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ABSTRACT
The fraction of stars in binary systems within star clusters is important for their evolution, but what proportion of binaries form
by dynamical processes after initial stellar accretion remains unknown. In previous work, we showed that dynamical interactions
alone produced too few low-mass binaries compared to observations. We therefore implement an initial population of binaries
in the coupled magnetohydrodynamics and direct N-body star cluster formation code TORCH. We compare simulations with,
and without, initial binary populations and follow the dynamical evolution of the binary population in both sets of simulations,
finding that both dynamical formation and destruction of binaries take place. Even in the first few million years of star formation,
we find that an initial population of binaries is needed at all masses to reproduce observed binary fractions for binaries with
mass ratios above the q ≥ 0.1 detection limit. Our simulations also indicate that dynamical interactions in the presence of gas
during cluster formation modify the initial distributions towards binaries with smaller primary masses, larger mass ratios, smaller
semimajor axes and larger eccentricities. Systems formed dynamically do not have the same properties as the initial systems,
and systems formed dynamically in the presence of an initial population of binaries differ from those formed in simulations with
single stars only. Dynamical interactions during the earliest stages of star cluster formation are important for determining the
properties of binary star systems.
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1 IN T RO D U C T I O N

A complete picture of star cluster formation must account simul-
taneously for stars forming on the sub-au scale, stellar dynamics
taking place on the cluster’s scale and gas flows at the scale of
the surrounding giant molecular cloud. Even when star formation is
resolved by a sub-grid model, as is most often the case in simulations,
close dynamical encounters between stars must be resolved at the
same time as star–gas interactions and large-scale stellar dynamics.
Effective numerical modelling of cluster formation must therefore be
highly multiscale. Despite these challenges, it is essential to address
the problem of star cluster formation, as most stars are formed
in a clustered environment (Lada & Lada 2003; Portegies Zwart,
McMillan & Gieles 2010).

Recent reviews of stellar multiplicity in the Galactic
field (Duchêne & Kraus 2013; Moe & di Stefano 2017) and of
protostars embedded in gas (Reipurth et al. 2014) show that most
stars, at all evolutionary stages, live in binaries or higher order
systems. Surveys of low-mass stars (e.g. Fischer & Marcy 1992; Reid
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& Gizis 1997; Delfosse et al. 2004; Winters et al. 2019), solar-type
stars (e.g. Abt & Levy 1976; Duquennoy & Mayor 1991; Raghavan
et al. 2010) and intermediate- and high-mass stars (e.g. Sana & Evans
2011; Chini et al. 2012; Sana et al. 2012) also reveal a correlation
between multiplicity and stellar mass. Both the fraction of stars in
multiple systems and the average number of companions per primary
increase with increasing primary mass: about 27 per cent of low-
mass stars are in multiple systems (Delfosse et al. 2004; Winters
et al. 2019), while multiplicity fraction is about 45 per cent for solar-
type (Raghavan et al. 2010) and A-type (de Rosa et al. 2014) stars,
and is larger than 90 per cent for high-mass stars (Moe & di Stefano
2017, and references therein).

Despite the ubiquity of binary systems, simulations of star cluster
formation and dynamical evolution often use simplistic prescriptions
for primordial binaries (i.e. binaries formed during star formation,
e.g. Kroupa 1995; Sills & Bailyn 1999; Portegies Zwart et al. 2001;
Leigh et al. 2013; Rastello, Carraro & Capuzzo-Dolcetta 2020) or
ignore them altogether (e.g. Portegies Zwart et al. 1999; Pelupessy
& Portegies Zwart 2012; Sills et al. 2018; Wall et al. 2019), primarily
because primordial binaries remain poorly understood via either
observations or simulations. Most observations of binaries in star-
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forming regions (e.g. Kouwenhoven et al. 2005; Reipurth et al. 2007;
King et al. 2012) are of visual binaries, with intermediate separation;
binaries with smaller or larger separations are hard to observe. None
the less, a significant proportion of stars in star-forming regions
and in clusters are found in binary systems. Observations of stellar
multiplicity in protostars indicate that binary fraction decreases
with age, which is attributed to dynamical interactions between the
stars (Tobin et al. 2016b).

Multiplicity is also influenced by environment. Binarity in globular
clusters is anticorrelated with cluster luminosity (Milone et al.
2016), and binarity in open clusters is anticorrelated with cluster
density (Duchêne et al. 1999). Young clusters have field-like binary
fractions (Duchêne et al. 1999, 2018; Sana & Evans 2011), and there
is no clear difference between the distributions of periods, mass
ratios and eccentricities in the field and in young clusters for massive
stars (Sana & Evans 2011). Conversely, loose stellar associations
have binary fractions higher than in the field (Duchêne et al. 1999,
2018). The presence of binary systems in star clusters influences
their dynamical evolution, for example by facilitating evaporation.
Binaries with low binding energy are disrupted, while energetic
binaries become more tightly bound and transfer kinetic energy to
the cluster, thus accelerating its dissolution (e.g. Heggie 1975; Hills
1975). Appropriate choices of sub-grid model for binary formation
and binary parameters – such as the separation or mass ratio of
the generated systems – are therefore also required for realistic star
cluster formation simulations.

The fact that binary systems can be both formed (e.g. Kouwen-
hoven et al. 2010; Parker & Meyer 2014) and destroyed (e.g. Parker
et al. 2009; Parker & Goodwin 2012) by the evolution of young
clusters further complicates the problem. Although a reasonable
assumption would be that some separations (and hence some periods)
are associated with primordial formation and others with dynamical
formation, it is not so simple. Simulations (e.g. Offner et al. 2010;
Sigalotti et al. 2018) and observations (e.g. Tobin et al. 2016a;
Lee et al. 2017) show that turbulent core fragmentation and disc
fragmentation are viable mechanisms to form binaries during star
formation, with separations up to ∼1000 au. Simulations have
also shown that binaries with semimajor axes between 1000 au
and 0.1 pc can be formed during the dissolution of young star
clusters (Kouwenhoven et al. 2010). Tokovinin (2017) argues that
binaries with such separations are more prevalent than what would
be predicted by dynamical interactions alone, and proposes that stars
forming in adjacent cores could be bound as primordial binaries.
Conversely, dynamical interactions in a young cluster can also form
binaries with separations well below 1000 au (e.g. Parker & Meyer
2014; Wall et al. 2019).

We develop a new binary generation algorithm consistent with
observations of mass-dependent binary fraction and distributions
of orbital periods, mass ratios, and eccentricities. As an ansatz,
we use the observed distribution of zero-age main-sequence binary
systems in the Galactic field to generate our population. Our choice
is motivated by the quality of the observations for this population and
by the simulations conducted by Parker & Meyer (2014): with pure
N-body simulations of star-forming regions, they find that using the
distributions of binary fraction, mass ratio and period in the field as
initial conditions can reproduce the field distribution after dynamical
evolution. Our distributions can however be readily modified to
investigate different primordial binary distributions. We use the star
cluster formation code TORCH (Wall et al. 2019) to demonstrate the
impacts of our new binary generation algorithm on the earliest stages
of star cluster formation, up to the formation of the first massive
stars.

In Section 2, we describe our simulation environment and our
binary generation algorithm. In Section 3, we present our suite
of simulations. In Section 4, we compare the properties of binary
systems in the simulations including primordial binaries and in those
starting with only single stars. We summarize our results and discuss
their implications in Section 5.

2 M E T H O D S

2.1 Simulating cluster formation with TORCH

TORCH1 uses the AMUSE framework (Portegies Zwart & McMillan
2019) to couple self-gravitating, magnetized gas modelled by the
magnetohydrodynamics (MHD) adaptive mesh refinement (AMR)
code FLASH (Fryxell et al. 2000) with the N-body code PH4 (McMillan
et al. 2012) and the stellar evolution code SEBA (Portegies Zwart
& Verbunt 1996). We use FLASH with a Harten–Lax–van Leer
Riemann solver resolving discontinuities (Miyoshi & Kusano 2005)
and an unsplit MHD solver (Lee 2013) with third-order piecewise
parabolic method reconstruction (Colella & Woodward 1984) for
gas dynamics, and a multigrid solver for gravity (Ricker 2008).
We handle the gravitational effects of the gas and the stars on one
another by a leapfrog integration between the two systems (see Wall
et al. 2019). Similar gravity bridges have been used previously to
couple direct N-body codes with smoothed particle hydrodynamics
codes (e.g. Pelupessy & Portegies Zwart 2012; Sills et al. 2018) and
with the AMR code RAMSES (Gavagnin et al. 2017).

TORCH is also optimized to deal with multiple stellar systems.
Resolving repeated close encounters between the members of a
stable, unperturbed system (e.g. a binary or a hierarchical triple)
with the N-body integrator prohibitively shortens the time-step. For
each binary or higher order system deemed stable by the Mardling
criterion (Mardling 2008, by which triples can have at most one
orbital resonance to avoid instability due to large energy exchanges
between the orbits), we use MULTIPLES (Portegies Zwart & McMillan
2019), which replaces the stars by the systems’ centres of mass in PH4.
The internal configuration of the system is saved, and the positions
of the stars within the system are only computed if the system is
perturbed. The encounter between the system and the perturbing star
is then resolved with the few-body solver SMALLN (Hut, Makino &
McMillan 1995; McMillan & Hut 1996).

Star formation is handled by a sub-grid model via sink particles,
which are formed in regions of high local gas density and converging
flows, following Jeans’ criterion and the additional conditions de-
tailed in Federrath et al. (2010). When a sink forms, we use Poisson
sampling to generate a list of stars it will form by drawing stellar
masses from a Kroupa (2001) initial mass function (IMF; Sormani
et al. 2017; Wall et al. 2019), with a minimum sampling mass of
0.08 M� and a maximum sampling mass of 150 M�. We randomize
the list of stars; each star is then formed in order when the sink
has accreted sufficient mass. Once it is formed, the sink follows the
location of the centre of mass of the local stars and gas, and continues
accreting gas.

TORCH also includes stellar feedback, heating and cooling, which
are handled via sub-grid models. The amount and location of the feed-
back depends on the evolution (via SEBA) of the specific stars formed
in the simulation. It uses the FLASH module FERVENT (Baczynski,
Glover & Klessen 2015) for photoionization, direct ultraviolet (UV)

1https://bitbucket.org/torch-sf/torch/branch/binaries commit
28a27574f667e8a580fe964f5ff185d4fb63f1e7.
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radiation pressure from massive stars and photoelectric heating from
far-UV radiation. It uses the method of Wall et al. (2020) for stellar
winds, and does not include either indirect radiation pressure or
protostellar outflows.

2.2 Binary generation algorithm

We want to generate a final stellar population that is consistent with
the observed IMF, and that also ultimately reproduces the observed
binary properties after cluster interactions. However, the effects of
the cluster interactions on the primordial binary population are still
poorly understood, and observations are not sufficient to have a
complete and accurate picture of the properties of binary systems
at birth. None the less, observations (e.g. Sana & Evans 2011) and
simulations (e.g. Parker & Meyer 2014) suggest that the multiplicity
fraction and period, mass ratio, and eccentricity distributions in
young clusters are consistent with the field population. Volume-
limited observations of binary systems in the Galactic field, for
systems with mass ratios M2/M1 ≥ 0.1, are complete for a very
large range of orbital periods (Moe & di Stefano 2017; Winters
et al. 2019). They are also obtained from much larger samples
than observations of young clusters. We therefore adopt for our first
suite of simulations a population of primordial binaries with mass-
dependent binary fraction and properties consistent with observations
of zero-age main-sequence stars in binary systems in the Galactic
field. Our framework can also be adapted to explore other primordial
binary populations.

2.2.1 Mass-dependent binary fraction

For simplicity, and following previous studies of binary population
synthesis (e.g. Kroupa 2001; Kouwenhoven et al. 2009; Parker &
Meyer 2014), we do not form any triple or quadruple systems
primordially. These are known to be ubiquitous for B and O-
type primaries (e.g. Sana et al. 2012; Moe & di Stefano 2015),
but represent only 3 per cent of systems for M-dwarfs (Winters
et al. 2019) and 10 per cent of systems for solar-type stars (Moe
& di Stefano 2017), which account together for >90 per cent of
main-sequence stars (Kroupa 2001). We treat the mass-dependent
multiplicity fraction as a mass-dependent binary fraction, in order to
include all systems included in studies of stellar multiplicity. Since
it is hard to determine observationally if there are any unresolved
components to a system, most reviews of stellar multiplicity make
no distinction among binaries, triples and higher order systems in
their distributions of multiplicity fraction, period, mass ratio and
eccentricity. We hence implement a mass-dependent binary fraction,
which reflects observed distributions of multiplicity fraction.

For each list of stellar masses obtained at the formation of a sink,
we treat each star as a potential primary, and use the primary mass-
dependent binary fraction to determine if the star is in a binary
system. Single stars and primaries are therefore drawn directly from
the IMF, while companions are drawn from mass ratio distributions.
For each potential primary, we use a random number generator
to obtain a number between 0 and 1; the star is found to be in a
binary system if the random number is below the mass-dependent
multiplicity fraction. After a large number of draws, the binary
fraction approaches the prescribed multiplicity fraction.

For low-mass stars, we use the observed multiplicity fraction of
M-dwarfs in the solar neighbourhood, for primary masses in the mass
bins 0.08–0.15, 0.15–0.30, and 0.30–0.60 M� (Winters et al. 2019).
For solar-type stars and above, we use the observed multiplicity

Table 1. Multiplicity properties from Winters et al. (2019). M1 is the
primary mass, F is the binary fraction, μa is the mean projected
separation around which the lognormal probability distribution is
centred, μP (d) is the corresponding period in days (assuming a
circular orbit), and log σP is the standard deviation of the lognormal
distribution. With the exception of the binary fraction and the period,
all the other properties for systems with M1 ≤ 0.60 M� are obtained
from the same distributions as systems with M1 ∼ 1 M� (see Table 2,
top row).

M1 F μa (au) μP (d) log σP

0.08−0.15 M� 0.16 7 103.83 4.12
0.15−0.30 M� 0.21 11 104.12 4.37
0.30−0.60 M� 0.28 49 105.10 4.78

Table 2. Multiplicity properties from Moe & di Stefano (2017). M1 is
the primary mass, F is the binary fraction, P is the period range, FP is
the relative probability for a system to have a period in a given range;
γ ≥0.3 is the power-law exponent of the mass ratio distribution for q ≥
0.3 and γ <0.3 is the power-law exponent of the mass ratio distribution
for q < 0.3.

M1 F P (d) FP γ ≥0.3 γ <0.3

0.8–1.2 M� 0.40 100.5–1.5 0.06 −0.5 0.3
102.5–3.5 0.13 −0.5 0.3
104.5–5.5 0.22 −0.5 0.3
106.5–7.5 0.17 −1.1 0.3

2–5 M� 0.59 100.5–1.5 0.10 −0.5 0.2
102.5–3.5 0.16 −0.9 0.1
104.5–5.5 0.18 −1.4 − 0.5
106.5–7.5 0.12 −2.0 − 1.0

5–9 M� 0.76 100.5–1.5 0.11 −0.5 0.1
102.5–3.5 0.18 −1.7 − 0.2
104.5–5.5 0.16 −2.0 − 1.2
106.5–7.5 0.09 −2.0 − 1.5

9–16 M� 0.84 100.5–1.5 0.13 −0.5 0.1
102.5–3.5 0.17 −1.7 − 0.2
104.5–5.5 0.15 −2.0 − 1.2
106.5–7.5 0.09 −2.0 − 2.0

≥16 M� 0.94 100.5–1.5 0.14 −0.5 0.1
102.5–3.5 0.16 −1.7 − 0.2
104.5–5.5 0.15 −2.0 − 1.2
106.5–7.5 0.09 −2.0 − 2.0

fractions for primary masses 0.8–1.2, 2–5, 5–9, 9–16, and above
16 M� (Moe & di Stefano 2017). Between 0.6 and 0.8 M�, and
between 1.2 and 2 M�, we interpolate linearly between the observed
multiplicity fractions. We summarize the multiplicity fractions in
Tables 1 and 2.

2.2.2 Period distribution

Periods also depend on primary mass. For each primary, we obtain
the orbital period by drawing it from the chosen probability distri-
bution for the corresponding mass range, sampled with the rejection
method (von Neumann 1951). For each primary, we pick a pair of
random numbers – here, a period between 100.5 and 107.5 d and
a number between 0 and the maximum value of our probability
distribution surface – and accept the pair if the point it defines in
parameter space lies below our probability distribution. If it lies
above our probability distribution, we reject the pair and repeat the
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algorithm until a pair is accepted (following the algorithm from Press
et al. 2007, Section 7.3.6). For primary masses below 0.60 M�, we
use the lognormal distributions from Winters et al. (2019), which are
given for each of the primary mass bins discussed above. For each
primary mass range, Moe & di Stefano (2017) give probabilities at
different period values; we extend each given value over one order
of magnitude in period (in days), then linearly interpolate between
two different period ranges. We use the same mass bins as defined
above, but extend the 0.8–1.2 M� range down to 0.6 M� and up to
1.6 M�, while we extend the 2–5 M� range down to 1.6 M�. We
therefore have a probability distribution depending on both primary
mass and period.

2.2.3 Companion mass distribution

We obtain the companion masses from distributions of mass ratios
q = M2/M1, where M1 is the primary mass, M2 is the companion mass
and q ≤ 1 by definition. Kouwenhoven et al. (2009), in a review of
binary pairing functions, summarize as follows the different possible
ways to assemble a binary system:

(i) Random pairing: Two stars are independently drawn from the
IMF; the most massive is labelled as the primary. Random pairing
of stars from the Kroupa IMF results in a uniform distribution of
system masses (Kroupa 2001), which Kouwenhoven et al. (2009)
find to result in mass ratios inconsistent with observations.

(ii) Primary-constrained random pairing: The primary is drawn
randomly from the IMF; the companion is then also drawn from the
IMF, but with the constraint that it must be less massive than the
primary. This pairing function does not reproduce observed mass
ratios either (Kouwenhoven et al. 2009).

(iii) Primary-constrained pairing: The primary is drawn randomly
from the IMF; the companion is then drawn from the mass ratio
probability distribution. This technique is meant to be used with a
stellar IMF (e.g. Kroupa 2001). It is compatible with observations,
and allows for the use of a primary mass-dependent mass ratio
distribution, which is observed in nature.

(iv) Split-core pairing: The system mass is drawn randomly from a
distribution of system or core masses, then fragmented as a mass ratio
is drawn from an observed probability distribution. This technique is
meant to be used with a system IMF (e.g. Chabrier 2003). It is also
compatible with observations.

Both primary-constrained pairing (iii) and split-core pairing (iv) can
reproduce observations of stellar masses and mass ratios concur-
rently, as well as of a mass-dependent binary fraction. They require
different pieces of information to implement. Primary-constrained
pairing requires a distribution of stellar masses, and primary mass-
dependent binary properties; split-core pairing requires a distribution
of system masses, and can be implemented with primary mass-
dependent binary properties. We choose to assemble the binary sys-
tems with primary-constrained pairing, by drawing primary masses
from a Kroupa (2001) IMF then obtaining the companion masses
from the observed primary mass and period-dependent mass ratio
distributions. TORCH uses by default the Kroupa (2001) IMF, and it
is the IMF that was used in the original suite of simulations (Wall
et al. 2019, 2020). We use the same IMF for ease of comparison and
consistency.

We use the probability distributions from Moe & di Stefano
(2017), which we extend to lower masses. The mass ratio probability
distributions are modelled as power laws,

pq ∝ qγ , (1)

where the exponent γ is a function of the mass ratio range, the
primary mass and the orbital period. We consider three primary
mass ranges, 0.08–2, 2–5, and above 5 M�; the first mass range is
extended from the 0.8–1.2 M� range provided by Moe & di Stefano
(2017) since Winters et al. (2019) admit that their results are likely
incomplete at low companion masses. For each of these mass ranges,
we consider a broken power law, with γ defined for mass ratios
between 0.1 and 0.3, and above 0.3. Finally, the probability is given
at different values of the period, between which we interpolate with
the same technique as for the period probability distribution. From
there, we use the rejection method to obtain a mass ratio.

We reject mass ratios that would result in substellar companions.
We also note that observations are unreliable below q ≤ 0.1 (Duchêne
& Kraus 2013; Moe & di Stefano 2017; Winters et al. 2019). Price-
Whelan et al. (2020), in their analysis of 20 000 close binary systems,
acknowledge that their observations are incomplete at low-mass
ratios. At the high-mass end, the problem is most prevalent for
spectroscopic searches at intermediate separations (Kobulnicky et al.
2014). In open clusters, Sana & Evans (2011) are only confident in
their observations for q ≥ 0.2 for massive binaries, while Deacon
& Kraus (2020) are unable to detect companions with q ≤ 0.1 and
estimate that they detect only ∼50 per cent of systems with q =
0.3 in their surveys of wide binaries in Alpha Per, the Pleiades and
Praesepe. Following the completeness limit of Moe & di Stefano
(2017) and Winters et al. (2019), we therefore also reject mass ratios
below q = 0.1.

2.2.4 Eccentricity distribution

The eccentricity probability distribution is similarly modelled as a
broken power law, as a function of primary mass and period,

pe ∝ eη, (2)

where η = 1 would result in a thermal distribution and η = 0 would
result in a uniform distribution. Following Moe & di Stefano (2017),
we define

η = 0.6 − 0.7

(log(P/d) − 0.5)
(3)

for primary masses up to 5 M�, while for primary masses above
5 M�, we define

η = 0.9 − 0.2

(log(P/d) − 0.5)
. (4)

We further define a period-dependent upper limit on the eccentricity,
to avoid binary systems with filled Roche lobes. We use the analytic
form of the maximum eccentricity from Moe & di Stefano (2017),

emax(P ) = 1 −
(

P

2 d

)−2/3

, (5)

which is defined for orbital periods longer than 2 d; we assume all
binary systems with shorter periods are circularized (Raghavan et al.
2010). We use the rejection method to obtain the eccentricities.

2.2.5 Algorithm test

We test our algorithm by generating a list of stars starting from an
IMF normalized to 10 000 M� and our ansatz of observed field binary
properties. We then apply our algorithm to determine which stars
are in binary systems; we obtain the period, companion mass, and
eccentricity for each binary system. We verify that our algorithm
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Figure 1. Mass-dependent binary fraction, for main-sequence stars in the
solar neighbourhood (Moe & di Stefano 2017; Winters et al. 2019) and for
our binary generation algorithm. The errors in x correspond to the bin widths;
the errors in y in the observations are from the observational uncertainties
while the errors in y on the algorithm data are from the Poisson statistical
error.

Figure 2. Distribution of stellar masses, for the single stars and primaries
drawn from the Kroupa IMF (red) and the companions obtained from the
mass ratio probability distribution (grey). The Kroupa IMF normalized to
10 000 M� (solid line) and to the total stellar mass (dotted line) is provided
as a guide for the eye.

indeed reproduces the mass-dependent binary fraction observed
in the Galactic field (Fig. 1) and compare our full stellar mass
distribution to the IMF (Fig. 2). We also consider our distributions
in the primary mass versus mass ratio parameter space (Fig. 3). We
generate no systems with a mass ratio q < 0.1 and form no stars with
a mass below the hydrogen-burning limit.

2.3 Implementing primordial binaries in TORCH

To place a star within the simulation, it must be the next star in the
list of stars to be formed by a sink particle, and the sink must have
accreted a gas mass equal to or greater than the star’s mass. When a
star is formed, its mass is subtracted from the sink mass. The star thus
formed can be located within the sink’s accretion radius, but will be
treated by the simulation as a particle distinct from the sink. The local
gas temperature must be below 100 K at the time of star formation;
if the gas temperature is higher, star formation is delayed. Assuming
primordial binaries formed through disc or core fragmentation would

Figure 3. Distribution of mass ratios against primary masses. Our algorithm
restricts mass ratios to be higher than 0.1, as observations are highly
incomplete below this value. The red line denotes the companion mass corre-
sponding to the hydrogen-burning limit; note that no substellar companions
are generated.

become stars at the same time, we ensure that stars formed in a binary
system are formed at the same time in the simulation. We therefore
modify the condition for star formation to require that the mass of
a system (whether a single star or a binary) must be accreted by the
sink particle before either star is formed. This additional mechanism
does not modify the routine to form single stars, but ensures that
primaries and their companions are formed simultaneously in the
simulation.

The binary systems we generate with our algorithm must be
introduced in the simulation with positions and velocities consistent
with their orbital properties. We randomize the orbit’s orientation
by randomizing the inclination, longitude of the ascending node and
argument of periapsis, and obtain the relative positions and velocities
of the stars by picking a random time in the orbit. The locations of
the binaries’ centres of mass are chosen in the same way as single
stars’ positions in TORCH (Wall et al. 2019). The position of each star
within the simulation domain is finally obtained by adding together
the position of the sink in which it forms, the position vector of the
centre of mass of the system relative to the sink, and the position
vector of the star relative to its system’s centre of mass. For binaries
with long periods or very eccentric orbits, a star can be formed
outside the sink if required by their orbital parameters. Single stars
inherit the velocity of the sink at the time of formation, plus a random
fraction of the local sound speed (Wall et al. 2019). We adopt this
prescription for the systems’ centres of mass. For stars in a binary
system, their velocity is obtained from the addition of the sink’s
velocity, the random component from the local sound speed, and the
velocity with respect to the centre of mass velocity.

3 SI M U L AT I O N S

Initial tests of TORCH (Wall et al. 2019, 2020) have shown that the
time evolution of the star formation rate and the spatial distribution
of star formation are highly stochastic, and depend strongly on the
initial conditions. We therefore adopt a single set of initial conditions
for our full suite of simulations, to investigate solely the impact
that the presence or absence of primordial binaries has on the final
distributions of binaries. We initialize all our simulations from the
same spherical cloud of dense neutral gas with a mass of 104 M�,
a virial parameter of 0.4, a radius of 7 pc, and a Gaussian density
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Primordial binaries and cluster formation 4469

Table 3. Spatial and mass resolution, at maximum refinement level ref.
�x denotes the minimum zone size while �m and ρc denote, respectively,
the maximum mass and the maximum density in a grid cell to trigger sink
formation, assuming a sound speed cs = 1.9 × 104 cm s−1 (following
Federrath et al. 2010).

ref �x (pc) Sink diameter (au) �m (M�) ρc (g cm−3)

5 6.83 × 10−2 7.05 × 104 1.80 × 10−2 3.82 × 10−21

6 3.42 × 10−2 3.53 × 104 9.00 × 10−3 1.53 × 10−20

profile with central density 8.73 × 10−22 g cm−3. The initial cloud has
a central temperature of 20.64 K and sits in a medium of warm neutral
gas with a temperature of 6.11 × 103 K and a density of 2.18 × 10−22

g cm−3. Each simulation uses the same initial turbulent Kolmogorov
velocity spectrum but a different random seed for the stellar masses.
There is no initial magnetic field. The gas follows an adiabatic
equation of state with γ = 5/3. The simulations include atomic,
molecular and dust cooling, as well as ionization, following Wall
et al. (2020).

Galactic effects are ignored, as the clusters are evolved for t �
3.2 Myr. Tidal perturbations or disc crossing effects are unlikely to
have an impact on the cluster’s structure on such a time-scale (e.g.
Kruijssen et al. 2011; Miholics, Kruijssen & Sills 2017). The size of
the simulation box (∼18 pc) is large enough to ensure the choice of
boundary conditions does not have a strong impact on the outcome
of the simulation: observed star clusters in nearby galaxies with
the same stellar mass as our simulations have half-mass radii one
order of magnitude smaller than the box size (Krumholz, McKee &
Bland-Hawthorn 2019, and references therein). We use zero-gradient
boundary conditions, which allow the gas and stars to leave the
domain. The choice of spatial resolution (∼0.05 pc) is appropriate
to model the gas dynamics in the cluster, excluding star formation
which is treated by a sub-grid model. The resolution is approximately
one order of magnitude smaller than the average separation between
stars in dense clusters (Krumholz et al. 2019, and references therein)
and thus resolves well the behaviour of the gas between the stars.

We perform a total of 15 simulations, at two different maximum
FLASH refinement levels. At our lowest refinement level, we perform
five simulations with primordial binaries and five without primordial
binaries; at our highest refinement level, we perform four simulations
with primordial binaries and one simulation without primordial
binaries. The least resolved regions in all our simulations are at
refinement level 4 and have a gas spatial resolution of 0.136 pc.
The spatial and mass resolutions of our simulations are presented
in Table 3. In our analysis, we use the combined results of groups
of simulations to ensure we have a large population of systems to
analyse. We will use the variation between simulations to quantify
the uncertainty in our results and the numerical effects of resolution.
We denote our suites of simulations with primordial binaries at
refinement levels 5 and 6 as, respectively, M4r5b and M4r6b, and
our suite of simulations without primordial binaries at refinement
level 5 as M4r5s. We refer to our full suites of simulations at
refinement levels 5 and 6 as, respectively,M4r5 andM4r6; similarly,
we refer to our full suite of simulations with primordial binaries as
M4b and to our full suite of simulations without primordial binaries
as M4s. We perform our analysis with 9866 stars in M4r5b, 9016
stars in M4r5s, 6384 stars in M4r6b, and 1517 stars in M4r6s. We
plot the results from M4r5, as this suite of simulations has the most
stars.

We summarize the time of onset of star formation, the time at which
the simulation is ended, the maximum stellar mass, the number of

Table 4. Simulations. All simulations have a total gas mass 104 M� and
a minimum refinement of 4. The number after r denotes the maximum
refinement level and the last letter indicates if the simulation includes
primordial binaries (b) or single stars only (s). t∗ denotes the time of the
onset of star formation and t denotes the time at which the simulation has
ended; Mm denotes the mass of the most massive star, N∗ is the number of
stars in the simulation, and M∗ is the total stellar mass.

Name t∗ (Myr) t (Myr) Mm (M�) N∗ M∗ (M�)

M4r5b-1 1.12 2.61 17.61 1575 706
M4r5b-2 1.12 2.43 67.13 976 490
M4r5b-3 1.12 2.64 40.25 1661 774
M4r5b-4 1.12 3.20 57.65 4704 2143
M4r5b-5 1.12 2.36 32.83 950 417

M4r5s-1 1.12 2.43 59.25 877 473
M4r5s-2 1.12 2.91 22.87 2487 1204
M4r5s-3 1.12 2.65 68.49 1493 806
M4r5s-4 1.12 2.94 78.84 2719 1400
M4r5s-5 1.12 2.64 68.49 1440 774

M4r6b-1 1.21 2.65 10.92 1749 685
M4r6b-2 1.21 2.68 38.85 1650 734
M4r6b-3 1.21 2.60 16.42 1531 610
M4r6b-4 1.21 2.66 20.23 1454 659
M4r6s 1.21 2.68 46.57 1517 760

stars and the total stellar mass for each of our simulations in Table 4.
Since the only difference between the different simulations at the
same resolution is in the stellar sampling, star formation starts at
the same time and the first sink forms at the same location for all
simulations at the same resolution. We present two examples of the
time evolution of the star formation rate in Fig. 4. In Fig. 5, we present
the projected density for nine simulations, a minimum of ∼1.5 Myr
after the onset of star formation. We note that the general structure
of the gas and the sink locations are very similar in all simulations,
as expected since all the simulations start from the same initial gas
conditions. Nevertheless, the number of stars and their locations,
as well as the total stellar mass, differ among the simulations. At
similar times, there are spreads of 18 per cent in number of stars
and 24 per cent in stellar mass. Our simulations end at 1.5–2 Myr
after the start of star formation, at the time when feedback from
massive stars starts to have a significant impact on the gas properties.
Therefore, our simulations probe the earliest stages of star cluster
formation, when the dominant physical effects are gas collapse and
star formation, combined with dynamical interactions between stars,
binary systems, and their natal gas.

4 BINARY PRO PERTIES

As discussed in Section 2.2.3, observations of binary stars in the
Galactic field and in open clusters are only complete for mass ratios q
≥ 0.1; consequently, our algorithm only generates primordial binaries
with such mass ratios. Our work differs from previous studies of
dynamical binary formation in clusters (e.g. Wall et al. 2019) or
of evolution of a population of primordial binaries in clusters (e.g.
Parker & Meyer 2014) by taking into account this observational limit,
and comparing directly our population of binary systems with q ≥
0.1 to the observed field population. We emphasize that any system
with mass ratio q < 0.1 would not have been included in the surveys
on which our work is based. Where applicable, we therefore present
two different sets of comparison: the comparison between our full
simulation results and the field population (for consistency and ease
of comparison with earlier literature), and the comparison between
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4470 C. Cournoyer-Cloutier et al.

Figure 4. Star formation rates for M4r5b-4 (top) and M4r6s (bottom).
The solid black line shows the rate smoothed over 1 kyr (left axis) and the
blue points shows the masses of the individual stars formed in the simulation
(right axis). The total stellar masses are, respectively, 2.14 × 103 and 7.60
× 102 M� for M4r5b-4 and M4r6s. Peaks in star formation rate coincide
with the formation of massive stars, and there is an overall increase of the
star formation rate as the simulation progresses.

our simulation results with q ≥ 0.1 (hereafter, observable simulation
results) and the field population.

To consider stars to be members of a binary, we require the stars
to be gravitationally bound and perturbations by the other cluster
stars must be comparatively small. Following Wall et al. (2019), we
consider a system with primary mass M1, companion mass M2 and
semimajor axis a to be perturbed if there is a star with mass Mp and
within a distance d of the system’s centre of mass such that

4a2

M1M2

∣∣∣∣ M1Mp

(d − a)2
− M2Mp

(d + a)2

∣∣∣∣ > 3. (6)

To avoid considering stable triple systems as perturbed binaries, we
add a condition that the system will not be considered perturbed
if the third star is gravitationally bound to either the primary or
the companion. Our conclusions are robust to the addition of this
condition. To account for possible triple or higher order systems, we
calculate the binary fraction as a function of primary mass as the
fraction of stars in each mass range that are primaries (i.e. the most
massive star in a stable system) but include each primary-companion
pair in our analysis of binary properties.

4.1 Binary fractions

We compare the binary fraction from observations of main-sequence
field stars (Moe & di Stefano 2017; Winters et al. 2019), the fraction
of stars we form in primordial binaries, and the fraction of stars in
unperturbed binary systems at the end of M4b and M4s. We plot
the binary fraction as a function of primary mass for our full binary
population (all q’s) and for observable systems (q ≥ 0.1) in M4r5 in
Fig. 6.

We first consider our observable simulation results, which only
include binary systems with q ≥ 0.1. As expected, primordial binaries
generated with our algorithm result in field-like binary fractions at
all masses (see Fig. 1). The final distribution in M4b is consistent
within uncertainties with observations and primordial fractions at all
primary masses; we nevertheless note that the final fraction tends
to be lower than either the observations or the primordial fraction.
This trend is present at both resolutions; in M4r6b, the observable
binary fraction between 0.30 and 0.60 M� is lower than what would
be predicted by observations of main-sequence field stars. This
indicates that some primordial binaries are destroyed by dynamical
interactions during cluster formation. The final distribution in M4s
is not consistent within uncertainties with observations, at any
primary mass. It is however consistent within uncertainties with the
primordial and final distributions in M4b for the two highest mass
bins, where uncertainties are very large.

For the full population of binary systems, we reproduce the results
from Wall et al. (2019) and find that, at high primary masses,
pure dynamical formation results in binary fractions consistent
with observations of main-sequence field stars. We also find that
with our field-like prescription for primordial binaries, our full
binary population is consistent with observed binary fractions at
all primary masses. We emphasize that these results should be used
for comparison with previous literature, but do not reflect what we
can observe due to the q ≥ 0.1 detection limit in solar-neighbourhood
surveys.

Although pure dynamical formation leads to observable binary
fractions consistent within uncertainties with observations at high
primary masses, we argue that this is due only to the large uncer-
tainties arising from the very small number of stars in the highest
mass bins. In contrast with Wall et al. (2019), we find that we need
primordial binaries at all primary masses in order to be consistent
with observations of main-sequence field stars, due to the additional
constraint that our systems must have large enough mass ratios to be
seen in observations.

4.2 Final binary properties

We compare the final distributions of primary masses, mass ratios,
semimajor axes, and eccentricities in our simulations, and test the null
hypothesis that they are drawn from the same distribution with the
Mann–Whitney–Wilcoxon U-test (Wilcoxon 1945; Mann & Whitney
1947), which is similar to the Kolmogorov–Smirnov test but more
suitable for larger numbers of data points. We consider the primordial
distributions, and the full and observable final distributions in M4b
and M4s. Where relevant, we quote the lowest confidence level
we have between M4r5 and M4r6. The qualitative conclusions are
always the same at both resolutions for observable systems. When
comparing the primordial and final distributions, we find that our
conclusions hold for each individual simulation.

We present the plot of the cumulative primary mass distributions
for M4r5 in Fig. 7. We do not reject the null hypothesis that the
primordial and full final distributions of primary masses in M4b are
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Primordial binaries and cluster formation 4471

Figure 5. Final projected density distribution in the simulations (from top left to bottom right) M4r5b-1, M4r5b-3, M4r5b-4, M4r5s-2, M4r5s-3,
M4r5s-4, M4r6b-2, M4r6b-4, and M4r6s. The white circles are the full sample of stars in the simulations; the radius of the circle is proportional to the
stellar mass. All simulations use the same initial conditions, which is reflected by the very similar gas configurations. We note however differences in the
locations and masses of the stars, and expect to see these differences reflected in the gas configuration once feedback becomes more important. The total stellar
mass and number of stars for each simulation can be found in Table 4.

drawn from the same underlying distribution. If we consider only
observable systems, however, we find that the systems detected at
the end of M4b have lower primary masses than the systems formed
primordially in these simulations (93.5 per cent confidence). Fur-
thermore, primary masses at the end of M4s are higher than in M4b,
both at the beginning and end of the simulations (>99.9 per cent
confidence).

We plot the cumulative mass ratio distributions for M4r5 in Fig. 8.
The mass ratios for the full binary distributions at the end of M4b
are consistent with having been drawn from the same distribution as
the primordial mass ratios. This result is in agreement with previous
studies of binaries in clusters (e.g. Parker & Reggiani 2013). Mass
ratios of observable systems, however, are larger than primordial

mass ratios (91.6 per cent confidence). This alteration of the mass
ratio distribution is in agreement with the results from simulations
of young (e.g. Parker & Goodwin 2012) and globular (e.g. Sollima
2008) clusters. Mass ratios in M4s are smaller than those in M4b,
either at the time of star formation or at the end of the simulation
(>99.9 per cent confidence).

The cumulative semimajor axis distributions for M4r5 are shown
in Fig. 9. We find that the semimajor axes of systems detected at
the end of M4b are smaller than those of the primordial systems.
We are confident at, respectively, 96.9 per cent and >99.9 per cent
that it is the case for our full sample of systems, and our sub-
sample of observable systems. Conversely, the systems in M4s
have larger semimajor axes than those formed primordially or
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4472 C. Cournoyer-Cloutier et al.

Figure 6. Binary fraction as a function of primary mass in M4r5, for the full
binary population (top) and for observable systems (bottom). The primordial
binaries formed in M4r5b, the binaries present at the end of M4r5b, and
those present at the end of M4r5s are denoted, respectively, by the black,
red, and blue thin crosses. The primordial and final binary fractions are
exactly equal for the highest mass bin in the bottom panel. Observations from
main-sequence stars in the solar neighbourhood (Moe & di Stefano 2017;
Winters et al. 2019), with mass ratios ≥0.1, are provided for comparison as
the solid grey crosses. Binaries from the simulations of Wall et al. (2019),
which do not include primordial binaries, are denoted by the thick black
crosses. All the errors in x correspond to the bin widths and the errors in y
in the observations are from the observational uncertainties. The y errors on
the simulation data from Wall et al. are 1/

√
N (see Wall et al. 2019). The y

errors on our simulation data are from the Poisson statistical errors: 1/
√

N

for N > 100 and the tabulated 1σ confidence interval for N ≤ 100 (Gehrels
1986; Hughes & Hase 2010).

those detected at the end of M4b (>99.9 per cent confidence). This
suggests that systems with large semimajor axes are preferentially
formed dynamically.

We also plot the cumulative distribution of eccentricities in M4r5
in Fig. 10. The systems detected at the end of M4b are more eccentric
than the primordial systems formed in the simulation for either our
full sample (99.6 per cent confidence) or just the observable systems
(98.3 per cent). This result is consistent with what we would expect
of long-term dynamical evolution of binary systems in clusters,
where repeated dynamical encounters increase eccentricities (e.g.
Hills 1975; Heggie & Rasio 1996; Ivanova et al. 2006). Similarly,

Figure 7. Cumulative distribution of primary masses in M4r5, for the
full binary population (top) and observable systems (bottom). The solid
black line denotes the primordial primary mass distribution in M4r5b,
the solid red line denotes the final distribution in M4r5b, and the solid
blue line denotes the final distribution in M4r5s. The fainter lines denote
the corresponding primary mass distribution in individual simulations. Pure
dynamical formation results in systems with higher primary masses, while
the dynamical evolution of the cluster with primordial binaries favours lower
mass primaries.

we are also confident at >99.9 per cent that systems in M4s have
larger eccentricities than either those formed primordially or those
detected at the end ofM4b. We argue that dynamical interactions form
eccentric systems preferentially, causing the larger eccentricities in
M4b and especially M4s.

All the changes we detect in the distributions are small but
statistically significant. They suggest that very early during cluster
formation, while there is still a significant amount of gas and active
star formation, dynamical interactions between the stars already
modify binary systems in a non-random way. This highlights the
need for the concurrent inclusion of gas and binaries in star cluster
formation and early evolution simulations.

4.3 Modification of primordial binaries

We investigate the fate of the systems formed primordially in our
simulations. We present the cumulative distributions of semimajor
axes and eccentricities for surviving systems (i.e. systems that have
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Primordial binaries and cluster formation 4473

Figure 8. Cumulative distribution of mass ratios in M4r5, for the full
binary population (top) and observable systems (bottom). The solid black
line denotes the primordial mass ratio distribution in M4r5b, the solid red
line denotes the final distribution in M4r5b, and the solid blue line denotes
the final distribution in M4r5s. The fainter lines denote the corresponding
mass ratio distribution in individual simulations. Dynamical formation in
both M4r5b and M4r5s favours systems with smaller mass ratios: up to
50 per cent of the systems formed in M4r5s have mass ratios below the
detection limit.

the same companion at the time of formation and at the end of the
simulation) in M4r5 in Fig. 11. For M4r5b and M4r6b, we are
confident at, respectively, 96.2 per cent and 85.2 per cent that the
primordial and final semimajor axes are drawn from the same distri-
bution. We are also confident at 83.1 per cent and 89.7 per cent that
the surviving systems are more eccentric at the end of the simulation
than when they form. This change in eccentricity of the surviving
systems is consistent with our earlier result that systems at the end of
M4b tend to have larger eccentricities than the primordial systems.
Despite this result, the changes in the eccentricity distribution are
very small, and are unlikely to be dynamically significant. We would
expect long-term evolution to cause an increase in eccentricity of
hard binaries through dynamical interactions (Hills 1975; Heggie &
Rasio 1996; Ivanova et al. 2006); we may see here the beginnings of
this phenomenon.

We also compare the properties of the surviving subset of primor-
dial systems to those of the full primordial population. The relevant
primary masses, mass ratios, semimajor axes, and eccentricities are

Figure 9. Cumulative distribution of semimajor axes in M4r5, for the
full binary population (top) and observable systems (bottom). The solid
black line denotes the primordial semimajor axis distribution in M4r5b,
the solid red line denotes the final distribution in M4r5b, and the solid blue
line denotes the final distribution in M4r5s. The fainter lines denote the
corresponding semimajor axis distribution in individual simulations. Pure
dynamical formation results in systems with much larger semimajor axes;
conversely, dynamical evolution during cluster formation results in smaller
semimajor axes.

plotted in Fig. 12. We quote our lowest confidence level between
M4r5b and M4r6b, and verify that our conclusions hold for the
surviving primordial binaries in any individual simulation. We are
confident at 99.6 per cent that the primordial systems surviving to
the end of the simulation have smaller primary masses than the full
primordial population. We are also confident at 98.5 per cent that
surviving primordial systems have larger mass ratios than the full
population of primordial systems. This suggests that systems with
high primary masses and small mass ratios are the most likely to
either be dynamically destroyed or change companion due to three-
body interactions.

We are confident at >99.9 per cent that surviving primordial
systems have smaller semimajor axes than the full primordial
distribution. As the semimajor axes of surviving systems are not
modified, we attribute this to the preferred dynamical destruction
or modification of systems with large semimajor axes, as expected
from the Heggie–Hills Law (Heggie 1975; Hills 1975). Finally, we
are confident at 67.9 per cent that surviving primordial systems have

MNRAS 501, 4464–4478 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/4464/6041703 by guest on 19 April 2024
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Figure 10. Cumulative distribution of eccentricities in M4r5, for the full
binary population (top) and observable systems (bottom). The solid black
line denotes the primordial eccentricity distribution in M4r5b, the solid red
line denotes the final distribution in M4r5b, and the solid blue line denotes
the final distribution in M4r5s. The fainter lines denote the corresponding
eccentricity distribution in individual simulations. Pure dynamical formation
results in systems with much larger eccentricities.

larger eccentricities than the full sample of primordial systems. On
its own, this result does not indicate that systems with smaller
eccentricities are preferentially destroyed, as it appears that the
eccentricities of surviving systems increase during the simulation.
Our results indicate that primordial binaries are destroyed within our
simulations, and that systems may be more likely to be destroyed
if they have certain properties. They also suggest that the orbital
properties of primordial systems may already be modified in the
earliest stages of cluster formation.

4.4 Dynamical binary formation

We also investigate whether the properties of the binaries formed
dynamically in M4b and M4s are the same. We present plots of
the primary masses, mass ratios, semimajor axes, and eccentricities
for binaries formed dynamically in M4r5 in Fig. 13. In M4b, we
consider that a binary is formed dynamically if the primary changed
companion or the primary was not previously in a binary system.

We find, with confidence >99.9 per cent, that the properties of
binaries formed dynamically in simulations including primordial

Figure 11. Cumulative distributions of semimajor axes (top) and eccentric-
ities (bottom) for the primordial systems in M4r5b surviving to the end of
our simulations. The solid grey lines represent the initial properties of the
surviving systems, while the solid cyan lines represent their final properties.
The fainter lines denote the corresponding distributions in individual simula-
tions. Out of the 1274 binary systems we detect in M4r5b, 1077 systems are
surviving systems. The distribution of the semimajor axes of the surviving
systems at the end of the simulations is consistent with their distribution
at the time of star formation (96.2 per cent confidence). The final values of
eccentricity are systematically larger (83.1 per cent confidence). By definition,
the primary masses and mass ratios of these systems are unchanged.

binaries are different from either the properties of primordial binaries
or the properties of binaries formed dynamically in a simulation
without primordial binaries. Furthermore, we find that the cumulative
distributions of properties of binaries formed dynamically in M4b
always lie between the cumulative distributions for primordial
binaries and forM4s. Binaries formed dynamically in the presence of
primordial binaries tend to have smaller primary masses than those
arising from pure dynamical formation, but larger primary masses
than primordial binaries. Conversely, they tend to have mass ratios
smaller than the systems formed by pure dynamical interactions, but
larger than the primordial systems. In M4b, dynamical binaries form
with semimajor axes and eccentricities larger than the primordial
systems, but smaller than they do in M4s.

These early results are consistent with our expectations of dy-
namical formation of binaries. In the case where binaries are formed
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Figure 12. Cumulative distributions of primary masses, mass ratios, semimajor axes, and eccentricities for the primordial systems in M4r5b. The black solid
lines represent all the primordial systems formed in our simulations and the solid cyan lines represent the primordial systems that survive until the end of
simulations. The fainter lines denote the corresponding distributions in individual simulations. Out of 1789 primordial systems, 260 were fully destroyed and 66
changed companions; 1463 systems survived to the end of our simulations. The distributions of primary masses, mass ratios, and semimajor axes are different
for the full primordial population and the subset of surviving systems; it is ambiguous whether the eccentricity distribution changed.

Figure 13. Cumulative distributions of primary masses, mass ratios, semimajor axes, and eccentricities for binary systems formed dynamically in M4r5, and
primordial binaries in M4r5b. The solid blue lines represent the 281 systems detected in M4r5s, the solid orange lines represent the 66 systems where the
primary changed companions and the 341 systems formed dynamically with new primaries in M4r5b, and the solid black lines represent the primordial binaries
in M4r5b. The fainter lines denote the corresponding distributions in individual simulations. The distributions are different for all four parameters; we note that
the cumulative distributions for dynamical binaries in M4r5b always lie between the cumulative distributions for primordial binaries and M4r5s.

primarily though single–single interactions, the resultant systems are
more likely to have large primary masses, wide separations, small
mass ratios, and large eccentricities as seen in Fig. 13. When binaries
can be formed through single–binary or higher order interactions,
more complicated outcomes occur. High-mass primaries are still
favoured, but systems with lower primary masses and high total mass
(i.e. high-mass ratio) are also likely to be involved in a dynamical
encounter. During higher order encounters, the rule of thumb is
that the lowest mass object involved in the encounter is ejected and
replaced with a higher mass object (Sigurdsson & Phinney 1993).
Therefore, we might expect that dynamical encounters would tend
to shift the mass ratio distribution towards larger values: the ejection
of the lowest mass object would result in an increase of a system’s
mass ratio following each higher order encounter. What we see in our
simulations is that the systems which lose their original companion
and later gain another one are typically high-mass systems with
comparatively very small companions at large semimajor axes, as
shown in Fig. 14. These systems tend to replace their original
companion by a lower mass one, which goes against our expectations
for higher order encounters. However, we see evidence that some of
these weakly bound binaries are broken up very soon after formation:
some primaries lose their original companion within the first 0.1 Myr
after they are formed. The massive primary then essentially acts like

a single star, capturing low-mass single stars on wide eccentric orbits,
or exchanging into a lower mass binary system.

We also create new binaries from primaries which were originally
single stars. Those primaries also have slightly higher masses than
the underlying population, and become binaries by capturing a lower
mass single star or exchanging into a binary system. Tighter binary
systems with smaller semimajor axes can be created through these
exchange encounters than in the single-single case, and the extreme
eccentricities that come from the near-parabolic encounters are not
necessary when one of the original systems is already a binary.

5 SUMMARY AND DI SCUSSI ON

5.1 Summary

We implement primordial binaries in the coupled MHD and direct
N-body code TORCH (Wall et al. 2019), which couples FLASH (Fryxell
et al. 2000) with the N-body code PH4 (McMillan et al. 2012) and
the stellar evolution code SEBA (Portegies Zwart & Verbunt 1996)
via the AMUSE framework (Portegies Zwart & McMillan 2019). We
develop an algorithm to generate a population of binaries with mass-
dependent binary fractions, periods, mass ratios and eccentricities.
We also modify the star formation routine in TORCH to force the
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4476 C. Cournoyer-Cloutier et al.

Figure 14. Cumulative distributions of primary masses, mass ratios, semimajor axes, and eccentricities for surviving, modified and new binary systems in
M4r5b. The solid green lines represent the 341 systems formed dynamically with new primaries in M4r5b, the solid magenta and orange lines represent the 66
systems where the primary changed companions respectively when they are formed and at the end of M4r5b, and the solid cyan lines represent the surviving
systems in M4r5b. The fainter lines denote the corresponding distributions in individual simulations. The distributions are all different except for the primary
mass distribution, which is by definition the same for the modified systems when they are formed and at the end of the simulation.

concurrent formation of the stars in a binary system. As an ansatz,
we use the field distribution as our initial population of binaries. We
perform 15 simulations; after the initial onset of star formation in
each simulation, we see continuous and increasing star formation.
Nine of our simulations include a population of primordial binaries,
introduced following an extensive set of prescriptions. We follow
the dynamical evolution of the binary population, and characterize
it at the end of the simulations, 1.2–2 Myr after the onset of star
formation. These first results suggest that concurrently modelling
gas, stellar dynamics and binary systems during the earliest stages
of star cluster formation is important, as binary systems are already
being modified.

We investigate the impact of dynamical interactions during cluster
formation on the primordial population of binaries. Our results
indicate that dynamical interactions cause small but statistically
significant changes in the distributions of binaries’ primary masses,
mass ratios, semimajor axes and eccentricities for systems above the
q ≥ 0.1 detection limit. We note that if we consider the full binary
population (i.e. if we also consider systems with mass ratios q < 0.1),
the differences in the distributions of primary masses and mass ratios
are not obvious. We also find that primordial binaries are needed at all
primary masses to reproduce the observed binary fraction above the
q ≥ 0.1 detection limit. We argue that the distinction between the full
binary population and the subset of observable systems is important,
as observations are incomplete for q < 0.1 and considering only the
systems with q ≥ 0.1 significantly affects our conclusions. We find
that all our conclusions are robust to a change in spatial resolution
by a factor of 2.

We observe both dynamical formation and destruction of binary
systems in M4b, which includes an initial population of binaries.
In these simulations, we see that systems formed dynamically do
not have the same properties as primordial systems, and more
importantly, that systems formed dynamically in M4b do not have the
same properties as those formed in M4s, which includes only single
stars initially. The cumulative distributions of primary masses, mass
ratios, semimajor axes, and eccentricities formed dynamically inM4b
lie between the primordial distribution and the distribution resulting
from pure dynamical formation in M4s. The presence of an initial
population of binary stars has a significant impact on the subsequent
binary properties in the star cluster. We find that systems with higher
primary masses, lower mass ratios, larger semimajor axes, and larger
eccentricities are preferentially formed dynamically. We also find

that systems with higher primary masses, smaller mass ratios, and
larger semimajor axes are preferentially destroyed or modified by
dynamical interactions. Globally, dynamical evolution of a field-like
primordial population favours systems with smaller primary masses,
larger mass ratios, smaller semimajor axes, and larger eccentricities.
Most importantly, our results demonstrate that even in the earliest
stages of cluster formation, when there is still a significant amount
of gas and active star formation, dynamical interactions modify the
binary population.

5.2 Discussion

These simulations indicate that dynamical interactions in embedded
clusters modify the properties of the primordial distribution of
binaries by forming and destroying systems, but do not modify the
mass-dependent binary fraction. We emphasize that our simulations
model the earliest stages of star cluster formation, and thus that
we are probing those dynamical interactions that act on the binary
systems on short time-scales. Our analysis is conducted 1.2–2 Myr
after the onset of star formation, while there is still active star
formation and there has been very little feedback from the stars.
Furthermore, protostellar outflows, which we do not include, play a
role in regulating star formation efficiency in low-mass star-forming
regions (Matzner & McKee 2000). With protostellar outflows, fewer
stars would be formed during the earliest stages of cluster formation,
and thus dynamical interactions between these stars would likely
have a smaller impact on the properties of the binary distribution.
Magnetic fields, which are absent from our simulations, also par-
ticipate in the regulation of star formation (Price & Bate 2008).
Gas dynamical friction, which acts on scales smaller than our gas
spatial resolution, may be a channel for the formation of short-period
binaries with circular orbits (Gorti & Bhatt 1996; Stahler 2010). Its
absence may play a part in driving the shift towards larger semimajor
axes and eccentricities. Our simulations were also conducted with
a single choice for the initial gas properties (total mass, initial size
of the cloud, etc.). Additional simulations are needed to determine
whether the global gas properties play a significant role in modifying
the population of binary stars.

The next steps are to investigate the impact of an initial magnetic
field on the evolution of an initial population of binaries, as well
as the impact of stellar winds. Massive stars will have a significant
impact on the forming cluster: they interact gravitationally with other
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stars and deplete the supply of cold molecular gas available for star
formation by heating it and ejecting it from the cluster.

In future work, we will alter our assumed primordial binary
distribution to empirically determine what distribution leads to the
field binary distribution observed after dynamical interactions in the
embedded cluster. An important feature of the dynamical evolution
appears to be the destruction of systems with massive primaries, or
the replacement of the observable companion by a companion with
q < 0.1 in such systems. Our altered distribution should therefore
favour the retention of the original companion in systems with mas-
sive primaries, which could be done by assuming smaller semimajor
axes. This would be expected for primordial binaries forming from
the fragmentation of a single core. In addition, primordial binaries
with mass ratios q < 0.1 likely do form primordially and may have a
dynamically interesting effect on the binary populations. Similarly,
our primordial binary population is based on the full distributions
of parameters for observed primary-companion pairs in the field:
the distributions include mass ratios and semimajor axes from the
outer components of triples and higher order systems. Such systems
are ubiquitous at high masses but the outer components are likely
to have small mass ratios and large semimajor axes. An avenue to
explore for our altered distribution would be to use distributions
derived exclusively from only binaries and the inner components of
hierarchical systems. It is likely some of the systems detected in our
simulations are dynamically formed stable triples or higher order
systems, which we will also address in future work.
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