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ABSTRACT
When modelling strong gravitational lenses, i.e. where there are multiple images of the same source, the most widely used
parametrization for the mass profile in the lens galaxy is the singular power-law model ρ(r)∝r−γ . This model may be insufficiently
flexible for very accurate work, for example, measuring the Hubble constant based on time delays between multiple images.
Here, we derive the lensing properties – deflection angle, shear, and magnification – of a more adaptable model where the
projected mass surface density is parametrized as a continuous two-dimensional broken power law (2DBPL). This elliptical
2DBPL model is characterized by power-law slopes t1 and t2 either side of the break radius θB. The key to the 2DBPL model is
the derivation of the lensing properties of the truncated power-law (TPL) model, where the surface density is a power law out to
the truncation radius θT and zero beyond. This TPL model is also useful by itself. We create mock observations of lensing by a
TPL profile where the images form outside the truncation radius, so there is no mass in the annulus covered by the images. We
then show that the slope of the profile interior to the images may be accurately recovered for lenses of moderate ellipticity. This
demonstrates that the widely held notion that lensing measures the slope of the mass profile in the annulus of the images, and is
insensitive to the mass distribution at radii interior to the images, is incorrect.
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1 IN T RO D U C T I O N

This is the third in a series of papers examining how strong
gravitational lensing of an extended source may be used to measure
the profile of the projected surface mass density in the lens, using
lensing data alone, independent of dynamics. In the first and second
papers in the series (O’Riordan, Warren & Mortlock 2019, 2020,
hereinafter Paper I and Paper II), we examined, respectively, the
circular and elliptical cases of the singular power-law (SPL) lens,
with 3D density profile ρ(r)∝r−γ . The model projects to a power law
in surface mass density with exponent t = γ − 1. We used synthetic
observations to determine the constraints on γ for a wide range of
image configurations, and we developed a theoretical understanding
of how the different observables, positions, and fluxes, contribute to
the constraints on γ in the various configurations. We showed that in
the best cases the slope may be measured to an accuracy σγ � 0.01.

Having shown that strong lensing observations on their own can
provide accurate measurements of the slope, we now turn to the
question of where in the radial profile these constraints apply. In
the SPL model, the shape of the surface density profile is quantified
by a single parameter, the power-law exponent γ , or equivalently t.
In this paper, we introduce a more versatile mass model with the
goal of determining the constraints on the lens surface density as a
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function of projected radius. We define an elliptical model in which
the surface density is a continuous broken power law (BPL). This
two-dimensional BPL (2DBPL) model has two extra parameters
compared to the SPL model: it is specified by an inner power-
law slope t1, an outer power-law slope t2, and a break (elliptical)
radius θB. In this paper, we derive the main useful lensing properties
of this model i.e. the deflection angle and the shear, and thereby
the magnification. In the next paper in the series, we will explore
the constraints on the parameters t1, t2, and θB for different image
configurations.

The 2DBPL model, parametrizing the surface density, is closely
related to the 3DBPL model, parametrizing the density, for which
the lensing properties have been derived by Du et al. (2020). The
3D model could be a physical model for a real galaxy, while the 2D
model cannot be exactly, since no 3D ellipsoidal density distribution
can project to a 2DBPL profile. The projection of the 3DBPL model
to 2D results in a softened break between the two power laws. The
original reason for developing the 2DBPL model was to have a
distinct change in slope as a means of directly contrasting the model
either side of the break. In this way by comparing the uncertainties
on the two slopes it will be possible to gain an understanding of how
lensing constrains the mass profile in the most direct manner.

Although created as a theoretical tool to understand how lensing
constrains the mass profile, the 2DBPL profile is also useful as a
functional form for fitting real lenses as it represents the simplest
extension beyond the commonly used SPL model. By using Bayesian
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model comparison techniques it will be possible to determine if such
an extension beyond the SPL model, with two extra parameters, is
justified by the data. An accurate mass model is a critical component
of any lensing study but this is especially true for time delay
cosmography, where the delays in light traveltime between the
multiple images in a single system are used to constrain the Hubble
constant (e.g. Wong et al. 2020). A number of authors have suggested
that the currently employed SPL model lacks the freedom necessary
to model accurately the lens mass when measuring H0 (Xu et al. 2016;
Sonnenfeld 2018; Kochanek 2020). The consequence could be that
measurements of H0, although precise, are inaccurate because of a
biased measurement of the potential at the positions of the lensed
images.

The lensing properties of the 2DBPL profile are derived by first
determining the lensing properties of the 2D truncated power-law
(2DTPL) profile, where the surface density is represented by a
singular power-law profile out to a specified radius, and then zero
beyond. The 2DBPL profile is then constructed by combining SPL
and 2DTPL profiles in a straightforward way (explained below). The
derivation of the lensing properties of the 2DTPL model is therefore
the main theoretical innovation presented in this paper.

For the remainder of the paper, we refer to the 2DTPL and 2DBPL
models simply as the TPL and BPL models for the sake of readability.

Regarding measurements of the mass profile, it is widely stated
or implied that lensing images constrain the slope of the profile only
over the annulus spanned by the images, i.e. near the Einstein radius,
and provide no useful information on the mass profile interior to the
innermost image (Kochanek 1995, 2006; Koopmans et al. 2006; van
de Ven, Mandelbaum & Keeton 2009; Treu 2010; Chae, Bernardi
& Kravtsov 2014; Hezaveh et al. 2016; Suyu et al. 2017; Spingola
et al. 2018). The clearest example of this sentiment is in Kochanek
(2006) where it is stated ‘it is important to remember that the actual
constraints on the density structure really only apply over the range
of radii spanned by the lensed images’. In this paper, we use the
TPL model to examine this belief. We construct mock observations
for elliptical lenses where the images form outside the truncation
radius. In these observations, there is therefore no mass in the annulus
spanned by the lensed images. We then fit the TPL model to the mock
observations to determine the constraints on the power-law slope for
different image configurations.

The paper is organized as follows. In Section 2, we present the
theory for the TPL model. In Section 3, we formulate the BPL model
and in Section 4 we provide a numerical recipe for fast computation
of the deflection angle for the TPL and BPL models. In Section 5,
we use the TPL model to examine if the slope interior to the images
can be constrained. Conclusions are presented in Section 6.

2 TRUNCATED POWER-LAW MASS MODEL

Before deriving the lensing properties for the BPL, we first derive
them for a simpler model, the TPL. These results will be useful in
formulating the BPL in Section 3.

2.1 Convergence

In the TPL model, the surface density is described by a power-law
interior to some elliptical radius called the truncation radius and is
zero outside this radius. Explicitly, the convergence in the TPL model
is

κ(θε) =
{

κT(θT/θε)t , for θε ≤ θT

0, for θε > θT,
(1)

where θT is the truncation radius, κT is the convergence at θT, and t
is the logarithmic slope. The elliptical radius θε is defined

θ2
ε = q2θ2

1 + θ2
2 , (2)

where q is the axial ratio of the minor to major axes of the mass
distribution’s isodensity contours, and is related to ellipticity ε by q
= 1 − ε.

Equation (1) also includes a normalization κT which we now
define. We wish to relate κT to the scale length b such that b retains
its usual meaning from the single power-law model; that the average
density inside the elliptical radius b is the critical density 	c. If M(θ )
is the mass enclosed by a radius θ , then at θ = b we require

M(b) = 	cπb2D2
d/q, (3)

where Dd is the distance to the lens. In general, for an elliptical mass
distribution the total mass enclosed by a radius θε is

M(θε) = 	cD
2
d

q

∫ θε

0
κ
(
θ ′
ε

)
2πθ ′

εdθ ′
ε. (4)

Using equation (1), for a radius θε > θT the mass enclosed is a
constant;

M (θε > θT) = 2π	cD
2
dκTθ2

T

q(2 − t)
. (5)

To find κT, we can then combine equations (5) and (3) to obtain

κT =

⎧⎪⎨
⎪⎩

2 − t

2ν2
, for ν ≤ 1,

2 − t

2νt
, for ν ≥ 1,

(6)

where ν = θT/b.

2.2 Deflection angle

To find the deflection angle for the TPL model, we follow initially the
same route used by Tessore & Metcalf (2015, hereafter TM15) for the
SPL model, and adopt the same notation where the complex image
plane coordinate is z = θ1 + iθ2 and the complex deflection angle
is α = α1 + iα2. Bourassa & Kantowski (1975) give the deflection
angle for a general elliptical mass profile as

α∗(z) = 2

qz

∫ θε (z)

0
κ(θ )θ

(
1 − q ′ θ

2

z2

)−1/2

dθ, (7)

where q
′ = (1 − q2)/q2. Inserting equation (1), we have

α∗(z) = 2κTθ t
T

qz

∫ θ ′

0
θ1−t

(
1 − q ′ θ

2

z2

)−1/2

dθ, (8)

with

θ ′ =
{

θε(z), for θε(z) ≤ θT,

θT, for θε(z) > θT.
(9)

First, consider the deflection angle outside θT for a circular mass
distribution, i.e. with q = 1. Equation (8) is then easy to evaluate and
gives

α∗(z) = b2

z
. (10)

This is the same as for a point mass with Einstein radius θE = b. As
expected, the deflection angle exterior to the truncation radius does
not depend on the distribution of mass interior, via t or otherwise,
when the lens is circular.
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Now we consider the elliptical case, i.e. for a general q 	= 1.
Following TM15, we take advantage of the fact that an integral of
the form

I (θ, t ; z) =
∫ θ

0
θ ′1−t

(
1 − q ′ θ

′2

z2

)−1/2

dθ ′ (11)

has the solution

I (θ, t ; z) = θ2−t

2 − t
F (θ, t ; z), (12)

where

F (θ, t ; z) = 2F1

(
1

2
, 1 − t

2
; 2 − t

2
; q ′ θ

2

z2

)
, (13)

and 2F1 is the Gaussian hypergeometric function. Equation (8) then
becomes

α∗(z) = b2

qz
×

⎧⎨
⎩F (θε, t ; z)

(
θT

θε

)t−2

, for θε(z) ≤ θT,

F (θT, t ; z), for θε(z) ≥ θT.

(14)

The deflection angle exterior to the truncation radius has now picked
up a dependence on the mass distribution interior, through t in the
hypergeometric function. For the case θε ≤ θT, the deflection angle
is identical to the final line of TM15’s equation (11) up to a factor of
ν2 − t which accounts for the mass deficit inside b when ν < 1. This
factor ensures that b retains the same meaning for both the TPL and
SPL even though they are differently normalized, i.e. a source at β

= 0 will form a ring at θε = b when q = 1 in both models. The result
in the θε(z) < θT case could be further simplified by separating the
radial and angular parts (see TM15’s equation 12 onwards). In the
θε(z) > θT case, α does not benefit from the same simplifications
because the mass profile is only integrated up to θT in equation (8),
rather than all the way up to z. Note that the deflection angle is
continuous across the boundary at θT, even though the mass profile
is not.

The sensitivity of the deflection angle outside θT to the slope
inside θT is illustrated in Fig. 1. The quantity α, as a fraction of
b, is calculated at the point at elliptical radius b on the diagonal line
θ1 = θ2. α is the magnitude of the change in the deflection angle
vector for a change in slope of t = 0.1 around an isothermal, i.e.
t = 1 slope. The figure shows how the sensitivity depends on two
features of the lens. First, the deflection angle is more sensitive to
the mass interior as the truncation radius approaches the Einstein
radius, i.e. as ν = θT/b → 1. For a very small truncation radius,
the dependence vanishes entirely, and as ν → 1 the quantity α in
the figure converges to that of the SPL. Second, the dependence is
stronger for higher ellipticities. This could have been predicted from
the results of Paper II, where we found that in general more elliptical
lenses provide better constraints on the mass profile slope. The large
increase in sensitivity between q = 0.99, essentially a circular lens,
and q = 0.9 indicates that the images should be sensitive to the
interior slope even for small ellipticities. We will examine both of
these effects in more detail in the next paper in this series.

2.3 Shear and magnification

The complex shear γ (z) is defined as

γ ∗(z) = ∂α∗

∂z
, (15)

where

∂

∂z
= 1

2

(
∂

∂θ1
− i

∂

∂θ2

)
, (16)

Figure 1. The sensitivity of the deflection angle to small changes in slope as
a function of ν = θT/b. The sensitivity is calculated along the line θ1 = θ2 at
the scale radius θε = b. Each curve represents a different axial ratio running
from an (almost) circular lens to q = 0.5.

is the Wirtinger derivative. The shear interior to the truncation radius
is just that for the single power law, given by TM15’s equation (16)
but with our definitions of κ and α. Exterior to the truncation radius,
we use the result

∂

∂z
F (θ, t ; z) = 2 − t

z

[
F (θ, t ; z) −

(
1 − q ′ θ

2

z2

)−1/2
]

, (17)

to find

γ ∗(z) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − t)
α∗(z)

z
− z∗

z
κ(z), for θε(z) ≤ θT,

(1 − t)
α∗(z)

z
− 2 − t

z2

(
1 − q ′ θ

2
T

z2

)−1/2

for θε(z) ≥ θT.

(18)

Having defined both the convergence and shear it is possible to
compute the scalar magnification from the standard relation

μ−1 = (1 − κ)2 − |γ |2. (19)

2.4 Lensing potential

Inside the truncation radius, the potential is simply that due to a
single power law which TM15 gives as

ψ(z) = zα∗(z) + z∗α(z)

2(2 − t)
, (20)

where α∗(z) is given by equation (14). The potential outside the
truncation radius due to the mass interior can be found by summing
the contributions from infinitesimally thin, homoeoidal, concentric
elliptical rings each of constant density. From Schramm (1990), we
get the potential for such a ring at a position z outside the ring

ψ(z) = 2

q
κ(θε)θε cosh−1

(
zq

θε

√
1 − q2

)
dθε, (21)

where q is the axial ratio of the ring, in this case constant across
all rings, κ is the surface density of the ring, and θε is the elliptical
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radius of the ring defined in equation (2). Using equation (1), we can
then find the potential for the mass inside θT with the integral

ψ(z) = 2κTθ t
T

q

[∫ θT

0
θ1−t cosh−1

(
zq

θ
√

1 − q2

)
dθ

]
− CT, (22)

which must be evaluated numerically. The constant CT ensures
the potential is continuous across θT. Explicitly this is CT =
ψθε>θT (zT) − ψθε<θT (zT), where each ψ is given by equations (20)
and (22), respectively, and zT is an arbitrary point at the truncation
radius, e.g. zT = iθT.

3 BROKEN POW ER-LAW MASS MODEL

We can make use of the results for the TPL to formulate a more useful
model, a two-dimensional continuous BPL. The BPL model that
follows is implemented in the lens modelling software PYAUTOLENS

(Nightingale, Dye & Massey 2018).

3.1 Convergence

We define the convergence for a BPL projected mass density profile
as

κ(θε) =
{

κB(θB/θε)t1 , for θε ≤ θB,

κB(θB/θε)t2 , for θε ≥ θB.
(23)

where θB is the break radius, κB is the convergence at the break
radius, and t1 and t2 are the inner and outer 2D logarithmic slopes,
respectively. Inserting equation (23) into equation (4) gives an
expression for κB,

κB =

⎧⎪⎨
⎪⎩

2 − t1

2ν2
[
1 + δt

(
νt2−2 − 1

)] , for ν < 1,

2 − t1

2νt1
, for ν ≥ 1,

(24)

where ν now has the definition ν = θB/b and we define

δt = 2 − t1

2 − t2
. (25)

3.2 Deflection angle

We can find the deflection angle from equation (7). The solution
contains integrals of the form in equation (11) which we use to
simplify the results.

For positions inside the break radius, i.e. where θε ≤ θB, we find

α∗(z) = 2κB

2 − t1

θ2
B

qz

(
θB

θε

)t1−2

F (θε, t1; z), (26)

which is just the deflection angle for a power law of slope t1 with an
adjusted normalization. Outside the break radius, i.e. where θε ≥ θB,
we have

α∗(z) = 2κB

2 − t1

{
θ2

B

qz
F (θB, t1; z)

+ δt

[
θ2

B

qz
F (θε, t2; z)

(
θB

θε

)t2−2

− θ2
B

qz
F (θB, t2; z)

]}
, (27)

which can be further simplified if ν < 1 using equation (24) for κB.
Writing the deflection angle in this way is useful because it makes
its three constituent parts clear. Comparing with equation (14), we
see that α(z) for the BPL can be found by combining three simpler

deflection angles. We add α for a power law with the inner slope t1

truncated at θB and α for a single power law with the outer slope t2

(first and second terms). We then subtract the contribution from the
single power law with slope t2 inside the break radius (third term).

We can check the result for the case where both slopes are the
same, i.e. when t1 = t2 = t. In this case, the normalization becomes

κB = 2 − t

2νt
. (28)

We also have δt = 1 and so the first and third hypergeometric terms
in equation (27) cancel out. Both equations (26) and (27) reduce to

α∗(z) = b2

qz

(
b

θε

)t−2

F (θε, t ; z), (29)

which is identical to TM15’s equation (11), i.e. the deflection angle
for a single power law.

3.3 Shear

We find the shear for the BPL by using equations (26) and (27) with
the definition of complex shear in equation (15). For the case where
θε < θB, we have

γ ∗(z) = 2κBνt1

2 − t1
γ ∗

t1
(z), (30)

where γ ∗
t (z) is the shear due to a single power law with slope t, given

by

γ ∗
t (z) = (1 − t)

α∗
t (z)

z
− κ(z)

z∗

z
, (31)

with α∗
t (z) given by equation (29). Outside the break radius, when

θε > θB, the shear is

γ ∗(z) = 2κB

2 − t1

{
θ2

B

qz2

[
t1 − t2√

1 − q ′θ2
B/z2

+ (1 − t1)F (θB, t1; z)

− (1 − t2)F (θB, t2; z)

]
+ νt2δtγ

∗
t2

(z)

}
. (32)

Comparing with the shear for the truncated profile in equation (18),
we see that the shear for the BPL has the same composition as
described for the deflection angle in the previous section.

4 C O M P U TAT I O N

To perform Markov chain Monte Carlo (MCMC) fitting to image
planes using either the TPL or BPL, we need a method to efficiently
compute the deflection angles in equations (14), (26), and (27). In the
case of both models, all that is required is a method for computing
our specific hypergeometric function F in equation (13). We pursue a
similar approach to that of TM15 for the SPL, however, in this work
we cannot simplify the final argument of F in the same way and so
we require a slightly different recipe for computation. In TM15, the
θ used in F is simply θε(z) which allows for some simplification
using their definition of z = θεeiφ , where φ is an elliptical angle. In
this work, we must be able to use the constants θB or θT in place of
θε(z), prohibiting the same simplifications.

Recall that we defined

F (θ, t ; z) = 2F1

(
1

2
, 1 − t

2
; 2 − t

2
; q ′ θ

2

z2

)
. (33)
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We can exploit the fact that F’s parameters are of the form a + b′ +
1
2 = c, allowing us to use the quadratic transformation

2F1

(
a, b′; a + b′ + 1

2
, z′

)

= 2F1

(
2a, 2b′; a + b′ + 1

2
,

1 − √
1 − z′

2

)
, (34)

(Bateman 1955). Under this transformation, F becomes

F (θ, t ; z) = 2F1

[
1, 2 − t ; 2 − t

2
; u(θ ; z)

]
, (35)

where

u(θ ; z) = 1 −
√

1 − q ′θ2/z2

2
. (36)

With the condition that |u| < 1, we can use the series representation
of 2F1, as follows:

F (θ, t ; z) =
∞∑

n=0

an(t) u(θ ; z)n, (37)

where

an(t) = �(n + 1)

n!

�(2 − t + n)

� (2 − t/2 + n)

� (2 − t/2)

�(2 − t)
. (38)

The quadratic transformation ensures that |u| only exceeds unity for
very extreme axial ratios. For axial ratios q � 0.32, there are regions
in the image plane where |u| > 1 and the method does not produce
accurate results. For our purposes, however, the range of axial ratios
0.32 < q ≤ 1 is more than sufficient.

By using the fact that �(z + 1) = z�(z), we find a relatively simple
recurrence relation between consecutive coefficients

an+1

an

= 2n + 4 − 2t

2n + 4 − t
, (39)

and a0(t) = 1. This leaves us with a straightforward recipe for
computing α in the BPL with

α∗(z) = 2κB

qz

θ2
B

2 − t1

(
θB

θε

)t1−2 ∞∑
n=0

an(t1) u(θε; z)n, (40)

for θε ≤ θB, and

α∗(z) = 2κB

qz

θ2
B

2 − t1

∞∑
n=0

{
u(θB; z)n [an(t1) − δtan(t2)]

+ u(θε; z)n
(

θB

θε

)t2−3

δtan(t2)

}
, (41)

for θε > θB.
Fig. 2 shows the relative accuracy of the method as the number

of coefficients n increases. In this case, the relative accuracy is the
maximum (over a 100 × 100 pixel 6 arcsec wide image plane)
relative difference between the computed deflection angle using n
coefficients and the same with n = 100. Computation time increases
linearly with the number of coefficients.

5 C O N S T R A I N I N G T H E SL O P E I N T E R I O R TO
T H E IM AG E S

We now return to the TPL model developed in Section 2 and its
primary use in addressing a central question in this series of papers:
what constraints, if any, can one obtain on the mass distribution
interior to the lensed images? For a circular TPL model, the deflection

Figure 2. The relative accuracy of equation (37) for different values of n.
Each line corresponds to a different axial ratio, which is labelled.

Figure 3. The effect of the axial ratio q and the slope t on the deflection
angle in a truncated lens. The vectors are the deflection angle (not to scale) at
three points near the Einstein radius in the upper right quadrant of the image
plane. The truncation radius is inside these points. The dotted lines intersect
the centre of the lens.

angle outside θT has no dependence on the mass profile interior to
θT (see equation 10). The lensing potential outside any circularly
symmetric mass distribution is that of a point mass at the centre.
However, this does not hold for elliptical mass distributions.

As a thought experiment, consider the potential ψ(z) and the
deflection angle α(z) at a point z outside the truncation radius, and
not lying on a principal axis, as in Fig. 3. For a circular lens, the vector
points towards the centre of the lens. This is the case in the left-hand
panel of Fig. 3 when q = 1, t = 1, and is obvious from equation (10).
As the ellipticity increases the deflection angle points away from the
centre and towards the lens’s semimajor axis, or the x-axis in the
figure. Increasing (decreasing) the ellipticity decreases (increases)
the circularity of the potential ψ(z) and, because α = ∂ψ/∂z, the
deflection angle changes direction accordingly.

Increasing the ellipticity, but keeping the same total mass inside θT,
moves mass from the centre to the region around the semimajor axis.
In principle, a similar result can be achieved by changing the slope t.
Increasing t concentrates mass in the centre of the lens, circularizing
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the potential and the deflection angle points more towards the centre
as a result. Conversely, decreasing t pushes mass towards the edge
of the lens and the potential also becomes more elliptical. This
behaviour is clear in the right-hand panel of Fig. 3.

This thought experiment raises two interesting points. First, for an
elliptical lens with multiple images exterior to the truncation radius,
the deflection angle at the images must be sensitive to the slope in
the centre. Second, both the slope t and the axial ratio q can be used
as we described to modify the angular structure in the potential. For
small changes in either variable, these modifications should look
very similar. We therefore expect t and q to be correlated.

Rather than restrict ourselves to this thought experiment, we can
perform an actual experiment using the TPL model we developed
in Section 2. We construct a number of mock observations with the
technique used elsewhere in the series. The details of this procedure
are in section 3 of Paper I. The fidelity of the procedures for creating
mock observations has been confirmed by the good agreement be-
tween parameters and their uncertainties derived from analysis of the
mock observations and the predictions of theory (Paper I; Paper II).

We created mock observations with the TPL model, ensuring that
in all cases the images form outside the truncation radius. This
ensures that in the annulus spanned by the images there is no mass
whatsoever, and likewise, in the region where there is mass, there
are no images.1 All mock observations have the same total signal-to-
noise ratio in the images S = 100. S is defined such that only pixels
that belong to lensed images, found by a masking procedure, are
included in the calculation (see Paper I, section 3.3). This means that
the ability of different lens configurations to constrain parameters can
be compared in an equal manner, independently of the magnification.
Our mock observations use a similar set of parameters to those for
the circular and elliptical SPLs in previous papers. We have b = √

q,
t = 1 (equivalent to γ = 2), and use a Sérsic source with index ns = 2.

Examples of mock observations are provided in the top row
of Fig. 4, with q decreasing, ellipticity increasing, left to right.
The dashed ellipse marks the truncation radius in each case. The
images produced by the TPL model are both significantly thinner
and significantly more circular in nature compared to the SPL model
with the same parameters. These images could be directly compared
with, for example, fig. 2 of Paper II. The potential for the TPL model
is both steeper than in the SPL and circularizes faster. The result is a
smaller radial magnification and a more ‘full’ Einstein ring between
the images, because the caustic is smaller.

We used ensemble MCMC sampling to fit two different models
to the data. These both use the TPL profile to model the mass and
a Sérsic profile to model the source. In the first case, Case 1, the
truncation radius is fixed to the true value. In Case 2, the truncation
radius is a free parameter. Case 1 and Case 2 have 11 and 12
parameters, respectively. For each case, there are seven parameters
for the source: position βx and βy, size reff., brightness I0, Sérsic index
ns, axial ratio qS, and position angle φS. Both models have four lens
parameters in common: lensing strength b, mass profile slope t, axial
ratio q, and position angle φL. Case 2 has the extra parameter θT.

The results of fitting to the mock observations are provided in
Fig. 4, plotting posterior probability contours in a corner plot of the

1The infinite width of the Sérsic profile means there is actually a vanishingly
small amount of source flux inside the truncation radius. In the mock obser-
vation with an image closest to the truncation radius (the third observation in
Fig. 4), the ratio of source flux inside θT to the total flux is 0.002. In general,
the source flux interior to θT is well below the average noise level and will
not contribute to the fit.

interesting parameters, i.e. t and q for Case 1 (middle row), and t,
q, and θT for Case 2 (bottom row). To check the goodness of fit of
the recovered parameter values, we compare the mock observations
with the best-fitting model, made using the median sample values
from the posteriors in Fig. 4. For a large number of degrees of
freedom Ndof, χ2 is normally distributed with mean Ndof and standard
deviation

√
2Ndof . Therefore, if the model is a good fit to the data,

one expects the quantity
(
χ2 − Ndof

)
/
√

2Ndof to lie within ±2 of
zero 95 per cent of the time. This quantity is printed in Table 1 and
shows that the recovered parameter values are indeed a good fit to
the mock observations.

In each case, we see that the parameters are more precisely
constrained as the axial ratio q decreases, and ellipticity increases,
left to right. This is as expected, considering that the circular case
provides no constraints on the mass profile. For Case 1, with θT

fixed, the expected anticorrelation between q and t is clearly seen
i.e. as t increases, and the potential becomes more circular, this is
compensated for by a decrease in q, or increase in ellipticity. For
Case 2, where θT is an extra free parameter, the main correlation
is now between q and θT: as θT increases the potential becomes
less circular, so q must increase, i.e. ellipticity must decrease, to
compensate. Interestingly, the constraints on t are very similar for
the same q, between Cases 1 and 2. We also created images with
different values of θT and confirmed that the constraints on t improve
as θT increases, as expected.

These results show that, although there is no mass in the annulus
spanned by the images, the recovered values for the slope t are
consistent with the input values. It is clear that for a non-circular
lens, the images do provide a constraint on the interior mass profile.
This constraint is found to improve with ellipticity, and as the
truncation radius approaches the radius of the images. In the best
case, constraints of σ t < 0.05 can be achieved on the interior slope.
In Section 1, we drew attention to a belief frequently found in the
literature that lensing measures the slope of the profile at the Einstein
radius, and not interior to the images. The results presented here
contradict this belief.

6 SU M M A RY

In this paper, we have derived the lensing properties of the 2DBPL
model, a versatile model for determining the projected mass profile
of the lens, comprising power laws of slope t1 and t2 either side
of the break radius θB. This model is the simplest extension of the
power law traditionally used in lensing studies, adding two degrees
of freedom. We also presented a method for the efficient computation
of the BPL model.

The BPL model derives from the TPL model. In the TPL model,
the surface density is described by a power law inside some elliptical
radius, called the truncation radius, and is zero outside. Using mock
observations constructed with the TPL model, we showed that, for
an elliptical lens, the observations can constrain the slope interior
to the images. The ellipticity of the lens and the truncation radius
are also measurable. The sensitivity to the slope interior to the
images improves with increasing ellipticity. This result contradicts
the standard picture that lensing measures the slope of the mass
profile at the Einstein radius and is insensitive to the mass profile
interior to the images.

This demonstration opens up the possibility of using strong
gravitational lensing to analyse the projected mass profile in detail.
In the next paper, we will present a full exploration of the usefulness
of the BPL model for measuring mass profiles in lens galaxies. We
will determine the uncertainties on the parameters t1, t2, and θB
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Mass profiles from lensing – III 3693

Figure 4. Constraints on the mass profile slope t, axial ratio q, and break radius θT for three truncated systems, created with signal-to-noise ratio S = 100. Top
row: Image plane. The dashed ellipse marks the truncation radius and the cross is the source position. Middle row: Case 1 results, θT fixed. Bottom row: Case 2
results, θT free. Contours are the 68 per cent, 95 per cent, and 99 per cent credible intervals. The 68 per cent credible intervals are also shown as dashed lines in
the 1D histograms. Solid grey lines in the histograms mark the true values.

over the parameter space of source position and lens ellipticity. This
identifies the particular configurations where all three parameters
may be measured accurately, which are the most useful for detailed
study, for example, in measuring the Hubble constant.
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Table 1. Goodness of fit for the recovered parameter
values in the three systems in Fig. 4, ordered left to right.
These values are for the full 12 parameter fit, i.e. those
including θT as a parameter. χ2 is calculated in a mask
surrounding the images (see Paper I, section 3.3). The
number of degrees of freedom, Ndof, is the number of
pixels in the mask minus the number of fitted parameters.

System χ2 Ndof
χ2−Ndof√

2Ndof

1 533.76 573 − 1.16
2 598.36 541 1.74
3 529.89 485 1.44

DATA AVAILABILITY

The data used in this paper are available from the corresponding
author on request.
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