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ABSTRACT
Hydrodynamical simulations of galaxy formation and evolution attempt to fully model the physics that shapes galaxies. The
agreement between the morphology of simulated and real galaxies, and the way the morphological types are distributed across
galaxy scaling relations are important probes of our knowledge of galaxy formation physics. Here, we propose an unsupervised
deep learning approach to perform a stringent test of the fine morphological structure of galaxies coming from the Illustris
and IllustrisTNG (TNG100 and TNG50) simulations against observations from a subsample of the Sloan Digital Sky Survey.
Our framework is based on PixelCNN, an autoregressive model for image generation with an explicit likelihood. We adopt a
strategy that combines the output of two PixelCNN networks in a metric that isolates the small-scale morphological details of
galaxies from the sky background. We are able to quantitatively identify the improvements of IllustrisTNG, particularly in the
high-resolution TNG50 run, over the original Illustris. However, we find that the fine details of galaxy structure are still different
between observed and simulated galaxies. This difference is mostly driven by small, more spheroidal, and quenched galaxies that
are globally less accurate regardless of resolution and which have experienced little improvement between the three simulations
explored. We speculate that this disagreement, that is less severe for quenched discy galaxies, may stem from a still too coarse
numerical resolution, which struggles to properly capture the inner, dense regions of quenched spheroidal galaxies.

Key words: methods: miscellaneous – methods: numerical – galaxies: evolution – galaxies: fundamental parameters – galaxies:
star formation – galaxies: structure.

1 IN T RO D U C T I O N

In the recent years, cosmological hydrodynamical simulations of
galaxy formation and evolution have reached unprecedented accu-
racy. Early efforts (e.g. Crain et al. 2009; Croft et al. 2009; Nuza;
Dolag & Saro 2010; Schaye et al. 2010; Di Matteo et al. 2012) have
paved the way to state-of-the-art simulations (Vogelsberger et al.

� E-mail: L.Zanisi@soton.ac.uk (LZ); marc.huertas@obspm.fr (MHC)

2014a; Schaye et al. 2015; Dubois et al. 2014; Pillepich et al. 2018;
Davé et al. 2019), which broadly agree with a number of observations.

The resemblance of the simulated galaxies to real ones may
be considered an important hallmark of the quality of simulations
and hence a crucial assessment of our knowledge of the relevant
physical processes implemented therein. Indeed, one of the major
successes of simulations is the ability to produce galaxies with a
wide variety of morphologies, something that was not possible until
only a few years ago (Dubois et al. 2014; Vogelsberger et al. 2014b;
Schaye et al. 2015). Furthermore, most simulations are now able
to generate galaxies whose physical properties are in the ballpark
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of observations, such as the galaxy stellar mass function (Furlong
et al. 2015; Pillepich et al. 2018), the size–mass relation (Re−Mstar)
and its evolution (Furlong et al. 2017; Genel et al. 2018), the colour
bimodality (Trayford et al. 2017; Nelson et al. 2018), and the star
formation activity (Donnari et al. 2019, though in this last instance
some tensions may still be present, especially at z � 1).

A key challenge for simulations is to try to reproduce the well-
known correlation between galaxy morphology and star formation
activity (e.g. Eales et al. 2017), and how it propagates on to the
galaxy scaling relations, which are observed to be different in the
two cases (e.g. Shen et al. 2003; Wuyts et al. 2011; Bell et al. 2012).
As shown in some works (Huertas-Company et al. 2016), this goes
beyond the simplistic late-type early-type dichotomy, since these two
broad morphological types include a wide variety of subclasses.

Assessing the level of agreement between the morphologies of
the full populations of observed and simulated galaxies is a hard
task, due to the intrinsic complexity of galaxy shapes. The approach
followed by some authors (Snyder et al. 2015; Bottrell et al. 2017a, b;
Rodriguez-Gomez et al. 2019; Baes et al. 2020; Bignone et al. 2020)
consisted in making use of integrated, parametric and non-parametric
quantities as diagnostics (such as the popular C−A−S−G−M20

statistics (e.g. Abraham et al. 1994; Conselice 2003; Lotz, Primack
& Madau 2004), with the aim of describing galaxy morphologies
with only a few numbers. However, such an approach may still
not grasp the full complexity of a galaxy image. In fact, although
technically all the pixels of a galaxy image are used to retrieve these
quantities, their choice may be incomplete (i.e. the C −A−S−G−M20

spatial diagnostics may in principle be extended, see for instance
Freeman et al. 2013; Wen, Zheng & An 2014; Pawlik et al. 2016;
Rodriguez-Gomez et al. 2019), and, for this reason, limited in
power (i.e. the similarity of these statistics between observed and
simulated galaxies, although informative, is no guarantee of the
overall quality of simulated galaxy properties). The key point is
that all the precious information contained in the pixels of an image
may not be fully accessible with standard techniques, which may be
a major shortcoming when comparing the morphologies of observed
and simulated galaxies. Moreover, the different statistics provide
separate pieces of information, while it would be desirable to assess
the quality of a simulation using a single-valued metric. A recent
attempt to generalize over the (non) parametric techniques outlined
above has been carried out in Huertas-Company et al. (2019), where
a supervised deep learning framework was devised to classify the
morphology of simulated galaxies. Using Bayesian Neural Networks,
Huertas-Company et al. (2019) were able to identify galaxies in the
simulation for which the network would produce a high variance
in the output label – a sign that the network struggled to assign a
clear morphology to some objects (mainly small galaxies), which
therefore may not be very realistic.

We build upon the work of Huertas-Company et al. (2019)
by introducing a fully unsupervised framework to compare the
morphologies of simulated galaxies with observations. Comparing
images coming from different data sets is a task that in machine
learning is known as Out of Distribution (OoD) detection. The high-
level idea is to have a deep learning model that learns the details of a
data set and condenses it in a single-valued function, the likelihood,
which can be used as a metric to assess candidate OoD images. Deep
generative models (DGMs) have been proposed in the literature to
perform this kind of assessment. In short, a DGM trained on a given
data set computes the likelihood for each of the in-distribution images
(i.e. images that come from the same distribution of the training set)
as well as for all the candidate OoD images (i.e. data not seen by the
Network at training time that may or may not come from the same

distribution of the training set). A comparison between the likelihood
distributions of both data sets will reveal whether the candidate OoD
sample agrees with the training set (Bishop 1994).

However, the reliability of the likelihood of DGMs for OoD
detection tasks has been questioned in the literature. In particular,
Serrà et al. (2019) found that the likelihood a DGM computed for a
test image is a function of the image complexity with contributions
from both the background and subject. Moreover, it has also been
found that the image background can have a significant confounding
effect on the likelihood that the network computes. For example, Ren
et al. (2019) showed that the likelihood correlates with the number
of pixels that have a value of zero. By combining the likelihood of
two DGMs trained on data sets that share a similar background, Ren
et al. showed that the contribution of the subject of the image may
be isolated. Here, we take a step forwards and try to overcome the
issues highlighted in Ren et al. (2019) and Serrà et al. (2019) by
combining the likelihood of two DGMs in a way that factors out
both the contribution of the background and that marginalizes over
the trivial properties of galaxy light profiles.

In this paper, we propose the use of PixelCNN, an autoregressive
DGM, as a novel tool to compare the morphology of simulated
and observed galaxies. PixelCNNs (van den Oord et al. 2016a, b)
explicitly learn the probability distribution of the pixel values of
images coming from a given data set in an autoregressive fashion (i.e.
the value of each pixel is conditioned to that of previously processed
pixels). The appeal of PixelCNN is that it features an explicit,
tractable likelihood with probabilistic meaning. Other deep learn-
ing frameworks, such as Generative Adversarial Networks (GAN;
Goodfellow et al. 2014) and Variational Autoencoders (Kingma &
Welling 2014), are less suited for OoD tasks, as their likelihood is
not tractable. Nevertheless, GANs have been proposed in Margalef-
Bentabol et al. (2020) to perform OoD tasks based on an anomaly
score. We will discuss how our approach compares to theirs more in
detail in the remainder of this paper.

In this proof-of-concept work, our aim is to quantitatively assess
the fidelity of the stellar morphologies of galaxies produced by
the Illustris and IllustrisTNG simulations by comparing them with
available observations. We further explore whether an increase in
resolution may be able to lead to an even better agreement between
the morphology of simulated and observed galaxies by exploiting
the higher resolution offered by a realization of IllustrisTNG in a
smaller cosmological box, TNG50, and how this depends on star
formation activity. The novelty of this work is in that we devise a
methodology which is sensitive to the relationship between the fine
morphological structure and the global properties of the galaxies’
light profile, which is a very stringent test for simulations.

The outline of the paper is as follows. We describe the Sloan
Digital Sky Survey (SDSS) observations and the fully realistic
mock observations of the Illustris and IllustrisTNG simulations in
Section 2. In Section 3.1, we present our deep learning model and in
Section 3.2 we outline the strategy with which we compare images
of galaxies coming from simulations and observations. This is done
quantitatively according to a metric which is a combination of the
output of two neural networks. In Section 4, we show that our
framework is able to recognize an improvement in IllustrisTNG
compared to Illustris. Such an improvement is still not enough to
achieve a full agreement with SDSS observations. In Section 5,
we show that there has been a continual advance in the realism
of simulated galaxy morphologies overall. However, this is less true
for quiescent galaxies, particularly the spheroidal ones, which do
not compare well to observations, even at the enhanced numerical
resolution provided by TNG50. In Section 6, we show how the
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quality of simulated galaxies varies across scaling relations and
conclude that quiescent small and/or high Sérsic index galaxies are
the ones that are most problematic. Indeed, in Section 7 we show
that most of the discrepancy between simulations and observations
for this galaxy population comes from the galaxy inner regions. In
Section 8, we discuss how similar findings have started to emerge in
the literature along with some potential caveats in common with our
study, as well as the potential reasons of this disagreement. Finally,
in Section 9, we give a concise summary of our findings and discuss
future applications of our framework.

2 DATA

2.1 Simulations

We make use of the Illustris Simulation (Genel et al. 2014; Vo-
gelsberger et al. 2014a, b; Sijacki et al. 2015) and its successor
IllustrisTNG (Marinacci et al. 2018; Naiman et al. 2018; Nelson
et al. 2018; Springel et al. 2018; Pillepich et al. 2018; Nelson et al.
2019a). Illustris and IllustrisTNG are hydrodynamical cosmological
simulations, run with the AREPO moving-mesh code (Springel 2010).
The Illustris simulation has proved capable of reproducing several
observables, but presented several shortcomings as summarized in
Nelson et al. (2015). In the IllustrisTNG simulation significant
changes have been made with respect to the Illustris framework.
These include the modelling of magnetic fields (Pakmor, Bauer
& Springel 2011; Pakmor & Springel 2013; Pakmor, Marinacci &
Springel 2014), the substitution of the bubble mode AGN feedback at
low accretion rates (Sijacki et al. 2007) with a kinetic AGN feedback
(Weinberger et al. 2017), a modification of the implementation of
galaxy-wide winds and updated mass yields from star particles (see
Pillepich et al. 2018 for a detailed summary).

The IllustrisTNG simulation was run with identical subgrid
physics in three cosmological volumes of progressively larger sizes
and with comparatively lower resolution. Here, we compare the
run of Illustris, which is performed in a cubic box of about 100
comoving Mpc a side to the IllustrisTNG framework implemented
in a box of the same size, TNG100, and one of about 50 Mpc a side,
TNG50 (Nelson et al. 2019b; Pillepich et al. 2019). We use in all
three cases the highest resolution realizations of each volume, which
correspond to baryonic mass resolutions of ∼106 M� for TNG100
and Illustris, whereas TNG50 has a 15 times higher mass resolution
of ∼8 × 104M�, more comparable to zoom-in simulations.

From the simulations, we select galaxies with Mstar > 109.5M�
at z = 0.0485,1 for a total of ∼12 500 galaxies for Illustris and
TNG100 and ∼1700 objects for TNG50. The images are processed
with a joint use of the radiative transfer code SKIRT (Baes et al.
2011; Camps & Baes 2015), the nebular modelling code MAPPINGS-
III (Groves et al. 2008) and the Bruzual & Charlot (2003) GALAXEV
stellar population synthesis code. The methodology is described in
detail in Rodriguez-Gomez et al. (2019). Briefly, each stellar particle
in either simulation (which represents a coeval stellar population)
is modelled with GALAXEV for stellar particles older than 10 Myr,
while younger stellar particles are treated as a starbursting population
with MAPPINGS-III. To model dust, it is assumed that the diffuse dust
content of each galaxy is traced by the star-forming gas that the
dust-to-metal mass ratio is constant and equal to 0.3 (Camps et al.
2016), and that dust is a mix of graphite grains, silicate grains, and
polycyclic aromatic hydrocarbons (Zubko, Dwek & Arendt 2004).

1snapshot 95 for IllustrisTNG and 131 for Illustris.

Full dust-inclusive radiative transfer is run only if the fraction of
star-forming gas exceeds 1 per cent of the total baryonic mass. The
simulated galaxies are mock-observed in the SDSS r -band at z

= 0.0485 along a random line of sight with the pixel scale of the
SDSS telescope (≈0.396 arcsec pixel−1). Full observational realism
is included as described in Section 2.4.

The structural properties of the mock-observed simulated galaxies,
such as the effective radius Re and the Sérsic index nser, are obtained
with STATMORPH (Rodriguez-Gomez et al. 2019). STATMORPH is
a PYTHON package2 for calculating non-parametric morphological
diagnostics of galaxy images, as well as fitting 2D Sérsic profiles.
The stellar mass of galaxies is computed as the mass of all the
bound stellar particles within 30 kpc from the galaxy centre,
while the star formation rates (SFR) are computed within twice
the half-mass radius of each galaxy. Other stellar mass and SFR
definitions have been discussed in Pillepich et al. (2018) and Donnari
et al. (2019).

2.2 Observations

In the following, we will use the SDSS DR7 (Abazajian et al. 2009)
spectroscopic sample (Strauss et al. 2002). We use the Meert, Vikram
& Bernardi (2015) catalogues for galaxies in this sample, totalling
670 722 galaxies. The Meert et al. morphology catalogues have
specifically been shown to offer improved profile fits to the sample’s
brightest galaxies compared to previous catalogues (e.g. Simard et al.
2011) – owing to a highly robust sky-subtraction algorithm. The
galaxy stellar masses are computed adopting Sérsic photometric fits
and the mass-to-light ratio Mstar/L by Mendel et al. (2014). Although
the spectral energy distribution of galaxies contains information
which is critical to understand the physical processes that regulate
galaxy formation, in this exploratory work we choose to adopt only
single-band images (specifically r band). We plan to expand our work
to multiband photometry in the future.

We also match the Meert et al. (2015) photometric catalogue with
measurements of SFR from Brinchmann et al. (2004) and with the
group catalogues of Yang et al. (2007, 2012), which will allow us to
identify satellite and central galaxies in our observed galaxy sample.

We use the images of SDSS galaxies that have a stellar mass
Mstar > 109.5M� as our training sample. An important issue that
must be dealt with when choosing the training sample is that of
the redshift evolution of the angular diameter distance driven by
cosmology. Indeed, the pixel physical scale3 is a strong function
of redshift, which means that the training sample must be chosen
so that the average pixel scale is as close as possible to the pixel
scale at the redshift of the snapshot that we use for the simulations
(i.e. z ∼ 0.0485, see Section 2.1). Hence, we also limit the redshift
range of the SDSS training sample to 0.033 < z < 0.055, which
gives a median pixel scale only 7 per cent larger than the pixel scale
at z = 0.0485. This redshift cut leaves us with ≈44 000 galaxies
in SDSS, of which we use ≈32 000 for training and ≈12 000 for
testing. We note that in principle with the pixel scale of the SDSS
camera (i.e. 0.396 arcsec pixel) the minimum physical scales probed
at z ∼ 0.0485 would be around ∼0.3 kpc. However, when the SDSS
PSF (�1 arcsec ∼ 3–4 pixels) is accounted for the smallest scales
to which we are sensitive are around ∼1 kpc. Such low resolution
is still enough for some trends to arise, as shown in the following
sections.

2Available at https://statmorph.readthedocs.io/en/latest/
3i.e. kpc/pix
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Figure 1. The normalized stellar mass distributions for SDSS (solid orange
line), TNG50 (dot–dashed magenta line), TNG100 (teal dashed line), and
Illustris (red dotted line). The vertical lines indicate the median mass of each
distribution. It can be seen that SDSS is incomplete at Mstar � 1010M�, but
overall the mass distributions are similar.

In Fig. 1, we compare the stellar mass distribution of SDSS
with that of the simulations. The slightly higher median mass
of SDSS compared to Illustris and IllustrisTNG results from the
incompleteness of observations below Mstar � 1010 M�. Indeed, we
checked that the distributions have a very similar median value if
only galaxies above that mass are considered. In the remainder of
this paper, we will break down our results above and below the
completeness threshold.

2.3 Galaxy archetypes

Our methodology implies training a second DGM on a simplified
version of the same galaxies used to train the first one. In other words,
we would like to have a second data set where the global properties
of SDSS (such as brightness, size, ellipticity, and light concentration)
are retained, but where more complex features, such as the spiral arms
of a disc galaxy, are ignored. This can be constructed by using the
Sérsic fits of the SDSS galaxies described in the previous subsection.
We produce these images using GALSIM (Rowe et al. 2015) and the
values of the best-fitting r-band Sérsic parameters provided in Meert
et al. (2015). We include full observational realism as detailed in the
next section.

2.4 Observational realism

Both the simulations and the best-fitting Sérsic images are idealized
objects. Therefore, for a fair comparison with observation, we add
the same kind of observational effects that are found in SDSS, that
is, the presence of a noisy sky background and interlopers, as well
as the convolution with the SDSS Point Spread Function. Bottrell
et al. (2017a, b) presented REALSIM, an algorithm that enables such
procedure. Briefly, with REALSIM it is possible to place a galaxy
from a given simulation in a real SDSS field. The mock galaxy is
convolved with the Point Spread Function of that particular field; the
effects of shot noise and cosmological surface brightness dimming

are also included. For more details about REALSIM, we refer the
reader to the original papers. Bottrell et al. (2019) have shown that
the including the correct level of realism in mock observations is
crucial when using neural networks for classification tasks.

2.5 Volume effects

Given that the cosmological volume spanned by the TNG100 and
Illustris simulations is more than 8 times larger than that of TNG50,
one thing we must worry about is cosmic variance. Indeed, Genel
et al. (2014) showed that the statistics of galaxy populations may
vary quite substantially in sub-boxes of 25/h ≈ 35 Mpc a side in
the Illustris simulation. Therefore, it is very much possible that the
volume probed by TNG50 results in a biased galaxy population.

The way we address this issue in the following is by creating
several realizations of SDSS, TNG100 and Illustris of the same
sample size of TNG50, and then use the mean and variance of the
bootstrapped distributions where possible.

In principle, cosmic variance could also affect the comparison
between SDSS and simulations. However, the test set of SDSS that
will be used in the following shares a very similar sample size
with Illustris and TNG100. While this is not strictly a measure of
the volume spanned by SDSS, we can reasonably assume that a
similar sample size should enable a meaningful comparison between
observations and those two simulations, since they have similar
stellar mass distributions.

3 ME T H O D S

3.1 PixelCNN

PixelCNN (van den Oord et al. 2016a, b) is an autoregressive
generative model with an explicit likelihood. Given an image X,
the likelihood of PixelCNN is ‘autoregressive’ in the sense that
the likelihood a given pixel is assigned is conditioned on all the
previous pixels of the image (which sometimes are collectively called
‘context’), so that

pθ (X) =
N2∏
i=1

pθ (Xi |X1...i−1), (1)

where N is the pixel width/height of the square cutout. Here,
pθ (Xi|X1...i − 1) is the probability distribution function of pixel i
evaluated at Xi and conditioned on all the previous X1...i − 1 pixels,
and θ are the weights of the network. It is worth stressing that
equation (1) models explicitly the likelihood of the training sample.
In the following, we will use the negative log-likelihood, which is
less prone to floating point limitations,

L ≡ − log pθ (X) = −
N2∑
i=1

log pθ (Xi |X1...i−1). (2)

The ansatz of equation (1) imposes the choice of an ordering for
the pixels. We follow a prescription according to which the image
is scanned from top left to bottom right, row by row. This is
a standard implementation of PixelCNN that takes advantage of
the way convolutions are typically implemented in deep learning
frameworks. The autoregressive nature of PixelCNN is achieved by
means of a particular type of convolutions that mask the pixels to the
right and bottom of the current pixel, so that the network is forced
to learn the relationship between each pixel and the previous context
only. This is fully detailed in van den Oord et al. (2016a, b).
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We here adopt the PixelCNN++ architecture proposed by
Salimans et al. (2017)4 interfaced with a higher level Tensor-
flow API.5 Briefly, Salimans et al. adopt a fully convolutional
autoencoder-like architecture, with three downsampling and three
upsampling stages, respectively, where downsampling and upsam-
pling are implemented using strided convolutions.6 Each stage
consists of an adjustable number of Gated Resnet layers (van den
Oord et al. 2016a, He et al. 2015), which entail zero-padding
convolutions to preserve dimensionality. Stages in the downsampling
and upsampling parts of the network with the same dimensionality
are connected with shortcut connections as in Ronneberger, Fischer
& Brox (2015), to ensure that part of the information lost in
the downsampling is efficiently recovered. We refer the reader to
Salimans et al. (2017) and van den Oord et al. (2016a, b) for further
details of the implementation.

Obviously, not all images will have the same likelihood. Rather,
PixelCNN maps a distribution of images into a distribution of
likelihoods. This feature is in principle extremely powerful, since
it allows to collapse the complexity that characterizes images into
a single-valued function. However, as briefly mentioned in the
Introduction section and as fully explained in the following, the
likelihood alone may not be a good proxy for the quality of an image.
Rather, the combination of the likelihood from two independent
models may give a better estimate for it. Therefore, we train two
PixelCNNs models:

(i) pθSDSS , a network trained on the SDSS sample described in
Section 2.2.

(ii) pθsersic , a model trained on the best Sérsic fits with the added
observational realism as described in Section 2.3.

3.1.1 Training

The images which originally were of size of 128x128 pixels, are
augmented 10 times with random rotations and then cropped to 64
× 64 and degraded to reach the size of 32 × 32 pixel7 in order to
meet memory and time constraints.

To train PixelCNN, we use 32 000 galaxies randomly extracted
from our SDSS sample, corresponding to the 75 per cent of the data
set. We also trained a second PixelCNN on the best r-band Sérsic fits
of the same SDSS galaxies. The likelihood distributions in the two
cases are shown in Fig. A1.

One complication that astronomical images suffer compared to
standard applications that use png images is that in the latter case
the range of values that a pixel can take is limited (i.e. from 0 to
255), while this does not apply to the astronomical standard where
the value of each pixel of a fits image is a flux and hence it is
not bounded in principle. Here, we use fits images that can be
downloaded from the SDSS server and the Illustris and IllustrisTNG
websites, as detailed in the ‘Data Availability’ section. Therefore,
equation (1) should be interpreted as the product of the conditional
probability distribution functions evaluated at Xi, rather than the
probability mass. To ensure the stability of training, we reduce the
dynamical range of pixel values by dividing each image by 1000 and
subsequently applying the arcsinh function. We further impose a
hard upper limit of 1 to the rescaled flux per pixel. The choice of

4Available at https://github.com/openai/pixel-cnn
5Available at https://github.com/pmelchior/scarlet-pixelcnn
6Transposed convolutions in the case of upsampling.
7We use the publicly available scipy library.

this threshold involves a trade-off between training convergence and
information lost in the small-scale details of the images. With our
choice of 1 as an upper limit, we do not see any trends between
the metric that we use in this paper (see the next section) and
the fraction of pixels that are above the chosen threshold, which
is less than 1.5 per cent for the vast majority of the images in our
samples.

3.2 Strategy and the LLR metric

The likelihood of generative models such as PixelCNN has been
proposed as a tool to compare different data sets on the grounds that
the likelihood distribution of a candidate OoD data set should peak
at lower values (Bishop 1994). However, the interpretation of the
likelihood is not an easy task, as discussed in the following.

First, the background of an image is thought to play an important
role in determining the likelihood of a given sample (Ren et al.
2019). This is because the log-likelihood is an additive quantity, and
therefore all the pixels will contribute to it, including those where
the subject (i.e. the galaxy in our case) is not present. To factor
out the undesired contribution of the background, Ren et al. (2019)
proposed the use of two DGMs, where the second network is trained
on a data set that has similar background statistics to the training set
of the first. In our case, we have the networks pθSDSS and pθsersic which
both are trained to learn a similar sky background by construction.
The likelihood of a test image Xtest evaluated by both models can be
decomposed simply in the roughly independent contributions of the
background pixels Xbackground and pixels of the subject, Xsubject,

pθi
(Xtest) = pθi

(Xbackground)pθi
(Xsubject) (3)

with i = SDSS, sersic. Then, the log-likelihood ratio (LLR)

LLR = log

{
pθSDSS (Xtest)

pθsersic (Xtest)

}
(4)

= log

{
pθSDSS (Xbackground)pθSDSS (Xsubject)

pθsersic (Xbackground)pθsersic (Xsubject)

}
(5)

should not depend on the background pixels, since both models
capture the background equally well.

Secondly, the complexity of an example image (both background
and subject) has been found to anticorrelate with the likelihood (Serrà
et al. 2019) (see also Appendix B). However, we are interested in the
complexity of the galaxy only, Xsubject, and irrespective of its global
features such as brightness, size, ellipticity, and Sérsic index, Xglobal.
Indeed, the expression in equation (4) does not only help isolating
the galaxy from the background, but it also provides information
about the small-scale morphological details, Xdetails. In fact, the
contribution of the subject of the image Xsubject can be decomposed
in the contributions from Xglobal and Xdetails using the theorem of
compound probability,

pθi
(Xsubject) = pθi

(Xdetails, Xglobal) (6)

= pθi
(Xdetails|Xglobal)pθi

(Xglobal), (7)

where we have accounted for the dependence of certain morpholog-
ical features from global properties in the term pθi

(Xdetails|Xglobal)
(e.g. spiral galaxies, which have very distinctive features, also tend
to be larger than spheroids as shown by a vast body of literature –
see for example Shen et al. 2003; Bernardi et al. 2014; Lange et al.
2016; Zanisi et al. 2020). The log-likelihood ratio, LLR (where only
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the contribution of Xsubject remains, see equation 4), is now

LLR = log

{
pθSDSS (Xsubject)

pθsersic (Xsubject)

}

= log

{
pθSDSS (Xdetails|Xglobal)pθSDSS (Xglobal)

pθsersic (Xglobal)

}
, (8)

where we have used the fact that the best Sérsic fits are featureless
and so a model trained on them will only learn about Xglobal. If pθSDSS

and pθsersic are able to learn the global features equally well, then the
only contribution left to the LLR is

LLR ≈ log
{
pθSDSS (Xdetails|Xglobal)

}
. (9)

Therefore, our LLR should be able to capture only the relationship
between the fine morphological details and the global properties,
without the contribution from the latter alone.

3.2.1 The LLR is informative of the agreement between simulations
and observations

A key property of the LLR is that it serves as a metric to assess which
of two competing models gives a better fit to the data. In our case,
our models are two PixelCNNs that are trained on r-band images of
SDSS galaxies as well as their best-fitting Sérsic images (pθSDSS and
pθsersic , respectively). Suppose that our samples Xtest, j are extracted
from a test distribution q, i.e. Xtest ∼ q. For us, Xtest,j represents a
single image from one of the simulations used in this work, and q is
the collection of all these images.

The expected value of the LLR reads

Ex∼q [LLR] ≡
M∑

j=1

log

{
pθSDSS (Xtest,j )

pθsersic (Xtest,j )

}
q(Xtest,j ) (10)

=
M∑

j=1

{
log

[
q(Xtest,j )

pθsersic (Xtest,j )

]
q(Xtest,j ) (11)

− log

[
q(Xtest,j )

pθSDSS (Xtest,j )

]
q(Xtest,j )

}
(12)

= DKL(q||pθsersic ) − DKL(q||pθSDSS ), (13)

where the second equation is obtained by dividing and multiplying
the argument of the logarithm by q(Xtest, j). Here, DKL(f ||g) =∑N

i=1[log f (xi)/g(xi)]f (xi) is the Kullback–Leibler divergence,
which is a way to quantify the distance between two distributions.
Thus, if Ex∼q [LLR] > 0, then DKL(q||pθsersic ) > DKL(q||pθSDSS ), that
is, the distance of q from the pθsersic model is larger than that from
the pθSDSS model, and therefore q is closer to the distribution of
SDSS galaxy images. Hence, equation (13) leads us to conclude
that the larger the expected value of the LLR, the more similar
q is topθSDSS . A clear indication of our mathematical derivation is
that SDSS should have the highest mean LLR (i.e. q ≡ pθSDSS ).
Conversely, the collection of galaxies coming from a given simulation
(i.e. q �= pθSDSS ) should ideally have a mean LLR that is as close as
possible to that of SDSS, but it is predicted that the condition 〈LLR〉
≤ 〈LLRSDSS〉 should hold. More formally, we can quantify how
much simulations depart from SDSS by computing the difference
between the mean LLR of simulated galaxies and that of SDSS,
�〈LLR〉 ≡ 〈LLR〉 − 〈LLRSDSS〉. Since Ex∼q [LLR] is highest for
observations by construction then the largest value that �〈LLR〉 can
assume is zero. To make it abundantly clear, this means that the
closer the �〈LLR〉 is to zero, the more consistent a data set is with

SDSS. A simulation for which �〈LLR〉 = 0 perfectly reproduces
the observed galaxy morphologies. We stress again that the level of
agreement between simulations and data is independent of both the
sky background and global morphology with this metric, and depends
only on the small-scale structural details of simulated galaxies (see
equation 9). We also emphasize that in this study we are limited by
the relatively low resolution of SDSS images, which is mimicked
in the mock observations of Illustris and IllustrisTNG galaxies. In
principle, the same identical framework may be applied to higher
resolution imaging.

The framework outlined above applies if all the global parameters
are the same, i.e. for galaxy samples with reasonably compatible
global scaling relations, which is roughly true in our case (but
see Section 8.4). On the other hand, should the simulated galaxy
population be extremely biased, our methodology would not be
applicable. For example, ad absurdum, let’s take the case of a
hypothetical cosmological simulation that produces only a single,
perfectly realistic galaxy, or multiple identical copies thereof. The
galaxy population in this simulation, as a whole, is clearly not
realistic, since real galaxies span a range of properties. However,
the LLR distribution of the simulated sample would be a delta-
Dirac function centred at a high value of LLR, resulting in a very
high, or even positive, �〈LLR〉. It is clear that such value of the
�〈LLR〉 does not indicate a good agreement between the small-
scale morphology of the population of simulated and real galaxies.
We will explore other methodologies that will allow to circumvent
this specific limitation of our approach in future work.

Other techniques to compare distributions, such as the popular
Kolmogorov–Smirnov (KS) test, are available in the literature.
However, we found that the KS test is not sensitive enough to
describe the difference between the LLR distributions of observed
and simulated galaxies. Indeed, the p-value of a KS test under the null
hypothesis that the LLR distributions of SDSS and each simulation
are identical is always zero – perhaps not surprisingly, since the
distributions that we will present in the following are substantially
different. A p-value of zero in all cases prevents us from achieving
one of our main aims, which is quantifying the improvement between
the various simulations. Therefore, in the following we will use the
LLR as a metric to compare observations and simulations. We discuss
the robustness of this approach compared to using the likelihood of
the pθSDSS

model only in Appendix B.

4 PI XELCNN CAN DI STI NGUI SH
SI MULATI ONS AND O BSERVATI ONS

The LLR distributions for Illustris, TNG100, TNG50 and the test
sets of SDSS and their best-fitting Sérsic profiles are shown in Fig. 2,
which constitutes the main result of our paper. The first consideration
to emphasize is that the SDSS test set is the one with highest LLR,
while the best Sérsic fits of SDSS galaxies have a negative LLR. This
confirms the findings outlined at the end of the previous section: a
higher LLR is a signature that a data set is better represented by
SDSS observations and, conversely, the smaller the LLR the more
the data set is similar to featureless Sérsic profiles.

With this in mind, we now bring the reader’s attention to a
very clear trend: the distribution of SDSS peaks at the highest
LLR followed, in order, by TNG50, TNG100, and Illustris. This
results in values of �〈LLR〉 of −49.67 ± 1.85, −69.32 ± 1.93 and
−81.37 ± 2.09. According to our framework, this means that Illustris
is the simulation that gives the worst performance of the three. The
IllustrisTNG implementation markedly improves over Illustris, with
TNG50 being the closest to SDSS. We recall that Illustris and the two
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Figure 2. The log-likelihood ratio (LLR) distributions of SDSS (orange solid
line), TNG50 (magenta dot–dashed line), TNG100 (dashed line), Illustris
(red dotted line), and the best Sérsic fits (green long dashed line), for galaxies
with Mstar > 109.5M�. The shaded regions show the 1σ confidence level
obtained by bootstrapping SDSS, TNG100, and Illustris 1000 times to the
same sample size of TNG50. The �〈LLR〉 for each simulation is also reported,
inclusive of the 1σ confidence interval resulting from the bootstrapping. The
higher the value of the �〈LLR〉, the more similar a data set is to SDSS.
Therefore, TNG50 is the simulation that best reproduces the morphology of
SDSS galaxies, followed by TNG100 and Illustris.

IllustrisTNG simulations differ in the implementation of the physics
that shapes galaxies while their resolution is comparable. Therefore,
we must conclude that the physical modelling implemented in
IllustrisTNG is able to generate more realistic galaxies compared
to the original Illustris model. Moreover, TNG50 features a factor
of 2.5 spatial resolution compared to the other two simulations used
here. We then conclude that the improvement in resolution in TNG50
leads to further agreement with observations.

It is noteworthy, however, that even the newest generation of
simulations, although remarkably more accurate compared to earlier
efforts, still struggles to reproduce the small-scale morphological
details of SDSS observed galaxies, down to scales of ≈1 kpc (see
Section 3.1.1).

5 THE SMALL-SCALE STELLAR
M O R P H O L O G Y O F QU I E S C E N T G A L A X I E S I S
NOT W ELL REPRODUCED BY SIMULATIONS

5.1 Star-forming galaxies versus quiescent galaxies

We have seen how the LLR provides a useful metric to evaluate the
quality of galaxy images produced by simulations which is aware of
the morphological details of galaxy structure. Based on this, in the
previous section we have also demonstrated that the latest generation
of simulations of galaxy formation still struggles to produce realistic
samples, despite a marked improvement compared to earlier work.
So, why is it that simulations are yet to reproduce in order to make
realistic-looking galaxies?

Here, we try to answer this question by raising one issue that
has been broadly debated in the literature; that is, the effectiveness

of the implementations of the subgrid physics that regulates star
formation and quenching. In the following, we will advocate that
most of the discrepancy between observations and simulation stems
from an imperfect relationship between star-formation activity and
small-scale morphological features.

To do this, we here exploit the power of our LLR framework,
which prescribes that the higher the mean value of the LLR distri-
bution of a data set, the better it resembles observations. The LLR
distributions for star-forming (log sSFR/yr−1 > −11) and quiescent
(log sSFR/yr−1 < −11) galaxies in our simulations and SDSS are
shown in the upper panel of Fig. 3. These distributions have been
obtained by resampling SDSS, Illustris, and TNG100 with the same
sample size of TNG50 similarly to Fig. 2.

The left-hand top panel of Fig. 3 shows how the mean of the LLR
distribution for simulated star-forming galaxies is the closest to SDSS
for TNG50, followed by TNG100 and with Illustris being the furthest
away from it. The higher LLR of TNG100 with respect to Illustris
is suggestive that the improved physical model for galaxy formation
adopted in the IllustrisTNG framework is overall an improvement
compared to the original Illustris implementation (Pillepich et al.
2018). Furthermore, the unprecedented agreement with observations
reached by TNG50 star-forming galaxies is also a sign that a higher
resolution is key to effectively model star formation. We note,
however, that all simulated data sets are still inconsistent at the 1σ

level with SDSS.
On the other hand, it can be seen that the improvement noted

for star-forming galaxies does not seem to propagate to quiescent
galaxies as well (the top right-hand panel of Fig. 3). We start by
noting that in this case Illustris galaxies show a tail of high LLR that
is consistent with IllustrisTNG at the 1σ level. However, the large
variance suggests that this tail is very scarcely populated, whereas
the very small variance found for the spike at low LLR is indicative
that the bulk of the population of Illustris quiescent galaxies lies
there, i.e. they are very far from reproducing SDSS. Yet, while
there seems to be an overall improvement from the original Illustris
framework to IllustrisTNG, the better resolution offered by TNG50
over TNG100 does not appear to significantly modify the overall
LLR distribution for quiescent galaxies. Indeed, the distributions of
the two IllustrisTNG volumes are practically consistent but at very
high LLR, where the probability density of TNG50 is slightly higher.

In short, what the top of Fig. 3 is telling us is that there has been a
clear amelioration from the Illustris to the IllustrisTNG framework, in
both the modelling of star formation regulation and of quenching, yet
IllustrisTNG still produces small-scale stellar morphological details
that differ from those in SDSS, and especially so for quiescent
galaxies. Most importantly, while the higher resolution featured by
TNG50 generates a sizeable improvement in the morphology of star-
forming galaxies, this is not the case for quiescent galaxies. This
is suggestive that the physics that couples small-scale stellar mor-
phological details to star-formation quenching in the IllustrisTNG
simulations warrants improvement, or that an even higher resolution
is needed to accurately model the processes that lead to quiescence.

5.2 Mass dependence

The physical mechanisms that quench star formation in a galaxy are
thought to depend on stellar mass. At low masses, it is generally
accepted that quiescence mainly occurs in satellite galaxies due to
environmental processes (e.g. Peng et al. 2010) – this behaviour
naturally emerging also in IllustrisTNG (Joshi et al. 2020; Donnari
et al. 2021). Conversely, a plethora of possible mechanisms has been
identified for quenching higher mass galaxies (see the Introduction
section). In IllustrisTNG, AGN feedback is responsible for halting
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Figure 3. Upper row: The log-likelihood ratio (LLR) distribution of star-forming (left) and quiescent (right) galaxies for SDSS (orange), TNG50 (magenta),
TNG100 (teal), and Illustris (red). Middle row: The LLR distributions of star-forming galaxies in three bins of galaxy stellar mass. Bottom row: The LLR
distributions of quiescent galaxies in three bins of stellar mass. Colours and line styles in the middle and bottom rows are as in upper row. The shaded regions
show the 1σ confidence level obtained by bootstrapping SDSS, TNG100, and Illustris 100 times to the same sample size of TNG50. For star-forming galaxies
the �〈LLR〉 is the lowest for TNG50, followed by TNG100 and Illustris, indicating that TNG50 is the simulation that best models star-forming galaxies. Instead,
all simulations struggle to accurately model quiescent galaxies, for which the �〈LLR〉 remains low in all cases. These trends are robust across the stellar mass
bins considered.

star formation in galaxies with Mstar � 1010.5M� (e.g. Weinberger
et al. 2017; Zinger et al. 2020), regardless of whether they are centrals
or satellites (Donnari et al. 2021). Therefore, we break down the
upper panel of Fig. 3 in the following bins of galaxy stellar mass: 109.5

< Mstar/M� < 1010, 1010 < Mstar/M� < 1010.5, and Mstar > 1010.5M�.
The choice of these bins is not casual. Indeed, the lowest mass bin is
where SDSS is incomplete and so the comparison between the data
sets should be taken with a grain of salt. The other two bins are chosen
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to be around a mass scale that is thought to be key in galaxy formation,
namely Mstar ≈ 3x1010M� ≈ 1010.5M� (e.g. Cappellari 2016). In
IllustrisTNG that is roughly the mass scale, where the AGN feedback
mode switches from thermal to kinetic (Weinberger et al. 2017; Ter-
razas et al. 2020). We note that the prescriptions for AGN feedback
have been significantly changed from Illustris to IllustrisTNG (see
Section 2.1 and Pillepich et al. 2018), and that it has been argued
that AGN feedback plays a role in establishing the morphology of
massive galaxies (e.g. Genel et al. 2015; Dubois et al. 2016).

For star-forming galaxies, we can see that the trend of the top
panel of Fig. 3 persists across all masses: star-forming galaxies are
best reproduced by TNG50, followed by TNG100 and Illustris, from
the least massive to the most massive galaxies. In particular, it is
noteworthy that the �〈LLR〉 of massive star-forming galaxies in
TNG50 is consistent with zero at the 1σ level, meaning that these
galaxies are reproduced extremely well by TNG50.

Quiescent galaxies, instead, feature a significantly worse, i.e.
lower, �〈LLR〉 consistently across all masses and for all simula-
tions. We note that the higher resolution of TNG50 improves only
marginally on TNG100 and Illustris in the lower mass bins, but
it is more significant for massive galaxies. This evidence suggests
that environmental quenching in all simulations always produces
galaxy morphologies that differ from those of SDSS, with a weak
dependence on resolution. For massive galaxies (Mstar � 1010.5M�),
we note that for TNG100 the �〈LLR〉 is lower than for Illustris (al-
though they are consistent at the 1σ level), while TNG50 improves on
both. The fact that quenched galaxies in Illustris and TNG100 have a
similar performance is puzzling. In fact, the distinct implementations
of AGN feedback in the two simulations may be expected to generate
different levels of agreement with SDSS. We speculate below on the
possible reasons for this somewhat unexpected result.

One possibility is that the exact implementation of AGN feedback
does not significantly affect morphology at the resolution of Illustris
and TNG100, at least at the redshift probed here, z ≈ 0.05. It could
be possible that AGN feedback may have an impact on morphology
at higher redshift, but then major mergers substantially change the
morphology of quiescent galaxies (e.g. Rodriguez-Gomez et al. 2017;
Clauwens et al. 2018; Martin et al. 2018; Tacchella et al. 2019), at
which point the small-scale collisionless dynamics of the stars in
the merger remnant depends on numerical resolution. This argument
would be favoured by the fact that major mergers are observed to
occur with similar rates in Illustris (Rodriguez-Gomez et al. 2016)
and TNG100 (Huertas-Company et al. 2019) for massive galaxies. In
the pictures outlined above, the better match of TNG50 with SDSS
could simply be due to an improved resolution, but not necessarily a
better physical model for AGN feedback.

We also note that some tensions in the relationship between size,
colour, and non-parametric morphological estimators between ob-
servations and both Illustris and, to a lesser extent, TNG100 massive
galaxies was already highlighted in Rodriguez-Gomez et al. (2019).
The variety of non-parametric morphological indicators adopted in
Rodriguez-Gomez et al. (2019) provide separate pieces of informa-
tion compared to our unsupervised LLR strategy, which generalizes
over human-biased non-parametric approaches and summarises the
small-scale details in a single value. Moreover, we note that some
higher-level details in the galaxy structure may be lost with the higher
pixel scale (i.e. lower resolution, 0.396 arcsec/pix) of SDSS, which
we adopt here, compared to the Pan-STARRS observations used
in Rodriguez-Gomez et al. (2019), where a lower pixel scale (i.e.
higher resolution, 0.25 arcsec/pix) is available. Therefore, a direct
comparison between our results and those presented in Rodriguez-
Gomez et al. (2019) is significantly non trivial. This is true in general,

and it applies in particular to the case of massive galaxies which we
discussed here.

5.3 Does environment matter?

We have shown in the previous sections that while the modelling
of star-forming galaxies has continuously improved in the years,
quenched galaxies still seem inaccurate according to our deep
learning framework. These results have been presented for the full
galaxy population of our data sets, as well as for three stellar mass
cuts. In particular, we have discussed the connection between stellar
mass, quiescence, and the environment. Here, we test the link with
environment more explicitly.

We show the LLR distributions of quiescent and star-forming
central and satellite galaxies in Fig. 4. Let’s start by comparing the
trends for star-forming galaxies. It is clear that in this case both
satellites and centrals markedly improve from Illustris to TNG100,
and from the latter to TNG50, as was shown in Fig. 3 for the
full population. It is also interesting to note that the �〈LLR〉
for star-forming centrals and satellites are almost identical for all
simulations. In fact, this is a trend that we observe also for the
quenched population: by comparing the �〈LLR〉 quoted in the right
column of Fig. 4 for central and satellite quiescent galaxies, we
observe that similarly low values are achieved. The only exception is
for TNG50, where central quiescent galaxies feature a significantly
higher �〈LLR〉 compared to quiescent satellites. Since the population
of quenched quiescent galaxies is dominated by massive galaxies in
IllustrisTNG, we refer the reader to the discussion at the end of the
previous section for a speculative explanation of this behaviour.

In summary, Fig. 4 suggests that the different processes that quench
central and satellite galaxies result in a similar disagreement with
observations. This in turn suggests that the main culprit for the
disagreement is not necessarily to be searched in the way gas is
removed and star formation halted (e.g. via ram-pressure stripping
versus gas expulsion via BH feedback in the TNG runs) but rather
on how the stellar light distribution is realized in the numerical
models in the case of quenched galaxies. We note, however, that
the relatively small volumes probed by the IllustrisTNG and Illustris
simulations, as well as SDSS, implies that the statistic of cluster-
sized dark matter haloes, which host most of the satellite galaxies,
is subject to significant cosmic variance: there are about six clusters
with Mhalo > 1013.5M� in SDSS and TNG50, while TNG100 features
more than 50 of them. Since environmental quenching is found to be
a rather steep function of host halo mass in both observations (e.g.
Davies et al. 2019) and simulations (e.g. Donnari et al. 2020), as
well as of individual cluster assembly history (Joshi et al. 2020), we
caution that the disagreement found for satellite galaxies should be
taken with a grain of salt.

6 THE REALI SM O F SI MULATED GALAXIES
AC RO SS SCALI NG R ELATI ONS AND THE
RO L E O F QU E N C H I N G

The neural networks that we use here are aware of galaxy structure
only by design and are not trained with any direct information about
star formation activity. Yet, we have just shown that the morphologies
of quiescent and simulated galaxies are not reproduced equally well
by simulations according to our deep learning framework. The reason
for this behaviour must therefore be investigated more thoroughly.

One way to address this issue is to explore the quality of
simulations across galaxy scaling relations. More specifically, we
study how the average LLR of simulated galaxies deviates from the
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Figure 4. The log-likelihood ratio (LLR) distributions of quiescent and star-forming galaxies for centrals (top) and satellites (bottom). The LLR distributions
of star-forming centrals and satellites follow the same trends highlighted in Fig. 3. Contrary to star-forming galaxies, quiescent galaxies display a lower
�〈LLR〉 both for centrals and satellites: this indicates that quiescent galaxies are not well reproduced in simulations regardless of the quenching mechanism
(environmental quenching for low-mass satellites, AGN for centrals and massive satellites).

average LLR of SDSS galaxies at each point on the planes defined by
scaling relations. Thus, in this case the �〈LLR〉 gives an indication
of how realistic simulated galaxies are in a given region of the
planes defined by galaxy properties. Note that this kind of analysis is
possible only because simulations are in the ballpark of observations,
at least at the redshift of interest. Yet some data points for simulations
still lie outside of the manifold, and therefore we exclude them in
the following. To make this abundantly clear, the blank space in
the following figures may mean either that SDSS observations or
simulated galaxies are not present in that region of the manifold.
Nevertheless, we show contours in each panel for the distributions
of SDSS (orange solid curves) and the simulated (magenta dashed
curves) galaxies to give an idea of how the different samples populate
the depicted planes.

As an example, we take three scaling relations that have been
widely studied in the literature: the Re−Mstar relation (size–mass rela-
tion; e.g. Shankar et al. 2010; Bernardi et al. 2014; Lange et al. 2015;
Zanisi et al. 2020), the nser−Re relation (Sérsic index–size relation;
e.g. Trujillo, Graham & Caon 2001; Ravikumar et al. 2006) and the
sSFR−Mstar relation (specific SFR–stellar mass relation, e.g. Salim
et al. 2007; Elbaz et al. 2011). These are shown for each simulation in
Fig. 5, and are colour coded by the �〈LLR〉. We discuss each of these
relations separately at first, and we then propose an interpretation.

In the size–mass relations of both IllustrisTNG simulations there is
a clear gradient in �〈LLR〉, where at fixed stellar mass larger galaxies
deviate the least from SDSS and smaller ones are progressively less
realistic. Instead, this behaviour is not present in Illustris, due to the
well-known lack of small galaxies in this simulation at low redshift
(Snyder et al. 2015). Interestingly, massive galaxies seem to be better
reproduced in Illustris compared to TNG100. As Illustris massive
galaxies are typically more star-forming than TNG100 galaxies
(Donnari et al. 2020), and since star-forming galaxies are on average
better reproduced, then the �〈LLR〉 is likely biased high for Illustris
massive galaxies when no cut on star formation activity is made. We
will discuss trends for star forming and quenched galaxies separately
later in this section.

The sSFR–Mstar relations reveal that star-forming galaxies notably
improve from Illustris to TNG100 and from the latter to TNG50. In
particular, it is worth noticing that massive star-forming galaxies
seem to be slightly more accurate than less massive ones. On the
contrary, it can be seen that on average passive galaxies differ the
most from SDSS. Lastly, it is also worth reminding the reader of
the well-known uncertainties in retrieving SFR from the observed
optical colours only (e.g. Donnari et al. 2019, Eales et al. 2017,
2018), which could affect dramatically the distribution of SDSS
observations for log sSFR/yr−1 �−11 and hence this kind of region-
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Figure 5. The size–mass relation (top panel), sSFR−Mstar relation (middle panel) and the Sérsic index–size relation (bottom panel) for the three simulations
studied in this work as labelled. The colour code is the difference between the mean LLR of each simulation and the mean LLR of SDSS at each point of the
scaling relations. A brighter colour indicates a better agreement with SDSS. In the middle panel, we also show with a red dashed line the sSFR threshold that
defines star forming (log sSFR/yr−1 � −11) and quiescent (log sSFR/yr−1 � −11) galaxies. We also impose a strict lower limit on the sSFR at log sSFR/yr−1

= −12.5. We show with orange solid contours the 10th, 50th, and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass
completeness threshold of Mstar ≈ 1010M�. Contours for the same mass cut are also shown with magenta dashed lines for simulations, which are in the ballpark
of the observed scaling relations (especially so for TNG50, less so for Illustris). It can be seen that quenched, concentrated, small galaxies are the ones with the
lowest �〈LLR〉, and so their fine stellar morphology substantially disagrees with observations.

wise comparison with simulations. We will address this point in the
following.

Finally, the bottom panels of Fig. 5 show the nser−Re relations
for the three simulations. Although the trends are somewhat less
obvious is this case, a close inspection of the figure reveals a few
interesting details. First of all, Illustris is not able to produce galaxies
with medium-to-low sizes and high Sérsic indices, as already noted

by Bottrell et al. (2017b). While this is something that is reproduced
in TNG100, we note that high Sérsic index galaxies tend to differ the
most from their SDSS counterpart. In TNG50, instead, we clearly see
that high-mass galaxies with a high nser are much better in agreement
with SDSS.

To summarize our findings, simulations seem to still struggle at
reproducing the small-scale stellar structural features of galaxies that
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Figure 6. The size–mass relation for star-forming (top row) and quiescent galaxies (bottom row). The colour code is the same as in Fig. 5. Here, TNG100 and
Illustris have been randomly sampled to the same sample size of TNG50. See online supporting material for other realizations of the sampling. We also show
with orange solid contours the 10, 50, and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass completeness threshold of
Mstar ≈ 1010M�. Contours for the same mass cut are also shown with magenta dashed lines for simulations. It can be seen that quiescent galaxies are in general
less well reproduced, with the exception of massive quenched TNG50 galaxies. Note that although the morphology of star-forming galaxies is better reproduced
by simulations, smaller simulated star-forming galaxies feature a lower �〈LLR〉 compared to larger ones at fixed stellar mass.

are more concentrated and smaller in size, at fixed stellar mass. We
wish to further explore how the quality of simulated galaxies across
the scaling relations studied here depends on star formation activity.
Therefore, we split our data sets in star-forming and quiescent
galaxies, as done in the previous section. Note that by binning in
sSFR above and below log sSFR/yr−1 ≈ −11, we alleviate the issue
about the reliability of the comparison between the sSFR inferred
from observations and simulations.

There is an important caveat to mention before we proceed. As
discussed already in Section 2, not all galaxy populations may be
statistically well represented in the volume of TNG50, which is
more than eight times smaller compared to the other simulations.
This would explain, for instance, the fact that in TNG50 the quiescent
region of the sSFR−Mstar relation seems to be less densely populated
in Fig. 5. We alleviate this issue in the following by showing random
realizations of TNG100 and Illustris of the same sample size of
the smaller IllustrisTNG volume, as done previously. In the online
supplementary material, we show the same figures for different
random samples to show that our interpretation is robust.

Fig. 6 shows the well-known trend where on average star-forming
and quiescent galaxies lie above and below the mean of the size–
mass relation at fixed stellar mass, respectively, for the IllustrisTNG
simulations (Genel et al. 2018). This trend agrees with observations
and it is something that is not seen in Illustris. Indeed the absence

of this differential size-mass relation in Illustris was raised as a
cause of concern by Bottrell et al. (2017b). We note that the overall
too-large sizes of Illustris galaxies, independent of colour/SFR, was
taken into account for the TNG model calibration (Pillepich et al.
2018). However, it is clear from Fig. 6 that quiescent galaxies in
both IllustrisTNG volumes have a consistently lower �〈LLR〉 value
compared to star-forming galaxies, with the exception of massive
quiescent galaxies in TNG50.

The nser−Re relations for star-forming and quiescent galaxies are
shown in Fig. 7. In this figure, we see that for star-forming galaxies
there is a definite improvement from TNG100 to TNG50, especially
for large, high-nser galaxies. In the original Illustris simulation very
few star-forming extended, high Sérsic index galaxies even exist. For
quiescent galaxies, the improvement is less marked from Illustris to
TNG100. However, when comparing the latter to TNG50 quiescent
galaxies, we do see hints that extended galaxies with 3 � nser � 4 are
better reproduced in the smaller IllustrisTNG volume. Interestingly,
we also see that TNG50 is able to produce compact, highly concen-
trated galaxies, which however still differ more from SDSS galaxies
in terms of their small-scale stellar morphological details.

In summary, the variation of the quality of simulations across
galaxy structural scaling relations, as quantified by the �〈LLR〉,
seems to support the idea that simulations do not generate realistic
small-scale features in the stellar morphology of quenched galaxies,
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Figure 7. The Sérsic index–size relation for star-forming (top row) and quiescent galaxies (bottom row). The colour code is the same as in Fig. 5. Here,
TNG100 and Illustris have been randomly sample to the same sample size of TNG50. See online supporting material for other realizations of the sampling. We
also show with orange solid contours the 10th, 50th, and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the mass completeness
threshold of Mstar ≈ 1010M�. Contours for the same mass cut are also shown with magenta dashed lines for simulations. Note the absence of small, high-Sérsic
index galaxies in Illustris and (although to a less extent) TNG100. Also not that this population is instead present in the higher resolution TNG50. Moreover, it
is worth observing that large galaxies with a medium-to-high Sérsic index are better reproduced in TNG50, both in the quiescent and star-forming populations,
compared to TNG100.

particularly those small in size and/or highly concentrated. This holds
true even in the IllustrisTNG simulations, where the bimodality of
structural scaling relations is broadly reproduced.

7 INTERPRETING THE LLR

The interpretability of the outcome of deep learning studies is
always problematic. Substantial progress has been made in the case
of convolutional neural networks (CNNs) applied to classification
tasks with techniques such as GradCam (Selvaraju et al. 2016)
and Saliency Maps (Simonyan, Vedaldi & Zisserman 2013). These
algorithms provide a way to visualize the regions of an image a CNN
mostly focuses on to output a certain prediction. Saliency maps have
been already applied in galaxy morphology classification (Huertas-
Company et al. 2019), and GradCam in merger stage identification
(Ćiprijanović et al. 2020). Unfortunately, by nature, these techniques
cannot be applied to generative models. PixelCNN, however, has
the very amenable feature that the likelihood is constructed pixel
by pixel, and so the LLR, which is the ratio of the likelihood of
two PixelCNN networks. Therefore, it is possible to identify which
pixels contribute the most to the LLR, and therefore infer what the
networks believe a realistic galaxy looks like.

As an example, we focus here on a population of galaxies which
is poorly reproduced in simulations, that is, small, concentrated

quiescent galaxies (see the previous section). A sample of this
population for SDSS and TNG50 is shown in Fig. 8 (left column),
along with the pixel-wise contributions to the LLR (‘LLR maps’,
right column). The colour scale of the LLR maps saturates at values
of 4 and −2 for practical reasons, but the LLR contribution of
individual pixels can be much higher or lower. First and foremost, we
note that it is impossible for the human eye to observe any difference
between SDSS galaxies and simulated ones. Admittedly, it is also not
obvious to identify clear patterns in the behaviour of the pixel-wise
contribution to the LLR. At a closer look, however, it can be seen that
the central regions of SDSS galaxies contribute much more to the
LLR compared to TNG50. This means that the simulated galaxies
are most inaccurate in the central parts, where instead the differences
with a smooth Sérsic model are more pronounced for SDSS. Indeed,
for some simulated galaxies the LLR map is almost featureless, a sign
that there is not much difference between the simulated galaxy and a
Sersic model (e.g. the two central galaxies in the bottom row of the
top right panel in Fig. 8), despite the fact that the galaxies themselves
(the two central galaxies in the bottom row in the top left panel of
Fig. 8) look reasonably realistic. We also note that the deviation from
a Sérsic profile may occur at different levels in different parts of a
galaxy with a non-trivial spatial distribution. This is because, while
the galaxy light distribution may not display any interesting feature
at a visual inspection, the interplay between the likelihoods of the
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Figure 8. Thumbnails of TNG50 (top left) and SDSS (bottom left) quenched galaxies with Re < 3 arcsec, nser > 4. The top right and bottom right panels show
the pixel-wise contributions to the LLR for the TNG50 and SDSS galaxies, respectively. Each panel is labelled with its value of the LLR. The colour scale in
the right column is identical for all the panels. Note that we have manually limited the colour scale to values from −2 to 4 for practical reasons, but pixels can
assume also higher and lower values. For instance, if the contribution of a given pixel is 100, it will saturate to the colour corresponding to the value of 4. It can
be seen that the central regions of TNG50 galaxies are much less prominent in the LLR maps compared to SDSS, despite the thumbnails of real and simulated
galaxies look fairly similar. This indicates a failure in the simulation to properly capture the densest regions of quenched galaxies.

two networks will determine the complex behaviour observed in the
LLR maps.

Given the behaviour of the LLR, it is entirely possible that the
light profiles of simulated galaxies differ substantially from SDSS.
This may be because the resolution elements are still too coarse
to properly capture the inner regions of the light distribution, as
discussed in Sections 8.5 and 8.6.

8 R ELATED WO RK, C AV EATS, AND
DISCUSSION

In this study, we used deep generative neural networks to perform
a quantification of the extent to which the morphologies of galaxies
produced in simulations of galaxy formation agree with observations.
We compare our framework with other works, in which either more

classical techniques or other deep learning methods were used,
bearing in mind that a full assessment of their relative performance
is out of the scope of this paper. In Section 8.3, we also discuss a
caveat that these works share with the present paper.

8.1 Non-parametric morphologies

One way to study the details of galaxy morphology that go beyond the
simple Sérsic index is to use the model-independent non-parametric
morphologies (Conselice 2003; Lotz et al. 2004). These provide
a quite flexible framework based on the way light is distributed
across the galaxy and have been used, amongst other applications,
in automated classification tasks (Huertas-Company et al. 2011) and
merger identification (Lotz et al. 2008). The use of these moment-
based approaches has been proposed in some studies to attempt
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a meaningful comparison between the morphology of real and
simulated galaxies (Snyder et al. 2015; Rodriguez-Gomez et al.
2019; Bignone et al. 2020). Snyder et al. (2015) found a good
agreement between the non-parametric morphologies of Illustris
galaxies and SDSS observations, also across scaling relations. That
being said, in Rodriguez-Gomez et al. (2019) it was also shown
that in fact TNG100 much better reproduces observed PanSTARRS
morphologies compared to the original Illustris implementation. This
is also the case for the EAGLE simulation, as shown with similar
techniques in Bignone et al. (2020). Although a direct, quantitative
comparison with non-parametric approaches is not possible, our
deep learning-based analysis qualitatively agrees with the findings
of Rodriguez-Gomez et al. (2019), as shown in Fig. 2. We further
proved that the improved resolution provided by TNG50 is key to
reproducing star-forming galaxies, while quiescent galaxies appear to
be the most dissimilar from SDSS for both IllustrisTNG realization.
The lack of small, quiescent, bulge-dominated galaxies of Illustris
was identified in Snyder et al. (2015) and Bottrell et al. (2017b), but
the dependence of galaxy morphology on star formation activity for
TNG100 is something that was not addressed explicitly in Rodriguez-
Gomez et al. (2019). Nevertheless, Rodriguez-Gomez et al. (2019)
argued that the correlations between galaxy morphology, size and
colour in TNG100 is in tension with PanSTARRS observations,
which qualitatively agrees with our results.

8.2 Other deep learning frameworks

In Huertas-Company et al. (2019) a CNN was trained on images
from Nair & Abraham (2010)8 to perform a supervised classification
of galaxy morphology and it was then applied to both SDSS and
the IllustrisTNG simulation. Huertas-Company et al. (2019) found a
remarkable agreement between the morphological scaling relations
of observed and simulated galaxies. However, the fully supervised
approach taken in Huertas-Company et al. (2019) works under
the non-trivial assumption that the training (SDSS) and the test
(IllustrisTNG) data come from the same underlying distribution.
This is a critical assumption, since it is not known a priori whether
simulations agree with observations. In fact, a test image will always
be assigned a predicted class by the CNN, sometimes with high
confidence, even though it looks nothing like any of the images in
the training set. In Huertas-Company et al. (2019), this issue was
addressed by using Monte Carlo dropout, which is equivalent to
Bayesian Neural Networks (Gal & Ghahramani 2015). Monte Carlo
dropout consists in making repeated label predictions for any given
image, each time randomly setting to zero a number of weights in the
CNN. This technique allowed to select objects for which the network
finds a high variance in the output label, that is to identify galaxies in
IllustrisTNG which do not look realistic. Interestingly, it was found
that for compact TNG100 galaxies, the prediction uncertainty was
the highest, something which qualitatively agrees with our finding
that those galaxies are not well reproduced in simulations.

More recently, other unsupervised approaches based on generative
models, like ours, have been proposed to compare simulations
and observations. In Margalef-Bentabol et al. (2020), a GAN
(Goodfellow et al. 2014) was used for the first time with the
aim of comparing CANDELS high-redshift observations (Grogin
et al. 2011; Koekemoer et al. 2011) with galaxies produced by the
Horizon–AGN simulation (Dubois et al. 2014). As done in this work,

8Where galaxies were assigned labels in the form of TType by means of
eyeball classification by the authors.

Margalef-Bentabol et al. (2020) treated the problem as an OoD
detection task. However, while we adopt a generative model with
an explicit likelihood for this purpose, in the case of a GAN the
likelihood is not explicit. Therefore, Margalef-Bentabol et al. (2020)
resorted to the anomaly score, a single-valued metric that measures
how well a trained GAN can reproduce a test image. Objects
with a higher anomaly score are considered outliers. Moreover, a
difference in the distribution of anomaly scores of a test set compared
to that of the training sample is interpreted as a sign that the
two populations differ as a whole. Using an anomaly score-based
comparison between CANDELS observations and the Horizon–
AGN simulation, Margalef-Bentabol et al. concluded that the two
populations differ statistically. Again, they also report the highest
anomaly score for spheroidal, small, high-Sérsic index galaxies. This
is in agreement with our results at low redshift.

8.3 A note on synthetic images

The generation of galaxy images from simulations comes with a
number of crucial assumptions that may significantly affect the
comparison with observations. For example, the fluxes measured
from synthetic images strongly depend on the assumed stellar
initial mass function (IMF), the assumed stellar population synthesis
model and the adopted model for dust effects, such as obscuration
and scattering. Different implementations can potentially generate
substantial variance in the resulting galaxy morphology. All the
simulations that we use in this work have been processed identically,
and therefore any uncertainty in the image generation process is
propagated in the same way across simulations. Moreover, we stress
once again that the mock images of observed galaxies have been
convolved with real SDSS PSF and feature a realistic sky background
that includes interlopers and the known sources of noise. Therefore,
we believe that any difference between real and mock observations
stems from the galaxy in the centre of the cut-outs.

A major uncertainty comes from the fact that dust is not explicitly
traced in the simulations used here (see McKinnon et al. 2017 for
a simulation where this is done), and hence important assumptions
must be made for dust production in star-forming regions and in the
interstellar medium, as shown in detail in Trayford et al. (2017). The
uncertainty in dust modelling results in different dust geometries,
and hence varied obscuration patterns (Rodriguez-Gomez et al.
2019). Dust is ubiquitous in star-forming galaxies (e.g. Galliano,
Galametz & Jones 2018). The discrepancy that we find between
simulated and real star-forming galaxies, as quantified by the LLR
in Fig. 3, may be partially explained by the way dust is modelled
in the SKIRT pipeline (see Section 2.1 and Rodriguez-Gomez et al.
2019). However, since the simulations are processed in exactly the
same way, the relative trends seen (i.e. IllustrisTNG is overall better
than Illustris and that a higher resolution improves performance for
star-forming galaxies) are robust. Yet, it is entirely possible that
the performance of simulations is underestimated in this instance,
since we expect simulations to reach a better (worse) agreement
with observations, i.e. a higher (lower) �〈LLR〉, with an optimal
(non-optimal) treatment of dust. We tested this directly by using
mock-observed galaxies from TNG50 where dust radiative transfer
was not included. The higher �〈LLR〉 achieved in the dustless case
(see Fig. 9) supports the idea that dust modelling is a non-trivial task,
and that it can lead to worse agreement with the small-scale light
distribution of observed galaxies.

As for passive galaxies, their dust content is a topic widely
discussed the literature (e.g. Goudfrooij et al. 1994; Temi et al.
2004; Smith et al. 2012; Yıldız et al. 2020 amongst many others). In
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Figure 9. The LLR distribution of TNG50 for the case of dust-inclusive
radiative transfer, which we used throughout this work (magenta dot–dashed
line), and the case where dust was not modelled (i.e. only stellar light
contributes to galaxy morphology, with no dust absorption or emission,
purple dashed line). Not including dust results in a better performance for
the simulation. This figure highlights the challenge faced by dust radiative
transfer models. The main results presented in this paper remain valid as dust
was included in all the simulations in the same way.

this work, the full dust-inclusive radiative transfer is run only if the
fraction of star-forming gas exceeds 1 per cent of the total baryonic
mass. Therefore, the very low star-forming gas content of our passive
simulated galaxies implies, at given gas metallicity, that they are
essentially dust-free in our model, which may affect the comparison
to SDSS observations. While we have not explicitly tested the impact
of such small amounts of dust on the detailed structural morphologies
of simulated quiescent galaxies in terms of the LLR, we find no
discernible differences in the population average stellar size, Gini
coefficient, Asymmetry, M20, and Sérsic index of very gas-poor
galaxies with and without explicit treatment of dust in SKIRT. Hence,
we speculate that the fact that the morphology of quiescent galaxies
does not seem to compare well to that observed for SDSS is unlikely
to be related to the dust modelling in simulated passive galaxies.
It would be interesting to test our framework directly on other
simulations where dust is explicitly created and destroyed by detailed
physical mechanisms (e.g. SIMBA; Davé et al. 2019; Li, Narayanan
& Davé 2019), and no a posteriori modelling of dust is required.

We conclude this section with one last caveat. Given the relatively
low amount of star-forming gas in the simulated passive galaxies,
most objects in this population are modelled using simple stellar
populations evolving on the ‘Padova 1994’ evolutionary tracks and a
Chabrier (2003) Initial Mass Function (IMF, see Rodriguez-Gomez
et al. 2019 for more details). However, several observational studies
have also reported IMF gradients in passive galaxies (e.g. La Barbera
et al. 2016; Conroy, van Dokkum & Villaume 2017; Domı́nguez
Sánchez et al. 2019 only to name a few), which are not modelled
here. Since all stars are formed according to a Chabrier (2003) IMF
in our simulations (Vogelsberger et al. 2013; Pillepich et al. 2018),
we are unable to quantify how the assumption of a universal IMF
affects our results.

8.4 Summary of mass, star formation activity, and
environmental dependence

In this paper, we have exploited the �〈LLR〉 to quantify the
agreement between the detailed light structure of galaxies from SDSS
and the TNG50, TNG100, and Illustris simulations. In particular, we
have presented how the �〈LLR〉 depends on galaxy stellar mass, star
formation activity, and environment in Section 5. A comprehensive
view of the trends found therein is displayed in Fig. 10, and is briefly
summarized below:

(i) The morphology of star-forming galaxies (solid markers) is
always better reproduced by simulations compared to quiescent
galaxies (empty markers), irrespective of the environment or the
stellar mass bin considered.

(ii) At fixed stellar mass and star formation activity, TNG50
provides the highest level of agreement between the small-scale
morphological details of simulated and observed galaxies, while
TNG100 achieves the second-best �〈LLR〉 scores. Illustris features
the lowest �〈LLR〉, as sign that the disagreement with SDSS is the
strongest for this simulation. In the highest stellar mass bin, the trend
for Illustris and TNG100 are reversed, something that may be due
to a combination of different implementations of AGN feedback and
the effects of major mergers, as discussed in Section 5.2.

(iii) For any given simulation, at fixed star formation activity, it is
hard to identify clear trends in the relationship between �〈LLR〉 and
stellar mass. Perhaps the only significant trend is that, irrespective
of a galaxy being central or satellite, for TNG100 and Illustris star-
forming galaxies the �〈LLR〉 declines steadily from Mstar ∼ 109.5M�
to Mstar ∼ 1011M� while in TNG50 the trend is stable. This finding
is actually quite puzzling: it would be expected that better sampled
galaxies (i.e. higher mass galaxies with larger particle numbers)
should be in better agreement with SDSS than lower-mass galaxies.
While this is true for TNG50, it is exactly the opposite for TNG100
and Illustris. A possible explanation for this peculiar behaviour is
that observed higher mass galaxies may display comparatively more
subtle features than low-mass galaxies: the number of particles per
galaxy at the resolution of TNG100 and Illustris may still not be
enough to properly capture them well, as opposed to the higher
resolution of TNG50.

(iv) Fig. 10 also remarks the little difference in the �〈LLR〉 of
central and satellite galaxies. While in Section 5.3 and Fig. 4, we
have shown this for galaxies of all stellar masses, here we further
observe that the broad independence on environment applies to all
mass scales.

We also note that TNG50 and Illustris star-forming galaxies seem
to have a �〈LLR〉 > 0 at the highest masses, which seems coun-
terintuitive given that we expect the LLR to be the highest for
SDSS (see Section 3.2). This may be because there are very few SF
galaxies in SDSS with stellar mass above 1011M�. Indeed, the large
bootstrapped resampling variance at these masses for star-forming
galaxies is indicative of a poorly represented and potentially biased
population. Future work will be dedicated to bypass this specific
limitation of our framework.

8.5 Convergence study

As the TNG simulations were run at different resolutions, we are
able to perform a direct convergence test. Specifically, we produced
mock-observations of two lower-resolution runs of TNG50, TNG50-
2 (medium resolution), and TNG50-3 (low resolution, see Pillepich
et al. 2019), as described in Section 2 and in detail in Rodriguez-
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Figure 10. The �〈LLR〉 as a function of galaxy stellar mass for TNG50 (magenta triangles), TNG100 (teal stars), and Illustris (red dots). Star-forming and
quenched galaxies are shown with filled and empty markers, respectively. The left-hand panel shows our results for all galaxies, while the central and right-hand
panels are for central galaxies and satellite galaxies respectively. The data points for different simulations are offset for clarity. The error bars represent the 1σ

uncertainty of 100 bootstrapped realizations of the data sets, of the size of TNG50. See Section 8.4 for more details.

Gomez et al. (2019). Resolution is known to generate non-trivial
changes in the physical properties of simulated galaxies (see for
example also Appendix B1 of Pillepich et al. 2019, and, e.g. Sparre &
Springel 2016; Chabanier et al. 2020). This is something that we wish
to marginalize on, since our aim is to test to what extent an improved
resolution brings the small-scale morphology of simulated galaxies
into better agreement with that of real galaxies, regardless of the
overall structure. Therefore, we match the three TNG50 simulations
and SDSS to obtain an identical joint distribution of their global
properties, i.e. size, magnitude, and Sérsic index, which are the key
observables learned by the pθsersic model. This allows us to isolate the
effect of resolution on the relationship between the global and local
properties of galaxies, as quantified by the LLR.

The �〈LLR〉 (see Fig. 11) is the highest for the highest resolution
run, TNG50, which is followed by TNG50-2, and TNG50-3, the run
with the lowest resolution. This result shows that the small-scale
morphology of simulated galaxies is converging for progressively
improved resolutions, and it is likely that a further improvement in
resolution would result in an even better agreement with SDSS. We
stress that with our methodology we are able to quantify with just
one number, for the first time, the effects of resolution on the detailed
morphology of simulated galaxies.

Note that both the spatial and mass resolution decrease in TNG50-
2 and TNG50-3 (see Pillepich et al. 2019 for details), and therefore,
we are not able to disentangle the contributions of the two here. We
will speculate on this matter in the next section.

8.6 Possible shortcomings of the numerical simulations

In this study, we have quantitatively assessed the agreement between
SDSS and simulations of galaxy formation on the relationship
between the higher level details and the global morphology. In
particular, although the IllustrisTNG simulations agree extremely
well with the SDSS structural scaling relations (see also Genel
et al. 2018; Huertas-Company et al. 2019), our findings show
that the IllustrisTNG model cannot yet reproduce the detailed
distribution of stellar light in comparison to SDSS, particularly
for quenched galaxies and regardless of whether quenching is the
result of environmental processes like ram-pressure stripping or
BH feedback. Earlier in this section we have also discussed the
results of other deep learning studies that reached similar conclusions
for TNG100 and the Horizon-AGN simulation using supervised
Bayesian Neural Networks or the anomaly scores of a GAN. The

Figure 11. The LLR distributions of SDSS (orange solid line), TNG50
(dashed magenta line), TNG50-2 (dotted grey line), and TNG50-3 (dot–
dashed green line). The �〈LLR〉 increases with improved resolutions, a
sign that simulations are converging. Future higher-resolution simulations
are likely to be in even better agreement with SDSS. Note that the value of
the �〈LLR〉 for the highest resolution run of TNG50 is not comparable to
those for TNG50 found in the paper, as we are only considering subsets of the
TNG50 simulations and SDSS to match the joint magnitude–Sérsic index–Re

distribution.

more classical approach used in Rodriguez-Gomez et al. (2019) also
highlights similar tensions in TNG100. Therefore, there are now
multiple independent indications that the detailed morphology of
quiescent galaxies in cosmological hydrodynamical simulations of
galaxy formation is in tension with that of galaxies in our Universe.
We speculate below on the possible reasons of this discrepancy, by
focusing on the case of the IllustrisTNG simulations.

8.6.1 The difficulty of reproducing highly concentrated stellar
distributions

Quenched galaxies in TNG100 (and Illustris) systematically fail
at populating the region of high Sérsic index and small size in the
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Figure 12. The LLR distributions of star-forming (left) and quiescent (right) discs for TNG50 (magenta dot–dashed lines), TNG100 (teal dashed lines), and
SDSS (orange solid lines). The cyan and light orange coloured regions indicate the 1σ uncertainty of 100 realizations of TNG100 and SDSS with the same
sample size of TNG50. Discy galaxies are selected in SDSS and in simulations using the thresholds nser < 2 and Re > 2 arcsec ≈ 2 kpc at z = 0.05. The
lower �〈LLR〉 featured by quiescent discy galaxies is indicative that the processes that lead to quiescence without affecting the stellar morphology (and hence
dynamics) still produce a worse agreement with data compared to star-forming discs.

nser−Re plane. TNG50 can produce compact quiescent galaxies,
and yet small-size and high-Sérsic index quiescent objects exhibit
the worst disagreement with SDSS, also in TNG50. To attempt to
disentangle the effects of quenching with possible issues related
to the global stellar morphology, in Fig. 12 we contrast TNG100
and TNG50 simulated discy galaxies to SDSS, divided according
to their star formation state: star-forming discs on the left, quiescent
discs on the right.

For discy quiescent galaxies TNG100 features �〈LLR〉 ∼ −65,
while TNG50 has �〈LLR〉 ∼ −45. In comparison to the differences
between star forming and quiescent galaxies of Fig. 3 without
any ‘disciness selection’ (i.e. �〈LLR〉 ∼ −101 and ∼−83 for
TNG100 and TNG50, respectively), we can see that the disagreement
between the real and simulated populations of quenched discs is
much less dramatic than that featured by the overall population
of quiescent galaxies, which is dominated by smaller spheroids
(Huertas-Company et al. 2019; Joshi et al. 2020). In other words,
the TNG simulations return more realistic quenched disc galaxies
than quenched galaxies in general: in fact, the TNG model always
produces more realistic disc galaxies, whether they are quenched or
not. So this suggests that what seems to mostly drive the discrepancy
between the TNG and SDSS quiescent populations is not the property
of being quenched but rather the fact of being non-discy, with stellar
particles mostly in non-rotationally supported orbits.

8.6.2 The limits of resolution at reproducing high stellar densities

Since lower mass galaxies are represented by a lower number of
stellar particles in simulations, it could be argued that resolution plays
a key role in making quiescent (mostly spheroidal) galaxies look less
realistic than the more extended (mostly discy) star-forming galaxies.
The fact that quiescent galaxies are better reproduced by TNG50,
which offers a higher resolution, seems to support this argument.
We also note that, even within the star-forming population, smaller
galaxies have a lower �〈LLR〉 in TNG50 and TNG100.

As highlighted above, differently than TNG100, TNG50 is able to
produce compact quiescent galaxies. Moreover, TNG50 features a
higher �〈LLR〉 for quenched extended galaxies with an intermediate
nser compared to TNG100. This further evidence suggests, again, that
an improved resolution is able to better capture the small details of
the stellar structure of quenched galaxies. We briefly speculate on
the possible physical reason for this.

Quiescent galaxies in the TNG simulations tend to be smaller at
fixed stellar mass compared to star-forming galaxies, in good agree-
ment with observations (see Fig. 6). Furthermore, the quiescent TNG
population tends to be dominated by spheroidal galaxies (Huertas-
Company et al. 2019; Joshi et al. 2020), with the stellar orbits mostly
dominated by random motions. Thus, the finite resolution of the
simulations may not reproduce these orbits faithfully. However,
because the levels of (dis)agreement with SDSS do not seem to
correlate strongly with a galaxy stellar mass once TNG50 or TNG100
are considered separately (see Fig. 10), the issue may be more
related to the spatial, rather than the mass, resolution underlying
the numerical models we have considered in this work.

Lastly, the fact that the central densities of quenched galaxies
appear problematic may be related to an issue that was already
identified in the Illustris simulation by Sparre et al. (2015), where it
was found that the simulation did not reproduce well the number
of star-bursting galaxies at the Illustris and TNG100 resolution.
If at least some quenched elliptical galaxies formed through gas-
rich mergers that drove large amounts of gas into the centres of
the merger remnants, the resulting high central densities, may not
be resolved in most of the cosmological simulations studied here.
Indeed, the departure from pure Sérsic profiles in the form of power-
law ‘cusps’ observed in high-resolution imaging (e.g. Lauer et al.
1995; Faber et al. 1997; Kormendy 1999) has been interpreted of a
signature of previous dissipational mergers (Hopkins et al. 2009a),
and Sparre & Springel (2016) showed that higher resolution zoom-
in resimulations of selected major mergers in Illustris are able to
produce denser starbursts compared to the lower resolution Illustris
run. Hopkins et al. (2009b) have also proposed that the inner stellar
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‘cores’ observed in some elliptical galaxies (e.g. Lauer et al. 1995)
are the result of dry mergers involving previously formed ‘cuspy’
ellipticals. If the resolution of TNG50 and TNG100, as well as
Illustris, is not able to capture the formation of ‘cusps’, as indirectly
suggested by Sparre & Springel (2016), then also the formation of
stellar ‘cores’ in these simulations may be unresolved.

8.6.3 Quenching may affect the small-scale morphology by
modifying the underlying gas distribution

We conclude with a final remark. Fig. 6 shows that even quenched
galaxies with relatively large sizes are not fully reproduced by simu-
lations. In particular, at Mstar � 1011M�, some of the larger galaxies
where star formation has been halted belong to the population of
quenched discs (e.g. Zhang et al. 2019). Furthermore, as shown in
Fig. 12, TNG quenched discs are still in worse agreement with SDSS
than star-forming disc, the �〈LLR〉 of quenched discs being twice as
lower than that of star-forming discs. This is somewhat unexpected,
as the quenching mechanism that operates on them has preserved the
bulk of the ordered stellar motions proper of disc galaxies. A possible
explanation for this is that the mechanisms that quench discs may
displace the distribution of gas within the galaxy, thus affecting the
distribution of dust and hence the small-scale light distribution.

9 C O N C L U S I O N S A N D F U T U R E O U T L O O K

Since the time of Hubble (1926), the astronomical community has
strived to understand the physical origin of the variety of morpholo-
gies that galaxies display in our Universe. The simulations of galaxy
evolution available to date have achieved an unprecedented accuracy
in reproducing galaxy properties, and, with them, a plethora of galaxy
morphologies. Assessing how exactly the small-scale morphological
details of simulated galaxies agree with the real ones is a crucial test
for models of galaxy formation and evolution. Our contributions to
this topic are summarized as follows:

(i) We have introduced an unsupervised deep learning method
to accurately and quantitatively compare the small-scale stellar
morphology of galaxies produced by cosmological hydrodynamical
simulations with that of real galaxies (Section 3.1). This assessment
is based on a single-valued metric which is the combination of the
likelihood of two DGMs, the log-likelihood ratio, LLR (Section 3.2).
We demonstrate that the LLR is broadly independent from the
sky background statistically, and specifically is mostly sensitive to
internal, small-scale morphological structure. The behaviour of the
LLR indeed follows these expectations, as shown in Appendix B.
We also prove that the LLR is a metric that can be used to assess the
similarity of two datasets based on the mean value of its distribution,
and we adopt the �〈LLR〉 ≡ 〈LLR〉 − 〈LLRSDSS〉 to assess the
quality of the small-scale light structure of fully realistic mock
observations of galaxies from the Illustris, TNG50, and TNG100
simulations against observations from the SDSS.

(ii) In Fig. 2, we show that our approach can identify TNG50
as the simulation that is able to produce galaxies with small-scale
morphological features that most closely resemble observations,
followed by TNG100 and the original Illustris implementation,
which performs the worst. This can be interpreted as a sign that the
improvement in the modelling of galaxy formation physics featured
by the more recent IllustrisTNG simulations is more effective than
that implemented in Illustris. Rodriguez-Gomez et al. (2019) reached
similar conclusions using non-parametric morphologies. Moreover,
we find that the improved resolution of TNG50 results in an even
better match to SDSS morphologies.

(iii) We split our data sets in star-forming (sSFR/yr−1 > −11) and
quiescent (sSFR/yr−1 < −11) galaxies and show the respective LLR
distributions in the upper panel of Fig. 3. We find a marked improve-
ment in the morphology of star-forming galaxies from Illustris to
TNG100 and from the latter to TNG50, which indicates that a better
treatment of star formation regulation and an improved resolution are
key to accurately reproduce the morphology of star-forming galaxies.
On the other hand, we see only a marginal improvement for quiescent
galaxies from Illustris to its successor IllustrisTNG, and we note that
the better resolution offered by TNG50 over TNG100 does not lead
to a significantly better agreement with SDSS.

(iv) We find the trends with star formation activity to be weakly
dependent on stellar mass (middle and lower panels of Fig. 3) and
environment (Fig. 4), so that simulated quenched galaxies are in
similar disagreement with SDSS regardless of the nature of the
quenching mechanism i.e. regardless of whether quenching is driven
by e.g. ram-pressure stripping or AGN feedback. This information
is displayed in a more self-contained way in Fig. 10.

(v) We study how well-simulated galaxies are reproduced across
scaling relations of galaxy size, SFR, and Sérsic index in Figs 5–7.
We note a significant change in the quality of simulated galaxies,
whereby large, star-forming, discy objects are the most similar
to SDSS, while the smaller, high-Sérsic index, quenched galaxies
are found less realistic by our deep learning framework. We also
note that even within the structural scaling relations of star-forming
and quiescent galaxies some trends are appreciable. More massive,
extended galaxies are more realistic in both quenched and star-
forming TNG50 galaxies, while the same is true of TNG100 star-
forming galaxies only.

(vi) Our main finding is that reproducing the small-scale mor-
phological features of quiescent, small and/or concentrated galaxies
remains a challenge for state-of-the-art hydrodynamical cosmolog-
ical simulations of galaxy formation. We show that this kind of
evidence has started to emerge in the literature in Sections 8.1 and
8.2. We speculate that a limited resolution may be at the origin of
these findings. First, we carry out a specific convergence test in
Section 8.5, where we show that the lower-resolution runs TNG50-
2 and TNG50-3 perform worse than the flagship, better-resolution
TNG50 simulation. Secondly, in Section 8.6 we also argue that the
high density of stellar particles in the central regions of quenched
galaxies may not be properly captured by the finite resolution of
simulations, as also shown by the ‘LLR maps’ in Fig. 8. This
argument is also supported by the similar level of (dis)agreement with
SDSS observations reached by both Illustris and TNG100 for massive
quenched galaxies (see Fig. 3), despite the AGN feedback mechanism
implemented in the two simulations is substantially different. In
fact, the formation histories of these galaxies are affected by similar
rates of major mergers that cause a similar change in the stellar
dynamics, since the resolution of the two simulations is comparable.
We also speculate that the displacement of gas, and the consequent
dust obscuration patterns, that quenching mechanisms cause within
a galaxy, may also partially explain the lesser agreement between
simulated and real quenched galaxies.

(vii) Finally, we remark that the results listed above have been
obtained at the seeing-limited resolution of SDSS, i.e. ≈1kpc, which
means that the some of small-scale details of the stellar light structure
that characterizes galaxies have been lost. Future work that will
exploit higher resolution images may be able to unveil some trends
that are not found in this exploratory study.

The deep learning framework outlined here provides a useful tool
to evaluate the performance of hydrodynamical simulations of galaxy
formation, which generalizes over the parametric and non-parametric
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approaches taken in the past. With our strategy, we can identify
meaningful physical information encoded in the galaxy structure,
which proves key in identifying the shortcomings and successes of
simulations. Our methodology still works only in a statistical sense,
given the not completely null contribution of the sky background to
the metric that we use (see Appendix B1.1). However, future work
in this direction will make it possible to evaluate the morphology of
simulated galaxies at the time of calibrating the next generation of
simulations of galaxy formation and evolution.

Lastly, Out of Distribution detection tasks are of paramount impor-
tance in Astronomy, since they are able to unearth the potentially most
interesting objects in a data set, and will be even more important when
the next observing facilities such as EUCLID and JWST will come
online and collect an unprecedented load of data. Our framework
may be applied also in this context, similarly to Margalef-Bentabol
et al. (2020) and Storey-Fisher et al. (2020).
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APPENDI X A : TRAI NI NG

The likelihood distributions of training and test sets for both models
are shown in Fig. A1. The good agreement between the training and
test sets is indicative of the convergence of the models.
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Figure A1. Left: The likelihood distribution of the SDSS training set (black thin line) and test set (orange thick line). Right: The likelihood distribution of the
training (black) and test (green) sets for the best Sérsic models. The overlap between the distributions shows that the model has converged.

Figure A2. Likelihood distributions of SDSS (solid orange lines), TNG100 (teal dashed lines), TNG50 (magenta lines), Illustris (dotted red lines), and the best
Sérsic fits (dot–dashed green lines) according to the pθSDSS (left) and the pθsersic (right) models.

SDSS

TNG50

TNG100

Illustris

Figure A3. Typical galaxies at low (left-hand panel) medium (central panel) and high (right-hand panel) likelihood. The values of the likelihood are reported
in the title of each panel. The first row of each panel shows SDSS galaxies, the second TNG50 galaxies, and the third and fourth TNG100 and Illustris galaxies.
It can be seen that images with a lower likelihood tend to be those of more complex, larger galaxies, while smaller galaxies have the highest contribution to the
likelihood from the sky background.
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(a) (b) (c)

(d) (e) (f)

Figure A4. (a) A galaxy from IllustrisTNG that was assigned a sky patch with both a large and a small Milky Way star by REALSIM. (b) The pixel-wise
likelihood of the pθSDSS model. (c) The pixel-wise LLR for (a). The net contribution of the pure sky noise is zero, while the galaxy contributes positively to the
LLR. The spikes and edges of the larger star as well as the smaller star contribute negatively. The contribution of the larger star itself is mostly null. (d) An SDSS
galaxy in an empty background. (e) This galaxy has a lower likelihood compared to the rest of the sky. (f) The galaxy gives the largest positive contribution to
the LLR.

APPENDIX B: ROBUSTNESS O F THE
M E T H O D O L O G Y

In the main text, we have extensively used the fact that the LLR is a
good metric to compare the morphology of observed and simulated
galaxies. Conversely, in Section 3.2, we argued that the likelihood
alone may not be as good as a metric. In the following, we outline
the rationale behind this statement.

We start by showing the likelihood distributions of our data sets
for both the pθSDSS and the pθsersic models in Fig. A2. It can be seen
that in the former case the distributions of simulations are displaced
at slightly lower likelihoods and feature a higher variance compared
to SDSS. This is less severe for both the IllustrisTNG realizations,
and more substantial for Illustris. Interestingly, the best Sérsic fits
appear to peak at a higher likelihood than all the other data sets,
including SDSS. This fact is suggestive that simpler images have
a higher likelihood compared to more complex samples, including
the training set (SDSS in this case), since the best Sérsic fits are
simple, smooth objects. To further explore this hypothesis, already
formulated in Serrà et al. (2019), in Fig. A3 we show random samples
of SDSS and simulated galaxies in three narrow bins of likelihood.
It is readily appreciable that indeed more extended galaxies with
a complex structure and the presence of interlopers dominate the
low likelihood tail of the distributions, while smaller, smoother
objects are located at very high likelihood values. Fig. A3 raises
two important issues that undermine the use of the likelihood alone
to compare simulations and observations. We discuss them in the
following discussed below.

B1 The role of the sky background

First of all, the fact that large and small galaxies are at the opposite
ends of the likelihood spectrum is suggestive that the number of sky
pixels in an image is an important predictor of the likelihood. This
is not really a surprise, since the overall likelihood of an image is

the sum of that of all pixels,9 but it is certainly not desirable that
the sky background plays such an important role, given that what we
are really interested in is, of course, only the structure of the galaxy.
How to solve this issue?

In Section 3.2, we have hypothesized that the pθSDSS and the pθsersic

models are able to capture the background equally well, and therefore
their LLR should isolate the contribution of the galaxy alone. We
show that this is indeed the case in the third column of Fig. A4,
where most of the sky pixels have an LLR close to zero, whereas in
the middle panels of Fig. A4 is shown that the sky background gives
the most positive contribution to the likelihood.

B1.1 The sky generates variance in the LLR

Fig. A4 reveals also that bright interlopers (first row) may still
contribute significantly to the LLR. It is important to recall that
we implement observational realism on simulations by assigning
a simulated galaxy to a random SDSS field. Given the potential
presence of interlopers in that field, we expect this to be a process
that generates some variance in the LLR of a given galaxy cutout.
Therefore, the LLR of any single object should not be strictly
interpreted as a measure of its quality compared to observations.
However, the mean LLR of selected subpopulations can still be
robustly compared.

B2 The role of image complexity

Secondly, it is clear from Fig. A3 that some of the simulated galaxies,
especially in the low likelihood bin, are all but realistic. Hence,
the second question is the substantial overlap in the likelihood
distributions of Fig. A2 really meaningful to assess the quality

9Recall that we are actually using the log likelihood.
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of simulated images? We discuss how the LLR may be a more
meaningful metric below.

We start by discussing the right-hand panel of Fig. A2, where the
likelihood distributions of our data sets evaluated through the pθsersic

model are shown. The most significant feature is certainly that in
this case the likelihood of the best Sérsic fits is markedly higher
compared to that of all the other data sets, and not only slightly
larger as it was the case for the pθSDSS model. We interpret this as
a sign that a model trained on the smooth archetypes (i.e. the best
Sérsic fits) of more irregular objects (i.e. the real SDSS galaxies) is
able to identify the complexity of the latter and other non-smooth
data sets (i.e. the simulations). We have already discussed above that
in Fig. A3 the likelihood of a galaxy is heavily dependent on the
complexity of its internal patterns. Although the discussion referred
only to the pθSDSS model (the left-hand panel of Fig. A2) a similar
behaviour is found in the pθsersic model. Crucially, this dependence
is not the same in the pθSDSS and the pθsersic models, as shown by the
fact that the two models produce a different likelihood distribution
for the same data set. Therefore, the hope is that by combining
the likelihood of the same object evaluated by both models some
trends will arise that will depend only on the galaxy’s internal
structure, as derived mathematically in Section 3.2. Let us now

come back once again to Fig. A4, which already helped us prove
that the LLR is able to factor out most of the sky contribution.
What is really interesting is that not all the pixels of a galaxy
show up in the LLR, but only a few of them carry a high LLR
value. These may be the fine morphological details that deviate from
the smoothness of the Sérsic profile. In short, this corroborates our
hypothesis that the LLR of the the pθSDSS and the pθsersic models is
able to isolate the subtle patterns that are present in galaxy structure
(equation 9).

The issues discussed in this section are known and have been
addressed in previous studies (Nalisnick et al. 2018; Shafaei, Schmidt
& Little 2018), which however made use of toy data sets popular
in the machine-learning community.10 We have shown that similar
considerations can be made for astronomical images, which is not
obvious in principle.

10These data sets included MNIST and FashionMNIST (pictures of numbers
and clothing in a monochromatic background respectively) and ImageNet
(natural images such as dogs and boats) amongst others.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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