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ABSTRACT
We demonstrate the power of Gibbs point process models from the spatial statistics literature when applied to studies of resolved
galaxies. We conduct a rigorous analysis of the spatial distributions of objects in the star formation complexes of M33, including
giant molecular clouds (GMCs) and young stellar cluster candidates (YSCCs). We choose a hierarchical model structure from
GMCs to YSCCs based on the natural formation hierarchy between them. This approach circumvents the limitations of the
empirical two-point correlation function analysis by naturally accounting for the inhomogeneity present in the distribution of
YSCCs. We also investigate the effects of GMCs’ properties on their spatial distributions. We confirm that the distribution of
GMCs and YSCCs are highly correlated. We found that the spatial distributions of YSCCs reaches a peak of clustering pattern
at ∼250 pc scale compared to a Poisson process. This clustering mainly occurs in regions where the galactocentric distance
�4.5 kpc. Furthermore, the galactocentric distance of GMCs and their mass have strong positive effects on the correlation
strength between GMCs and YSCCs. We outline some possible implications of these findings for our understanding of the
cluster formation process.

Key words: methods: statistical – galaxies: individual: M33 – galaxies: ISM – galaxies: star clusters: general – galaxies: star
formation.

1 IN T RO D U C T I O N

The spatial distributions of star clusters (SCs) and giant molecular
clouds (GMCs), as well as their spatial relationships, provide crucial
information in understanding the star formation process. Star forma-
tion is generally considered to take place within GMCs (Kennicutt
& Evans 2011). The distribution of star formation is understood to
be resulting from GMC fragmentation (Carlberg & Pudritz 1990;
McLaughlin & Pudritz 1996), under the influence of gas collapse
under immense gravitational effects (Vega, Sánchez & Combes 1996;
Kuznetsova, Hartmann & Ballesteros-Paredes 2018), turbulence in
local environment (Elmegreen & Scalo 2004; Federrath, Klessen &
Schmidt 2009; Girichidis et al. 2012; Hopkins, Narayanan & Murray
2013; Guszejnov, Hopkins & Krumholz 2017) or feedback processes
that suppress the star formation (Krumholz 2014).

Investigating the spatial distribution of SCs provides a sensitive
and direct observational signature of the star formation process
(Grasha et al. 2019). However, it is not well understood to what
extent the galactic environment, locally and globally, influences the
evolution of SCs (Grasha et al. 2019). Understanding and measuring
the spatial distribution is then a crucial task. One current method used
in understanding this distribution is called the two-point correlation
function (2PCF) in astronomical literature (Peebles 1980) or the pair
correlation function (PCF) in spatial statistics literature (Baddeley,
Rubak & Turner 2015). It measures the excess probability of finding
two objects at a certain distance away compared to that for a
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completely random Poisson distribution of objects. The 2PCF was
first derived by Peebles (1980) for use in studying the large scale
structure of the Universe. In the spatial statistics literature (Cressie
& Wikle 2011; Baddeley et al. 2015), it took up the name pair
correlation function (PCF) due to its origin in statistical mechanics
for studying the distributional structure of molecules in complex N-
body systems. The two functions are exactly the same except for
different normalizing conventions. In this paper, the terms will be
used interchangeably depending on the context.

As noted in both the spatial statistics and astronomy literature
(Peebles 1980, 2001; Møller & Waagepetersen 2003; Baddeley et al.
2015), a crucial assumption on the validity of the 2PCF is that the
point pattern has to be homogeneous and stationary. Homogeneous
here means the projected number density of the point pattern is
constant in all regions and stationary means the point pattern is
translation invariant, i.e. the distribution of the point pattern does
not change as the position of the observational reference point is
shifted. Stationarity implies homogeneity: in fact homogeneity can
be regarded as first-order stationarity, i.e. the chance of individual
points occurring does not change as one shifts location. Second-
order stationary means that the relationship between pair of points
does not depend on the absolute positions of the points but only on
their relative positions. This assumption is generally assumed for
most point patterns analysed. For analysing the large scale structure
of the Universe, there has been accumulating evidence supporting
the claims of homogeneity and stationarity (Peebles 1993; Davis,
Miller & White 1997; Peebles 2001) of the galaxy distribution on
the scales of 10 ∼ 200h−1Mpc. Therefore, the application of 2PCF
in this context is justified.

C© 2020 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/501/3/3472/6043231 by guest on 20 April 2024

http://orcid.org/0000-0002-5478-3966
http://orcid.org/0000-0003-2767-0090
mailto:dayi.li@mail.utoronto.ca


Point process model of M33 star clusters 3473

When the assumption of homogeneity is violated, i.e. when there is
evidence of inhomogeneity, empirical 2PCF/PCF is no longer a valid
tool for interpoint interaction analysis. It is important to highlight
the subtle difference between the effect from inhomogeneity and the
interpoint interaction. Inhomogeneity, usually arising from external
effects, exerts its influence on the occurrence of a point independently
of another point. We can think of this as a ‘fertility’ effect (Baddeley
et al. 2015), i.e. how much resource there is in a certain region
to produce one point. The interpoint interaction, however, is the
influence exerted from the occurrence of a point to another point, i.e.
there exists a notion of dependence structure. We can think of this
as competition of resources in the case of inhibition or triggering of
occurrences of multiple points in the case of clustering (Baddeley
et al. 2015). Therefore, excluding the effects of inhomogeneity can
lead to drastic differences in conclusions from a fitted 2PCF.

In the context of stellar population studies, the aim of 2PCF is
to measure the interpoint interaction effect. This means that the
violation of homogeneity can lead to drastically different conclusions
from the fitted 2PCF. For example, projected mass and star cluster
number density distributions in galaxies decline with galactocentric
distance. Fitting an empirical 2PCF/PCF to the star cluster distri-
bution without considering this confounding factor is unlikely to
provide an unbiased estimate of the actual distribution pattern of SCs
since they are already exhibiting a clustering pattern. To account for
inhomogeneity from external effects is problematic if 2PCF is the
only tool we have. For our data, there is no numerical measurement
of inhomogeneous external effects so that we can eliminate them and
refit the 2PCF.

Recently, the empirical 2PCF and its variant have been applied
to analyse the spatial distribution of SCs by Grasha et al. (2015,
2017, 2019), Corbelli et al. (2017). However, due to the limitations
of 2PCF in dealing with highly inhomogeneous point pattern such
as SCs, the questions that these previous studies are able to answer
are limited and the obtained conclusions can be potentially biased.
In their studies of star cluster spatial distributions, Corbelli et al.
(2017) and Grasha et al. (2019) attempted to address the issue of
inhomogeneity due to the large scale variation in number density
across the galaxy disc, but used a method that is rather ad-hoc
and prone to information loss. They chose to separate the galactic
plane into several annuli encompassing the galaxy centre so that
the large scale variation could be regarded as homogeneous in
each region. However, there is no guarantee that the distribution
of points in each region is homogeneous since there might also exist
local inhomogeneity. Grouping the data also introduces information
loss since information on a continuous space is cut into several
non-communicating subspaces. Another limitation of 2PCF is its
restriction on investigating how the properties of SCs and GMCs
affect their spatial relationships. Grasha et al. (2015, 2017, 2019)
investigated the effect of age and mass on the clustering strength
of SCs. The data have to be grouped by age and mass to provide
an analysis from the 2PCF. This grouping of data loses significant
amount of information since a continuous variable is reduced to a
categorical variable.

Building on these previous studies, we introduce a parametric
modelling approach – Gibbs point process (Ripley & Kelly 1977;
Baddeley et al. 2015) – to circumvent the limitations of 2PCF
and analyse the spatial structure of SCs in M33. GPP models are
ubiquitous for modelling point patterns where interpoint interaction
is considered. Originating from statistical physics, these models
were first employed to study the behaviour of physical systems with
massive numbers of interacting particles exhibiting a complex depen-
dence structure. The first type of such a model is the famous Boltz-

mann distribution. Subsequently, the Ising model (Ising 1925) was
developed for studying the magnetic dipole moments of atomic spins.

Through the GPP framework, we conduct a rigorous and
integrated analysis of the spatial distributions of objects in
the star formation complexes of the nearby galaxy M33 while
simultaneously accounting for inhomogeneity effect and interpoint
interaction. We adopt a hierarchical model structure to capture the
natural formation hierarchy between GMCs and YSCCs. We also
analyse how properties of the objects affect their spatial distributions
without any information loss.

The paper is organized as follows: Section 2 provides an intro-
duction to point process theory, the GPP model, and its meaningful
construction. Section 3 contains a brief introduction to the data and
the GPP models constructed as well as preliminary validation tests of
the models. Section 4 includes the results of fitted models as well as
model criticism. Section 5 provides a discussion on the comparison
of our results to previous studies and potential physical implications
from fitted models. Section 6 gives the summary.

2 BAC K G RO U N D A N D M E T H O D S

2.1 Spatial point processes

Spatial point process modelling concerns the study of the locations
of the occurrence of random objects or events (Daley & Vere-Jones
2003; Baddeley 2007; Cressie & Wikle 2011; Baddeley et al. 2015).
In this section, we only provide a brief introduction to the theory
of point processes and the construction of Gibbs point processes.
Readers interested in an introductory yet complete overview of the
topic can refer to Baddeley (2007), Baddeley et al. (2015). A rigorous
mathematical treatment on the subject through measure theoretic
probability is given by Daley & Vere-Jones (2003, 2008).

Given an observation window S ⊂ Rd , where d is 2 in our case, a
point process X is a simple (no two points are coincidental) counting
process, where its realization/configuration is x = {x1, x2, ..., xn} ⊂
S. xi denotes the coordinate of the i-th point in x. n(X), the number of
points in X, is a random variable taking non-negative integer values.
We only concern ourselves with the case n(X) < ∞. We then also
call X a finite point process.

The most fundamental spatial point process is the Poisson point
process (PPP) which represents complete spatial randomness. The
analysis of all other point patterns is taken with respect to PPP. A
PPP in S is characterized solely by an intensity (number density)
function λ(s) ≥ 0 satisfying the condition

∫
Aλ(s)ds < ∞ for any

A⊂S. It is important to note the difference between a probability
density function and the intensity function in that the latter specifies
on average how many points there are in a given region. Although
related, the two concepts are fundamentally different. A PPP with
intensity λ(s) will on average have

∫
Aλ(s)ds points in any region

A⊂S. However, a probability density p(s) defined on S means the
fraction of points occurring in A out of all points in S is

∫
Ap(s)ds. If

λ(s) ≡ λ, i.e. the intensity is constant in S, then the point process is
a homogeneous PPP (hPPP). A hPPP with λ = 1 is called a unit-rate
Poisson point process.

A PPP, X, on S with intensity λ(s) is equipped with a probability
density function (Daley & Vere-Jones 2003; Baddeley 2007; Badde-
ley et al. 2015):

f (x) = exp

(
|S| −

∫
S

λ(s)ds

) n(x)∏
i=1

λ(xi), (1)

where |S| denotes the area of S.
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A generic point process X does not have a probability density
function on its own (Baddeley 2007) and equation (1) in fact is a
probability density function with respect to a unit-rate PPP. In this
sense, a unit-rate PPP serves as a reference point for all other point
processes to be defined. If a point process X satisfies certain necessary
conditions (Daley & Vere-Jones 2003; Baddeley 2007), it will then
be equipped with a probability density function f (x) with respect to
a unit-rate PPP and the following equation holds:

P(X ∈ F ) =
∞∑

n=0

e−|S|

n!

∫
S

. . .

∫
S

1 [{x1, . . . , xn} ∈ F ]

× f ({x1, . . . , xn}) dx1 . . . dx2. (2)

Equation (2) represents the probability that X will have configuration
x = {x1, x2, ..., xn} such that x ∈ F with respect to a unit-rate PPP,
where F here is a set of possible configurations.

2.2 Intensity measures of point processes

Intensity measures of a point process are fundamental in character-
izing the structure within the process. As noted in Section 2.1, a
PPP is defined by an intensity function λ(s). This corresponds to the
first-order intensity measure μ(A) of a more general point process X
which is defined as

μ(A) =
∫

A

λ(s)ds, (3)

for any A⊂S. Similar to the case of PPP, μ(A) specifies how many
points there are within region A on average. For point processes
other than PPP, there are also higher order intensity measures. Higher
order intensity measures are not considered for PPP since they are
identically one, representing the idea of independence of occurrence
between points. The most important higher order intensity measure
is the second-order intensity measure which quantifies the number of
pairs of points in any region. Let B ⊂ Rd × Rd be a bivariate product
space and let α(2)(B) be the number of distinct pairs of points from
X within B, then the second-order intensity measure, λ(2)(x, y) ≥ 0,
is defined as (Møller & Waagepetersen 2003)

α(2)(B) =
∫

B

λ(2)(x, y)dxdy. (4)

If λ(2)(x, y) is well-defined, then we can subsequently define the PCF
g(x, y) as (Møller & Waagepetersen 2003)

g(x, y) = λ(2)(x, y)

λ(x)λ(y)
. (5)

If we assume further that the point process is second-order stationary,
we then have

g(x, y) = ρ(||x − y||), (6)

for some non-negative function ρ and || · || being a metric such as
the Euclidean distance.

If g(x, y) ≡ 1, then X corresponds to the behaviour of a PPP. If
g(x, y) > 1, then it means the point pattern is clustered/aggregated
compared to a PPP at position x and y. If g(x, y) < 1, then it represents
a repulsive/inhibitive pattern compared to a PPP.

From equation (5), it is clear the PCF depends on the first-order
intensity λ(s). This is a crucial mathematical demonstration of how
inhomogeneity not being accounted for properly can lead to problem-
atic conclusions from the empirical PCF/2PCF. The empirical PCF
is generally different from the theoretical PCF given by equation (5)
in that the empirical PCF is obtained by assuming the underlying

point process is homogeneous, i.e. λ(s) is constant. However, this is
rarely the case for point patterns comprised of SCs due to their highly
inhomogeneous distribution across the galaxy disc, e.g. decreasing
projected density (intensity) with galactocentric distance.

2.3 Gibbs point process

Assuming that a point process X satisfies n(X) < ∞, then it is a
finite Gibbs point process if it has probability density f(·) in the sense
of equation (2), such that f(·) can be written as (Baddeley 2007;
Baddeley et al. 2015):

f (x) = exp

⎛
⎝V0 +

∑
x∈x

V1(x) +
∑

{x,y}⊂x

V2(x, y) + . . .

⎞
⎠ , (7)

where x, y are distinct points in x. Vk is called the k -th order potential.
Potentials of order >2 are generally termed higher order potentials.

From equation (1), for a hPPP with intensity λ, V0 = |S|(1 −
λ), exp(V1(x)) = λ, ∀x ∈ x, and Vk = 0, ∀k ≥ 2. In fact, for any
PPP, the second-order and all higher order potentials vanish. This
corresponds to the feature of PPP that there exists no interpoint
interaction between points. The first-order potential is the ‘fertility’
effect mentioned earlier and it is used to characterize the external
inhomogeneous effects, such as covariates, on the intensity of the
point process, while potentials with order k ≥ 2 together characterize
the dependence structure within a point process.

2.3.1 Pairwise-interaction process

In many practical applications, higher order potentials are set to zero
for simplicity and the dependence structure within the point process
is solely characterized by the second-order potential. In this case,
the GPP model reduces to the so-called pairwise-interaction process
(Baddeley 2007; Baddeley et al. 2015), and it is this model framework
that we will adopt in this paper.

A pairwise-interaction process will then have probability density
function

f (x) = exp

⎛
⎝V0 +

∑
x∈x

V1(x) +
∑

{x,y}⊂x

V2(x, y)

⎞
⎠ (8)

with respect to a unit-rate PPP. Equation (8) is also called the
canonical form. After reparametrization, the canonical form can also
be written as

f (x) = α
∏
x∈x

λ(x)
∏

{x,y}⊂x

φ(x, y), (9)

where α = exp (V0), λ(x) = exp (V1(x)), and φ(x, y) = exp (V2(x, y)).
The main task of modelling is then to specify the structure of λ(x)

and φ(x, y) based on the behaviour of the data. This means that for
most models, V0 or α is unknown, i.e. the part of probability density
that we can work with is the unnormalized density h(x) = f (x)/α.

As mentioned, φ(x, y) characterizes the interpoint interaction.
However, φ also has close ties with the 2PCF/PCF. If we assume
that the first-order potential or λ(x) is constant, i.e. the point process
is homogeneous, then φ(x, y) is also a parametric representation of the
2PCF/PCF of the point pattern (Goldstein et al. 2014). In this case,
one can simply obtain a fitted empirical PCF and choose a parametric
form of φ(x, y) accordingly. However, this does not equate to saying
that the PCF is the same as φ(x, y), only that φ(x, y) will closely
resemble the structure of the PCF. Notably, the empirical PCF can
no longer be used to inform our decision in choosing φ(x, y) since
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the two are no longer quantitative counterparts due to the first-order
inhomogeneity.

In practice, it is generally assumed that the point pattern analysed
is second-order stationary unless there is clear evidence to suggest
otherwise. Similar to the case of PCF, second-order stationarity
implies that

V2(x, y) = h(||x − y||), ∀x, y ∈ x (10)

for some function h(·). || · || is the standard Euclidean metric. In this
paper, we assume our point pattern is stationary.

There are infinitely many ways to construct GPP models. However,
well-defined construction is not arbitrary as the constructed model
needs to satisfy certain stability criteria, namely local stability and
Ruelle stability (Møller & Waagepetersen 2003; Baddeley 2007;
Baddeley et al. 2015). These criteria are needed to ensure the exis-
tence of the probability density function of GPP models. Interested
readers can refer to the aforementioned references for details or
Appendix A for a self-contained introduction.

For conducting inference of GPP models, one needs to be able
to simulate a point pattern based on a specified GPP model. This
is generally done through the Birth–Death Metropolis–Hastings
algorithm (Geyer & Møller 1994). For inference algorithms, there
are many different approaches one could choose from based on
the inference paradigms (maximum-likelihood estimation/Bayesian
inference). We provide the details of these algorithms in
Appendix B.

2.3.2 Bivariate and hierarchical processes

If the point patterns considered consist of multiple types of points,
such GMCs and YSCCs in our case, and we are interested in
how they interact/correlate with each other, then a bivariate point
process should then be considered. Here we give a brief outline
for the bivariate point process under the framework of GPP. For
simplicity, we only restrict our scope under the assumption of
pairwise interaction.

Suppose two point processes, XA and XB , form a bivariate
Gibbs point process (Isham 1984), assuming the functional form
of equation (9), then it has the following joint probability density
function

f (xA, xB ) = αλ
n(xA)
A λ

n(xB )
B φA(xA)φB (xB )φAB (xA, xB ). (11)

Here we assume both point processes are homogeneous and the
notations are abbreviated to save space. λA, λB control the first-order
potential, φA(xA), φB (xB ) characterize the intra-type interaction in
xA, xB , respectively. The extra term φAB (xA, xB ) denotes the inter-
type interaction/correlation between the points of xA, xB . Similar to
the relationship between the empirical 2PCF/PCF of xA and φA(xA),
φAB (xA, xB ) also has an empirical counterpart in that it represents
the cross-type 2PCF/PCF (Baddeley et al. 2015) between xA and xB .
The cross-type PCF is a generalization of the PCF in that it measures
the ratio of the probability of observing a point in the first type at r
distance away from a point in the second type to that of a case where
the two are uncorrelated.

If further information is available that there exists a form of
hierarchy between two types of points, i.e. one type takes precedence
over another, then it is more appropriate to consider a hierarchical
structure between the two processes through conditional probability
density.

The bivariate hierarchical Gibbs point process was first considered
by H”ogmander & Särkkä (1999) to analyse the point patterns of the

nests of two species of ants. However, one species of ants exhibit
ecological dominance over the other. In this scenario where there
is a natural order or asymmetry between types of points, it is no
longer appropriate to formulate the model through the bivariate
point process. H”ogmander & Särkkä (1999) then proposed a
hierarchical point process through conditional probability argument.
First, they define the process that takes precedence, XA, as a high-
level univariate GPP:

f (xA) = αAλ
n(xA)
A φ(xA). (12)

Then they define the low-level process, XB , as a conditional process
given the configuration of xA:

fxA
(xB ) = αB (xA)λn(xB )

B φB (xB )φAB (xA, xB ). (13)

The difference between the formulation of equations (11) and
(13) is subtle but the philosophy behind the model construction is
fundamentally different. This also leads to different approaches for
model fitting. To fit a bivariate point process, xA, xB are considered
simultaneously. For the hierarchical point process, one has to fit the
model for the high-level process first, then treat xA as given when
fitting the model for xB . However, if xA is not the main study interest,
fitting a single model on xB is also possible by simply treating
the pattern of xA as a fixed underlying structure. Importantly, the
hierarchical structure does not mean xA does not depend on xB , only
that the dependence of xA on xB is not specified explicitly (Baddeley
et al. 2015).

We consider this hierarchical structure due to the natural formation
hierarchy present between GMCs and YSCCs. Since there is a
reasonable amount of evidence to suggest that YSCCs are born
out of GMCs (Carlberg & Pudritz 1990; McLaughlin & Pudritz
1996; Grasha et al. 2019), we assume the formation of GMCs takes
precedence before YSCCs.

3 DATA A N D M O D E L C O N S T RU C T I O N

We choose M33 for our analysis since it is one of the few low-
inclination galaxies with a relatively complete catalogue of GMCs.
Three sets of data are used in the analysis: maps of the CO filament
structure, observations of GMCs, and observations of YSCCs. We
include the CO filament structure since we want to investigate how it
can potentially affect the distribution of YSCCs. The IRAM 30-
m observations of CO(2-1) emission were published by Druard
et al. (2014). The CO filamentary structure was obtained1 using
the method described in Koch & Rosolowsky (2015). The GMCs
are also identified by Corbelli et al. (2017) using the IRAM 30-m
observations of CO(2-1) emission in Druard et al. (2014) and the
YSCCs are identified using Spitzer 24μm observations, published
by Sharma et al. (2011), Corbelli et al. (2017). The data consist
of the positions, galactocentric distance, effective radius, velocity
dispersion, gas mass, and virial mass of 566 identified GMCs and
the positions, size, and (incomplete) estimates of age and mass of 630
identified YSCCs. We consider both confirmed and candidate young
stellar clusters (YSCs) since there are only around 400 identified
YSCs (with estimation of mass and age). Furthermore, the 630
candidate YSCs are what was analysed in Corbelli et al. (2017)
and it is appropriate for us to also use the candidates catalogue for
drawing comparison.

To account for the inclination of M33, we first carry out a
coordinate transform of the data from RA/DEC to the 2D projected

1Kindly provided by Eric Koch and Erik Rosolowsky
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Figure 1. (a) Overlay of CO filament and GMCs in M33; (b) Overlay plot of GMCs and YSCCs in M33.

Cartesian coordinates, assuming the distance to M33 is D = 840 kpc
(Bonanos et al. 2006; Magrini, Stanghellini & Villaver 2009), an
inclination of i = 53◦ (Magrini et al. 2009) and the position angle θ

= 22◦ (Magrini et al. 2009).
Fig. 1 show plots of the CO filamentary structure, GMCs,

and YSCCs in the 2D projected Cartesian coordinates. Sim-
ply from visual inspection, the GMCs and YSCCs are highly
correlated.

We construct the model for YSCCs through the hierarchical point
process framework by treating the point pattern of GMCs as given,
i.e. it is regarded as fixed. Denoting the point pattern of GMCs as xG

and the point pattern of YSCCs as xS , we follow the general form
of the model given by equation (13) and write out the likelihood

function:

fxG
(xS ; θS) = L(θS |xS ; xG)

= αS(xG)
n(xS )∏
j=1

λS(xj,S)φS(xS)
n(xG)∏
i=1

n(xS )∏
j=1

φGS(xi,G, xj,S).

(14)

Here, θS is the vector of model parameters. λS(xj, S) is the first-order
potential at the location of the j-th YSCC, φS(xS) is the second-order
potential for YSCCs, and φGS(xi, G, xj, S) is the correlation between the
i-th GMC and the j-th YSCC. αS(xG) is the unknown normalizing
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Figure 2. Exponential fit of the squared galactocentric distance.

constant dependent on the parameters and xG. We now give the
parametric structure for each term.

For the large scale distribution of YSCCs, we consider it to be
a function of the galactocentric distance. Since the general large
scale distributions of GMCs and YSCCs are both approximately
normal centred around the galaxy centre, their squared galactocentric
distance will approximately follow an exponential distribution as
shown in Fig. 2. The overlapping large scale distribution of GMCs
and YSCCs will be a lurking variable that can undermine the
investigation of the actual correlation structure between GMCs and
YSCCs. Therefore, this distribution will be accounted for in the
first-order potential term as a large scale spatial trend:

λS(xj,S) = exp
(
P2(xj,S ; p)

)
, (15)

where P2(xj,S ; p) is a second-order polynomial function of the
distance from the jth YSCC to the galactic centre. To make the
model as simple as possible, we assume the following form for P2:

P2(xS ; ρ, Rs,c) = −
(

rs,c

Rs,c

)2

+ ρ, (16)

where rs, c is the distance from YSCC xS to the galaxy centre, Rs, c

is the characteristic scale of the distribution of YSCCs in the galaxy
disc, and ρ controls the large scale intensity at the centre of the
galaxy.

For the correlation between the GMCs and YSCCs, we choose the
following parametric form:

φGS(xi,G, xj,S) = exp

⎡
⎣ψi

(
1 + r2

ij

σ 2
GS

)− 5
2
⎤
⎦ . (17)

In this model, ψ i controls the correlation strength between the i-th
GMC and all YSCCs. The greater the value of ψ i, the greater the
correlation between GMCs and YSCCs. rij is the distance between
the ith GMC and the jth YSC. σ GS is a characteristic scale parameter
controlling the correlation scale between GMCs and YSCCs. Notice
that if ψ i = 0, it then suggests that there is no correlation between
GMCs and YSCCs.

We assume the distribution of YSCCs around each YSCCs follows
a Plummer (5,2) power law (Plummer 1911; Dejonghe 1987) for
simplicity. In theory, we can also set the power of the correlation
as a free parameter to be fitted. However, doing this will drive up
the number of parameters and increases computational complexity.
Moreover, a preliminary analysis on the cross-type 2PCF/PCF (in

Figure 3. Cross-type PCF between GMCs and YSCCs; zone 1: D < 1.5 kpc;
zone 2: 1.5 kpc ≤D < 4 kpc; zone 3: D ≥ 4 kpc where D is the galactocentric
distance; d is the distance between GMC and YSCC.

log-scale) between GMCs to YSCCs shows a similar power law
shape as indicated in Fig. 3. We do this in the same fashion as in
Corbelli et al. (2017) by dividing the galaxy disc into three zones
based on the galactocentric distance (zone 1: D < 1.5 kpc; zone 2:
1.5 kpc ≤D < 4 kpc; zone 3: D ≥ 4 kpc). We also fitted a modified
Plummer (5,2) power law for each zone based on their cross-type
PCF denoted by red dotted lines in Fig. 3. We see that for zone 1
and zone 2, the power-law structure is indeed quite similar to a (5,2)
power law. However, there is significant difference for zone 3. This
is because the point pattern in zone 3 still exhibits inhomogeneous
behaviour as the cross-type PCF does not drop to unity when distance
increases. Therefore, the resulting behaviour of cross-type PCF can
be quite different from a power-law structure. However, we can
conclude that the Plummer (5,2) structure is close enough to the
actual correlation structure. The correlation scale does increase from
zone 1 to zone 3 but the difference is rather small. Furthermore,
fitting a varying correlation scale parameter is rather computationally
problematic.

Since we are considering all possible pairings between GMCs
and YSCCs, choosing the formulation described above circumvents
the problems in rudimentary analysis where YSCCs are assigned
an associated GMC by nearest neighbour distance. This elimi-
nates a potential bias introduced by wrongful nearest neighbour
assignment.

The reason we emphasize a different correlation strength param-
eter ψ i for each GMC is to facilitate an accurate and quantitative
investigation of how the properties of the GMCs affect the correlation
between GMCs and YSCCs. With available data from Corbelli
et al. (2017), there are three properties of GMCs of interest: (1)
galactocentric distance of GMCs D, which is already shown in
Fig. 3 to have an effect on the correlation; (2) the log-mass of a
GMC log10(M/M�); (3) the log-NN distance from a GMC to the
CO filament log10(dgc). We model their effects by a simple linear-
regression-like structure:

ψi = θ0 + θDDi + θM log10(Mi/M�) + θgc log10(di,gc). (18)

When conducting model fitting, we normalize the properties’
data with respect to the mean and standard deviation. This is for
better comparison between the effects of different properties on the
correlation strength. The interpretation of the parameters is similar
to the case in a linear model. θ0 is the baseline correlation strength
between GMCs and YSCCs. It is also the average correlation between
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3478 D. Li and P. Barmby

Figure 4. Plot of φS(d) with different σ S values. φS(d) is the second-order
intensity value as a function of interpoint distance d between two YSCCs; σ S

is the characteristic scale of inhibitive structure within YSCCs.

GMCs and YSCCs if we standardize the data of each property. Other
parameters are similar to the slope parameters in a linear model.
For example, if θD > 0, then it means D has a positive effect on
the correlation between GMCs and YSCCs, i.e. GMC which has
a greater galactocentric distance is more correlated with YSCCs,
and vice versa. If θD = 0, then D does not have any effect on the
correlation.

For the second-order intensity, assuming stationarity, we employ
the following model:

φS(dkl) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 < dkl ≤ RS,

4
3

(
dkl−RS

σS

)2

×
(

1 −
(

dkl−RS√
3σS

)2
)

, RS < dkl ≤ RP ,

1, dkl > RP ,

(19)

where RP = √
3/2σS + RS . dkl is the distance between the k-th

YSCC to the l-th YSCC. σ S is a characteristic scale that determines
the range of inhibitive effect between two YSCCs. However, Rp

here is the actual parameter representing the inhibitive scale. Fig. 4
shows the shape of φS(d) with different choices of σ S. We choose
this formulation for the second-order structure since the empirical
PCF can no longer be used to determine the actual second-order
property for the YSCCs due to the obvious inhomogeneity of YSCCs
distribution.

The justifications for the choice of this form of second-order
potential are the following: (i) it is easy to implement and has guaran-
teed numerical stability. Furthermore, the second-order potential is
smooth and differentiable at all scales; (ii) YSCCs all have physical
sizes denoted by RS. If two YSCCs are at the same location, they

will eventually be identified as one YSCC, and as noted, we do not
consider cases where there exist coincidental points; (iii) at very
short scales, the distribution of YSCCs should be inhibitive since
there exists competition for the star formation fuel. Furthermore,
the stellar feedback can blow away surrounding gas in the molecular
clouds and regulate star formation rate (Chevance et al. 2019; Grasha
et al. 2019). This is also demonstrated in the simulation by Rogers
& Pittard (2013). The stellar feedback and blowouts of SCs on
their surrounding molecular gas in fact corresponds to a form of
‘competition’ for star forming resources. This means that in a small
and compact region, it is unlikely for two YSCCs to exist. Although
it might happen that two YSCCs can become gravitationally bound
with each other, the probability of observing this should be very
small. However, we need to point out that for pairwise distance
within RP, it does not mean there cannot be more than one YSCC,
rather it only means that the chance of finding two YSCCs within
this distance is less than that of a Poisson process. At larger scales,
there might still be interpoint interaction among YSCCs, however,
we cannot use the empirical PCF/2PCF to inform ourselves as to what
type of behaviour YSCCs exhibit among themselves. Therefore, we
set the pairwise interaction to one, i.e. we assume that the YSCCs
do not interact with each other at larger scale. We can then infer
their actual behaviour at larger scales from model criticism since any
discrepancy between the data and model can be easily interpreted.
This is because the model, as a reference, is a Poisson process at the
greater range.

Table 1 gives an overview of the model parameters for reference.
Before we conduct data analysis for the real data, we first need

to confirm that the constructed models are well-behaved enough so
that the inference algorithms can recover the model parameters. We
consider ten sets of simulated data from the Birth–Death Metropolis–
Hastings (BDMH; see Appendix B1) algorithm and conduct infer-
ence on the simulated data. The parameter set chosen is {Rs, c =
4.65 kpc, ρ = 0.5, θ0 = 4, θD = 0.5, θM = 0.5, θgc = 0, σ GS

= 89 pc, σ S = 54 pc}. The results are shown in Fig. 5. The figure
shows a bias-adjusted posterior distribution where the true parameter
values are subtracted from each posterior sample. The thick red line
segments denotes the 50 per cent credible intervals of bias against
the true parameters obtained through the posterior distributions while
the thin red lines are the 95 per cent credible intervals. The red circles
are the estimated posterior mean biases. The dotted black lines are
the average bias obtained from all posterior samples.

From Fig. 5, we can conclude that our procedure can indeed
recover the true parameters with reasonably good performance as
most 95 per cent credible intervals cover the true parameters. From
results obtained on simulated data, we can proceed to conduct data
analysis on the real data using the constructed model and the DMH
algorithm.

Table 1. Model parameters.

Parameters Meaning Domain

Rs, c (kpc) Characteristic scale of the large scale variation of YSCCs across the galaxy disc (0, ∞)
ρ Log-intensity of YSCCs at the centre of the galaxy R
θ0 Baseline correlation strength between GMCs and YSCCs R
θD The effect of galactocentric distance of GMCs on the correlation strength between GMCs and YSCCs R
θM The effect of mass of GMCs on the correlation strength between GMCs and YSCCs R
θgc The effect of distance from GMCs to CO filament on the correlation strength between GMCs and YSCCs R
σGS (pc) Characteristic scale of correlation between GMCs and YSCCs (0, ∞)
σ S (pc) Characteristic scale of inhibitive structure among YSCCs (0, ∞)
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Point process model of M33 star clusters 3479

Figure 5. Plot of bias-adjusted posterior samples inferred from 10 simulated data sets under parameter configuration {Rs, c = 4.65, ρ = 0.5, θ0 = 4, θD = 0.5,
θM = 0.5, θgc = 0, σGS = 89, σ S = 54}. The thick red line segments denotes the 50 per cent credible intervals of bias while the thin red lines are the 95 per cent
credible intervals. The red circles are the estimated posterior mean biases. The horizontal black solid lines are the reference baseline of zero bias. The dotted
black lines are the average bias obtained from all posterior samples.

Table 2. Crude estimate of GMC-SC model parameters.

log(R0
s,c) (kpc) ρ0 θ0

0 θ0
D θ0

M θ0
gc log(σ 0

GS ) (pc) log(σ 0
S ) (pc)

log(5) 0.8 4 0 0 0 log(76) log(100)

4 DATA A NA LY SIS AND MODEL CRITICISM

4.1 Prior setup and posterior results

To set up the Bayesian framework, ten independent chains are run
with prior distribution chosen to be N (θ0, 1002I), i.e. a multivariate
normal distribution with mean vector θ 0 and covariance matrix 1002I.
θ0 are crude estimates obtained from preliminary summary statistics
and I is the identity matrix. Table 2 provides the values chosen for
θ0. The crude estimate of R0

s,c, for example, is chosen to be 5 kpc as
observed in Fig. 2 and σ 0

GS is set as 76 pc based on the median nearest
neighbour distance from YSCCs to GMCs. The crude estimates for
other parameters such as ρ or θ0 are obtained through trial and
error by comparing the simulated data and real data. For parameters
such as θD, it is difficult to obtain a crude estimate and they are
therefore set to zero. The variance of each parameter is set to 1002 to
reflect the large uncertainty of our crude estimates. 100 000 iterations
are carried out for each chain. The parameters whose domain is
strictly positive are transformed into log-scales. For simplicity, we
set the size parameter of YSCCs RS to 10 pc which is close to
the average size of YSCCs in the data. To boost the convergence
speed, an adaptive MCMC scheme (Haario, Saksman & Tamminen
2001; Roberts & Rosenthal 2009; Rosenthal 2011) is employed,
where the proposal distribution of DMH algorithm is set to the
following:

q(θ ′|θ) ∼ N (θ, 0.1�n + 0.01D). (20)

�n is the covariance matrix of the first n values of the chain and
D is a user-defined diagonal matrix with small diagonal elements to
ensure the total covariance matrix of q(· | ·) is invertible. Convergence
diagnostic plots of the DMH algorithm are given in Appendix C. We
also conducted a sensitivity analysis on the effect of changing the

crude estimates for the prior distributions and found that the change
in the resulting posterior distributions is rather minute. For example,
a change in the crude estimate of σ 0

S from 100 to 1000 pc resulted in
the posterior mean of σ S only increasing from 80 to 85 pc.

Fig. 6 provides the corner plot of the posterior distribution as well
as summary information for the posterior distribution and estimates.
We see that the characteristic scale of the YSCCs in the galactic plane,
represented by Rs, c, is ∼4.8 kpc from the centre of the galaxy. The
central intensity, ρ, controlling the galaxy-wide first-order potential
of the distribution of the YSCCs, is only about 0.7, significantly less
than θ0, the first-order potential contributed by the GMCs which is
around 4.5. The characteristic scale, σ GS, of the correlation between
GMCs and YSCCs is ∼85 pc. For the values of θD, θM, θgc, we
have scaled the properties’ data by standardizing with respect to
the standard deviation of each property. The effect of galactocentric
distance of GMCs D, represented by θD, indicates that if the distance
increases by 1 standard scale, the correlation between GMCs and
YSCCs increases by exp (0.86), while 1 standard log-scale increase
in the mass of the GMC leads to an increase in correlation strength
by about exp (0.66). The effect from the distance between GMCs
and CO filament, however, does not seem to have significant effect
on the correlation between GMCs and YSCCs. It is still interesting
that θgs has a 62 per cent chance of being negative based on the
approximate posterior distribution. In terms of the second-order
intensity, the characteristic scale σ S is ∼79 pc. Then according to the
model, this means that, on average, the interpoint interaction between
two YSCCs disappears, i.e. the point pattern becomes Poisson, once
their distance is greater than ∼105 pc. Fig. 6 shows that σ S exhibits
a bimodal distribution. This is most likely due to the choice of model
structure rather than there actually being two potential values for σ S.
Since the second-order intensity is only first-order differentiable, it
is not sufficiently smooth. It also makes no physical sense to have
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3480 D. Li and P. Barmby

Figure 6. Corner plot of the posterior distribution of the model with estimated posterior mean and 68 per cent credible intervals.

two possible values for a scale parameter. We defer the detailed
discussion of the physical implications to Section 5.

4.2 Residuals and second-order structure

For model criticism, Fig. 7 shows the intensity residuals obtained
by comparing the data and simulation from the fitted model using
200 posterior samples. The intensity residuals are analogous to the
residuals obtained from a linear model and are highly useful in
diagnosing the model fit. We do this by employing a kernel smoothing
technique to obtain a smoothed residual field with a selected kernel
centred at each point. The theoretical background of the method
under MLE setting is provided in Baddeley et al. (2005). Since we
are adopting a Bayesian approach, we will implement the method as
specified in Leininger & Gelfand (2017).

The continuous map of residuals is computed using a 400 × 400
grid using the package SPATSTAT (Baddeley et al. 2015) in R (R
Core Team 2018). A Gaussian density is used as the smoothing

kernel. For bandwidth selection, we found that a bandwidth of
approximately 420 pc to be a reasonably good choice through cross-
validation. Fig. 7(a) shows the mean posterior predictive residuals
for the intensity. In general, the residuals are close to 2D white noise
across the observation window, indicating a reasonably good fit of
the model to data. Fig. 7(b) shows the 95 per cent pointwise credible
intervals coverage. It shows that the intensity residuals are indeed
close to zero in most region of the observation window, confirming
a reasonable fit of the model to data. The consistent overestimation
in the corner regions of the observation window should be ignored
as there are no points in these regions in the data. Therefore, as
long as simulation produced points by chance in these regions, it is
unlikely that zero will not fall into the 95 per cent credible intervals of
residuals for these regions. We see from Fig. 7(b) an interesting result
in that the intensity in the outer region of the galaxy is consistently
underestimated, denoted by the large blue blocks in the plot. This
can potentially have multiple explanations and we will need other
model diagnostics to pinpoint the possible cause.
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Figure 7. (a) Residuals obtained from kernel density estimations of the intensity of data and the intensity of 200 posterior simulation. (b) 95 per cent pointwise
credible intervals coverage; dark red shows the regions where the 95 per cent credible intervals of residuals are below zero, i.e. the model consistently
overestimates the intensity; Dark blue shows the regions where the 95 per cent credible intervals of raw residuals are above zero, i.e. the model consistently
underestimates the intensity; White shows the regions where the 95 per cent credible intervals of raw residuals cover zero.

Figure 8. (a) PCF comparison between data and GMC-SC model: black line is the PCF obtained from data; red line is the estimated mean PCF under the
model obtained through 200 posterior simulation; dark red band is the pointwise 50 per cent credible intervals of the PCF at each r under the model while the
light red band is the pointwise 95 per cent credible intervals of the PCF at each r under the model. (b) cNND distribution function for YSCCs: red line is the
estimated mean cNND distribution function from 200 posterior simulations; black line is the cNND distribution function estimated from data; dark red band is
the 50 per cent credible band of the cNND distribution function for the model while the light red band is the 95 per cent credible band.

To further our diagnostics, Fig. 8 presents the empirical second-
order summary statistics of YSCCs using both the empirical PCF
and the cumulative nearest neighbour distance (cNND) distribution.
Fig. 8(a) shows the empirical PCF between the real data (black
line) and the mean PCF (red line) from the same 200 posterior
simulated data used for Fig. 7. Fig. 8(b) shows the cNND distributions
between data and model. From the plot for empirical PCF, it seems
to suggest that the model fits the data reasonably well in terms
of the second-order structure of the point pattern. As indicated in
the plot, the empirical PCF obtained from data is well within the
95 per cent credible band obtained from the posterior simulations.
However, Fig. 8(b) shows that in terms of NND distribution, the
model demonstrates a strong discrepancy with data. Fig. 8 is in fact
an illustration of how being solely dependent on PCF/2PCF may lead
to problematic conclusions. This is because PCF/2PCF is in essence
a description of the second-order structure through the aspect of

correlation between points. It unavoidably possesses a blind spot
when it comes to having a complete picture of the second-order
structure of a point pattern. NND distribution, on the other hand,
is a description of the second-order structure through the aspect of
spacing between points, which PCF/2PCF cannot effectively capture.
Therefore, a well-rounded second-order analysis through the use of
different summary statistics is a much desirable approach.

From Fig. 8(b), we see that over short ranges (r < 100 pc),
the cNND distributions of data and model match reasonably well.
However, starting from approximately 150 pc, the point pattern from
the data becomes more clustered than the model, peaking at around
250 pc with a difference of 0.1. This means, on average, a YSCC
from the data has an excess of 10 percent chance to that of the
model of finding another YSCC as its neighbour within 250 pc. This
discrepancy of clustering behaviour then declines but remains non-
zero all the way to over 600 pc.
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Figure 9. Count of points that are at least distance d away from the galactic
centre with d increasing from 0.5 to 5.5 kpc; red line and dots are the mean
count obtained from simulated data using 200 posterior samples; dark red
vertical lines are 95 per cent credible intervals of the count at each distance
of d where the count is calculated; black line is the true count at each d where
the count is calculated.

It is crucial to point out that neither the empirical PCF or the
cNND distribution presented here are obtained after correcting for
the inhomogeneity in the point pattern. However, since our goal here
is to check how well the model captures the data, it is acceptable
to employ them without correcting for inhomogeneity. However,
care should be taken regarding the interpretation of discrepancies
of the summary statistics between data and model. One detail we
need to notice is that since the inferred inhibitive range RP ≈
105 pc while the observed clustering roughly starts at ∼150 pc, the
clustering feature observed in Fig. 8(b) is indeed occurring with
respect to a Poisson structure rather than the inhibitive structure
at short range. Combining the findings from Fig. 7(b), we can
conclude that this discrepancy originates from the underestimated
blocks in the outer region of the galaxy. However, there are three
potential causes for this underestimation due to potential model
misspecification: (1) the underestimation of the large-scale inhomo-
geneity in the outer region; (2) the underestimation of the correlation
strength with GMCs; (3) second-order clustering not accounted for
by the model. We carry out further analyses in the next section
to investigate the likelihood of the three potential causes listed
above.

4.3 Goodness-of-fit for large-scale variation and GMC-YSCC
correlation

To see the general estimates of the large scale effect, Fig. 9 shows
a count comparison between the data and the model with respect
to the distance from the centre of the galaxy to its outer rim. We
do this by counting the number of points within a region distance d
away from the galaxy centre, where d ranges from 0.5 to 5.5 kpc in
0.5 kpc increments. We compare the statistics from the data to what
is obtained from simulation of 200 posterior samples. Fig. 9 shows
that the data and the model are generally in good accordance with
each other, meaning that the large scale inhomogeneity is indeed
sufficiently accounted for.

Furthermore, using the same simulated data obtained for Fig. 9, we
plotted the comparison of the NND distribution of YSCCs in annuli
encompassing the galaxy centre. The result is shown in Fig. 10.
The discrepancy between the NND distribution in each annulus is
reasonable until the annuli start to reach the outer region of the galaxy,
starting from d > 4.5 kpc. Furthermore, the median NND distance

Figure 10. 50 per cent credible intervals of nearest neighbour distances
(NND) of YSCCs grouped by distance to the galaxy centre. The red band
denotes the central 50 per cent confidence intervals of NND for each annuli
obtained from data; the red dots are the median NND from data; the blue
band denotes the central 50 per cent credible intervals of NND for each
annuli obtained from 200 posterior simulations; the blue triangles are the
median NND from the 200 posterior simulations.

of YSCCs in the outer region are generally close to 250 pc, which
corresponds exactly to the distance at which the peak of discrepancy
is reached in the cNND distribution in Fig. 8.

The conclusion we can obtain from Figs 9 and 10 is the following:
the underestimation of the overall intensity in the outer region is not
due to mis-specification of the large-scale intensity variation. Rather
it is because that points in the data group together more often than in
the model.

To determine whether this discrepancy is due to the underesti-
mation of correlation with GMCs, we present the following figures.
Fig. 11 shows an overlay of GMCs and YSCCs on top of the residuals
from Fig. 7(a). Fig. 11 shows that in the outer rim, the regions
where the intensity is consistently underestimated in fact have no
or disproportionately few GMCs in their vicinity. We determine
the vicinity by referencing the estimated characteristic scale σ GS

between GMCs and YSCCs which is only about 85 pc. We also
marked the regions with no or few GMCs in their surroundings
with ellipses for better visualization. These ellipses correspond
to the regions where intensity is consistently underestimated in
Fig. 7(b).

For a more quantitative inspection, we also plot the bivariate
density between the distance from a GMC to its nearest neighbour in
YSCCs (Rgs) against the distance from that YSCC to its nearest
neighbour in YSCCs (Rss). Fig. 12 shows that there is a huge
discrepancy between the data and the model when Rgs > 100 pc;
however, there is not much discrepancy at Rgs < 100 pc. The blue-
dashed line in the plots are the fitted least-squares line between Rgs

and Rss. For the observed data, the slope of the line is 0.06 while
it is 0.25 for the simulated data. The purple lines are fitted least-
squares lines given Rgs > 100 pc. The slope for the real data is
about 0.42 and the slope is 0.56 for the simulated data. From this,
we can determine that the point pattern in the data is in fact more
clustered than the simulated data from the model when the YSCCs
considered are far away from the GMCs. Furthermore, given that this
discrepancy occurs mainly at range Rgs > 100 pc and peaks at around
250–300 pc, we can conclude that the underestimation of intensity
of YSCCs in the outer region is not caused by the underestimation
of their correlation with GMCs. From a physical sense and from
the inferred value of σ GS, the influence of GMCs on YSCCs should
not extend to over 250 pc. Therefore, combining all the results from
previous analysis, we see that there is indeed second-order clustering
unaccounted for by the model at 250–600 pc scales and this occurs
in the outer region of the galaxy.
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Figure 11. GMCs and YSCCs overlaid on residuals between data and model; Ellipses in the plot show the regions where the intensity is underestimated by the
model and there are no/disproportionately few GMCs in the vicinity of YSCCs.

5 D ISCUSSION

5.1 First-order potential and correlation structure

The parameters governing the first-order potential provide some
very interesting insights on the star formation process in M33.
The characteristic galactocentric distance, represented by Rs, c, is
∼4.8 kpc. This coincides well with the mean of the prior distribution
for Rs, c at 5 kpc. The central intensity, ρ, controlling the galaxy-
wide first-order log-intensity of the distribution of the YSCs is only
about 0.68. This means that at the centre of the galaxy, the first-order
intensity contributed by the large-scale intensity is approximately
exp (0.69) = 1.97 kpc−2. This can be explained as approximately
2 YSCCs per kpc2 at the galaxy centre occurring not due to the
presence of GMCs, rather the general intensity variation across the
galaxy disc. This number will then drop as one moves away from the
galaxy centre. In the immediate surroundings of a GMC, the baseline
correlation strength parameter θ0, or the first-order log-intensity
contributed by an average GMC is around 4.5. This means that at
the same galactocentric distance, the increase in the intensity from a
region with no GMC to the centre of an average GMC is a walloping
exp (4.5) = 90 times. This confirms that there indeed is a strong
correlation between GMCs and YSCCs as suggested by Corbelli et al.
(2017) and it provides rigorous proof that this correlation between
GMCs and YSCCs is not simply due to the general overlapping
distribution among them across the galaxy disc. This also provides
evidence to suggest GMCs are indeed the birthplaces of YSCCs
since a correlation strength at this level is highly unlikely to be due
to random alignment between GMCs and YSCCs.

However, ρ = 0.69 does not equate to saying the overall intensity
contributed by the large scale first-order intensity is 2 YSCCs per
kpc2 at the galaxy centre. Rather, we do not know the overall intensity
as it is also governed by the second-order intensity. However, the
increase in the overall intensity from regions with no GMC to the
vicinity of an average GMC is indeed 90 times.

The characteristic scale σ GS of the correlation between GMCs and
YSCs is about 85 pc; this matches well with the median distance of
76 pc from a GMC to its nearest neighbour in YSCCs. A slightly
greater estimated value is largely due to the fact that we considered
all possible assignments of a YSCC to a GMC. It is also similar to
the general size of cloud-scale star formation complexes (�100 pc;
Chevance et al. 2019). However, compared to the correlation scale
of 17 pc obtained by Corbelli et al. (2017), the difference is
rather drastic. The reason for the drastic differences between the
two approaches are due to completely different methodologies. In
Corbelli et al. (2017), the correlation scale parameter is obtained
by utilizing the distance from a GMC to its nearest YSCC, while
our method uses distances of all GMC-YSCC pairs. It is then clear
why our estimate is drastically higher than their estimate since the
two estimates carry completely different physical meanings. As to
which method is superior, there is no definitive conclusion since two
methods are characterizing the relationship of GMCs and YSCCs
through different lenses: Corbelli et al. (2017) used nearest neighbour
distance to characterize the spatial relationship through the notion of
spacing while our method does it by describing the spatial correlation
between two point patterns. Nevertheless, a characteristic scale of
85 pc still shows a strong positive correlation between GMCs and
YSCCs. Furthermore, it also means that the correlation strength
between GMCs and YSCCs diminishes drastically as the separation
distance increases.

For the slope parameters governing the effect of GMC properties
on the correlation strength with YSCCs, we found that θD = 0.86, θM

= 0.66, and θgc = −0.05. The value of θD shows that the correlation
strength increases by exp (0.86) = 2.3 if the galactocentric distance
of GMCs increases by 1 standard scale, which is about 1.55 kpc. This
is consistent with the preliminary analysis on the cross-type PCF
between GMCs and YSCCs obtained in Fig. 3. To better compare
our results to those of Corbelli et al. (2017), we follow the procedure
described in that work and analyse the ratio between the ‘positional
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3484 D. Li and P. Barmby

Figure 12. Density contours of distance from YSCCs to nearest neighbour in
GMCs (Rgs) against the nearest neighbour distance between YSCCs (Rss); (a)
Plot obtained from real data; (b) Plot obtained from 200 posterior simulations;
The dashed blue lines are the fitted least-square lines between the two
distances; the solid purple lines are the fitted least-square lines between the
two distances given Rgs > 100 pc. The plots are in log–log scale.

correlation function’ of GMCs and YSCCs in three radial zones.
We found that the maximum increase in the ratio is around 3 when
moving from zone 1 (D < 1.5 kpc) to zone 2 (1.5 kpc ≤D < 4 kpc)
and about 2 from zone 2 to zone 3 (D ≥ 4 kpc). This is generally in
line with what we have obtained, although differences in estimates
diverge as the galactocentric distance increases. Again, this is likely
due to the completely different approach in modelling since for
simplicity, we considered the effect of galactocentric distance on the
correlation strength as linear across the galaxy disc, which could be
unrealistic. We will consider other forms of non-linear relationships
in future work.

Interpreting the physical meaning of θD is complicated since many
properties of spiral galaxies change with galactocentric distance and
could potentially affect the strength of the correlation between GMCs
and YSCCs. However, the most probable cause is the change in tidal
shear with respect to the galactocentric distance. Tidal shear due
to differential rotation will separate YSCCs and their birth GMCs
more quickly in the inner parts of galaxies. Tidal shear can also
unbind GMCs, making it more difficult for them to form clusters

in the first place, or destroy clusters after they are formed. The
interstellar radiation field and cosmic ray density also change with
galactocentric distance, but a physical mechanism that could cause
them to affect GMC-YSC correlations is not as apparent. The value
of θD can also be affected by the association of GMCs and YSCCs
with the galaxy’s spiral arms. This might be a potential lurking
variable that could influence the actual correlation between GMCs
and YSCCs as noted by Corbelli et al. (2017). We do not pursue
the modelling with spiral arm structure since that would drive up
model complexity and the model considered here already has eight
parameters.

The strong positive effect of galactocentric distance on the cor-
relation strength between GMCs and YSCCs leads us to make an
important observation. As we have already seen in Fig. 11, the outer
region of the galaxy disc has a number of groups of YSCCs. Although
we have pointed out that these groups do not have GMCs in their
immediate surroundings (<100 pc), a partial contribution to the high
value of θD could come from the fact that these YSCC groups all
appear to be within 200–500 pc of GMCs. We argue that this should
not be caused by the crowding between GMCs and YSCCs in the
spiral arms since (i) the scale of 200–500 pc is still relatively local
for spiral arms to have any significant effect on the density variations
of both GMCs and YSCCs; (ii) YSCCs need to have a birthplace
and they cannot show up out of nowhere simply because of the
presence of spiral arms. The point of this observation is that these
YSCC groups not having GMCs in their surroundings at a distance
on the order of σ GS may have important physical implications for the
formation and evolution of YSCCs, further discussed in Section 5.2.

The value of θM shows that the mass of GMCs also has a
strong positive effect on the correlation strength between GMCs
and YSCCs. Similar to the effect of the galactocentric distance, 1
standard scale (2.1 × log10(M�)) increase in the mass of a GMC can
lead to a exp (0.66) = 1.9 times increase in the correlation strength.
This also corresponds to the finding in Corbelli et al. (2017) where
they noted that 69 per cent of the high-mass GMCs (>2 × 105M�)
have a YSCC within 50 pc while only 44 per cent of low-mass GMCs
have an associated YSCC.

The distance from GMC to the CO filament structure does not seem
to have any significant effect on the correlation strength between
GMCs and YSCCs. However, as noted in Section 4, the approximate
posterior distribution of θM shows that 60 per cent of the posterior
samples are below 0. This, together with the estimated posterior mean
at −0.05, shows that as GMCs break away from the CO filament,
their correlation with the YSCCs tends to slightly decrease. This may
indicate that the star formation activity is more fervent while GMCs
are still part of the CO filament, although the effect is small.

5.2 Second-order potential

Based on the second-order potential and the results from model
criticism, we confirm that there indeed exists inhibitive behaviour
between YSCCs at short distances, as indicated by the matching
of the NND distribution at short distances in Fig. 8(b). The most
important results we found are on the YSCC clustering behaviour
in the outer region of the galaxy disc. As mentioned before, these
groups of YSCCs are not associated with any GMCs, but they are
still generally within 200–500 pc from GMCs. Several potential
explanations that may shed light on the evolution of GMCs and
YSCCs and explain the grouping behaviour are:

(i) There are undetected GMCs in the outer region of the galaxy
(ii) YSCCs in the outer regions destroyed their natal GMCs
(iii) YSCCs moved away from their natal GMCs
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First, the grouping behaviour of YSCCs in the outer region of the
galaxy can serve as evidence for the hypothesis proposed by Corbelli
et al. (2017). In their conclusion, they attributed the non-negligible
disparity in the numbers of GMCs and YSCCs in the outer region to
the presence of GMCs that are below detection limits, with some of
the excess YSCCs born from these undetected GMCs. The detection
of the grouping behaviour of YSCCs in the outer region in our
analysis can support this hypothesis. If we assume similar levels of
correlation between the undetected GMCs and YSCCs and some of
these YSCCs are still associated with undetected GMCs, then these
GMCs will strongly affect the position of the ‘unclaimed’ YSCCs
and these YSCCs will likely group around the undetected GMCs.
However, these GMCs are not present in the data due to the detection
limit. Therefore, the model cannot account for their effect on the
YSCCs, which is reflected by the grouping behaviour demonstrated
in our analysis. Furthermore, the results from Fig. 8 also seem to
point in the direction of the undetected GMCs hypothesis. The
recent study by Chevance et al. (2019) analysed the cloud-scale
star formation complexes (including GMCs and associated SCs) in
nine spiral galaxies. They found that the general mean separation
distance between individual star formation complexes is roughly
∼100–300 pc. This corresponds to a similar spatial scale to where
the peak of discrepancy occurs between NND distributions of the
data and our model as shown in Fig. 8. If these YSCCs are indeed
associated with undetected GMCs that are separated by 250 pc on
average, then this explains the discrepancy in Fig. 8.

To assess the plausibility of the hypothesis of undetected GMCs,
we turn to the original paper of Druard et al. (2014) where the GMC
observations are reported. The noise map presented in fig. 6 of Druard
et al. (2014) shows that the noise variation across the galaxy disc is
almost negligible. If we compare the region with the highest noise
level with the region with underestimated intensity in Fig. 7, the high
noise region does not have significant overlap with the blue blocks in
Fig. 7. Furthermore, the high noise region in fact has detected GMCs.
If we assume that the CO intensity from GMCs is on a similar level
in the outer region, the above comparison does not seem to support
the hypothesis of undetected GMCs.

This conclusion is consistent with the analysis of Gratier et al.
(2017), who used the Druard et al. (2014) observations together
with measurements of dust continuum and H I emission to estimate
M33’s spatially resolved gas-to-dust ratio, ‘X-factor’ between H2

and CO, and projected density of CO-dark gas. Numerous studies
have shown that M33 has a radial metallicity gradient (e.g. Cioni
2009; Magrini et al. 2010): such a gradient could affect XCO and thus
the detectability of GMCs in the outskirts of M33. However, Gratier
et al. (2017) found no evidence for radial variation in XCO or for
significant CO-dark gas in the outskirts of M33. To conclusively test
the hypothesis of undetected GMCs, targeted high sensitivity CO
observations in the outskirts of M33 are needed. The residual field in
Fig. 11 in fact gives a map which can narrow down the region for the
pointed observations: they can simply be made at the regions with
the most underestimation in the intensity of YSCCs. This is another
demonstration of the power of GPP modelling.

As demonstrated in the previous arguments, the hypothesis of
undetected GMCs does not seem to hold. In the case that the targeted
observation for undetected GMCs turn out to be unsuccessful,
other explanations are needed to explain the grouping behaviour
of YSCCs. We propose two additional hypotheses alternative to that
of undetected GMCs.

First, the grouping behaviour of YSCCs can be caused by them
destroying their natal clouds. Corbelli et al. (2017) concluded that
GMCs in M33 tend to have a very short lifetime, around 14.2 Myr.

Chevance et al. (2019) also estimated the lifetime of GMCs in nine
nearby galaxies and found that they average ∼10–30 Myr. They
found that, in general, GMCs in these galaxies spend most of their
lifetime (∼75–90 per cent) dormant but quickly disperse in ∼1–
5 Myr once the stars are formed, likely due to stellar winds. The
study of NGC 300 by Kruijssen et al. (2019) found evidence of
a rapid evolutionary cycle among GMCs and star formation, with
GMC destruction in less than 1.5 Myr by efficient stellar feedback.

A simple deduction can be made that if GMCs are of low
mass, their destruction should be even more rapid. Corbelli, Braine
& Giovanardi (2019) analysed the variation in GMC mass with
galactocentric distance and found that the mass of GMCs drops as
galactocentric distance increases. They concluded that the presence
of high mass GMCs in the inner disc of M33 (D < 3.9 kpc) is likely
due to the supersonic rotation of the disc in the inner region where the
gas is collected by the spiral arms and forms more massive clouds.
However, this is not the case beyond the co-rotation region (D >

4.7 kpc) where the much slower rotation results in low mass GMCs.
The co-rotation distance of 4.7 kpc corresponds to our observation of
grouping of YSCCs beyond 4.5 kpc, and if GMCs in the outer region
belong to the low mass class (�105M�), then a possible explanation
for the absence of GMCs might be the formation of YSCCs and their
efficient stellar feedback leading to the destruction of their low mass
natal clouds.

The rapid breakout of SCs from their natal clouds compared to
the SCs’ dispersion speed also adds to the evidence for natal cloud
destruction hypothesis. Hollyhead et al. (2015) showed that young
massive clusters in M83 generally break out of their natal clouds
around 4 Myr. Corbelli et al. (2017) also analysed the association
between GMCs and another catalogue of optically visible SCs by
Fan & de Grijs (2014) in M33. Those clusters had a wider range
of age estimates (from 5 Myr to 10 Gyr) than those considered here.
Although the correlations found between these SCs and GMCs were
much weaker than the ones found in this study, the correlations are
still stronger than those of a Poisson process. This means that the
time-scale for SCs to disperse into a Poisson-like structure is much
longer than the cloud lifetime as suggested in previous studies. This
indicates that the grouping behaviour of YSCCs in the outer region
is potentially a result of YSCCs destroying their natal clouds before
they have had time to disperse and appear Poisson-like. To test this
hypothesis, we would need age measurements of the YSCCs. Age
estimates are only available for 402 out of the 630 YSCCs with a
mean estimate at ∼5 Myr. The results for GMC dispersal time (1 ∼
5 Myr) after star formation from previous studies (Chevance et al.
2019; Kruijssen et al. 2019) imply that many GMCs might have just
been destroyed by the newly formed SCs through stellar winds. This
is even more probable if the destruction of low mass GMCs is more
rapid than ∼1–5 Myr. However, the age estimates of the YSCCs in
M33 are rather imprecise and should not be used to draw quantitative
conclusions.

Another potential process involved in the appearance of the
clustering might be that multiple YSCCs are in fact generated by the
same GMC. As these YSCCs break out and lose their association
with their original GMCs, they might have similar velocity due
to their common birthplace. Since they are all in the early stage
of their evolution, they tend to move in the same direction before
starting to disperse. Analysis by Grasha et al. (2019) suggests that
on average SCs in M51 that are not associated with any GMCs are
much older (∼50 Myr) compared to those that are associated with a
GMC (∼4 Myr). Assuming the star formation process is generally
universal, this observation can be indirect evidence to support the
hypothesis that the YSCCs in the outskirts are moving away from
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their natal clouds. This hypothesis also tends to explain the fact that
most GMCs in the outer region of M33 tend to have low mass as
well as the number disparity between GMCs and YSCCs in the outer
region. Low mass and number disparity with YSCCs are potential
indication that GMCs may have produced all of their YSCCs and are
almost at the end of their life cycle. However, to test this hypothesis,
we would need more accurate estimates of the age of YSCCs to
analyse the correlation between GMCs and YSCCs as a function of
the age of YSCCs. If the association weakens with increasing age,
this would serve as evidence in support of the hypothesis. We cannot
carry out a meaningful test for this hypothesis with available data
due to the low numerical resolution of the available age estimates:
of the 402 YSCCs with age estimates, 255 of them have the same
estimate (log (age[yr]) = 6.7) and 51 have an estimate of log (age)
= 6.8. Additionally, among these regions, the region with the largest
number of YSCCs is only 11 which is relatively small. Moreover,
there are still many YSCCs in these elliptical regions with no age
estimates: in 6 out of 14 group, around half of the YSCCs are without
an age estimate.

In conclusion, the formation of SCs may be a combination of
the processes mentioned above and further detailed study needs
to be done to paint a clear picture. Nevertheless, the results we
have obtained clearly showcase the power of GPP model in its
effectiveness and sensitivity to numerically identify detailed structure
of highly inhomogeneous point patterns. The identification of groups
of YSCCs in the outer region would not be possible using the
previous exploratory statistical tools of 2PCF/PCF and its variants,
and has led to potential new hypotheses on the evolution of stellar
populations.

6 SU M M A RY A N D F U T U R E WO R K

In this study, we found that in M33, there are:

(i) a strong positive correlation between GMCs and YSCCs
(ii) a strong positive influence of GMC galactocentric distance

and mass on the correlation strength between GMCs and YSCCs
(iii) clustering patterns of YSCCs in the outer region of the galaxy

that are not due to large scale variation or the presence of GMCs.

We introduced the Gibbs point process modelling framework to
investigate the spatial distribution of young stellar cluster candidates
and giant molecular clouds in M33. We have shown that this is
a powerful statistical modelling technique that provides rigorous
and integrated streamlined data analysis with the ability to answer
multiple interesting questions simultaneously, compared to previous
studies where methods employed are limited, fragmented, and prone
to information loss. We confirmed the remarkably strong spatial
correlation between GMCs and YSCCs and the model rigorously
demonstrated that the correlation is not due to the large scale
overlapping distributions of GMCs and YSCCs across the galaxy
disc. Furthermore, we found that the galactocentric distances and
masses of GMCs impose a strong positive effect on the correlation
strength between GMCs and YSCCs. We also showed the sensitivity
of the GPP models in the numerical measurement of point pattern
behaviour by identifying clustering patterns among YSCCs in the
outer region of the galaxy disc. This provided new evidence to
support existing scenarios and also shed new light on other possible
scenarios for the star formation process. This information would not
be available if a traditional method such as the two-point correlation
function were employed.

We see several potential directions for future work. First, it would
be interesting to model a second-order non-stationary process for SCs

since it may very well be the case that the second-order stationary
assumption for SCs is not true. We can do this by looking for
correlations between the second-order structure and the properties of
GMCs and SCs. Secondly, our approach can serve as a sensitive
validation tool for large hydrodynamic simulation of galaxies.
Parameters in the model can effectively determine the validity of
simulations in comparison to observed galaxies. This would require
obtaining model fits for a wide range of galaxies with different
morphology and physical structure and obtain a baseline distribution
for each parameter, since comparing individual real galaxies to
individual simulated galaxies provides no meaningful conclusion.
However, obtaining baseline distributions will be difficult due to
the small sample of galaxies with high quality observation of
GMCs. High quality observations of GMCs for more galaxies are
required. Lastly, we can also consider fitting the model to other
spiral galaxies and investigate how changing properties of different
galaxies affect the model parameters. This can potentially lead to new
physical insight on the star formation process in different physical
environments.
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APPENDI X A : STA BI LI TY CRI TERI A FOR G PP
M O D E L S

To construct a well-defined GPP model, crucial stability conditions
on GPP are required (Møller & Waagepetersen 2003). To provide
the definition of the stability criteria, we first need the notion of
conditional intensity of a GPP (Møller & Waagepetersen 2003;
Baddeley et al. 2015), defined as the contribution to the likelihood
when adding a point s to the existing pattern x:

λ(s, x) = f (x ∪ s)

f (x)
. (A1)

The conditional intensity is an alternative way to define a GPP
model to specifying the full probability density function. Given mild
condition (hereditary condition; Baddeley 2007) on the GPP, there is
a one-to-one correspondence between the conditional intensity and
the probability density function of GPP.

A GPP X is called Ruelle stable if there exists some positive
function φ(·) defined on S such that

∫
Sφ(s)ds < ∞ and some constant

c > 0, satisfying

f (x) ≤ c
∏
x∈x

φ(x) (A2)

for all possible configuration x. X is locally stable if the conditional
intensity satisfies

λ(s, x) ≤ φ(s). (A3)

Local stability implies Ruelle stability. Local stability prevents
massive clumping behaviour within a small region when we simulate
a GPP, hence, ensuring the existence of simulated point pattern from
a given GPP model. Ruelle stability ensures that the GPP model is
dominated by a Poisson process, i.e. the probability density function
is integrable.

A P P E N D I X B: C O M P U TAT I O N A L G O R I T H M S

B1 Birth–Death Metropolis–Hastings (BDMH) algorithm for
simulating GPP

The algorithm for simulating a GPP is a variant of the Markov chain
Monte Carlo (MCMC) algorithms (Sharma 2017) called the Birth–
Death Metropolis-Hastings (BDMH) algorithm (Geyer & Møller
1994). Given an unnormalized density h(x) of a GPP model, the
BDMH attempts to simulate a point pattern from a probability
density determined by h(x) through a Markov chain. The state of
the Markov chain at each time-step is a point pattern; we denote it
by X1, X2, ..., Xt . At each t, a point is either added (‘born’) to the
point pattern with probability pb or removed (‘dies’) from the point
pattern with probability pd = 1 − pb. If a point is to be born, it is
selected according to some arbitrary probability density b(Xt ; s) over
the observation window where s is the newly added point; If a point
is to be removed, it is selected with another arbitrary probability
density d(Xt ; s) on the existing point pattern where s is the point to
be removed. Lastly, we calculate the acceptance probability for the
proposal and determine whether it is accepted or not.

Here we illustrate the construction of BDMH algorithm for
simulating a point pattern from a GPP model. In general, let X
be a GPP with unnormalized probability density h(·). To formalize
the algorithm, let

X+ = Xt ∪ {s} (B1)

be the point pattern formed when adding s into Xt and

X− = Xt \ {s} (B2)
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be the point pattern formed when removing s from Xt . The algorithm
proceeds as in Algorithm 1.

The hyperparameters of the algorithm, such as b(Xt ; s), can have
drastic effects on the convergence of the algorithm. We here specify
our scheme for choosing hyperparameters. For simplicity, we choose
the birth move probability pb = pd = 0.5. For the birth probability
density b(Xt ; s), we set it as the following:

b(Xt ; s) ∝
(

1 + d2(s, xG)

h2

)−1

, (B3)

where d(s, xG) is the distance from a point s ∈ S to the closest
GMCs. h is a hyperparameter. The motivation behind this choice
of birth density is that majority of YSCCs in the data are very
close to GMCs. Therefore, we need to adjust the birth probability
density so that generating a point close to a GMC is reasonably
probable. Otherwise, the chain can propose points that are too
far from any GMCs, these proposals will all get rejected, and the
simulation will take a long time to converge to resemble the data.
However, there is no built in method to generate the points from
the probability density given by equation (B3), hence, we resort to
a simple rejection method and generate 200 000 points that follow
the distribution. We then select a point from this sample uniformly
for each birth proposal, and the generated point will then follow
the distribution specified by B3. The value of h is set to 0.01
based on a visual inspection of the generated sample from the birth
distribution where the points distribute in a similar fashion to that
in the data. Furthermore, there exists a normalizing constant for the
birth probability density which is required for calculating the density;
we obtain it by splitting the observation window into a 500 × 500
grid and calculate the unnormalized density value for each grid point.
We then sum up the values for all grid points as an approximation
for the normalizing constant. For the death probability density, we
let d(Xt ; s) = 1/n(Xt ), i.e. uniformly choosing a point for removal.

B2 Bayesian inference for GPP models

Inference for GPPs is generally a daunting task. Inference through
maximum-likelihood estimation (MLE) and Bayesian approaches
both exist, but MLE approaches such as the maximum pseudo-
likelihood estimation (MPLE) require the model to be in log-
linear form (Baddeley & Turner 2000) while Markov chain Monte
Carlo MLE (Geyer 1991) requires the model to have analytical
gradients and be numerically stable. These requirements are very
restrictive when formulating the model. Furthermore, we believe the
Bayesian approach is much more suitable for our purpose as future
observations and acquisition of new data embodies the concept of
information update which is naturally incorporated in the Bayesian
paradigm.

However, the standard method for Bayesian inference such as
Metropolis–Hastings (MH) algorithm is not feasible for our model.
This is because our likelihood function itself contains an un-
normalized constant α as mentioned before, which is a function
of the parameters. Several methods have been proposed to deal
with this issue. In this paper, we will adopt the method proposed
by Liang (2010) called the double Metropolis–Hastings (DMH)
algorithm which originated from the exchange algorithm by Murray,
Ghahramani & MacKay (2006).

Here we discuss some of the ideas and constructions of Markov
chain Monte Carlo algorithms for GPP models. In general, a GPP
model can be written as

f (x; θ ) = h(x|θ )

α(θ)
, (B4)

where h(x|θ) is the part (unnormalized) that we can define and α(θ )
is an intractable normalizing constant which is a function of the
parameters θ . f in this case is called a doubly intractable distribution
(Murray et al. 2006; Park & Haran 2018).

Assuming prior distribution p(θ ) and the proposal distribution
q(θ ′|θ ), the posterior distribution is then

π (θ |x) ∝ f (x|θ)p(θ). (B5)

Carrying out the standard MCMC algorithm is simple when f(·) is
known. However, for a doubly intractable distribution, the problem
arises when we calculate the Metropolis–Hastings ratio

r = f (x|θ ′)p(θ ′)q(θ |θ ′)
f (x|θ )p(θ)q(θ ′|θ )

= h(x|θ ′)p(θ ′)q(θ |θ ′)α(θ)

h(x|θ )p(θ)q(θ ′|θ )α(θ ′)
, (B6)

where the ratio

α(θ )

α(θ ′)

is unknown. This makes the acceptance ratio in a MH-update
unavailable to us and normal MCMC sampling cannot proceed.
We present some of the existing methods that deal with this issue.
The main idea of the algorithms is to simulate an auxiliary variable
to remove the unknown normalizing constant ratio and render the
inference feasible.

The first such algorithm is called the exchange algorithm, proposed
by Murray et al. (2006) and illustrated in Algorithm 2.

The exchange algorithm essentially introduces an auxiliary vari-
able y ∼ h(·|θ ′)/α(θ ′) so that the ratio between the normalizing
constants vanishes. Another way to understand the algorithm is
that the unknown ratio α(θ )/α(θ ′) is approximated by its unbiased
estimator h(y|θ)/h(y|θ ′). Surprisingly, this substitute of estimator
leads to an asymptotically exact algorithm (Murray et al. 2006; Park
& Haran 2018). The drawback, however, is that it requires y following
h(·|θ ′)/α(θ ′) perfectly to ensure the algorithm is asymptotically
exact. The perfect simulation requirement is prohibitive for most
GPP models since its construction for more complex models is
unknown or impossible (Park & Haran 2018). Liang (2010) proposed
a DMH algorithm to relax the perfect sampling restriction so that the
computation becomes feasible. The DMH algorithm is illustrated in
Algorithm 3.

The idea is to simply replace the perfect simulation of the
auxiliary variable y by a BDMH simulation of the point pattern from
h(·|θ ′)/α(θ ′). This relaxation leads to an algorithm that is asymp-
totically non-exact since BDMH can only provide an approximate
simulation of point patterns following the target distribution. This
problem can be circumvented by running the BDMH simulation
sufficiently long, usually 50 100 times the number of points in
the point pattern, to reduce the approximation error. Although this
might increase the computational burden, modern supercomputer and
multicore processing are powerful enough to render the computation
feasible. In this paper, the DMH algorithm will be used to carry out
the inference.

A P P E N D I X C : C O N V E R G E N C E D I AG N O S T I C S
O F D M H A L G O R I T H M

Fig. C1 shows the traceplots of 10 independently run MCMC chains
of 50k iterations obtained from the DMH algorithm. The plots only
show the last 20k iteration for better visualization. The Gelman–
Rubin convergence statistic (Gelman & Rubin 1992) is well below
1.001, indicating the convergence of the chains.
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Input: Initial point pattern X0, number of iterations T , birth-move probability pb, birth density b(·; ·), death density d(·; ·);
for t = 1,...,T do

Draw U ∼ unif(0, 1);
if U < pb, then

Generate s ∼ b(Xt ; s);

Calculate rb = h(X+)d(X+; s)pd

h(Xt )b(Xt ; s)pb

;

Accept X+ with probability ab = min(1, rb);
else

Select s ∼ d(Xt ; s) from Xt ;

Calculate rd = h(X−)b(X−; s)pb

h(Xt )d(Xt ; s)pd

;

Accept X− with probability ad = min(1, rd );
end

end
Algorithm 1: Birth-Death Metropolis-Hastings Algorithm

Input: Initial θ , number of iterations T ;
for t = 1, ..., T do

Propose θ ′ ∼ q(θ ′|θ );
Generate auxiliary variable y ∼ h(·|θ ′)/Z(θ ′);

Calculate r = h(x|θ ′)h(y|θ)p(θ ′)q(θ |θ ′)
h(x|θ)h(y|θ ′)p(θ)q(θ ′|θ )

;

Accept θ ′ with probability a = min(1, r);
end

Algorithm 2: Exchange Algorithm

Input: Initial θ , number of iterations T , number of iterations M

for simulating auxiliary variable through BDMH;
for t = 1, ..., T do

Propose θ ′ ∼ q(θ ′|θ );
Generate auxiliary variable y ∼ h(·|θ ′)/Z(θ ′) through
M-step BDMH algorithm;

Calculate r = h(x|θ ′)h(y|θ )p(θ ′)q(θ |θ ′)
h(x|θ)h(y|θ ′)p(θ )q(θ ′|θ )

;

Accept θ ′ with probability a = min(1, r);
end
Algorithm 3: Double Metropolis-Hastings (DMH) Algorithm

Figure C1. Traceplot of each model parameter obtained from ten MCMC runs for 100k iterations. The plot only shows the last 20k iterations for improved
visualization.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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