left: Ideal MHD Alfvén speed vA. Bottom centre:
Alfvén Mach number MA. Bottom right: Effective diffusivity κ̄eff ≡ |F|/|∇‖ecr|, where F is the local CR flux. Multiphase structure with large fluctuations in
turbulent dissipation rates and vA are evident on scales � kpc, while galactic outflows give rise to large MA in the CGM and in ‘superbubbles’ within the disc.
These give rise to order-of-magnitude fluctuations in κ̄eff on small scales, though κ̄eff generally rises outside the galactic disc. The CR energy ecr is smoother,
following a radial gradient to first order (as expected), though with a notable ‘hotspots’ surrounding clustered SNe.

trans-sonic streaming (with vst ∼ videal
A or ∼ vion

A ) makes only a small
∼ 10 per cent difference to Lγ .

Next, compare ET models: as expected, those with systematically
higher κeff in Fig. 2 produce lower Lγ . Model ‘Alfvén-C00’ [(i)
in Section 3.2] and others with fturb � 100 in the warm ionized
medium (WIM) (κ29 � 100) underpredict Lγ : this includes models
‘Alfvén-YL02’ (ii) and ‘Fast-Mod’ (iv), which are not shown but fall
below the plotted range, and fturb = 1000 (vii), which is similar to
‘Alfvén-C00’ (as expected). Models with fturb � 0.01, on the other
hand, overproduce Lγ , with κ29 � 0.1 within the galaxy (although
κ29 varies widely in dwarfs). This includes models ‘Iso-K41’ (v)
and its variants assuming different turbulent spectra or geometries
[e.g. models (viii), (ix), (x), (xii), not shown but all similar to ‘Iso-
K41’], which neglect both the dominant turbulent damping terms
and anisotropy of small-scale turbulence in the ISM. For fturb ∼
0.1−10, Lγ is broadly similar to observations: this occurs in the ad
hoc ‘Fast-Max’ (iii) and ‘Alfvén-Max’ (fturb = 1; vi) models.

We also see that the ‘default’ SC model produces excessive
Lγ , compared to observations. Varying vst = vion

A versus videal
A has

relatively little effect on this conclusion, as does varying the assumed
CR energy from γ L ∼ 1−10 GeV, or adopting non-equilibrium
models for κ and vst. Increasing the turbulent damping rate fcas

decreases Lγ , with models where fcas ∼ 30–300 in agreement

with the observations. This includes models that increase fcas

by a similar factor assuming a different turbulent spectrum (e.g.
‘�damp−K41’).

Fig. 4 also plots Lγ /LSF versus absolute SFR, and Lγ /LIR ver-
sus LIR, the total infrared (IR) luminosity (8–1000μm) computed
self-consistently in our simulations by ray-tracing ∼100 lines of
sight from every star particle (with an input spectrum following
the Leitherer et al. 1999 stellar population models for the same
age, metallicity, and mass) through the resolved gas and dust in
the simulation, assuming an MW-like extinction curve (adopting
SMC-like extinction makes little difference) with constant dust-to-
metals ratio = 0.4 (see Hopkins et al. 2005). These give somewhat
redundant constraints: the same models are (in)consistent with the
data in these projections, but they generally show more overlap
in the model predictions and are less theoretically well motivated
(see Section 5.1.1), so they are less useful for distinguishing
models.

4.1.3 Grammage and residence time

As discussed in Papers I and II, our comparison to the MW point
in Fig. 3 is essentially equivalent to comparing to the observed

MNRAS 501, 4184–4213 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4184/6009042 by guest on 25 April 2024



Contrasting CR transport in galaxies 4193

Figure 2. Effective scattering-weighted mean parallel CR diffusivity κeff ≡ |F|/|∇‖ecr| (Section 2.3), as a function of galactocentric radius r, in galaxies m11i
(dwarf), m11f (intermediate/MW/NGC 253-mass), m12i (M31-mass) at z = 0 (Table 2). We compare some representative models from Table 1 for CR scattering
via ET (top; Section 3.2) and SC (bottom; Section 3.3). Our definition of κeff means this includes both traditional ‘diffusion’ and ‘streaming’ terms. Solid
lines show the mean κeff in spherical shells at each r, weighted by the contribution of each resolution element to the scattering rate (shaded shows weighted
25–75 per cent range). Diffusivities κeff generally rise with radius r around a given galaxy, or in lower mass dwarf galaxies, as densities ρ and field strengths |B|
decrease. Different models considered here produce up to factor ∼108 systematic differences in κeff – far larger than any other physical/numerical uncertainties
in the models here (see Appendix D). Top: Theoretically preferred scattering rates from ET from Alfvén waves (‘Alfvén-C00’) or fast modes (‘Fast-YL04’) give
large κeff: models ‘Alfvén-Max’ and ‘Fast-Max’ artificially make the scattering rate much larger (κeff smaller) by neglecting some damping/anisotropy terms,
while ‘Iso-K41’ neglects all damping or anisotropy in the turbulence down to ∼rL. Bottom: Our ‘SC:Default’ model (accounting for ion-neutral, turbulent,
linear and non-linear Landau damping) produces low κeff: multiplying the diffusivity by a factor ‘fQLT = 6’ makes little difference owing to non-linear effects
(increasing κ produces lower eCR, which then re-increases κ in SC models); using the ideal-MHD Alfvén speed videal

A instead of the ion speed vion
A also has weak

effects, but κeff can be made larger if fQLT or fcas (turbulent damping rates) are increased by ∼100.

grammage in the Galaxy. Specifically, for the MW, quantities
like the inferred diffusion coefficient are model dependent: what
is most directly constrained by observations like the secondary-
to-primary ratios is the effective column density or grammage
Xs ≡ ∫

CR path ρnuclei d�cr = ∫
CR path ρgas c dt integrated over the path

of individual CRs from their source locations to the Earth (with
Xs ∼ 5 g cm−2, or ∼ 3 × 1024 nucleons cm−2, measured).10 If the
galaxy is in quasi-steady state with some CR injection rate Ėcr ∝
ĖSNe ∝ Lsf and losses are small (Lγ � Lcalor), then ecr(x) ≈
Ėcr (dt/d3x) at some position x (where dt/d3x is the residence time
of individual CRs in a differential volume element). Using this
and the fact that Lγ /Lcalor = Ėcoll/Ėcr, where Ėcoll = ∫

d3x 
coll =
α
∫

nn ecr d3x (with α = 5.8 × 10−16 cm3 s−1 and nn = ρnuclei/mp),

10Note that the measured grammage we compare to is an energy-weighted
average around ∼ 1–10 GeV, for which typical estimates in the MW give
∼ 2–10 g cm−2 (Cowsik, Burch & Madziwa-Nussinov 2014; Korsmeier &
Cuoco 2016; Evoli et al. 2017; Amato & Blasi 2018; Kachelrieß & Semikoz
2019).

we obtain

X∞
s ≈ 130 g cm−2

(
Lγ

Lcalor

)
(Lγ � Lcalor) (10)

or X∞
s ≈ 6 × 105 g cm−2 (Lγ /Lsf ) (where X∞

s is the grammage
integrated to infinity or ‘escape’).11

We have directly confirmed that this is an excellent approximation
in any of our simulations which is remotely consistent with the

11As X∞
s → ∞, obviously Lγ /Lcalor → 1, losses become significant, and the

linear scaling X∞
s ∝ Lγ /Lcalor in equation (10) breaks down. If we consider

a simple slab model we can extend this further, giving

X∞
s ≈ 130 g cm−2 ln

{
1

1 − Lγ /Lcalor

}
. (11)

The simulations do follow this correlation reasonably well for Lγ /Lcalor �
1, but owing to clumpiness (non-‘slab’ geometric effects) and time variability
effects there is no tight correlation once Lγ � Lcalor. However, these near-
calorimetric systems almost always have Xs � 100 g cm−2.
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4194 P. F. Hopkins et al.

Figure 3. Predicted ratio of γ -ray luminosity from hadronic collisions (Lγ ; see Section 4.1.2) to luminosity from star formation/massive stars (LSF), as a
function of galaxy central gas surface density (�central). Shaded range shows 1σ (∼ 68 per cent) inclusion interval of all points measured at uniform time
intervals at z < 1 (for all m11i, m11f, m12i). Dashed horizontal line is the steady-state calorimetric limit. Black squares compare observations (upper limit is
M33). Panel compare subsets of transport models (Table 1). Left: Constant-diffusivity (CD; Section 3.1) models. Models with κ29 = κ‖/1029 cm2 s−1 ∼ 3–30
agree well with observations. Lower (higher) κ over (under) predicts Lγ . Model ‘κ ion-neutral’ with κ29 = 3 (0.1) in neutral (ionized) gas only slightly decreases
Lγ , relative to models with κ29 < 1 everywhere. Centre: ET models. Expected scattering by Alfvénic or fast-mode ET (Alfvén-C00, Fast-YL04) is sub-dominant
(underpredicting Lγ ), although scattering by fast modes could be important (Lγ similar to observed) under some extreme assumptions (Alfvén-Max, Fast-Max).
Model ‘Iso-K41’ ignores anisotropy and damping of ET, and overpredicts Lγ . Right: SC models. ‘Default’ SC assumptions overpredict Lγ ; this is only weakly
influenced by the assumed CR energy (∼ 1–10 GeV), choice of Alfvén speed (Section 2.4), and other details. Multiplying the turbulent damping rates by factors
fcas ∼ 50–500, gives good agreement with the observed Lγ .

Figure 4. As Fig. 3, comparing Lγ /LSF versus the galaxy-integrated SFR
Ṁ∗ (left) or IR (8–1000μm) luminosity Lγ /LIR versus LIR (right; obtained
by ray-tracing from each star to a mock observer at infinity assuming an
MW-like extinction curve with a constant dust-to-metals ratio equal to the
MW value, following Hopkins et al. 2005). Comparing Lγ /LSF versus SFR
shows essentially identical behaviour to Lγ /LSF versus �central in Fig. 3.
Comparing Lγ /LIR is less useful: in dwarfs, LIR/LSF declines proportional
to the optical/UV attenuation τOUV ≈ κOUV �central, itself proportional to
�central, while Lγ /LSF similarly scales with ∼�central, so their ratio varies
more weakly (∝ L0.3

IR ) and models overlap more heavily. These diagnostics
do not rule out any models not already ruled out by the comparison in Fig. 3.

observational constraints, by calculating X∞
s following Lagrangian

CR trajectories (Fig. 5).12 To match the constraints at Earth more
directly, we have also explicitly calculated X(8.1)

s (or Xs,⊕), the
grammage from sources to random star particles at the solar circle
(8.1 ± 0.1 kpc in the thin disc mid-plane, at z = 0) in several of
our transport models (for galaxies m11f and m12i) and in almost

12Specifically, we re-run the simulation for a short time ∼ 300 Myr near z

≈ 0, with CR tracer particles probabilistically injected every time an SNe
injects CR energy (expected number proportional to CR energy injected),
each recording its time of injection. Tracers are deleted stochastically with
probability equal to the ratio of total catastrophic losses to total CR energy
in a cell each time-step, or can ‘jump’ to neighbour gas cells with probability
equal to the fractional CR energy flux from their parent cell to the neighbour
(similar to the scheme in Genel et al. 2013).

all cases find X(8.1)
s ≈ (0.7–0.9) X∞

s (since this is well outside the
effective radius of star formation in our MW) – a negligible correction
compared to other uncertainties here.

We also calculate the true ‘residence time’ �tres of CRs in our
simulations by following a random subset of tracer CRs which end
up in this mock solar circle at z = 0, tracing them back to their time of
injection. Note that residence time is only well defined with respect
to an observer at a specific location in the galaxy (so we only consider
this for our MW-like systems m11f and m12i), as it diverges for any
CRs that escape the galaxy. It also becomes artificially limited by the
hadronic loss time-scale ∼ 270 Myr (0.1 cm−3/ngas) when collisional
losses become dominant (as Lγ → Lcalor): indeed, we confirm that all
our models with �tres � (1–2) × 108 yr (consistent with loss times
for n � 0.1 cm−3) have Lγ ∼ Lcalor, and vice versa.13

By definition, �tres = ∫ ⊕
emission dt = Xs/(〈n〉 mp c) where

∫ ⊕
emission

represents the integral from emission to observation at ‘Earth’ at z

= 0, dt is the time along an individual CR trajectory, and 〈n〉 ≡
m−1

p (
∫

ρ dt)/(
∫

dt) is a residence-time-weighted average. But in
a highly inhomogeneous medium, there is no single 〈n〉 (and its
‘effective’ value depends on the transport model). As a result, there is
(as one might expect) a broad range of residence times for CRs at the
mock observer (with non-trivial ‘tails’ worth further investigation in
future work). Considering just the median at each time, we find that
for otherwise ‘favoured’ models (Alfvén-Max, Fast-Max, fcas−50,
fQLT−100) we obtain median �tres ∼ 3–50 Myr (and for fcas−500,
fcas−K41 we find �tres ∼ 0.5–15 Myr) in galaxies m11f and m12i
at times where their �gas is similar to that of the MW in Fig. 3,
matching roughly our expectation given the predicted Xs and a mean
〈n〉 ∼ 0.1–1 cm−3 typical of the ISM dominating the grammage. But
in each of these cases a significant (few per cent or more) fraction
of the population seen at the ‘observer’ has had residence times < 1

13For example, our ‘Iso-K41’ and ‘SC:Default’ models (in m12i) give esti-
mated median �tres ∼ 2–3 × 108 yr, but this is primarily limited by hadronic
losses in both cases (both have Lγ ∼ Lcalor). If we ignore the losses for our
tracer CRs, we obtain the order-of-magnitude larger �tres ∼ 1–4 × 109 yr.
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Contrasting CR transport in galaxies 4195

Figure 5. γ -ray luminosity relative to star formation (Lγ /LSF, models and shaded ranges as Fig. 3) versus CR grammage Xs calculated for an observer far from
the galaxy centre, at all simulation times z < 3. We label the calorimetric limit and the analytic relation between Xs and Lγ /LSF for a homogeneous, steady-state
system (equations 10 and 11). Regardless of the CR transport model, the simulations follow Xs ∼ 100 g cm−2 (Lγ /LSF) for Lγ < LSF, consistent with the MW
observations (square labelled). At Lγ > Lcalor, Xs saturates (any CRs with higher grammage are lost to collisions before escaping to reach the ‘observer’). The
scatter is primarily driven by short-time-scale (∼ 10 Myr) variations in SFR (i.e. LSF) and (to a lesser extent) in Lγ and Xs driven by ISM clumpiness.

or > 50 Myr. All of this is broadly within the range allowed by MW
constraints (Strong, Moskalenko & Ptuskin 2007; Putze, Derome &
Maurin 2010; Trotta et al. 2011; Aguilar et al. 2016, 2018; Yuan
et al. 2017; Kachelrieß & Semikoz 2019). On the other hand (as
noted above) the models with Lγ ∼ Lcalor all have �tres � 100 Myr
(clearly ruled out), while those with Lγ much less than observed (e.g.
‘Alfvén-C00’) all have �tres � 1 Myr.

4.1.4 CR energy densities

Fig. 6 compares the radial CR energy density profile averaged
in spherical shells,14 again at z = 0, for the same galaxies and
models as Fig. 3. For otherwise fixed galaxy properties, we expect
ecr ∼ Ėcr/(4π r κeff ) ∝ κ−1

eff in steady state, since the CR flux and
hadronic losses must balance the injection by SNe Ėcr, on average.
In a rough sense, we do see ecr decrease with larger κeff (especially
in the constant-κ models), but the trend is weaker and occasionally
non-monotonic, owing to the non-linear changes in galaxy properties
(e.g. SNe rates) with different κ (see below).

Unlike Lγ , there are no direct observational constraints on
ecr, except in the Solar neighbourhood (galactocentric r ∼ 8 kpc)
of the MW, where the most current observations indicate ecr ∼
0.5–1.2 eV cm−3 in the diffuse ISM, integrating all CRs with
energies � 5 MeV (Webber 1998; Padovani, Galli & Glassgold
2009; Indriolo & McCall 2012; Cummings et al. 2016). This
corresponds to ecr ∼ 0.1–1 eV cm−3 integrated within a factor of
∼10 of 1 GeV. We therefore compare these values to the MW-
mass simulations: there are some models which can be ruled out
by this constraint, but they are all models already ruled out by
Lγ or grammage constraints (Fig. 3). Fig. 7 shows this explicitly:
we compare more detailed calculations of both ecr and Xs as
measured by a mock observer at a random Solar-neighbourhood star,
selecting only low-redshift times where the broad galaxy properties
(mass and �central and, as a consequence SFR) are similar to
the MW.

For a given CR model, lower mass galaxies exhibit systemati-
cally smaller ecr at all radii, as expected given their lower SFRs

14Because of rapid diffusion, the CR energy density is very similar in
cylindrical annuli within the thin disc; see also Fig. 7.

(hence SNe rates and CR injection rates Ėcr), and similar-or-larger
κeff.

4.1.5 Rigidity dependence of grammage and other properties

It is worth commenting on how the implied grammage and residence
time depend on the CR energy Ecr = γL GeV or rigidity R = γL GV.
Because our simulations only follow a single bin (so we do not
directly evolve high-R CRs while evolving the ∼ GeV CRs that
dominate ecr) we cannot make detailed predictions for this. However,
if we assume that higher energy CRs behave as tracers (containing
relatively little CR energy) that do not dynamically perturb the
galaxies, and neglect losses (valid for R � 1 GV), we can predict
how κ̃eff and X∞

s depend on R in the different models here.15 If all
else is equal and κ̃eff = κ̃eff (1 GV) (R/GV)δ then we simply have
X∞

s ∝ R−δ . Most analyses of MW observations of, e.g. the B/C
ratio, favour Xs ≈ 5 g cm−2 (R/GV)−(0.5−0.6) (i.e. δ ∼ 0.5−0.6) at
energies ∼1–100 GeV (Ptuskin et al. 2006; Putze et al. 2010; Blasi
2017; Yuan et al. 2017; Aguilar et al. 2018), although systematically
varying assumptions about anisotropy, advection/winds, ‘halo’ size,
and source spectral shape can lead to values in the range δ ∼ 0.3−0.8
(Maurin, Putze & Derome 2010; Trotta et al. 2011; Blasi 2017).

Although it is commonly assumed that ET models give δ = 1/3
(or δ = 1/2 for a dynamically aligned or Iroshnikov–Kraichnan
spectrum), this is only true if anisotropy and damping are totally
ignored (as in e.g. our ‘Iso-K41’ model), which is un-ambiguously
ruled out by all other observational constraints. Almost all the ET
models considered here, give δ � 0: Alfvén-C00, Alfvén-C00-Vs,
Alfvén-Hi, Alfvén-Max all predict δ = 0, while the Alfvén-YL02
model gives negative δ = −0.8. Model Fast-YL04 gives κ‖ ∝ R0

when collisionless damping dominates and ∝ R−1/6 when viscous
damping dominates: since viscous damping dominates throughout
the ISM and inner CGM, which dominate the residence time, we find,
by integrating test particles, an effective δ ≈ −0.12 in this model and
the related Fast-Mod/Fast-Max/Fast-NoCDamp variations. In short,
at energies �TeV (where anisotropy and damping are important),

15We do this by calculating X∞
s for tracer particles (as above) with different

R, using the expressions for κ‖(γ L) in the text, then fitting the power-law
dependence X∞

s ∝ R−δ .
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4196 P. F. Hopkins et al.

Figure 6. Volume-weighted CR energy density ecr versus galactocentric radius in different transport models (as Fig. 2; see Section 4.1.4). In m11f and m12i,
we note the location and order-of-magnitude observed ecr at the solar circle (error bar). Crudely, ecr decreases as κeff increases in different models. Top: CD
models. Low (high) κ29 � 0.3 (�30) produce too much (too little) CR confinement and so over (under) predict ecr in MW-like galaxies, consistent with their
over (under) prediction of Lγ in Fig. 3. Model κ ion-neutral produces an ecr profile similar to a model with the ‘low’ ionized gas κ29 = 0.1 everywhere. Middle:
ET models. Qualitative trends with κeff are similar except model ‘Iso-K41’ in m12i which can produce such efficient CR confinement that CRs lose their
energy collisionally, lowering ecr. Bottom: SC models. These give almost bimodal results in the MW-mass systems, owing to the SC ‘runaway’ or ‘bottleneck’
effect where higher ecr produces lower κeff (Section 5.1.3). Transport is ‘too slow’ in default SC models causing CRs to ‘pile up’ in excess of observations;
fQLT fcas ∼ 100 produces good agreement.

ET models predict the wrong qualitative sense of δ, regardless of the
turbulent spectrum assumed.

On the other hand, in the default SC models here (or those
with constant fQLT or fcas), κ‖ ∝ R1/2 if turbulent, linear or non-
linear Landau damping dominate and κ‖ ∝ R0−1 when ion-neutral
damping dominates (0 if vA = vion

A dominates over κ‖, as it often does
when ion-neutral damping dominates, 1 otherwise). Since we show
below that the grammage and residence times are dominated by the
regimes where ion-neutral damping is sub-dominant, we predict an
effective δ ≈ 0.5 ± 0.1 for almost all of these models (even models
fcas−DA and fcas−K41, with different turbulent spectra, give δ =
0.42 and = 0.36, respectively).

4.2 Local variations in transport parameters and the ‘effective’
diffusivity or streaming speed

Having narrowed down the observationally allowed range of ET and
SC models, we now explore the distribution of transport parameters
in these systems.

4.2.1 Defining ‘typical’ parameters

Fig. 8 shows κeff(r) and ecr(r), for a representative example of both
an ET model (‘Fast-Max’) and SC model (‘SCx100’) which produce
Lγ and grammage similar to observations (meaning they could, in
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Figure 7. Grammage Xs, ⊕ calculated by following a Monte Carlo subset of
CRs from emission to a mock ‘observer’ at the Solar circle (galactocentric
r = 8.1 kpc) versus CR energy density in the disc mid-plane at the same
location (see Section 4.1.3), sampled over different locations and times at z <

0.5 in our m11f and m12i models selecting times at z< 1 where the gas density
�central is similar to the MW value observed (Fig. 3; ∼ 0.002–0.01 g cm−2).
Shaded grey range shows observationally allowed values for ∼ GeV CRs.
The same models which are consistent with Lγ /LSF ∝ Xs in Fig. 3 and ecr

in Fig. 6 are consistent with the grammage/residence time constraints, for
galaxies at times similar to the MW. We show a subset of SC models but have
considered additional ET and CD models and reach the same conclusion.

principle, represent the dominant CR scattering). We determine
the median and scatter in each annulus with various different
weights, e.g. weighting each cell by the local gas mass (ρ d3x),
volume (d3x), CR energy (ecr d3x), grammage or contribution to Lγ

(∝ ecr ρgas d3x), CR scattering rate (∝ (ecr/κ) d3x), or CR residence
time (∝ (ecr d3x) (ecr dr/|F|)). Fig. 1 highlights local variations in
ecr and κeff by showing a 2D map of their local values, in a slice
through the galaxy.

Within the galaxy, we see the resulting ‘typical’ κeff differs by
as much as ∼ 2 dex (in the CGM, the differences are ∼ 0.5–1 dex).
This owes to inhomogeneity in the plasma properties inside the ISM,
discussed below (Section 5.1.3) and which, in these CR transport
models, directly translates to large (order-of-magnitude) local varia-
tions in κeff and vst. Weighting by, e.g. volume, favours diffuse ISM.
Weighting by scattering rates or residence times, ∝1/κeff, selects
the lowest local values of κeff, as relevant to the ‘residence’ or
‘escape’ time in an inhomogeneous medium, which is dominated
by the regions with the slowest CR propagation. Fundamentally,
different ‘weights’ correspond to different questions: observational
constraints on Lγ and grammage are sensitive to residence-time-
weighted transport parameters, while the median CR energy density
and effects of CRs on pressure support of the CGM and ISM are
sensitive to the ISM mass and volume-weighted parameters.

We also see this inhomogeneity reflected in significant time-
variation in Fig. 9, even averaging within annuli. Relatively large-
scale structure in κeff at a given radius (dominated by spiral arms
or large cloud complexes or superbubbles) can still be somewhat
transient, producing factor ∼3–10 changes in the mean κeff within an
annulus over a galactic dynamical time (while smaller structures
vary on smaller time-scales). Galactic-scale ‘events’ (a burst of
star formation and associated outflow) can produce large coherent
changes in ecr and κeff.

This explains much of why there is not a trivial one-to-one linear
relation between κeff and Lγ in Figs 2 and 3, in the SC and ET models.

Figure 8. Radial profile of κeff (top; as Fig. 2) and ecr (bottom; as Fig. 6), in
one example consistent with observations (m12i in SC model ‘fQLT−100’).
We calculate the profiles weighting each resolution element by different
quantities in each radial annulus (Section 4.2.1, averaged over all times z <

0.5): gas mass, volume, CR scattering rate, CR residence time, CR energy,
grammage (or equivalently contribution to Lγ ). Top: The ‘mean’ κeff (at a
fixed radius and time) can vary systematically by factors up to ∼100 based
on weight, owing to the very large local variations in the ISM/CGM (Fig. 1).
Weighting by scattering rate or residence time (∝1/κ) biases towards the
lowest κ regions, where CRs can be ‘trapped’, while volume-weighting gives
the highest κ and others lie in-between. Differences are smaller in the CGM
(where e.g. density differences in phases are less extreme), but still factor
∼10. Bottom: Because of rapid diffusion, differences in ecr are smaller (it is
smoother; see Fig. 1), but still significant, as weighting by e.g. total grammage
(∝ ecr ρ d3x) biases to the densest gas with the highest ecr.

Some of these models can produce very large volume or Lγ -weighted
κeff, but in the central few kpc of the galaxy (which dominate Lγ )
the residence-time or scattering-rate weighted κeff is much lower,
producing larger Lγ . Some of this variation also translates to ecr,
although the diffusive nature of CR transport reduces the variations
here.

4.2.2 Diffusion versus streaming

Fig. 10 compares κeff(r) with different weights like Fig. 8, but extends
this to dwarf and intermediate-mass galaxies, and also compares the
effective streaming speed v̄st, eff (r). Recall (Section 2.3) we can freely
translate locally between the two using v̄st, eff ≡ κeff/(γcr �cr). Fig. 10
considers v̄st, eff in absolute units as well as relative to videal

A and vion
A .

First, we see that the local and systematic variations (weight-
dependence) in κeff within a single galaxy discussed above extend
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Figure 9. Time-dependence of κeff (scattering-rate-weighted) and ecr

(volume-weighted). We plot profiles of both in m12i SC model ‘fQLT−100’
as Fig. 8, but sampling different times at z < 0.5 (different colours; note
the time/redshift spacing is not uniform). There is considerable variation
in time, which is not simply a continuous systematic evolution but reflects
substantial changes over time as bar and spiral arms, phase structure and pres-
ence/absence of superbubbles, and periods of elevated star formation (e.g. as-
sociated with higher ecr at z∼ 0.3–0.5) and galactic outflow appear and recede.

to all galaxies simulated. They also do not vanish or significantly
decrease if we consider v̄st, eff or v̄st, eff/vA instead of κeff. Likewise,
systematic galaxy-to-galaxy variations in κeff (being larger in dwarfs)
appear in v̄st, eff as well. In other words, these results are not simply
an artefact of parametrizing the transport with κeff instead of v̄st, eff .

Secondly, we see that, for a given model and weight (usually), κeff

is approximately independent of r within the galaxy (within a few
kpc), but then rises at larger r (in the CGM), while v̄st, eff depends on
r within the galaxy but is less-strongly r-dependent in the CGM.

Thirdly, we see that v̄st, eff in absolute units is actually closer to
r-independent (and exhibits weaker systematic weight-dependence),
compared to v̄st, eff/v

ideal
A or v̄st, eff/v

ion
A , even though the SC sim-

ulations plotted assume vst = vion
A . In other words, because κ‖ is

non-zero, we have v̄st, eff ≈ vst + κ‖/(γcr �cr) �= vst.
Finally, we stress that even if the average κeff or vst, eff were

approximately constant across galactocentric radius and time, the
transport equations being integrated (especially for SC models) do
not actually have the same form as a ‘true’ diffusion or stream-
ing/advection equation (see Appendix B3). Thus, while κeff or
vst, eff are useful parameters and can guide our intuition regarding
transport timescales, equilibrium fluxes, etc., care is required in their
interpretation.

4.3 Redshift dependence and effects on galaxy evolution

In future work, we will explore in detail the effect of different CR
models on galaxy properties, e.g. how they influence galactic star for-
mation and ISM/CGM properties. Because our focus in this work is
the observational constraints on CR transport models, we only briefly
discuss galaxy properties here in so far as it can provide additional
constraints. In Papers I and II, we showed using ‘constant-diffusivity’
models that entirely turning on/off CRs, or changing κ by factors of
∼1000, makes only a modest (albeit non-negligible and potentially
important) difference to global galaxy properties. We found that the
strongest effects due to CRs (choosing the ‘most optimal’ diffusivity)
occur around MW-mass at z ∼ 0, and even there it typically results
in factor �2–3 differences in e.g. galaxy stellar masses. This is not
sufficiently large to obviously rule out a specific CR transport model
or diffusivity (because, e.g. changing the mean mechanical energy
per SNe by a similar factor, easily allowed by observations, would
result in a similar effect). Among the models studied here which are
allowed by γ -ray observations, we generally find effects on galaxy
formation ‘in between’ the ‘no CR’ and ‘largest CR effects’ models
from Paper II. We also find (consistent with Paper II) that effects of
CRs on galaxy properties are weaker at high redshifts (in every model
considered here), owing to relatively higher ISM/CGM pressures. We
therefore conclude that the indirect effects of CRs on bulk galaxy
properties do not strongly constrain the CR transport models of
interest.

5 D ISCUSSION

5.1 The need for ‘fast’ transport and cosmological simulations
with resolved ISM phases

5.1.1 Favoured transport parameters: an analytic toy model

The total (galaxy-integrated) CR collisional loss rate is Ėcoll ≡∫
d3x 
coll(ngas, ecr). In Paper II, we developed a simple toy model

for a constant isotropically averaged diffusivity κ̃eff ∼ κeff/3 ≡
κ̃29 1029 cm2 s−1 (or ṽst, eff ∼ v̄st, eff/3 ≡ ṽst

1000 1000 km s−1) in a
disc+halo system, with a steady-state star formation and SNe rate,
hence constant Ėcr ≈ 0.1 εSNe Ṁ∗ (where εSNe ∼ 1051 erg/100 M� is
the energy per unit stellar mass in SNe). If the CRs are confined (not
free-escaping), diffusion is relatively fast (compared to e.g. bulk gas
motion), the SFR (hence CR injection) is centrally concentrated
compared to the size of the CR halo, and collisional losses are
small, then in steady state the CR energy density should scale as
ecr ∼ Ėcr/(4π κ̃eff r) ∼ Ėcr/(4π ṽst r

2). If the disc+halo follows a
realistic extended profile with most of the gas mass Mgas in a half-
mass radius �gas and central surface density �gas, then (performing
the integrals exactly for a thin, exponential disc in a power-law halo
following Paper II):

Ėcoll

Ėcr
≈ Lγ

Lcalor
∼ 0.15

κ̃29

(
�gas �gas

0.01 g cm−2 kpc

)

∼ 0.06

ṽst
1000

(
�gas

0.01 g cm−2

)
, (12)

or equivalently (using Lcalor ≈ 2 × 10−4 Lsf )

Lγ

Lsf
∼ 3 × 10−5

κ̃29

(
�gas �gas

0.01 g cm−2 kpc

)
∼ 10−5

ṽst
1000

(
�gas

0.01 g cm−2

)
.

(13)
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Figure 10. Radial profile of transport parameters in SC model ‘fQLT−100’ in different galaxies versus weight (as Fig. 8), see Section 4.2.2. Top: Effective
‘diffusivity’ κeff ≡ |F|/|∇‖ecr|. Second: Effective ‘streaming speed’ v̄st, eff ≡ |F|/hcr. Third: Effective streaming speed in units of local ideal-MHD Alfvén-speed

v̄st, eff/v
ideal
A . Bottom: Effective streaming speed in units of local ion Alfvén-speed v̄st, eff/v

ion
A (vion

A ≈ f
−1/2
ion videal

A ). In all cases, the choice of weight has similar
(large) effects: this reflects genuine inhomogeneity, not the particular diagnostic. Diffusivity κeff is reasonably constant within a single galaxy (r � a few kpc) but
rises with r in the CGM (by factors ∼100–1000 at the virial radius); the scattering-weighted κeff also depends surprisingly weakly on which galaxy we consider.
The absolute v̄st, eff is much closer to r-independent, though the scattering-rate-weighted value ∼ 100–1000 km s−1 depends more strongly systematically on
galaxy type. Considering v̄st, eff in units of videal

A or vion
A increases the scatter/radius dependence/systematic variations between galaxies: it is not accurate to

simply think of ‘super-Alfvénic streaming’ arising from SC as some multiple of vA.
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In terms of the grammage X∞
s , this gives

X∞
s

g cm−2
∼ 20

κ̃29

(
�gas �gas

0.01 g cm−2 kpc

)
∼ 6

ṽst
1000

(
�gas

0.01 g cm−2

)
. (14)

The assumption that losses are small means this applies when
Ėloss/Ėcoll � 1; losses will saturate at the calorimetric limit Ėloss ≈
Ėcoll. This simple estimate gives a surprisingly good estimate of
the full simulation prediction for Lγ /Lsf for our constant-κ models
(assuming κ̃eff ∼ κ‖/3) in Fig. 3.

Moreover, if we assume we are in an MW-like galaxy, with a ‘solar
circle’ at robs ≈ 8 kpc, we can also estimate the median CR energy
density and CR residence time16 seen by a mock observer:

ecr

eV cm−3

∣∣∣
�

∼ 2

κ̃29

(
RSNe, MW

1/30 yr

)
, (15)

�tres

Myr

∣∣∣
�

∼ 25

κ̃29

(
r2

obs − r2
1/2

(8 kpc)2 − (5 kpc)2

)
, (16)

where RSNe, MW is the MW (Galaxy-integrated) SNe rate ∼ 1/30 yr.
Noting that the MW has an observed central �gas ∼ 20 M� pc−2 ∼

0.004 g cm−2 and �gas ∼ 5 kpc, reproducing the observed MW gram-
mage Xs ∼ 3–10 g cm−2, Lγ /Lsf ∼ 0.03, ecr ∼ 0.1–1 eV cm−3, or
�tres ∼ 5–20 Myr all require κ̃29 ∼ a few. This is the median of our
‘favoured’ values in Table 1.

This also neatly illustrates the degeneracy between inferred dif-
fusivity and ‘halo size’ in simpler leaky-box models: if the CRs
escape at some height h < �gas (truncating the integral above), it is
roughly equivalent to replacing �gas → h in the calculation above,
and for a fixed Lγ /Lsf or Xs, we have an inferred κ∝h. As soon as we
abandon the assumption of a ‘leaky box’ or ‘flat halo’ with h < 1 kpc,
all of the observations require similar, relatively ‘fast’ transport
speeds.

5.1.2 Scalings of gamma-ray luminosity with galaxy properties

The simple model in Section 5.1.1 and equation (13) naturally
explains the trend of Lγ /LSF∝�gas at low �gas seen in Fig. 3, as
Lγ ∝Xs∝�gas – i.e. for a similar transport speed, the grammage Xs

(and therefore Lγ produced by collisions) simply scales with the
galactic column density.

In contrast, the trend of Lγ /LSF with LSF or Ṁ∗ in Fig. 4 is closer
to Lγ /LSF ∝ Ṁ0.7

∗ . This follows from global galaxy scalings like
the Schmidt–Kennicutt relation �̇∗ ∝ �1.4

gas seen in both nature and
these simulations (Kennicutt 1998; Orr et al. 2018), which (with
equation 13) gives Lγ /LSF ∝ Ṁ0.7

∗ /κ̃29.
If we assume steady state with a constant SFR, then the total

IR luminosity is determined by the fraction of optical/UV light
absorbed and re-emitted: LIR/LSF ≈ (1 − exp [−κOUV �gas]) where
κOUV ∼ 1000 cm2 g−1 (Z/Z�) is the flux-averaged optical/UV opac-
ity (scaling with galaxy metallicity Z). In dwarfs and the MW where
LIR � LSF this gives LIR/LSF ∼ κOUV �gas. Combining with equa-
tion (13), we have Lγ /LIR ∼ 3 × 10−5 κ̃−1

29 (�gas/10 kpc) (Z�/Z),
which is very weakly dependent on galaxy properties (both �gas and
Z scale ∝ M0.2−0.3

∗ , and their scalings cancel here; see Kewley &
Ellison 2008; Hall et al. 2012). In short, the fact that Lγ /LIR, while
clearly not constant, depends only weakly on L0.2−0.3

IR (Fig. 4) – i.e.

16For residence time, we model CR injection as a Gaussian with initial half-
mass radius r1/2 = 5 kpc, motivated by the stellar (and SNe Ia) scale length
in the MW (adopting the scale length for young-stars, for core-collapse, gives
r1/2 ≈ 3 kpc), diffusing isotropically, then calculate the median time-since-
injection of all CRs in a shell robs ≈ 8 kpc in steady state.

that the Lγ −LIR relation is closer to linear than the Lγ –SFR relation,
trivially follows from the fact that both the grammage Xs (which is
proportional to Lγ ) and OUV optical depth τ (proportional to LIR)
scale with �gas.

Again, reproducing any of the observed trends requires similar
κ̃29 ∼ a few.

5.1.3 Importance of cosmological simulations and resolved
ISM/CGM phases

Although the simple analytic scalings above can explain many
qualitative phenomena, we also identify in our simulations a number
of important effects which can only be properly captured in cos-
mological simulations with resolved ISM phases. These include the
following:

(i) Extended haloes: Galaxies have extended gaseous haloes
reaching to > 100 kpc, containing most of the gas mass in relatively
slowly falling power-law density profiles (e.g. isothermal ρ∝r−2,
as opposed to exponential). In every physically plausible model we
consider, the ∼ GeV CRs remain confined/coupled in the halo out to
�Rvir (mean free paths are λmfp ∼ 3 κ/c ∼ 0.003 κ29 kpc, compared
to ∼ 100 kpc halo scale-lengths). The galaxy and even ‘inner’ CGM
halo at � 10 kpc is not a ‘leaky box’ or ‘flat halo’ with simple escape
outside some volume.

(ii) Clumpiness: At high κ̃eff , ISM ‘clumping’ does not strongly
alter Lγ because CRs rapidly move through dense gas. But if
κ̃eff � 1027 cm2 s−1 locally, then CR diffusion/escape times (∼�2/κ)
becomes shorter than (a) the dynamical times (∼ 1/

√
G ρ) of large

(� 100 pc) GMC complexes and (b) CR collisional loss times (∼
40 n−1

1 Myr). Thus, CRs get ‘captured’ in dense clumps, producing
order-of-magnitude higher Lγ .

(iii) Multiphase neutral gas: If the neutral gas is bounded (e.g. in
clouds or a thin disc) by ionized gas, then even if κ̃eff → ∞ in that
neutral gas, the CR energy density ecr becomes locally constant at
a value 〈ecr〉 determined by the ‘boundary condition’ value of ecr in
the ionized medium. If κ̃eff is low in the ionized gas, the CRs are
therefore ‘trapped’ regardless of κ̃eff in the cold/neutral phase. Thus,
the total residence time in dense gas can be large, in principle, even
if the local diffusivity in said gas is also large.

(iv) Halo ‘collapse’: As shown in Paper II, if CRs efficiently
escape the disc to � 10 kpc in intermediate and MW-mass systems,
they provide substantial pressure support to the halo gas, which in
turn suppresses accretion leading to significantly less dense gas in
the disc at z ≈ 0, which suppresses Lγ further. But if they cannot
escape to � 10 kpc, the halo ‘collapses’ and produces more efficient
cooling and denser gaseous discs in MW-mass systems, non-linearly
raising Lγ .

(v) Self-confinement ‘runaway’ or ‘bottleneck’: In SC models,
the diffusivity/streaming speed scales inversely with ecr (i.e. the
absolute CR flux is bottlenecked by the self-excited waves). Thus, if
ecr builds up to large ISM values even briefly, the effect rapidly
runs away, as it restricts its own transport. A number of other
non-linear effects can further exacerbate this: for example, if Pcr

begins to dominate pressure support in the WIM or inner CGM,
then turbulence is generally weaker (as CRs suppress rapid gas cool-
ing/collapse and star formation), hence �turb and κ become smaller
still. These produce large local fluctuations in diffusivity/streaming
speed.

(vi) Clustered SNe: In a resolved ISM, SNe are strongly clustered
in space and time and associated with denser, star-forming regions.
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This enhances Lγ directly, but more importantly leads to locally large
ecr which can trigger the SC runaway discussed above.

(vii) Tangled fields: Magnetic fields are highly ‘tangled’ (Su et al.
2018; Ji et al. 2020), reducing κ̃eff . And in some cases (e.g. strong
oblique shocks), perpendicular B-fields enhance CR ‘trapping’ in
high-density gas, which can enhance Lγ .

(viii) Local turbulent fluctuations: Both ET and SC models depend
on the local turbulent dissipation/cascade rate (as well as e.g.
magnetic field strengths). But, even on spatial scales resolved in
our simulations, which are coherent on scales comparable to CR
mean-free paths and scattering times, that rate has large (order-of-
magnitude) local fluctuations on ∼0.1–100 pc scales. For example,
if κ∝u2, where u is some local ISM property (like |δvturb|) that is
lognormally distributed with factor ∼3 scatter, then the residence-
time or scattering-weighted mean κ will be a factor ∼10 lower
than the volume-weighted κ . This means that Lγ will generally be
larger than assumed using just the ‘median’ properties of the ISM to
estimate κ .

Clearly, one cannot fully capture these effects by post-processing
CR transport in simple analytic or empirical galaxy models. The
effects above produce the large systematic internal variations of κ

and vst in Figs 8 and 9. Moreover, almost all these effects go in the
direction of increasing Lγ and CR confinement. They also explain
why the required κ or vst in our simulations are significantly larger
than those obtained in ‘leaky box’ or flat halo diffusion models
which assume free escape of ∼ GeV protons outside of the thin or
thick disc. They demonstrate why the connection between κ , Lγ , and
ecr in Figs 2–6 is not trivially linear as predicted by the toy model in
Section 5.1.1.

5.1.4 Fast transport in neutral gas is insufficient

In some of our models κ̃eff can be ‘large’ (κ̃29 � 1) in neutral gas,
but relatively small in the ambient warm ionized gas (WIM and
inner CGM). This is true by construction in our ‘two-κ’ model in
Section 3.1.1, or due to ion-neutral damping in SC models. We saw
in Section 4 that this reduces the predicted Lγ and collisional losses
(and therefore the CR ‘residence time’ in the disc) by a surprisingly
small amount (factor <2). There are two reasons for this. First,
per Section 5.1.3 above, a neutral cloud or ‘slab’ of gas with local
κneutral → ∞ will just converge to constant ecr set by the ‘boundary’
condition in the ambient WIM, so if the WIM has low κ ion and
traps CRs, they will still spend time in the cold clouds inside that
WIM. Second, even if we ignore the effect above and assume that
the CR residence time in a local ‘patch’ simply scales with the local
∼ 1/κ̃eff (the ‘free escape’ limit), we note that Lγ and grammage scale
with the hadronic losses as Lγ ∝ ∫

ecr ρ d3x ∝ ∫
(1/κ) dMgas ∝

Mion/〈κ̃ion〉 + Mneutral/〈κ̃neutral〉 (where Mion and Mneutral are the total
mass of ionized gas and neutrals in the galaxy+CGM). So even
if κneutral → ∞, this can only reduce Lγ by at most a factor ∼
1 + Mneutral/Mgas, total relative to a model with κ̃ = κ̃ion everywhere.
In dwarf galaxies, in particular the SMC, LMC, and M33, most of
the gas is ionized, so this is a small correction, and even in the MW
or M31, this is a factor only ≈1.5–2.

5.1.5 Can faster outflows or Alfvén speeds reduce the required
transport coefficients?

It is clear that our ‘advection+Alfvénic streaming’ (κ29 = 0, vst =
vA) simulations severely overpredict the observed CR grammage,
energy density, γ -ray luminosity, etc. However, large theoretical

uncertainties remain in predicted galactic outflow and magnetic field
properties (see e.g. Naab & Ostriker 2017, for a review). So although
our comparisons between FIRE simulations and observations in
previous work (see references in Section 1) suggests plausible
agreement, it is possible that real galaxies feature significantly
stronger outflows or magnetic fields, reducing the residence time even
with κ → 0. But even if we ignore all the complications described
above, it seems implausible that this could significantly reduce the
values of κ̃eff or v̄st, eff required by the observations.

First consider outflows/pure advection: there are at least
three major issues invoking outflows to provide ‘most’ of the CR
transport. (1) The required outflow speeds must reach at least v̄st, eff ∼
300–3000 km s−1 (Fig. 10) in most galaxies at z ∼ 0, including
dwarfs – but these are much larger than outflow speeds observed in all
but the most extreme starburst/AGN systems Martin (1999), Martin
& Bouché (2009), Rupke (2018). (2) In the pure-advection limit,
the ‘residence time’ of CRs is equivalent to the ‘residence time’ of
gas in the ISM; but the observationally favoured CR residence times
∼ 107 yr are much shorter than even a single Galactic dynamical time
∼ 108 yr. So even gas which accretes falling in the free-fall velocity,
mixes in a single dynamical time, and then accelerates outwards to the
escape velocity will exceed observed CR residence times. (3) Most
of the ISM observed (and simulated), even in dense star-forming
regions, is not in outflow (Evans et al. 2009). Equivalently, most of
the CR γ -ray emission, residence time, and grammage comes not
from outflows but from the diffuse ISM; and of course the Galactic
constraints on CRs (measured at Earth) come specifically from gas
not in outflow. So even infinitely fast outflows will only reduce the
required transport speeds in the non-outflowing ISM by a factor of
order the ISM mass fraction in outflows (similar to our argument
above regarding cold clouds), which is never larger than tens of
percents.

Next, consider Alfvénic streaming. Here, the problem is ob-
vious: to approach the required transport speeds and therefore
observed grammage/residence times/γ -ray luminosities without in-
voking super-Alfvénic streaming or diffusion would require vA ∼
vst, eff ∼ 1000 km s−1 in dwarf and MW-like galaxies, i.e. for typical
ISM gas densities n ∼ 1 cm−3 we would require |B| ∼ 500μG, order
of magnitude larger than observed. Even if we arbitrarily multiply the
magnetic field strengths in our simulations by a factor ∼10 (larger
than what is allowed by observations; see Guszejnov et al. 2020), we
would still require a volume-weighted vst, eff � vA in Fig. 10.

It is therefore difficult if not impossible for these effects to alter
our implied constraints on CR transport speeds by more than an
order-unity factor.

5.2 Extrinsic turbulence

5.2.1 Alfvén modes

Consistent with conventional wisdom, we find that most standard ET
models which assume scattering is dominated by resonant Alfvén
waves modes (e.g. our ‘Alfvén-C00’ models and their variants,
‘Alfvén-YL02’, ‘Alfvén-Hi’, and related models) produce negligibly
small CR scattering (i.e. higher κ) compared to the observationally
inferred levels at ∼ GeV energies (see Table 1). Correspondingly,
these models alone (i.e. including no other scattering sources)
underpredict the observed Lγ and MW grammage, as well as the
CR energy density at the solar circle. Even if we neglect anisotropy
and its effects on the scattering rate completely, giving fturb = 1
(our ‘Alfvén-Max’ model), this is only just barely able to reach the
scattering levels observed.

MNRAS 501, 4184–4213 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4184/6009042 by guest on 25 April 2024



4202 P. F. Hopkins et al.

5.2.2 Magnetosonic modes

If we assume a cascade of fast modes down to resonant scales
∼rL, assuming such modes are fully isotropic and ignoring any
mode-damping (e.g. our ‘Iso-K41’ and ‘Fast-NoDamp’ models)
then we would obtain excessively high scattering rates (low κ),
clearly violating the observational constraints by factors of ∼10–
100 (regardless of details of the power spectrum or whether we
assume additional streaming at ∼vA). But such models are clearly
unphysical: in the warm WIM/CGM discussed above, accounting
for just Braginskii viscosity as a damping mechanism and assuming
trans-sonic turbulence, the equivalent Kolmogorov scale for fast (or
perpendicular slow) modes is a factor �Kolm/rL ∼ 105 (T /105 K)2

larger than the gyro-resonant scales (in colder gas, ion-neutral
damping and atomic/molecular collisional viscosity similarly gives
�Kolm � 104 rL). Accounting for damping, the power in isotropic
magnetosonic modes with wavelengths λ ∼ rL (hence their con-
tribution to resonant scattering) should be vastly smaller than that in
(undamped) Alfvén waves at similar wavelengths.

However, Yan & Lazarian (2004, 2008) argued that non-resonant
fast modes with λ � rL (plus undamped parallel gyro-resonant
fast modes) can produce efficient CR scattering: we adopt their
proposed scalings in our ‘Fast-YL04’ model and show that this
could be allowed, and in fact could produce an order-unity fraction
of the observed scattering in gas that is both fully ionized (fneutral

� 0.001) and has β � 1. But this represents a small fraction of
the ISM and almost none of the CGM, so likely contributes only
modestly to observed scattering in total. Only by removing these
restrictions (‘Fast-Max’) can this model approach the full observed
scattering. We also caution that several assumptions in YL04 remain
controversial including the degree of resonance-broadening, whether
long-wavelength fast modes can efficiently scatter low-energy CRs
via TTD, the k−3/2 spectrum of the fast-mode power spectrum, and
whether parallel fast modes follow the same spectrum below the
scales where non-parallel modes are damped. Changing any of these
decreases the implied scattering rate from fast modes by a large factor
(e.g. our ‘Fast-Mod’ model).

5.3 Self-confinement

Again consistent with conventional wisdom, we find that ‘standard’
SC models predict much higher scattering rates and more efficient
confinement of low-energy CRs compared to standard ET models
(even the YL04 models). So it is reasonable to expect SC dominates
over ET-induced scattering at ∼ GeV. However, we actually find
that ‘default’ or standard SC models predict excessive confinement
– higher ν and lower κ , resulting in excessively high γ -ray lumi-
nosities, grammage, residence times, and CR energy densities –
compared to observations. For reference, the predicted effective ‘res-
idence times’ of CRs in ‘SC:Default’ model in MW-like haloes are
�108 yr, with CR energy densities � 10 eV cm−3, γ -ray production
near the calorimetric limit, and grammage Xs � 100 g cm−2. These
characteristics are all in conflict with observations at the factor ∼10–
1000 level.

As we discuss below, many of the model variations considered
(see Table 1) do not resolve this issue: changing the CR energy by a
factor ∼10, modest changes to the assumed turbulent structure, using
equilibrium versus non-equilibrium treatments of CR transport, or
adopting videal

A or vion
A as the relevant Alfvén speed, all produce order-

unity changes that are insufficient to explain these discrepancies.
More fundamental changes, either invoking slower gyro-resonant
growth rates (or lower scattering rates), or larger resonant-wave

damping rates (or new damping mechanisms) by a factor ∼100,
are required to reproduce the observations.

It is worth noting that in Table 1 and Figs 3 and 6, many of
the observable predictions of the SC models appear to be almost
‘bimodal’. Either the models predict excessive confinement near the
calorimetric limit (with quite similar observables like those described
above; e.g. our ‘Default’, ‘κ × 6’, ‘videal

A ’, ‘10 GeV’, ‘fturb−5/DA’,
‘Non-Eqm’, models), or they ‘jump’ to a new solution with much
higher diffusivity, lower Lγ /Lsf and grammage, and lower ecr at the
MW solar circle, all in quite good agreement with the observations
(e.g. our ‘fturb−50/500/K41’, ‘NE-fturb−100’, ‘fQLT−100’ models).
This owes to the ‘SC runaway’ or ‘bottleneck’ effect described in
Section 5.1.3: because SC models limit the absolute CR flux, the
transport ‘speed’ (κ or vst) scales inversely with the CR energy
density ecr (equation 7). Thus, if there is a rapid injection of CRs
(say from clustered SNe), ecr rises rapidly, lowering κ , which slows
CR escape, increasing ecr and further lowering κ , in a runaway, until
the CRs in that region lose their energy to collisions (hitting the
calorimetric limit). To avoid this, the ‘pre-factor’ in the diffusive
transport speeds, i.e. the damping rates �damp or growth factor fQLT

must be large enough that CRs can efficiently escape these ‘worst-
case’ (most efficiently trapped) environments. Once they do so, ecr

is made smooth by diffusion, and a ‘smooth’ or ‘average’ diffusivity
becomes more reasonable.

5.3.1 Fast transport in neutral gas and choice of Alfvén speed

In the neutral ISM all the SC models here do predict large κ̃eff �
1029 cm2 s−1, regardless of how we treat the Alfvén speed when fion

� 1 (Section 2.4). If we take vA = vion
A = f −1/2

ion videal
A in equation (7),

then this becomes large for fion � 10−6 in GMCs, suppressing the ‘κ‖’
term in equation (7), but giving large vst = vA so κeff ∼ γcr vst �cr ∼
1031 cm2 s−1 �cr, kpc B5μG n

−1/2
10 (fion/10−8)−1/2. If, instead, we take

vA = videal
A , then (taking � → �in) we have κeff ∼ κ‖ ∼ 0.3 ×

1031 cm2 s−1 �cr, kpc e−1
cr, eV n

3/2
10 T

1/2
1000 γL. But for the reasons discussed

in Section 5.1.4 this alone does little to alter Lγ or the other
observational constraints in Table 1 and Fig. 3: the overconfinement
from SC models occurs in ionized, not neutral gas. And in the volume-
filling WIM/CGM phases fion ∼ 1 and videal

A ≈ vion
A , so the choice of

Alfvén speed does not produce any difference.

5.3.2 Equilibrium versus non-equilibrium models

We find that adopting the more detailed non-equilibrium evolution
of the coefficients κ‖, vst as proposed in Thomas & Pfrommer (2019)
(Section 3.3.2) makes little difference to our results, compared to
adopting the ‘local equilibrium’ description in equation (7) (using
the same damping coefficients). This is not surprising, as the time-
scale for κ to reach the local equilibrium value is short ∼ �−1 ∼
3000 yr �−1

−11. In the non-equilibrium case, CRs do escape the galaxy
slightly more easily, as they can ‘free stream’ a bit longer before
eA and the scattering rate ‘build up’. However, this is likely at least
somewhat artificially enhanced in our simulations here, because we
adopt a ‘reduced speed of light’ c̃ < c (which increases the CR ‘mean
free path’ ∼ κ/c̃), so we caution against overinterpreting the result.

5.3.3 Overconfinement in the WIM and inner CGM

Consider our ‘default’ SC models (with fQLT = fcas = 1), in ionized
gas representative of the warm and hot phases of the ISM and
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CGM. Ion-neutral damping is negligible under these conditions.17

Non-linear Landau (NLL) damping is also sub-dominant, and in
fact cannot dominate �eff in the WIM/inner CGM, without violat-
ing both the observational constraints on ecr and κ̃eff : comparing
�turb + �LL (equations A2 and A3) and �NLL (equation A4)
in Appendix A, we see that �NLL � (�turb + �LL) requires
ecr, eV � 40 (1 + 2.5/β1/2)2 δv3

10 n2
1 f 2

cas T
1/2

4 B−2
μG. But if this con-

dition were met, inserting these values of ecr and �eff ≈ �NLL

in equation (7) means the diffusivity would have to be less than
κ‖ � 5 × 1025 cm2 s−1 �

1/2
cr, kpc δv

−3/2
10 n

−1/4
1 T

1/2
4 (for any β), because

κ‖ for SC scales inversely with ecr. So in these environments �eff

is dominated by turbulent+linear Landau damping, which scale
similarly as �LL ≈ 0.4 β1/2 �turb and give κ‖ ∼ 1027 cm2 s−1 (1 +
0.4β1/2) δv

3/2
10 �cr, kpc �

−1/2
turb, kpc n

3/4
1 γ

1/2
L e−1

cr, eV fQLT fcas.
Although these values of κ and the vst ≈ vA term18 can become

large in the outer CGM (� 30 kpc, where ecr is small, see Fig. 6), for
fQLT fcas ∼ 1 these are a factor of ∼30–300 smaller in the WIM/inner
CGM than the values needed to explain observations (Table 1). As
discussed above, it is also necessary in these models to overcome
the SC runaway or bottleneck effect: this is particularly onerous in
regions like superbubbles, which fill much of the volume around
even new SNe (i.e. the CR sources, if SNe are clustered). With n ∼
0.01 and ecr, eV ∼ 10 in these regions, the local κ̃eff can be as low
as ∼ 1024 cm2 s−1 – equivalently the residence/escape time from an
∼ 100 pc-size superbubble could reach ∼ Gyr!

It is difficult to escape these conclusions: direct observational
constraints on e.g. the turbulent velocity dispersions, scale-lengths,
densities, and CR energy densities in the MW simply do not allow
for large enough changes to those parameters to produce the required
diffusivity without modifying fQLT fcas above. The ISM parameters
(e.g. n, T) are uncertain at the order-unity, not factor ∼100 level.
The variations across different times in the galaxy history, and
different galaxies like m11f and m12i (as well as other galaxies we
have simulated described in Appendix D), fully span the ‘allowed’
observational range in these properties, and do not produce anywhere
near the required values of Lγ or grammage with fQLT fcas ∼ 1. And,
even if the ‘median’ values of the scalings above for a given phase
were promising, it is almost impossible to escape the conclusion
that there will be substantial regions or local environments in the
MW where the particular κeff predicted above would be very low,
producing a severe ‘bottleneck’ unless, again, fQLT fcas or some
related factor can be made factor ∼100 larger.

5.3.4 Possible resolutions

Reconciling SC models with observations fundamentally requires
factor ∼100 lower scattering rates ν (and correspondingly larger
κ̃eff ) in the WIM/inner CGM, compared to the predictions ob-
tained with the most commonly assumed scalings (our ‘default’
model). Qualitatively, there could be several explanations for the
discrepancy:

17While ion-neutral damping is efficient in dense gas (n1 � 1) as fneutral

→ 1 (with fion � 10−6 very small), if fneutral � 1 (so fion is not
�1), then achieving an effective isotropic diffusivity κ̃29 � 1 requires
fneutral � ecr, eV/(�cr, kpc n

3/2
1 ). So at densities n � 1 cm−3, or temperatures

T � 2 × 104 K (where fneutral � 0.01 drops exponentially), �IN is small both
compared to other damping mechanisms (�IN � �turb + �LL + �NLL) and
compared to the observationally required damping rates.
18For vst = vA, the corresponding κeff ∼ γcr vst �cr ∼
1027 cm2 s−1 BμG �cr, kpc n−1

1 .

(i) Inefficient scattering: If CR scattering by gyro-resonant
waves is much weaker than usually assumed19 (for the same δB[rL]
or eA), this would directly lower ν. Gyro-resonant waves have a
reasonably well-understood structure (see e.g. Zirakashvili, Ptuskin
& Völk 2008; Ohira et al. 2009; Riquelme & Spitkovsky 2009) and
the amplitudes predicted here are generally modest (for diffusivity
κ̃29, the gyro-resonant |δB[rL]|/|B| ∼ 3 × 10−4 (γL/BμG κ̃29)1/2);
however, two recent works studying the saturation of the gyro-
resonant instability using the PIC method suggest possible ways
that the effective ν might be lower than the QLT prediction. First,
Bai et al. (2019) find that the time required for the CR distribution
to become fully isotropic in the Alfvén-wave frame is much longer
than predicted by the QLT estimate. This behaviour arises because
of particularly inefficient scattering across the zero pitch angle (μ
= 0) barrier, which is both slow and requires scatterers of very
short wavelength compared to rL (Völk 1973). Secondly, in the
highly anisotropic regime most relevant to regions close to sources,
Holcomb & Spitkovsky (2019) find very inefficient saturation of
the gyro-resonant instability even when the self-excited Alfvén
waves reach very large amplitudes, because only a single helicity
(handedness) of Alfvén wave is produced by the CRs. Such an effect
may help to limit the SC ‘runaway’ (see Sections 5.1.3 and 5.3.3) in
regions with high ecr.

(ii) Lower gyro-resonant growth rates: If the growth rate of
the gyro-resonant instability is a factor f −1

QLT smaller compared to
the usual linear-theory expression �linear

grow ∼ � (ncr/ni) (v̄st/vA − 1),
then the quasi-linear saturation amplitude of ν → ν/fQLT (and
κ → fQLT κ). In the WIM/CGM, we have β � 1, ecr/eB � 1,
v̄st/vA ∼ 300–1000 � 1, regimes where the instability is not well
studied and could potentially be strongly modified.20 The results of
Bai et al. (2019) may again be of interest, if smaller scale modes
excited by low-μ and lower energy particles are required to fully
saturate the gyro-resonant instability. Since such particles are much
less numerous, implying the growth rate of the resonant modes
is lower, the damping-growth balance that is usually assumed to
saturate the instability and determine κ (see Section 3.3) might occur
at significantly lower Alfvén-wave amplitudes than usually assumed.
It seems plausible that such an effect could lead to significant
enhancements in the SC diffusion rates, although clearly more work
is needed.

(iii) Larger damping rates or alternative mechanisms: Since
the saturation amplitude of |δB[rL]|2/|B|2, hence scattering rates, are
inversely proportional to the damping rate �eff in the quasi-linear
theory models considered here (giving κ∝�eff), it may instead be
that damping rates are underestimated. We stress that the required
damping rates are still very small in absolute terms: �damp � 10−7 �

gives the required κ̃29 � 1. Also, as discussed above, any such
damping must operate efficiently in the ionized ISM and inner CGM:

19Uniformly decreasing the predicted scattering rate ν by a factor fscatter,
all else equal, in our models, is equivalent to multiplying κ± given by the
closure-relation in equation (B3) by fscatter, which in turn multiplies the ‘local
equilibrium’ κ‖ in equation (7) by fscatter as well, exactly identical to our
‘fQLT’ parameter.
20For the conditions of interest in the WIM/CGM and κ̃29 ∼ 1, we ex-
pect large β ∼ 35 n1 T4 B−2

μG � 1 (using our standard notation to scale T

relative to 104 K, etc.), large ratio of CR to magnetic energy ecr/eB ∼
40 ecr, eV B−2

μG � 1, small fractional magnetic fluctuations at the gyro scale

|δB[rL]|/|B| ∼ 3 × 10−4 (γL/BμG κ̃29)1/2 � 1, small CR number density
relative to ions ncr/ni ∼ 10−9 ecr, eV n−1

1 γ −1
L � 1, and large ratio of ‘ef-

fective’ streaming speed to Alfvén speed (corresponding to this diffusivity)
v̄st/vA ∼ 300 κ̃29 n

1/2
1 B−1

μG �−1
cr, kpc � 1.
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ion-neutral damping is efficient where neutral fractions are large but
does not resolve the transport bottlenecks that appear in the fully
ionized WIM/HIM and inner CGM.

One possibility is that the turbulent (or linear Landau) damping
rates are larger by a factor ∼100; i.e. the turbulent dissipation or
cascade time tcascade is shorter by a factor fcas ∼ 100 at resonant scales.
This may appear to be a large factor, but recall that the cascade models
used to infer tcascade and �turb are extrapolated by factors reaching
∼108−1010 in scale from the ISM/CGM driving scales to ∼rL, so
even quite small changes to the structure of the cascade could produce
such a factor (although at least some of the variations we consider
actually change this with the wrong sign, giving lower �turb). If other
mechanisms (unresolved here), could directly drive turbulence on
small scales (with e.g. an isotropic dispersion of ∼ 0.1 km s−1 on
scales ∼rL) this would also resolve the discrepancy. And even given
a particular cascade, we caution that the standard Farmer & Goldreich
(2004) model for how such a cascade damps resonant Alfvén waves
has a number of uncertainties. Further, it remains untested in non-
linear simulations.

There could also be additional damping/saturation mechanisms for
gyro-resonant instabilities, not considered in our default models: e.g.
non-linear effects, or self-interactions, or parasitic modes involving
other (non-resonant) instabilities. There are many linear instabilities
that couple magnetic fields, acoustic modes, gas, and other plasma
components on scales ∼rL. For example, the acoustic instabilities
studied in Drury & Falle (1986), Begelman & Zweibel (1994),
Kempski et al. (2019) could be significant precisely in the warm/hot
ionized medium when CR pressure gradients are weak. Recently
Squire & Hopkins (2018a, 2018b), Hopkins, Squire & Seligman
(2020c) discovered a class of ‘resonant drag instabilities’ (RDIs)
between dust and gas or magnetic fields that includes a sub-family
of ‘Alfvén RDIs’ and ‘CR-like’ RDIs which directly interact with
Alfvén waves and are unstable at wavelengths ∼rL in the WIM with
growth rates (for ∼ 0.1μm grains) �RDI � 10−11 s−1, making them
also potentially interesting here.

6 C O M PA R I S O N TO OT H E R C O S M O L O G I C A L
S I M U L AT I O N S A N D P R E V I O U S WO R K

To our knowledge, there has been no previous work comparing the
various ET or SC-motivated CR transport models above in galaxy
formation simulations. Considering ‘constant-diffusivity’ models,
outside of Papers I and II, only a few other studies have compared
galaxy simulations with CR transport to the any of the observables
discussed here. Salem et al. (2016) considered ‘constant-diffusivity’
models without MHD or hadronic losses, with isotropic κ̃eff, 29 ∼
0.03–0.3 (vst = 0), arguing that higher diffusivities are needed to
match diffuse γ -ray emission constraints. Pfrommer et al. (2017)
and Buck et al. (2020) considered anisotropic MHD simulations
with vst = 0, and κ‖ = 0 or κ‖ = 1028 cm2 s−1 (i.e. κ29 = 0.1).
They concluded that with these low-κ‖ values, almost all galaxies
produce Lγ within a factor ∼1−3 of the calorimetric limit, with
grammage Xs � 100 g cm−2 in MW-like galaxies (see Appendix E),
and ecr ∼ 20 eV cm−3 at the ‘solar circle’. All of these results are
similar to our constant-diffusivity models with similar κ‖, supporting
our conclusions regarding both the transport speeds required and the
relatively minor effect from dense gas. However, Buck et al. (2020)
argue that their low-κ‖ models, even their ‘advection only’ models
(vst = 0, κ‖ = 0), can reproduce the γ -ray observations (and therefore
disagreed with our Paper I conclusions). We discuss this in detail in
Appendix E, arguing that the discrepancy stems not from a theoretical
or simulation difference, but from how the γ -ray observations of the

SMC/LMC/M33/MW/M31 are plotted, as well as their neglect of
MW grammage and energy–density constraints.

Within the MW, there is a long history of modelling CR transport in
simplified analytic, time-static, smooth ‘disc+halo’ models (gener-
ally neglecting phase structure or magnetic fields/anisotropy, but see
e.g. Blasi & Amato 2012b), again almost exclusively with ‘constant-
diffusivity’ models (although a few studies have considered models
where κ varies with e.g. galactocentric radius in some idealized
fashion; see Liu, Yao & Guo 2018). As we noted above and in
Papers I and II, our favoured values of κ‖ and the scalings in e.g.
Section 5.1.1 for our constant-κ‖ models are broadly consistent with
these studies (compare Blasi & Amato 2012a; Vladimirov et al.
2012; Gaggero et al. 2015; Cummings et al. 2016; Guo et al. 2016;
Jóhannesson et al. 2016; Korsmeier & Cuoco 2016; Evoli et al.
2017; Amato & Blasi 2018), if we compare to MW models that
include an extended (∼ 10 kpc) gaseous halo, and account for the
difference between the isotropically averaged diffusivity κ̃eff usually
measured in those models and the parallel κeff (a factor of ∼3 larger)
defined here. These analytic constant-κ models generally find κ29 ∼
1 required to reproduce the observations: a factor ∼10–100 larger
than the diffusivity implied by older models that ignored any halo and
assumed CRs escape outside the thin-disc scale height (∼ 200 pc).

7 C O N C L U S I O N S

We have presented the first numerical simulations that simultane-
ously follow self-consistent cosmological galaxy formation with
CGM and ISM phase structure coupled to explicit physically mo-
tivated dynamical models of low-energy (∼ GeV) CR transport,
where the relevant transport parameters (effective diffusivity κ and/or
streaming speed vst) are functions of the local plasma properties.
We consider a wide range of micro-physical CR transport models,
motivated by ET and SC scenarios, and compare the results of these
directly to observational constraints in the MW and from nearby
galaxies including γ -ray emission, CR energy densities, grammage,
and residence times. We show that this is able to strongly constrain
or rule out a large variety of proposed models and scalings for κ and
vst. Our major conclusions include:

(i) The ‘leaky box’ (or ‘flat halo diffusion’) is a bad approxi-
mation, and the CGM gas is critical: In all physically motivated
models we consider, CRs below � 10 GeV remain confined (mean-
free-paths λmfp � r) at all galactocentric radii out to well past the
virial radius (scales �Mpc), even though κ tends to increase slowly
with radius. This implies that the CR scattering and confinement is
strongly influenced by the presence of extended gaseous haloes in
the CGM (which are ubiquitous and contain most of the baryons)
with scale-lengths ∼ 10–50 kpc. ‘Toy’ or analytic CR transport
models must include such large, continuous haloes when considering
∼ GeV CRs. This, in turn, necessarily implies larger transport speeds,
compared to simpler leaky-box or flat-halo diffusion models.

(ii) There is no ‘single’ diffusivity, and ISM/CGM phase struc-
ture is important: Also in all the physically motivated models here,
CR transport parameters (κ , vst) depend strongly on properties like
the local turbulent dissipation rate, magnetic field strength, ionization
fraction, and gas density, which vary by orders of magnitude locally
in both time and space along the trajectories of individual CRs owing
to, e.g. rapidly time-varying ISM phase structure. Because of these
variations, even taking spatial-and-time averages within a specific
galactocentric annulus, there is no ‘single’ mean κ (or vst). The
volume-weighted and ‘residence time’ or ‘scattering rate’-weighted
κ (or vst/vA) can differ by factors ∼10–100.
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(iii) Relatively ‘large’ transport speeds are required: In any
models considered which reproduce the observational constraints, the
effective scattering-rate-weighted mean parallel diffusivity κeff, ‖ ∼
1029–1031 cm2 s−1 in the ISM of dwarf and ∼L∗ galaxies within
� 10 kpc. This κeff, ‖ typically rises by factors ∼10–100 in the CGM
from ∼30 to 300 kpc. It also varies systematically between galaxies
(becoming somewhat larger in smaller dwarfs) and with redshift
(decreasing, on average, at high-z). This corresponds to highly super-
Alfvénic streaming, with bulk transport speed v̄st ∼ 10–1000 vA.
If one accounts for large CGM haloes, fluctuations in local ISM
properties, and isotropic versus anisotropic diffusion, this required
diffusivity is consistent with simple analytic and idealized models,
but we emphasize that almost all non-linear effects in our simulations
tend to enhance CR confinement (increasing the required κeff, ‖).

(iv) Fast CR transport in neutral gas alone is not enough:
Neutral (molecular or H I) gas clouds in the ISM are embedded
in volume-filling WIM and hotter ionized gas, most of which has
local neutral fractions 1 − fion � 0.01. The entire galaxy is itself
embedded in ‘inner CGM’ (scales � 10–30 kpc) gas with densities
n ∼ 10−3–0.1 cm−3, temperatures ∼ 3 × 104–106 K, and 1 − fion �
0.01. So even if κ → ∞ in neutral gas, CRs simply reach a constant
energy density inside cold/neutral clouds, with their energy density
and transport speed rate-limited by the boundary condition of this
ionized ‘cocoon’.

(v) Extrinsic turbulence (probably) does not dominate: As
widely assumed, most physically motivated ET models predict lower
scattering rates for ∼ GeV CRs, compared to what is observed
(indicating that ET does not dominate ∼ GeV CR scattering).
However, if we ignore anisotropy and damping (e.g. assume an
isotropic Kolmogorov turbulent spectrum from the driving scale
�turb ∼ 0.1 kpc down to the gyro scale rL ∼ 0.1 au), the scattering
rate from ET alone would severely exceed observational limits.
Interestingly, one particular version of the proposed model from Yan
& Lazarian (2004) for scattering by fast modes with wavelengths
�rL could produce scattering rates similar to SC in gas which
is fully ionized and also has β � 1, but this represents a small
fraction of the ISM/CGM and the assumptions made in that model
remain highly uncertain. Moreover, once anisotropy and damping are
accounted for, all ET models considered here predict the incorrect
qualitative dependence of grammage/residence time on rigidity at
energies ∼ GeV-TeV (opposite the observed trend, regardless of the
turbulent spectrum).

(vi) Simple quasi-linear expectations for self-confinement pro-
duce excessive confinement: Using the most common quasi-linear
estimates for CR transport governed by SC – i.e. assuming scattering
rates are set by resonant Alfvén-wave energy densities that are
themselves set by the competition between gyro-resonant streaming
instability growth and damping with standard literature estimates
for turbulent, ion-neutral, and Landau damping rates – we predict
galaxy-integrated scattering rates that are a factor ∼100 larger than
observationally allowed. This primarily comes from the volume-
filling WIM and ‘inner CGM’ discussed above, where ion-neutral
damping is negligible (transport is fast, in these models, in neutral
gas). We discuss possible resolutions in Section 5.3.4. It is plausible
that scattering caused by the gyro-resonant instability could be less
efficient than naive (quasi-)linear theory expectations by a factor
fcas ∼ 100; for example, due to inefficient isotropization of the CR
distribution function across small pitch angles (Bai et al. 2019), or
because near-source scattering is weaker than expected (Holcomb
& Spitkovsky 2019). Alternatively, damping rates from turbulence
or linear-Landau effects could be larger by a factor fcas ∼ 100, if
the turbulence is less-strongly anisotropic (as compared what is

implied by usual critical-balance arguments), or if there are processes
which can directly drive turbulence on scales closer to rL. It is also
possible that different damping processes, not usually considered,
could dominate in the fully ionized, warm, intermediate density
environments that are particularly important for global CR transport.

(vii) Models exist which can reproduce CR observations:
We emphasize that if we lower the ‘default’ SC scattering rate
by a factor fQLT or fcas ∼ 100, then this model simultaneously
reproduces (from fully cosmological simulations) all the observa-
tional constraints we consider, including γ -ray measurements from
SMC/LMC/M33/MW/M31 through starburst galaxies, the observed
CR energy density at the solar circle, MW grammage and residence
times and their dependence on rigidity. That this is possible at all,
with just one dimensionless normalization constant (fQLT fcas) set
to a single universal value, is extremely encouraging. We can also
reproduce these observations at ∼ 1 GeV with a constant-κ model if
we set κ29 ∼ 3−30, or with a scaling motivated by ET if we artificially
increase the ET scattering rate with e.g. our ‘Alfvén-Max’ or ‘Fast-
Max’ models, although neither the constant-κ model nor these variant
ET models predict the observed dependence of grammage/residence
time on rigidity (as the SC-motivated models do).

Our goal in this study is primarily to place first observational
constraints on various ‘a priori’ models which have been proposed in
the literature for how the effective CR transport parameters (parallel
diffusivity and/or streaming/drift speeds) depend on local plasma
properties. We emphasize that our resolution is nowhere near suffi-
cient to predict these scalings: rather we implement fully dynamical
CR evolution using different scalings derived from analytic models
or PIC simulations. The qualitatively important resolution criteria
are that we begin to resolve the multiphase structure within the
ISM and CGM (which determines these scalings) and that we
at least marginally resolve the deflection length of CRs (so their
trajectories through that medium can be followed). Our hope is
that the conclusions above motivate some general conclusions for
galaxy-scale CR transport, and motivate additional theoretical work
exploring CR transport in SC scenarios and/or fast-mode scattering.
The simulations are of course an imperfect representation of reality:
we discuss a wide range of additional caveats in Appendix D,
including resolution, numerical implementation details, form of the
CR flux equation, equilibrium versus non-equilibrium treatments,
statistics (simulating additional galaxies), explicit inclusion of per-
pendicular diffusivities, and more. The uncertainties owing to some
of these choices can be significant for some predictions (for extensive
discussion of how resolution influences the ISM structure itself, see
e.g. Hopkins et al. 2018a, b), but for our purposes here they generally
produce factor �2 differences in the predicted γ -ray luminosity
or grammage given a fixed physical model for CR transport (see
Papers I and II). In contrast, different choices of CR transport models
produce factor �1000 differences. Given that the most interesting
conclusions discussed above are factor ∼100-level effects, it is likely
that our conclusions are robust to these and other order-unity effects.
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Burkhart B., Falceta-Gonçalves D., Kowal G., Lazarian A., 2009, ApJ, 693,

250
Butsky I. S., Quinn T. R., 2018, ApJ, 868, 108
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Kereš D., 2018, MNRAS, 473, L111

Su K.-Y. et al., 2019, MNRAS, 487, 4393
Su K.-Y. et al., 2020, MNRAS, 491, 1190
Tang Q.-W., Wang X.-Y., Tam P.-H. T., 2014, ApJ, 794, 26
Thomas T., Pfrommer C., 2019, MNRAS, 485, 2977
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APPENDI X A : D EFAU LT DA MPI NG R ATES O F
G Y RO - R E S O NA N T A L F VÉN WAVES

In SC models (Section 3.3), the damping rate � of gyro-resonant
Alfvén waves (δB[rL] or eA) plays a central role. In the ISM/CGM,
it is generally assumed that � is dominated by a combination of ion-
neutral (�in), turbulent (�turb), linear Landau (�LL), and non-linear
Landau (�NLL) damping. Zweibel (2017) and Thomas & Pfrommer
(2019) summarize literature estimates of these damping rates from
quasi-linear theory, which we adopt as our ‘default’ set of damping
rates, reviewed below.

(i) Ion-neutral damping: This is well defined for a partially
neutral, hydrogen–helium plasma, giving:21

�in = αiH + αiHe

2 ρi
∼ 10−9 s−1 fneutral T

1/2
1000 ρ−24. (A1)

Here, ρ i is the mass density of ions, αi X ≡
(4/3) ni nX σi X

√
8 mi X kBT /π where X ∈ {H, He}, mi X ≡

mi mX/(mi + mX), mi and mX are the ion and species X
masses (and ni, nX their number densities), σi H = 10−14 cm2,

21In the neutral ISM at the densities we resolve in our simulations (e.g.
GMCs), we can just treat the hydrogen and helium terms here and safely
neglect metal ions and charged dust in equation (A1).
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and σi He = 3 × 10−15 cm2, and the latter expression assumes
an H mass fraction ≈0.75 and defines T1000 ≡ T /1000 K,
ρ−24 ≡ ρ/10−24 g cm−3, and neutral fraction fneutral = (1 − fion).

(ii) Turbulent damping: Non-resonant motions will interact with
and shear gyro-resonant Alfvén waves: accurately capturing this re-
quires understanding the non-linear behaviour of turbulence on scales
∼rL, so it remains highly uncertain. Most estimates follow Farmer
& Goldreich (2004), and assume a Goldreich & Sridhar (1995)
spectrum for ‘strong’ Alfvénic turbulence with an Alfvén Mach
number MA[�A] ≡ |δv[�A]|/videal

A = 1 at a scale �A ≈ M−3
A �turb,

giving �turb ∼ videal
A (kL kturb, A)1/2. Here, kL ∼ 1/rL and kturb, A ∼ 1/�A

represent the resonant and injection wavenumbers, and stand in for
appropriate averages over direction and wavenumber (meaning there
is order-unity ambiguity here), giving

�turb ≡ videal
A

r
1/2
L �

1/2
A

fcas

∼ 2 × 10−11 s−1 δv
3/2
turb, 10 �

−1/2
turb, kpc ρ

1/4
−24 γ

−1/2
L fcas, (A2)

where δvturb, 10 ≡ |δvturb[�turb]|/10 km s−1 and, as in Section 3.2,
we represent our ignorance of the details of turbulence with the
parameter fcas (discussed in Section 3.3.5).

(iii) Linear Landau damping: This is closely related to turbulent
damping, and represents damping of oblique waves whose electric
fields interact with the gas via Landau resonance when the propa-
gation angle of the Alfvén waves relative to the local magnetic field
is changing owing to turbulent motions (Zweibel 2017). As a result,
�LL ≈ (π1/2/4) cs/(r1/2

L �
1/2
A ) fcas scales with the local turbulent cas-

cade time in exactly the same manner as �turb, but with a different
pre-factor. So following Zweibel (2017), we can write

�LL ≈
√

π

4

cs

videal
A

�turb ∼ 0.4 β1/2 �turb. (A3)

(iv) Non-linear Landau damping: This represents wave-wave
interactions, scaling non-linearly with the Alfvén-wave energy eA ±.
For a given eA ±, �NLL,± ≈ (eA±/eB)

√
π cs kL/8 (Volk & McKenzie

1981). As shown in Appendix B below, if we assume local quasi-
steady-state equilibrium of the Alfvén energy and CR transport
coefficients, we do not need to explicitly evolve the eA ± terms but
obtain the ‘effective’ non-linear damping rate 〈�NLL〉≈�NLL(〈eA ±〉),
which becomes

〈�NLL〉 ≡
[

(γcr − 1) π1/2

8

(
cs vA

rL �cr

) (
ecr

eB

)]1/2

∼ 0.7 × 10−11 s−1

(
ecr, eV

γL �cr, kpc

)1/2 (
T10000

fion ρ−24

)1/4

. (A4)

APPENDIX B: N ON-EQU ILIBRIUM MODEL
A N D D E R I VAT I O N O F TH E L O C A L ,
QUASI-STEADY CR TRANSPORT PARAMET ERS

B1 Non-equilibrium scattering rate expressions

Begin from the non-equilibrium CR flux and gyro-resonant Alfvén-
wave dynamics equations as derived in Thomas & Pfrommer (2019).
Their expression for ecr is identical to ours (see Paper I), with the
definition 
st → vA · (g+ − g−), where the g± ≡ (γcr − 1) (F ∓
vA hcr)/κ± and associated eA± ≈ |δB[rL]|2/4π represent the scatter-
ing rates and energy in un-resolved Alfvén waves propagating in the
±b̂ directions. Their expressions for the CR flux F and eA ± are then

Dt F
c2

+ ∇‖Pcr = −(g+ + g−), (B1)

∂eA±
∂t

+ ∇ · [u hA± ± vA eA±] = u · PA± ± vA · g± − �± eA±, (B2)

where hA ± ≡ eA ± + PA ±, PA ± ≡ eA ±/2, and �± includes
all the damping terms in Appendix A. In the gas momentum
equation (∂ρ u/∂t), we explicitly add PA+ + PA− to the total
(magnetic+thermal+CR) pressure, and the additional ‘source’
term ∇‖Pcr + g+ + g− = c−2Dt F, to ensure manifest momentum
conservation. The damped Alfvén-wave energy (�+ eA+ + �− eA−)
is added to the gas thermal energy equation (i.e. it is converted from
the explicitly tracked Alfvén-energy to thermal energy) instead of
directly adding the ‘streaming losses’ to the thermal energy. The
system is closed by the relation:

c rL

κ±
= 9π

16

(
eA±
eB

) (
1 + 2 v2

A

c2

)
. (B3)

With these changes, our equations for the gas momentum and
energy, CR energy and flux, and Alfvén-wave energy are exactly
identical to the system of equations in Thomas & Pfrommer (2019).

B2 Local equilibrium expressions

Now assume that the CR flux and Alfvén energy equations have
reached local steady state (∂/∂t → 0, Dt → 0), and the advection
terms (usually smaller by ∼ O(|u|/c) compared to other terms)
are negligible. In eA ±, one of the ± terms – specifically the one
corresponding to waves propagating down the CR pressure gradient
(i.e. with the same sign along ±b̂) to the direction of −∇‖Pcr –
will have its corresponding ±vA · g± term be positive-definite,
competing against damping, while the other is purely damped.
Thus, the antiparallel eA ± → 0, which implies the corresponding
g± ∝ 1/κ± ∝ eA ± → 0 as well. Let us denote the ‘surviving’ eA ± →
eA and g± → g. Note that if we write g ≡ (γcr − 1) (F − vst hcr)/κ‖,
where κ‖ corresponds to the appropriate ‘surviving’ κ± and vst ≡
−vA ∇‖Pcr/|∇‖Pcr|, the correct ‘sign’ of the surviving g± is ensured.
So with these definitions in steady state, equation (B1) becomes
∇‖Pcr = −g and the non-vanishing eA ± equation (equation B2)
becomes 0 = ±vA · g − � eA, with 
st → ±vA · g. Here, the ±vA

sign corresponds again to the ‘surviving’ direction so we can replace
±vA → vst, giving g = (γcr − 1) (F − vst hcr)/κ‖ = −∇‖Pcr and

st = vst · g = −vst · ∇‖Pcr = � eA.

Note now that 
st = −vst · ∇‖Pcr has exactly the same form
as in our ‘default’ implementation, and the thermal heating term
�+ eA+ + �− eA− → � eA = 
st from damping the un-resolved
Alfvén waves is exactly the ‘streaming loss’ term (i.e. the streaming
losses can be added directly to the thermal energy, as we do by
default). The added term in the gas momentum equation vanishes:
∇‖Pcr + g+ + g− → ∇‖Pcr + g = 0. From g = −∇‖Pcr we also
have F = κ‖ ∇‖ecr + vst hcr, i.e. our usual streaming+diffusion ap-
proximation with streaming speed vst = vA and diffusivity κ‖
= κ±(eA). Because � eA = −vst · ∇‖Pcr, we can solve for eA and
therefore κ‖: but we should note that if the damping is non-linear,
� is itself a function of eA. For the assumptions in Appendix A,
we can write � = �1 + �2 (eA/eB), where �1 = �in + �turb + �LL

includes the terms independent of eA and �2 (eA/eB) = �NLL gives
the next-order terms, and we obtain

eA → 〈eA〉 ≡ vA |∇‖Pcr|
�eff

= (γcr − 1) vA

�cr �eff
ecr, (B4)

κ‖
c rL

→ 16

3π

(
�cr �eff

vA

) (
eB

ecr

)
, vst → vA (B5)
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�eff ≡ �(eA → 〈eA〉) = �1

(
ψ

2
[√

1 + ψ − 1
]
)

≈ �1 + �1
ψ1/2

2
≡ �in + �turb + �LL + �other + 〈�NLL〉, (B6)

where ψ ≡ 4 vA |∇‖Pcr| �2/(eB �2
1), and the ≈ expression for

�eff is exact in both small and large-ψ limits with 〈�NLL〉 =
�NLL(〈eA〉) = �1 ψ1/2/2 = (vA |∇‖Pcr| �2/eB)1/2 (inserting �2 =√

π cs kL/8 gives 〈�NLL〉 in equation A4).22

Finally, using the fact that we can trivially re-write
streaming+diffusion as ‘pure diffusion’ or ‘pure-streaming’ (Sec-
tion 2.3), it is convenient to re-write this in ‘pure-streaming’ form,
with κ‖ → 0 vst → v̄st = vA + κ‖/(γcr �cr), i.e.

v̄st → vA

[
1 + 4 c rL �eff

π v2
A

(
eB

ecr

)]
. (B7)

Thus, we see that in local steady state, the full Thomas &
Pfrommer (2019) expressions reduce to our default expressions with
the appropriate vst = vA and κ‖. Because, in steady state, eA � eB is
miniscule, the non-linear effects of heating and/or pressure changes
as the gyro-resonant Alfvén-wave distribution reaches this equilib-
rium are negligible. And the time-scale to reach this equilibrium is
rapid: equation (B2) approaches local equilibrium on the damping
time-scale ∼ �−1 ∼ 3000 yr in the warm ISM and ∼ 30 yr in the
neutral ISM, while equation (B1) should approach steady state on
the scattering time-scale ∼ κ/c2 ∼ 10 yr (for κ ∼ 3 × 1029 cm2 s−1).

B3 Behaviour of solutions: neither streaming nor diffusion

Despite the language above, there are three important ways in which
the solutions to the CR energy equation (equation 1) for SC models
differ from either a traditional streaming equation (F = vst hcr, with
vst constant) or traditional diffusion equation (F = −κ‖ ∇‖ecr, with
κ‖ constant), as often modelled.

First, and probably most important as our main focus in this paper
(Section 2.3), κ‖, vst, and the ‘parallel’ direction b̂ are variable in
both space and time. This means an infinite variety of solutions
are possible, which need not have any resemblance to the solutions
for constant streaming/diffusion models except in an infinitesimally
small ‘patch’ over an infinitesimally small time.

Secondly, if the flux is not in equilibrium (Dt F �= 0 in equation 2),
then obviously equation (1) will not match the expressions for a
pure streaming/diffusion equation even if vst and κ‖ are constants.
Illustrations of this non-equilibrium behaviour for finite c are shown
in Jiang & Oh (2018), figs 1, 10 and 15; Thomas & Pfrommer (2019),
figs 5 and 6; and Chan et al. (2019), figs B1, B4, and B5.

Thirdly, even if we assume Dt F = 0, that vst = vA has constant
magnitude and direction (and b̂ does not change), neglect all colli-
sional losses and source injection, and assume the gas has constant u,
then equation (1) becomes dtecr = ±∇‖F� , where dtecr = ∂ecr/∂t +
∇ · [(u + vA)ecr] represents simple advection of the CRs with
the Alfvén speed relative to the gas, F� ≡ (4 c rL eB/π vA) �eff ≈
(105 erg s−1 cm−2) n

1/2
1 �−11 depends only on the gas density and

damping rate, and the ± sign reflects the sign of b̂ · ∇‖Pcr/|∇‖Pcr|.
But as others have noted, if � �= 0, this F� term behaves neither as a

22From equation (B4), we can also confirm that the contribution of the gyro-
resonant Alfvén waves to the total magnetic pressure is vanishingly small,
PA/PB → (8/9π ) (c rL/κ‖) ∼ 3 × 10−8 B−1

μG (1030 cm2 s−1/κ‖), so whether
or not we separately include PA ± in the total MHD pressure or fold it into
PB = |B|2/8π as in our ‘default’ models makes no difference.

Figure B1. Illustration of the behaviour of the solutions for CR transport
with κ‖ and vst given by SC models (see Appendix B3). We evolve a one-
dimensional toy model with parallel fields (b̂ = x̂ = ∇̂‖ecr) and constant
vA, u, and other background properties. Taking c̃ → ∞ in equation (2),
so F = F x̂ has its local-equilibrium value, and neglecting sources and
sinks, the CR transport equations reduce to (∂t + [vA + u] ∂x ) ecr = −∂xF .
We consider an initial step-function-like ecr = 0.5 erfc(x/0.3) evolved to
time t = 0.5 (arbitrary units) assuming (1) traditional streaming/advection
with F = vadv ecr where vadv = 1 is a constant; (2) traditional diffusion
with F = −κ ∂x ecr and κ = 1 or =3 is constant; (3) the expression
for F = F� = κ‖ ∂xecr = (4 c rL eB/π vA) �eff actually given by SC models
(equation B5) assuming linear-damping terms dominate so �eff = �in + �turb

+ �LL, giving ∂xF = −CL SIGN(∂xecr) with CL = 1/2; (4) the expression
for SC (equation B5) with non-linear terms dominant (�eff = �NLL), so
F� = CNL|∂x ecr|1/2 with CNL = 1. These are the simplest expressions that
produce non-trivial behaviour for each version of the equations, and we
choose vadv, κ , CL, CNL so that the ‘effective’ transport speed v̄st, eff is the
same around (x, t) = (0, 0). Despite the fact that we can write the SC scalings
as a ‘diffusion’ κ‖ (equation 7) or ‘super-Alfvénic streaming’ v̄st (equation 9),
the behaviour of even the simplest solutions is not the same as true diffusion
or streaming/advection equations.

traditional advection/streaming or as a diffusion term. We illustrate
this explicitly with a simplified one-dimensional toy problem in
Fig. B1. If the linear � terms (e.g. ion-neutral, turbulent, linear-
Landau) dominate, then � and F� are totally independent of the
CR properties (though they depend in a complicated manner on gas
properties). So F� behaves as a ‘source term’ which ensures the
total flux down the CR pressure gradient matches the ‘bottleneck’
value set by SC. This behaviour is qualitatively distinct from e.g. a
simple variable or super-Alfvénic advection velocity, which would
introduce a term dtecr = −∇ · (vadvect ecr), proportional to the CR
energy density. If non-linear Landau damping dominates, F� ∝√|∇‖ ecr|, with a coefficient dependent on gas but not CR properties.
This gives a ‘diffusive’ flux proportional to |∇‖ecr|1/2, instead of
∇‖ecr, which again produces qualitatively different behaviour from
a standard diffusion equation, with weaker diffusion in the core and
superdiffusive ‘tails’.

APPENDI X C : D I FFUSI ON COEFFI CI ENTS FO R
FA ST-MODE SCATTERI NG

Here, we briefly summarize the scattering rate via fast modes we
adopt, directly following the assumptions in Yan & Lazarian (2004),
Yan & Lazarian (2008) [YL04]. Begin with the usual expressions
for the κ as a function of the pitch-angle diffusion coefficient Dμμ

for relativistic CRs (|vcr| ≈ c), where μ = cos θp for pitch angle
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θp: κ‖ = c λmfp/3 = (c2/4)
∫ 1

0 dμ (1 − μ2)2 D−1
μμ. Then define the

mode angle ξ ≡ | cos θk| = |k̂ · b̂| = k‖/k (with k⊥ ≡ (1 − ξ 2)1/2 k),
driving scale �turb, dimensionless wavenumber k̃ ≡ k �turb and r̃ ≡
rL/�turb, and large-scale |B| = B0. YL04 then adopt the expression
from Voelk (1975, equation 45 therein) for Dμμ, keeping only the n
= 0 (TTD) and n = ±1 (gyro-resonant) terms, and dropping the
Alfvénic terms. They assume that fast modes have an isotropic
k−3/2 power spectrum with d3 k IM (k) = M2

A (B2
0 /8π ) k̃−3/2 dk̃ dξ

from the driving scale to some damping scale kdamp(ξ ) that is angle
dependent, with zero power outside this range, giving

D(n)
μμ = M2

A � (1 − μ2)

4π

∫ 1

0
dξ

∫ k̃damp(ξ )

1

ξ 2

k̃3/2

[
J ′

n(x)
]2

Rn dk̃, (C1)

where J ′
n(x) = dJn/dx is the derivative of the appropriate Bessel

function with x ≡ k⊥ vcr,⊥/� = k̃ r̃ (1 − ξ 2)1/2 (1 − μ2)1/2. YL04
take the ‘resonance function’ Rn to be Rn = (π1/2/�) exp (−q2/�2)
where q = (k‖ v‖ − ωfast ± n �)/� ≈ k rL ξ μ − n and
� ≡ k‖�v‖/� ≈ k rL ξ (1 − μ2)1/2 M1/2

A , or equivalently Rn =
(π1/2/�) exp [−(μ − n μ0)2/�μ2] with �μ2 ≡ (1 − μ2)MA and
μ−1

0 ≡ k̃ r̃ ξ , as a result of the YL04 assumption that the resonance is
broadened with �μ ∼ �v‖/v⊥ ∼ 〈(|B| − B0)2〉1/4/B

1/2
0 ∼ M1/2

A .
Defining D̃μμ = (D0

μμ + D1
μμ)/�, we have κ‖/(c rL) =

(1/4)
∫ 1

0 dμ (1 − μ2) D̃−1
μμ and the integrals can now be evaluated

numerically given MA, r̃ , and k̃damp(ξ ). We follow YL04 to
calculate kdamp by assuming this is where the damping time
becomes shorter than the cascade time, assuming a k−3/2 spectrum
with t−1

cas ≈ (k/�A)1/2 vA, and setting this equal to �damp(k, ξ, . . .)
from the sum of collisionless, anisotropic viscous (Braginskii),
ion-neutral, and other damping sources (using the expressions in
appendix A of YL04).

The simple expressions quoted in the main text are approximate
fits to these numerical results over the dynamic range of interest here.
They can be approximately derived as follows. When collisionless
damping dominates, if parallel fast modes are undamped (fion = 1
and β � 1), then the gyro-resonant term (n = 1) is sub-dominant
in κ and depends relatively weakly on plasma properties (see YL04
discussion), implying that the scaling for κ‖ is dominated by the TTD
(n = 0) term. Ignoring μ → 1 (where the n = 1 term dominates), the
broad resonance assumption means R0 ∼ 1, and because the rigidity
is small J ′

n(x) ≈ x/2 ∼ k̃ r̃ , and �damp ∼ (π β me/16 mp) k vA f (ξ )
where f(ξ ) ∼ 1 for ξ not too close to 0 or 1. Combining all of the
ξ , μ integrals into a dimensionless function g(ξ, μ, MA) ∼ 1 we
can then extract the dimensional scaling for κ‖ ∼ (c2/D0

μμ) g(. . .) ∼
c �A (λdamp/�)1/2 with λdamp/�A ∼ (β me/mp). When viscous damp-
ing dominates (again assuming fion = 1 and β � 1), the resonant n =
1 term dominates κ‖ (at γ L � 100). Even with �μ ∼ 1, the resonant
μ0 ∼ 1/k rL term in R1 is large unless k � 1/rL, which for a β �
1 viscous damping rate of �visc(β < 1) ≈ k2 νv (1 − ξ 2) ∼ 2 k2 νv εξ

(defining εξ = 1 − ξ ) requires |εξ | � 1, such that kdamp � 1/rL.
Taking these limits and evaluating gives κ‖ inversely proportional to
powers of εξ ∼ r̃3/2 (�A vA/νv).

Finally, regardless of what dominates �damp, if the parallel (ξ ≈
±1) modes are damped on scales kdamp(ξ → 1) � 1/rL, then R1 → 0
rapidly as exp [−(kdamp rL)−2], and as a result κ‖ →∞ as we integrate
to μ → 1 (regardless of the behaviour of the TTD terms and broaden-
ing �μ ∼ M1/2

A ∼ 1). This occurs with ion-neutral damping (�damp

=�in, independent of ξ ), which gives kdamp rL ≈ (fneutral/fn, 0)−2 � 1
where fn, 0 = 0.001 (n1 β)−3/4 T

1/4
4 (�turb, kpc γL)−1/2. It also occurs

if β ≥ 1, in which case the viscous damping becomes strong as
ξ → 1 with �visc ≈ k2 νv |3 ξ 2 − 1|, giving kdamp rL � 10−4 for

any physically plausible parameters with Braginskii νv . These give
the damping ‘cut-offs’ used in the text (Section 3.2.1): fcut =
exp {(fneutral/fn, 0)4 + (β/0.1)1.5}.

A P P E N D I X D : A D D I T I O NA L PH Y S I C A L A N D
N U M E R I C A L VA R I AT I O N S E X P L O R E D

Here and in Papers I and II, we have considered a large number
of additional tests to confirm that the dominant uncertainty in CR
transport is the form of κ∗, as opposed to e.g. numerical uncertainties
or the detailed form of the transport equation. These include the
following:

(i) Equilibrium versus non-equilibrium transport expres-
sions: This is discussed explicitly in the text (and see Appendix B
above), but we list it here for completeness.

(ii) Maximum ‘free-streaming’ speeds: c̃ represents the ‘effec-
tive speed of light’ which determines the maximum free-streaming
speed of CRs. In Papers I and II, we show this is a ‘nuisance
parameter’, because the local steady-state CR flux and energy
converge to the same values independent of c̃, so long as it is
larger than local advection/diffusion speeds. In addition, we have
tested all the models in this paper assuming c̃ = 500 km s−1 or
c̃ = 1000 km s−1 as well as c̃ = MAX(1000 km s−1, 2 κ∗/�cr) (our
default). So long as c̃ � κ∗/�cr ∼ 300 km s−1 κ̃29/�cr, kpc, then the
results are robust to c̃; for the highest κ∗ � 1030 cm2 s−1 runs here,
this means we require c̃ � 1000 km s−1 to ensure converged results
(otherwise Lγ is artificially large because CRs are ‘slowed down’),
but even in this limit the qualitative conclusion that CRs escape
efficiently is robust.

(iii) Explicit perpendicular diffusion: As shown in Papers I and
II, even assuming pure isotropic diffusion leads only to a factor ∼2–3
lower κ∗ required to reproduce the same observed Lγ , grammage,
etc. We confirm this in limited tests of our constant-κ and ‘SC100’
models. Physically, we generally expect the perpendicular diffusivity
to be suppressed by a factor ∼rL/λmfp: we have experimented
with models that explicitly include perpendicular diffusive flux
F⊥ = κ⊥ (∇ − ∇‖)ecr where κ⊥ = (rL/λmfp) κ‖ ≈ rL c/3 and find (as
expected) this makes a negligible difference compared to assuming
pure parallel diffusion.

(iv) Resolution: We emphasize the importance of resolving the
ISM/CGM in the text, yet it is reasonable to worry that the
smallest molecular clouds and star-forming regions are under-
resolved. Despite this, we have shown in previous papers that GMC
properties in these simulations including their size–mass relations
(mean densities), linewidth–size relations, mass functions, magnetic
field strengths, and lifetimes agree well with observations and appear
converged down to clouds with as few as ∼10 resolution elements
(Hopkins et al. 2018b; Orr et al. 2018; Grudić et al. 2019; Guszejnov,
Hopkins & Graus 2019; Orr, Hayward & Hopkins 2019; Benincasa
et al. 2020; Guszejnov et al. 2020; Keating et al. 2020). While
this excludes the smallest clouds at our resolution, it includes the
complexes that contain > 90 per cent of all galactic star formation
(Rice et al. 2016). And as shown in the main text, our key conclusions
are not particularly sensitive to the behaviour of CRs in the most
dense, neutral ISM because of its small volume-filling fraction.
Moreover, Papers I and II consider extensive explicit resolution tests,
in both cases varying the mass resolution of the ‘constant-κ’ models
by factors of ∼100. In both cases (consistent with further extensive
resolution studies in Hopkins et al. 2018b), we showed that our
predictions for dwarfs were only weakly sensitive to resolution. For
MW-mass galaxies some galaxy properties do depend on resolution
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(e.g. the central regions of the galaxies tend to be more dense at
lower resolution, owing to less efficient resolution of galactic outflow
‘venting’); however, the qualitative effects of CRs, and range of
allowed transport parameters, were robust to resolution. As �central

changed (weakly) with resolution, the corresponding Lγ /Lsf shifts
along the ellipses for a given, single-resolution (i.e. systems move
along the relations in Fig. 3, for fixed CR transport parameters). We
have confirmed this result in our simulations without a constant κ

by running several of the models here (four ET models and four SC
models) for each of (m11i, m11f, m12i) at factor ∼8 lower mass
resolution (run initially to test and validate our implementation). In
more limited tests of m12i at z ∼ 0 we have also confirmed that the
exact choices for force softening and star formation criteria have no
substantial effects on our conclusions.

(v) Form of the CR flux time derivative: The CR flux equation,
equation (2), has subtle ambiguities related to the frame in which
the CR flux is evaluated, order in O(v/c), assumptions about
the form of the CR distribution function, and extrapolation of
scattering terms from quasi-linear theory. These are discussed in
e.g. Zweibel (2017), Thomas & Pfrommer (2019), Chan et al.
(2019), and references therein, and explored in Papers I and II,
but we briefly discuss them here. The formulations of CR trans-
port in Chan et al. (2019), Jiang & Oh (2018), and Thomas &
Pfrommer (2019), as well as simpler ‘pure diffusion/streaming’
models commonly adopted in the literature are – for a specific
value of the local κ∗ (i.e. assuming that |δB[rL]|2 has taken on
some local quasi-equilibrium value) – identical up to the form of
the operator DtF in equation (2). In the ‘pure diffusion/streaming’
model, Dt F = 0, so F ≡ −κ∗ ∇‖ecr and there is no flux equation to
solve (simply a single advection+diffusion equation for ecr). In Paper
I, Dt F = ∂ F/∂t + ∇ · (u ⊗ F), and in Jiang & Oh (2018) Dt F =
(F̂ ⊗ F̂) · [∂(F + u hcr)/∂t]; neither of these papers attempted to
derive the flux equation from first principles, but rather simply
adopted a form (inspired by two-moment treatments of radiation
hydrodynamics and similar problems) which relaxes to the correct
behaviour in various limits. Thomas & Pfrommer (2019) do attempt
such a derivation, and obtain Dt F ≡ F̂ [∂|F|/∂t + ∇ · (u |F|) + F ·
{(F̂ · ∇) u}] = ∂ F/∂t + ∇ · (u ⊗ F) + (F · ∇) (u‖ − u⊥).23 But all
of these are within the O(1/c̃2) term in equation (2), so they vanish
when c̃ → ∞, or when the CR flux reaches local quasi-steady state
(Dt F → 0), which occurs on the extremely short CR mean free
path/time defined in Appendix B. In fact, the variants with DtF �= 0
above differ only if û and b̂ are non-uniform and time dependent,
on spatial/time-scales below the CR mean free path (time) ∼ κ/c̃

(∼ κ/c̃2), when c̃ is relatively small and the CR flux is out of steady
state. But this is exactly the regime where adopting c̃ < c means
the CR flux differs from the ‘true’ physical solution, so none of
these can be exact. To the extent that our results are converged with
respect to c̃, as demonstrated in Papers I and II, they must also be
independent of the choice of Dt here. Moreover, Paper I considers
the much more radical choice Dt = 0, and shows the galaxy results
are essentially identical. All our constant-κ models have been re-run
with the different variant Dt forms discussed above in Papers I and

23Note that the Thomas & Pfrommer (2019) formulation only differs from
the Paper I formulation by the term (F · ∇) (u‖ − u⊥)/c̃2 = [F{F̂ · [(F̂ ·
∇)u]} − (F · ∇) u]/c̃2. This term (1) incorporates a Lorentz term that
manifestly ensures F̂ = b̂ is preserved and (2) includes the ‘pseudo-forces’
described by Thomas & Pfrommer (2019) which arise because F is defined
in the (non-stationary) fluid frame in which the CR distribution function can
be assumed to be gyrotropic.

II, where we showed this had a negligible effect on the observables
predicted here. We have repeated this with a limited study of models
‘Fast-YL04’ and ‘SC100’ here, where we find the same result.

(vi) Form of the scattering terms: Another ambiguity is whether
to represent the scattering term in equation (2) as F/κ∗ with κ∗ ≡
κ‖ + γcr vst �cr (our default), or as (F − vst hcr)/κ‖, as in Appendix B.
Both are consistent with quasi-linear theory, and become exactly
identical when c̃ → ∞ and/or the flux F reaches local quasi-steady
state (Dt F is small), so again our experiments with different Dt F
and c̃ indicate our conclusions are robust to this choice. And because
our ‘favoured’ models have a drift velocity |F|/hcr � vA, this is
further minimized (generally contributing < 5 per cent corrections,
re-running different models for select short periods). Moreover, our
‘non-equilibrium’ model (Section 3.3.2) adopts the (F − vst hcr)/κ‖
form and gives similar results to the equilibrium model with κ∗.

(vii) Form of the ‘streaming loss’ term: The ‘streaming loss’
term, 
st in equation (1) is well motivated in local steady state, SC
models (where it takes the form 
st ≈ vA |∇‖Pcr|), as it arises from
the damping and thermalization of gyro-resonant Alfvén waves (well
below our simulation resolution limits) excited by CR streaming (see
Appendix B). It is less clear how it should behave in our ET models
or models with sub-Alfvénic streaming. We discuss this and vary
the term extensively in our constant-κ models in Papers I and II,
considering 
st = MIN(vA, vst) |∇‖Pcr| (our default here), or 
st =
vst · ∇Pcr, or 
st = vA |∇‖Pcr|, or 
st = 0. There we showed this had
very small (∼ 10 per cent, at high κ) effects on the observables we
predicted. Here, we have repeated these comparisons for a subset of
our ET models at z ∼ 0 (restarting them for a short time) to confirm
that this produces nearly negligible perturbations to Lγ . We also find
that any model where this 
st term is able to produce large CR losses
in the ISM or inner CGM (where it might influence our predictions) is
already in the well into the regime where collisional losses dominate
inside of the galaxy ISM.

(viii) Exact momentum-conserving formulation: In our default
formulation, we assume a local strong-coupling approximation so
the CRs enter the gas momentum equation via the term ∇Pcr.
As noted in Appendix B, if we approximate the flux equation in
the form described therein or in our second-moment expansion
equation (2) (both accurate to O(v/c)), then exactly conserving total
momentum accounting for the change in inertia of the CRs them-
selves would require adding a source term [∇‖Pcr + g+ + g−] =
(F − Feqm)/(3 κ∗) = Dt F/c̃2 to the gas momentum (where Feqm =
−κ∗∇‖ecr is the local steady-state flux). This obviously vanishes as
c̃ → ∞ or |Dt F| → 0 so our tests of varying c̃, or taking Dt F = 0
exactly, show that the term should not change our results. We do not
include this by default because, as noted in Jiang & Oh (2018) and
Paper I, if c̃ � c, this term is artificially large and the CR contribution
to the force will be underestimated compared to a converged solution
with respect to c̃ (because the CR flux deviation from equilibrium is
artificially modified by c̃).

(ix) Local turbulent velocity estimator: Because the local tur-
bulent velocities δvturb on a scale (of order our simulation resolution)
�turb appear in the scalings for both ET and SC (via turbulent
damping) CR scattering, we have considered four different local on-
the-fly estimators for this quantity. (1) Our default, from Hopkins
et al. (2013a), δvturb = ‖∇ ⊗ v‖ �turb ≡ (

∑
ij |∇j vi �turb|2)1/2 the

Frobenius norm (sum over components) of the velocity difference
across a resolution element estimated from the (non-slope-limited)
velocity gradient with �turb = �x = (mi/ρ i)1/3 the resolution scale.
(2) The ‘shear corrected’ norm (norm of the trace-free diagonalized
shear tensor of the velocity field, constructed from ∇ jvi) times �x, as
defined and commonly used for Smagorinsky (1963) ‘subgrid-scale’
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turbulent diffusion models (see e.g. Colbrook et al. 2017; Escala et al.
2018). (3) The direct dispersion |δvturb|2a = ∑

b |vb − va |2 across
neighbours in a sphere of volume �3

turb. (4) The more sophisticated
(but computationally expensive) method developed in Rennehan et al.
(2019), motivated by detailed turbulence studies, where we smooth
the velocity field on multiple scales in multiples of the resolution �x,
calculate the relative power in velocity fluctuations, and derive the
associated turbulent E(k) at k → 1/�x. On top of these variations,
we also note that many of the models which involve δvturb really
use this as a proxy for δBturb, assuming that at the Alfvén scale
�A, δvturb ≈ vA and δBturb ∼ |B|. So we have also re-computed all
of the relevant scalings using δBturb measured directly in the code
(with the same four estimators described above), to estimate �A, and
extrapolating the relevant assumed power spectra below this scale.
We find that although these eight model variants can produce quite
large (order-of-magnitude, in some cases) differences in the specific
value of δvturb(x, t) estimated at any given point (x, t) in the ISM,
the statistics produced by the different estimators are quite similar.
A more detailed comparison of these in their own right will be the
subject of future work, but relevant for this study, integral quantities
like Lγ are ultimately altered at the factor �2 level (comparing all
these variations), not enough to alter our conclusions.

(x) Additional statistics (different galaxies): Given the very
large number of different CR transport models we survey here, we
chose to limit our study to three representative galaxies or ‘zoom-
in regions’ m11i, m11f, m12i in Table 2. While this is still an
improvement over comparing with a single MW model alone, one
might worry that our conclusions could be biased by either limited
statistical power or systematic effects owing to e.g. the structure
or formation history of the particular galaxies. However, we have
re-run most of the ‘constant-κ’ models with a much larger number
of simulations, presented in detail in Paper II (along with some
additional zoom-in regions of Local Groups following Garrison-
Kimmel et al. 2019): altogether >35 zoom-in regions containing
several hundred resolved galaxies ranging in z = 0 halo mass between
Mhalo ∼ 109–1013 M� (including specifically 10 ‘single’ MW-mass
systems and 4 Local Group pairs each containing an MW and
Andromeda-like galaxy). We show there that all our conclusions
here regarding statistics of e.g. comparison with Lγ /LSF and ecr,
and the inferred observationally allowed values of κ , are robust. We
have also run a subset of the non-constant-κ models here (‘Alfvén-
C00’, ‘Fast-YL04’, ‘SC:Default’, and ‘SC:100’) on an expanded
halo sample including haloes (m10q, m11q, m11g, m12f) from
Paper II, with halo masses log (Mhalo/M�) ∼ (10, 11, 11.5, 12) and
stellar masses log (M∗/M�) ∼ (6.3, 9.0, 10, 10.8), respectively. Each
of haloes (m11q, m11g, m12f) behave broadly similarly to our
standard (m11i, m11f, m12i), respectively (galaxies with similar
mass) for each specific CR transport model. To the extent that they
differ in e.g. Lγ /Lsf they move (slightly) along, not with off of, the
relation defined by (m11i, m11f, m12i) in Fig. 3. Halo m10q (the
least massive) is consistent with the extrapolation of these trends,
but falls outside the plotted and observed range (with much lower
mass/luminosity/density) in our comparisons. All of this is consistent
with our larger statistical study in Paper II.

(xi) CR injection efficiency: As discussed in Paper II, if we add
additional sources of CRs (e.g. structure formation shocks, AGN)
then this will further increase Lγ without increasing LSF, requiring
larger diffusivities to reproduce observations, but these are almost
certainly sub-dominant for CR production compared to SNe in
the galaxies of interest. If we change the assumed efficiency of
CR production in SNe (εcr), in the calorimetric limit this changes
Lγ /LSF∝εcr, so reproducing the observations of the SMC/LMC/M33

with, say, vst ∼ vA (so all galaxies are near-calorimetric) while also
matching the observed starburst systems would require factor of
∼100 variation in εcr in SNe as a function of galaxy properties
(which cannot be primarily metallicity, since this is constant for some
observed systems with different Lγ /LSF). More importantly, changing
εcr does not change the median grammage or residence time ‘per CR’,
so reproducing the grammage, residence time, and Lγ observations
simultaneously, or reproducing the Lγ observations in different
galaxies simultaneously with a constant εcr, requires εcr ∼ 0.1. We
have experimented in Paper II with modest variations εcr ∼ 0.05−0.2:
the range of observations and simulation spread in predictions make
it difficult to rule out factor ∼2 changes in εcr, but at this level these
variations have no qualitative effect on our conclusions.

APPENDI X E: C OMPA RI SON TO
LOW-DI FFUSI ON MODELS I N OTHER
C O S M O L O G I C A L S I M U L AT I O N S

Recently, Pfrommer et al. (2017) and Buck et al. (2020, B20) ex-
plored the effects of explicit CR transport models in idealized isolated
galaxy and cosmological simulations, similar in spirit to our Papers I
and II. These simulations used a different code and numerical method
with somewhat lower resolution. They also employ a fundamentally
different treatment of the ISM wherein any gas above a density
n > 0.1 cm−3 is assigned a ‘stiff’ effective (quasi-adiabatic) equation
of state, with an SFR set by calibration to observations, and is
assumed to launch galactic winds with a mass-loading and velocity
set analytically to reproduce the galaxy mass function following
Grand et al. (2017). The scheme is designed for large-volume
simulations that do not resolve ISM or outflow phase structure, so
we might expect significant differences from our results here.

The authors consider three transport models (1) CR advection only
(κ29 = 0, vst = 0, with no ‘streaming loss’ term); (2) diffusion-only
with κ29 = 0.1 (vst = 0, no ‘streaming loss’); and (3) diffusion
with ‘streaming losses’ but without streaming motion (κ29 = 0.1,
vst = 0, but taking the streaming losses to be vA|∇‖Pcr| with
vA � 100 km s−1). These are all akin to a subset of our ‘constant-
diffusivity’ models from Papers I and II, with low κ .

Despite the simulation differences, we find that their conclusions
are similar to ours, for similarly low diffusivities: Fig. E1 shows
this directly. As the authors state directly in Pfrommer et al. (2017)
(see fig. 3 therein), in their MW-like haloes, all their models predict
that almost all of the injected CR energy is lost to collisions, and
so produce Lγ /LSF near the calorimetric limit. Moreove, even at
LMC and SMC star formation rates their predicted Ėcoll/Ėcr ∼ 0.3
in their favoured model (i.e. they are always within a factor of
∼3 of calorimetric). The cosmological simulations in B20 give a
similar result (fig. 14 therein): even for the smallest dwarf galaxies
(lowest SFRs) plotted, the predicted Lγ is within a factor ∼1.5–3
of the calorimetric limit. The other diagnostics we consider here
also give consistent results. For example, their models (1) and (2)
predict a CR energy density at the solar circle in MW-like galaxies
of ecr(r ≈ 8 kpc) ∼ 15–20 eV cm−3.24 Where Ėcoll/Ėcr < 1, we can

24Their model (3) predicts a lower value of ecr(8 kpc) only because with
streaming losses but no streaming transport (and weak diffusion) and
unphysically large vA ∼ 200 km s−1 in the warm ISM (owing to the artificial
ISM ‘effective equation of state’), the energy loss time-scale from ‘streaming’
∼ 3 �cr/vA (see their figs 10 and 12) in their simulations at ∼ 8 kpc is
∼10 times shorter than the diffusion time [∼(few kpc)2/κ iso] for CRs to reach
that radius, so most of the CR energy is lost to ‘streaming losses’ despite the
model not including streaming motion.
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Figure E1. Comparison of γ -ray emission Lγ /LSF versus SFR (as Fig. 4)
in our low-diffusivity CD model κ29 = 0.3 (shaded shows 2σ range) and
observed (black points with error bars). We contrast (see Appendix E) the
results from Buck et al. (2020, B20; circles), who predict Lγ from independent
cosmological simulations without ISM phase structure, considering low-
diffusivity models including (1) κ29 = 0.1 (with vst = 0), (2) advection-
only (κ29 = vst = 0), (3) advection+streaming losses (κ29 = vst = 0, but
still adding a rapid ‘streaming loss’ sink term = vA ∇Pcr in the CR energy
equation). Open points show the values of Lγ and LSF/SFR taken exactly as
given in B19’s fig. 14. Solid points correct these points to adopt the identical
stellar and γ -ray bolometric corrections, γ -ray bandpass, and assumptions
about hadronic loss rates as those adopted in the text here. Their predictions
are nearly identical to ours for similar (low) diffusivity, and predict for κ29

� 1 that > 90 per cent of galaxies are within a factor ∼3 of the calorimetric
limit at any SFR. The B20 models also predict solar-circle grammage
Xs � 100 g cm−2, CR energy density ecr ∼ 20 eV cm−3, and residence times
� 100 Myr, similar to our low-κ models in Figs 6 and 7. The predictions
for κ29 � 1 are consistent between simulations and clearly ruled out by
both γ -ray and MW observations: per Appendix E, B19’s conclusion that
low-κ models are observationally permitted stems from not considering MW
constraints and from plotting the γ -ray data at the incorrect values of LSF.

use their adopted conversion formulae for their predicted γ -ray lumi-
nosities and injection rates to directly calculate the grammage in their
simulations as well.25 In all three CR transport models, they predict
a grammage in MW-mass systems of Xs ∼ 80–200 g cm−2, and for
all lower mass/SFR systems (down to Ṁ∗ ∼ 0.001 M� yr−1) they
predict Xs ∼ 40–130 g cm−2. Finally, although we cannot directly
reconstruct their predicted residence times, their predicted Lγ /LSF or
grammage (given their collisional loss rate and mean ISM densities
in B20 fig. 10), or our simple analytic model in Section 5.1.1 all
imply similar �tres � 500 Myr.

Each of these conclusions is similar to those from our similar
(κ̃ ≤ 0.3) simulations in Table 1 and Papers I and II. Likely the reason
we obtain such good agreement, despite considering very different

25If we use the identical adopted parameters from Pfrommer et al.
(2017), their predicted γ ray emission per unit volume in their
band 0.1–100 GeV is ėγ = 5.67 × 10−17 nn ecr, so their L0.1–100

γ =∫
ėγ d3 x, while Ėcr = 3.5 × 1040 erg s−1 (Ṁ∗/M� yr−1), and therefore

in quasi-steady state (when Lγ � Lcalor), they must have X∞
s ≈

380 g cm−2 (Lγ /1040 erg s−1) (Ṁ∗/M� yr−1)−1 (for their quoted values of
Lγ and Ṁ∗). As Lγ → Lcalor, of course, Xs → ∞.

simulations, is simply because the quantities above ‘saturate’ once
CRs approach the pure-advection/low-diffusion/calorimetric limit.
However, B20 claim that their results disagree significantly with
ours, arguing that their low-diffusivity models do reproduce the
observations. They attribute the difference in predictions primarily to
the treatment of dense gas, but as we have shown (1) there is actually
very little difference in the predictions and (2) dense gas has little
effect on our predictions.

The actual differences stem from how the observations are
treated. Pfrommer et al. (2017) and B20 compare only to the Lγ –Ṁ∗
correlation: they do not consider grammage or residence time or CR
energy density constraints as we do here (all of which clearly rule
out these lower κ models). Moreover, for the Lγ –Ṁ∗ correlation,
the authors estimate Ṁ∗ of the observed systems (or, equivalently,
the far-IR (FIR) 8–1000μm luminosity of their simulations)
by assuming a universal conversion factor Ṁ∗/(M� yr−1) =
1.34 × 10−10 (LFIR/L�). However, as noted in both Pfrommer et al.
(2017) and B19, it is well known that this correlation and conversion
factor break down quite severely in low-SFR systems including the
SMC, LMC, and M33 (and even at factor ∼2–3 level in the MW and
M31), as the conversion they adopt assumes that all the light emitted
by massive stars is absorbed by cold dust and re-processed into FIR
(the particular calibration they adopt is derived for luminous infrared
galaxies, with typical extinctions Av ∼ 100). For the SMC, this means
their adopted SFR (∼ 0.008 M� yr−1) is a factor ∼10–30 lower than
implied by high-mass X-ray binary counts (Shtykovskiy & Gilfanov
2005; Haberl & Sturm 2016), young stellar object counts (Hony
et al. 2015), long-period variable star counts (Rezaeikh et al. 2014),
simple bolometric ultraviolet continuum (Hagen et al. 2017), or H α

emission (Wilke et al. 2004) conversions, or the ‘gold standard’ (to
which many other methods are calibrated) resolved main-sequence
turn-offs (i.e. stellar HR or colour–magnitude diagram studies;
Harris & Zaritsky 2004; Noël et al. 2009; Indu & Subramaniam 2011;
Weisz et al. 2013; Rubele et al. 2015). More importantly, this means
their assumed SNe rate (which is what LSF is ultimately used for, to
estimate RSNe and therefore Ėcr ≈ 1050 erg RSNe) is ∼ 1/15, 000 yr,
a factor ∼15–30 lower than inferred from direct observations of SNe
remnants in the MCs (Maoz & Badenes 2010; Leahy 2017; Maggi
et al. 2019). There are also some differences in the γ -ray spectral
slopes/bolometric corrections assumed, as for example B20 include
all emission from 0.1 to 100 GeV (likely including non-negligible
pulsar contamination), but these are generally smaller (factor ∼2)
effects.

The net result of this is that the SMC is plotted in e.g. B20 fig. 14
as if it has Lγ ∼ 0.4 Lcalor; this, in turn, means that their theoretical
predictions with low κ̃ appear consistent – as would indeed our
own low-diffusivity κ29 = 0.3 model shown in our Fig. 3. However,
observational studies of these systems which carefully account for
SNe rates and/or UV luminosities and γ -ray spectra place the SMC
at Lγ ∼ 0.007 Lcalor (Lacki et al. 2011; Lopez et al. 2018), a factor
of ∼50 lower. If we compare the grammage, residence time, and/or
CR energy density constraints in the MW (see values above), this
inconsistency is also apparent: all of these numbers are significantly
overpredicted (by factors ∼10–100) by the low-κ models in B19, so
faster transport is clearly required. In short, the difference between
our conclusions (here and in Papers I and II), and those in Pfrommer
et al. (2017) and B19, are driven almost entirely by how those
authors compare to the observations, rather than by theoretical or
numerical differences.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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