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ABSTRACT
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure
provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics,
and test theories of modified gravity. We detect a cross-correlation between Dark Energy Spectroscopic Instrument (DESI)-like
luminous red galaxies (LRGs) selected from DECam Legacy Survey imaging and CMB lensing maps reconstructed with the
Planck satellite at a significance of S/N = 27.2 over scales �min = 30, �max = 1000. To correct for magnification bias, we determine
the slope of the LRG cumulative magnitude function at the faint limit as s = 0.999 ± 0.015, and find corresponding corrections
of the order of a few per cent for C

κg
� , C

gg
� across the scales of interest. We fit the large-scale galaxy bias at the effective redshift

of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where
the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory
model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution;
within this error, the two methods show excellent agreement with each other and with DESI survey expectations.

Key words: cosmic background radiation – large-scale structure of Universe.

1 IN T RO D U C T I O N

Modern cosmology hinges on observations of the large-scale struc-
ture of the Universe, which is rich with clues about gravity, dark
energy, and the mechanisms of cosmic expansion. Next-generation
galaxy surveys, including spectroscopic experiments such as the
Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration
2016) and deep imaging experiments such as the Large Synoptic
Survey Telescope (LSST; LSST Science Collaboration 2009), will
map billions of galaxies in the coming decade and tighten constraints
on key fundamental parameters. While spectroscopic redshifts can
be obtained for some subset of imaged galaxies, the majority will
increasingly rely on photometric redshift estimates (see e.g. Hogg
et al. 1998 and references contained therein) or clustering-based
redshift estimates (see e.g. Newman 2008 and references contained
therein), enabling higher number density but noisier catalogues of
galaxy positions.

Measurements of the cosmic microwave background (CMB)
provide another window into the growth of large-scale structure, due
to the lensing of the CMB photons as they free stream through the
Universe and are deflected (on the order of a few arcminutes) by the
gravitational potentials of matter in their path. In the weak regime,
gravitational lensing remaps the CMB temperature and polarization
primary anisotropies in predictable ways that can be exploited to
reconstruct high-resolution maps of the projected matter density
over the past 13 billion years (Zaldarriaga & Seljak 1999; Hu &
Okamoto 2002; Lewis & Challinor 2006). Detections of this mass
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lensing signal from the CMB have been made in a number of ways,
including cross-correlations with other tracers of large-scale structure
(see e.g. Omori et al. 2019; Planck Collaboration I 2020a for recent
lists; also Krolewski et al. 2020).

CMB lensing offers the advantage of directly probing the under-
lying distribution of dark matter, but suffers from information loss
since it is a two-dimensional projection of the three-dimensional
matter density integrated along the line of sight from the surface
of last scattering z ≈ 1100 to the present day. In contrast, galaxy
samples with narrow redshift windows are relatively well localized
in position but are biased tracers of dark matter due to the complex
processes involved in galaxy formation. This leads to degeneracies
between these galaxy bias parameters and cosmological parameters
of interest such as σ 8 – with recent surveys reporting a range
of different inferences about the clustering amplitude (e.g. Troxel
et al. 2018; Hikage et al. 2019; eBOSS Collaboration 2020; Philcox
et al. 2020; Planck Collaboration VI 2020b; Tröster et al. 2020, and
references therein). Cross-correlations between CMB lensing and
galaxy catalogues thus provide a means to chart the growth of dark
matter with time and break the degeneracy between galaxy physics
and cosmology. Additionally, on a practical level, systematics in the
galaxy sample are unlikely to be correlated to systematics in the
CMB lensing maps, and a higher degree of uncertainty in the galaxy
redshift distribution can also be tolerated due to the broad redshift
kernel of the CMB lensing.

In this work, we leverage the high number density and complete-
ness of the luminous red galaxy (LRG) target class as defined by
DESI and selected from deep multiband imaging, in combination
with the all-sky CMB lensing convergence maps of the Planck
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collaboration (Planck Collaboration VIII 2020c), to detect a galaxy–
matter cross-correlation at high significance out to small scales,
�max = 1000. We jointly model the angular auto- and cross-spectra to
probe the amplitude and evolution of the galaxy bias. In the absence
of spectroscopic redshifts, we use a combination of photometric-
and clustering-based estimations of the galaxy redshift distribution.
Within a simple linear bias model Pgg(k, z) ≈ bg(z)2Pmm(k, z), the
advantage of the clustering-based method is that it allows us to
measure an effective bias without assuming a bias evolution model.
By comparing the results using photometric versus clustering redshift
distributions, we also evaluate the impact of the uncertainty in the
redshift distribution on the inferred parameters.

This paper is organized as follows: Section 2 describes the
lensing products and imaging data, and outlines the construction
of the DESI-like LRG catalogue. In Section 3, we characterize the
redshift distribution of the galaxy sample based on angular cross-
correlations with external spectroscopic catalogues, and present a
framework for probing bias evolution using these results. Section 4
outlines our methods for measuring and modelling angular power
spectra and covariances on a partial sky. Section 5 is devoted to
determining and applying corrections for the effects of magnification
bias. In Section 6, we present and model the resulting spectra,
with Section 6.1 fitting the linear Eulerian galaxy bias under the
HaloFit (Smith et al. 2003) prescription while Section 6.2 interprets
the results within a Lagrangian perturbation theory framework.
Finally, in Section 7, we summarize our findings and suggest future
directions.

Throughout, we work in comoving coordinates and assume the
fiducial cosmology of the Planck 2018 results (Planck Collaboration
VI 2020b, table 2, column 7). All magnitudes are quoted as AB
magnitudes, unless otherwise specified.

2 DATA

2.1 Planck CMB lensing maps

Using the most recent reconstructed lensing convergence maps
and analysis masks provided in the Planck 2018 release1 (Planck
Collaboration VIII 2020c), we focus mainly on the baseline estimates
obtained from the SMICA DX12 CMB maps with a minimum-
variance (MV) estimate determined from both the temperature and
polarization maps. To gauge the impact of the thermal Sunyaev–
Zeldovich (tSZ) effect, which has been shown to bias the lensing
reconstruction and contaminate cross-correlations with other tracers
of large-scale structure (see e.g. Osborne, Hanson & Doré 2014; van
Engelen et al. 2014; Madhavacheril & Hill 2018; Schaan & Ferraro
2019), we also repeat the analysis using the lensing estimate obtained
from a temperature-only SMICA map where tSZ has been depro-
jected using multifrequency component separation. Throughout the
remainder of this paper, these two lensing maps will be referred to
as BASE and DEPROJ, respectively.

The spherical harmonic coefficients of the reconstructed lensing
convergence maps are provided in HEALPIX2 (Górski et al. 2005)
format with maximum order �max = 4096, and the associated analysis
masks are given as HEALPIX maps with resolution NSIDE = 2048. The
approximate lensing noise power spectrum for the fiducial cosmol-
ogy used in Planck Collaboration VIII (2020c) is also provided up
to �max = 4096. To minimize information loss, we use the resolution

1https://wiki.cosmos.esa.int/planck-legacy-archive
2http://healpix.sf.net

of the Planck mask, NSIDE = 2048, as the resolution for our analysis.
We consider the full lensing harmonics up to �max = 4096 and do
not encounter any numerical issues associated with the noise spike
at high �, which may become more significant when attempting to
downgrade the map to lower resolution while there is significant
power at the pixel level.

2.2 Photometric DESI LRGs

The DESI (DESI Collaboration 2016) is an upcoming Stage IV3

dark energy experiment, installed on the Mayall 4-m telescope at
Kitt Peak. DESI aims to produce the largest ever three-dimensional
map of the Universe, with a massively multiplexed spectrograph that
uses robotic fibre positioners to measure as many as 5000 spectra
in parallel. Among the four main classes targeted by DESI are
LRGs out to z ≈ 1. LRGs, as their name suggests, are luminous and
intrinsically red due to their high stellar mass and lack of recent star
formation activity. LRGs are excellent tracers of large-scale structure;
as early-type galaxies with generally old populations of stars, they are
expected to reside in massive haloes and therefore cluster strongly.
Furthermore, their inherent brightness and the strong 4000 Å feature
in their spectral energy distributions enable the efficient selection of
a homogeneous sample using photometry.

2.2.1 DECaLS imaging data

The DECam Legacy Survey (DECaLS) is a deep, wide-field survey
providing the optical imaging used to conduct targeting for approxi-
mately two-thirds of the DESI footprint, covering the region bounded
by δ � 32◦. Through the DECam instrument (Flaugher et al. 2015)
on the Blanco 4-m telescope, DECaLS observes in three optical
and near-infrared (IR) bands (g, r, z), with four additional mid-IR
bands (W1, W2, W3, W4) provided by the Wide-field Infrared Survey
Explorer (WISE; Wright et al. 2010). DECam images are processed
and calibrated though the National Optical Astronomy Observatory
(NOAO) Community Pipeline, then fed into The Tractor4 (Lang,
Hogg & Mykytyn 2016), which uses forward modelling to perform
source extraction and produce probabilistic inference of source
properties.

Our analysis is based on Data Release 8 (DR8), the latest data re-
lease of the Legacy Survey (Dey et al. 2019), which contains DECaLS
observations from 2014 August through 2019 March (NOAO survey
program 0404). DR8 also includes some non-DECaLS observations
from the DECam instrument, mainly from the Dark Energy Survey
(DES; DES Collaboration 2005). In total, the DECaLS + DES
portion of DR8 covers approximately 14 996 deg2 in the g band,
15 015 deg2 in the r band, 15 130 deg2 in the z band, and 14 781 deg2

in all three optical bands jointly.5

2.2.2 Galaxy selection

DESI LRGs are selected from DECaLS by applying a complex series
of colour cuts on extinction-corrected magnitudes in g, r, z, and W1

3As defined in the Dark Energy Task Force report (Albrecht et al. 2006).
4https://github.com/dstndstn/tractor
5Estimated from using randoms distributed uniformly across the footprint to
sum up the areas with at least one exposure in each band.
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Figure 1. Colour–colour plots of the LRG target selection in DECaLS DR8,
with the colour bar representing the total number of targets.

bands:

zfibre < 21.5

r − z > 0.7

(z − W1) > 0.8 (r − z) − 0.6

((g − W1 > 2.6) AND (g − r >1.4)) OR (r − W1 > 1.8)

(r − z > (z − 16.83) 0.45) AND (r − z > (z − 13.80) 0.19).

(1)

We note that the faint magnitude limit uses fibre flux, which is defined
as the flux within a 1.5 arcsec diameter circular aperture centred on
the model convolved with a 1.0 arcsec full width at half-maximum
(FWHM) Gaussian. Colour–colour plots of the resulting sample are
displayed in Fig. 1.

2.2.3 Masks

Instrument effects and transients create artefacts in the images that
may impact the detection or fitting of sources. Additionally, bright
foregrounds, including point sources such as stars and extended
sources such as large galaxies, globular clusters, and planetary
nebulae, can contaminate the pixels around them with false targets,
thereby affecting the apparent angular distribution of the target
sample. DR8 provides bitmasks that leverage the NOAO Community
Pipeline’s data quality map, as well as several external catalogues,
to reject bad pixels and mask around foregrounds. The bits we use in
our analysis are summarized in Table 1 and briefly described below:

The ALLMASK X bits are set for pixels that touch a bad pixel (as
flagged by the NOAO Community Pipeline) in all of the overlapping
X-band images. The WISEM1 and WISEM2 bits are set for pixels that
touch a pixel in a mask around bright stars from the WISE catalogue,
with the two masks using the W1 and W2 bands, respectively. The
MEDIUM bit is set for pixels that touch a pixel containing a medium-
bright (phot g mean mag < 16) star from the Gaia DR2 catalogue
(Gaia Collaboration 2018) or a bright (VT < 13) star from the Tycho-
2 catalogue (Høg et al. 2000). The GALAXY bit is set for pixels that

Table 1. Summary of foreground masks.

Mask Number Area (deg2) fsurvey

No masks 9003243 14610.72 1.000

Bits ALLMASK G 9002762 14610.72 1.000
ALLMASK R 9002742 14610.72 1.000
ALLMASK Z 9002458 14610.72 1.000
WISEM1 8578461 14230.96 0.974
WISEM2 8679070 14406.05 0.986
MEDIUM 8566358 13945.27 0.954
GALAXY 8996317 14599.17 0.999
CLUSTER 9003232 14609.73 1.000
All bits 8559863 13933.29 0.954

Geometric Tycho-2 8675511 14181.29 0.971
WISE 8488111 14094.18 0.965
All geometric 8399015 13859.42 0.949

All masks 8390823 13851.50 0.948

touch a pixel containing a large galaxy, where the source catalogue
used for this mask is taken from John Moustakas’ Legacy Survey
Large Galaxy Atlas6 work with Dustin Lang. Finally, clusters and
nebulae from OpenNGC7 are masked around using a circular mask
whose diameter is equal to the major axis of the object being masked,
and the CLUSTER bit is set for pixels touching this mask.

As demonstrated in Table 1, masking near foreground stars causes
the largest cut in observed objects. To determine whether any
additional stellar masking is warranted, we measure the density of
targets as a function of proximity to stars after the above bitmasks
have been applied. Using the Tycho-2 and WISE catalogues, we
first bin the stars by their magnitudes (using the VT and W1 bands,
respectively), and then determine the density of LRGs in annular
bins around these stacks of stars. We find that there are still residual
effects near Tycho-2 stars, particularly for the brightest bins, that are
not entirely captured by the bitmasks. We find even more significant
effects around WISE stars, with the LRG density peaking beyond the
radius of the bitmasks. We fit a magnitude-dependent masking radius
for each star catalogue to apply as additional geometric masks:

R =
{

10 3.41 − 0.16 × V T arcsec, Tycho-2
10 2.87 − 0.13 × W1 arcsec, WISE

(2)

The addition of the geometric masks results in a slight increase in
the total masked area.

2.2.4 Tests of potential systematics

Astrophysical foregrounds, poor observing conditions, and system-
atic errors in instrument calibration or data reduction can introduce
non-cosmological density variations in the galaxy sample, which may
in turn bias cosmological analyses (see e.g. Myers et al. 2006; Crocce
et al. 2011, 2016; Ross et al. 2011; Leistedt et al. 2016; Suchyta et al.
2016; Elvin-Poole et al. 2018; Ross et al. 2020; Weaverdyck &
Huterer 2020 for studies of imaging systematics in the context of
other surveys). A full analysis of the effect of imaging systematics
on the clustering of DESI main targets using data from DECaLS
DR7 is presented in Kitanidis et al. (2020). Here, we briefly perform
tests of the LRG density dependence on these potential systematics
using DR8 data and target selection.

6https://github.com/moustakas/LSLGA
7https://github.com/mattiaverga/OpenNGC
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Figure 2. Maps of spatially arying potential systematics in equatorial coordinates with Mollweide projection and the astronomy convention (east towards left).

We use the HEALPIX scheme with NSIDE = 256 to divide the
footprint into pixels of equal area, over which we average each
systematic. This resolution is chosen to ensure most pixels contain
>10 galaxies, for better statistics. These pixelized maps are shown in
Fig. 2. The survey properties we look at are stellar density, galactic
extinction, airmass, seeing, sky background, and exposure time. For
full descriptions of these survey properties, how they are calculated,
and why they are included in the analysis, see section 6 of Kitanidis
et al. (2020).

For each map, we bin the pixels by the value of the survey property,
and then determine the average density per bin. The resulting
plots of LRG density contrast δ = n/n̄ − 1 as a function of survey
properties are shown in Fig. 3, with the cumulative sky fractions
shown in the upper panels and the dotted lines corresponding to
1 per cent fluctuations. We show that LRG density variation due to
systematic sources of error is controlled to within 5 per cent and,
more often than not, 1 per cent. As such, we conclude that imaging
systematics should not significantly affect our cross-correlation
measurements.

3 G ALAXY REDSHIFT DISTRIBU TION

In order to interpret the 2D measurements, information about the
distribution of the redshifts of the photometrically selected galaxies
is required. One option is to use photometrically determined redshifts
(photo-z’s) for this purpose; for instance, Zhou et al. (2021) outlines
a method for determining photo-z’s for DESI LRGs selected from
DECaLS DR7 using a machine learning method based on decision
trees. We use the DR8 version of the resulting dN/dz provided by
Rongpu Zhou in private communications.

However, such methods have intrinsic scatter due to photometric
errors and can be biased if the distribution of galaxies used in the
training set is not representative of the overall population. It is
thus useful to have an alternative method for estimating the redshift
distribution, if only as a proxy to gauge the effect of errors in dN/dz on
the desired parameter estimation. We also apply a clustering-based
redshift method, as described in the following sections.

3.1 Clustering redshift formalism

As modern deep imaging surveys probe ever greater volumes, they
detect many more sources than can realistically be targeted for
spectroscopy. The idea of leveraging cross-correlations between a
spectroscopic sample and a photometric sample to infer redshift
information about the latter is not a new one (see e.g. Seldner &
Peebles 1979; Phillipps & Shanks 1987; Landy, Szalay & Koo
1996; Ho et al. 2008; Newman 2008). Since clustering-based redshift
estimation presents an attractive alternative to photometric redshift
methods, it has experienced a recent resurgence in popularity. Over
the last decade or so, a number of clustering dN/dz estimators have
been presented and analysed (Matthews & Newman 2010, 2012;
Schulz 2010; McQuinn & White 2013; Ménard et al. 2013) and tested
on real or simulated data (Schmidt et al. 2013; Scottez et al. 2016,
2018; Hildebrandt et al. 2017; Chiang, Ménard & Schiminovich
2018; Davis et al. 2018; Gatti et al. 2018; Krolewski et al. 2020;
Kitanidis et al. 2020).

We use a version of the estimator proposed by Ménard et al. (2013),
which exploits small-scale clustering information and avoids using
autocorrelation functions since they are necessarily more impacted
by systematic errors than cross-correlations. We provide a detailed
derivation of our formalism and its assumptions in Appendix A, and
simply state the key result here:

wps(θ, zi) ∝ φp(zi)
H (zi)

c
bp(zi)bs(zi)I (θ, zi), (3)

where wps is the angular cross-correlation, φp(zi) is the photometric
redshift distribution, bp(zi) and bs(zi) are the large-scale biases of the
two samples, and

I (θ, zi) ≡
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ2 + (χ − χi)2, zi

)
(4)

can be computed directly from Hankel transforming the theoretical
dark matter power spectrum,

ξmm(r, z) =
∫ ∞

0

dk

2π2
k2Pmm(k, z)j0(kr). (5)
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Figure 3. Density of LRGs as a function of stellar density, galactic extinction (colour excess), airmass, seeing in each optical band, sky subtraction in each
optical band, and exposure time in each optical band. Densities and survey properties are smoothed over the scale of the pixelized maps in Fig. 2. The upper
panels show the cumulative sky fractions for each survey property, and the dotted lines correspond to ±1 per cent density fluctuations.

Here, χmin and χmax are the comoving distances correspond-
ing to the minimum and maximum redshifts of the photometric
sample.

3.2 Bias evolution

Note that we do not need to know the amplitudes of the biases bp

and bs in order to leverage equation (3), since they are degenerate
with the overall normalization of φp. We only need to know the
shapes of the bias evolutions. For the spectroscopic catalogue, this
can be determined directly. For the photometric catalogue, we use
two complementary methods for modelling bp(z) = b0 × f(z) for
some unknown evolution f(z):

(i) Fit ‘effective’ bias beff ≡ ∫
dz bp(z)φp(z).

(ii) Assume parametric form for f(z), fit present-day bias b0.

These two methods are explained in detail in the subsections below.

3.2.1 Fit beff without parametric f(z)

In principle, we do not need to know the evolution of bp in order
to model the angular power spectra C�, since bp(z)φp(z) is the
quantity that enters the C� integrals for a linear bias model (see e.g.
equation 22). Equations (3) and (4) allow us to constrain f(z)dNp/dz
times some unknown proportionality constant.8 After normalization,

8We are using dN/dz to refer to the un-normalized redshift distributions,
whereas φ(z) is normalized.

we obtain the quantity

q(z) ≡ f (z)dNp/dz∫
dz′ f (z′)dNp/dz′ . (6)

Meanwhile, in the C� equations,9 the term bp(z)φp(z) can be rewritten

bp(z)φp(z) = b0f (z)dNp/dz∫
dz′ dNp/dz′ = b0q(z)

∫
dz′ f (z′)dNp/dz′∫

dz′ dNp/dz′ , (7)

= beffq(z) (8)

where beff is the effective bias term

beff ≡ b0

∫
dz f (z)dNp/dz∫
dz dNp/dz

(9)

=
∫

dz b0f (z)φp(z) =
∫

dz bp(z)φp(z). (10)

Thus, by not assuming a shape for the bias evolution, we are fitting
an integrated effective bias beff rather than the present-day bias b0.
This beff essentially represents the bias weighted by the redshift
distribution, for a sharply peaked redshift distribution and weakly
evolving bias, as expected in the LRG sample, beff ≈ b(zeff).

3.2.2 Fit b0 with parametric f(z)

Working with a parametric form (e.g. bp(z) = b0/D(z) based on
DESI’s Final Design Report, where D(z) is the linear growth

9In order to model the galaxy–convergence bias with this approach, we
assume that it has the same evolution as the galaxy–galaxy bias.
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function), b0 can be measured directly. Equations (3) and (4)
constrain dNp/dz times some unknown proportionality constant.
After normalizing to get φp(z), we insert this into the C� integrals,
along with the parametric f(z). Thus by ‘floating’ b0 until theory
matches observation, we obtain a value for b0.

3.3 Integrating over scales

Following the method of Ménard et al. (2013), we integrate wps

over a range of angular scales as the sensitivity of the estimator is
improved by encoding information from many clustering scales. In
order to maximize the signal to noise, we weight each point by θ−1,
which gives equal amounts of clustering information per logarithmic
scale:

w̄ps(zi) =
∫ θmax

θmin

dθ
1

θ
wps(θ, zi). (11)

Hence, we have

w̄ps(zi) ∝ φp(zi)
H (zi)

c
bp(zi)bs(zi)Ī (zi), (12)

where

Ī (zi) =
∫ θmax

θmin

dθ
1

θ

∫ χmax

χmin

dχ ξmm

(√
χ2

i θ2 + (χ − χi)2, zi

)
. (13)

In order to integrate over the same range of physical scales for each
redshift bin, we take the following approach: for each photometric–
spectroscopic pair, we assume that the photometric object is at the
same redshift as the spectroscopic object, allowing us to convert
from angle θ to projected distance rp = χ (zi)θ . Thus, we obtain an
rp-binned wps measurement. Then, in our equations, we perform a
change of variables from θ to rp:

w̄ps(zi) =
∫ rp,max

rp,min

drp
1

rp
wps(rp, zi), (14)

Ī (zi) =
∫ rp,max

rp,min

drp
1

rp

∫ χmax

χmin

dχ ξmm

(√
r2

p + (χ − χi)2, zi

)
. (15)

Note that in this section, we have implicitly assumed scale-
independent biases. In Appendix A, we explore how scale-dependent
bias can make the shape of the estimated redshift distribution
sensitive to the choice of θmin, θmax.

3.4 Measurement

We use three well-defined spectroscopic samples that overlap sig-
nificantly with our LRG sample and span its full redshift range
(see Fig. 4): CMASS galaxies from Data Release 12 of the Baryon
Oscillation Spectroscopic Survey (BOSS; Eisenstein et al. 2011;
Dawson et al. 2013); galaxies from the final data release of the
VIMOS Public Extragalactic Redshift Survey (VIPERS; Scodeggio
et al. 2018); and the main sample of quasars (QSOs) from Data
Release 14 of eBOSS (Dawson et al. 2016) in the South Galactic
Cap. We assume passive bias evolution for the CMASS and VIPERS
galaxies, based on previous clustering studies of these samples
(see e.g. Rodrı́guez-Torres et al. 2016 and Marulli et al. 2013,
respectively). For the eBOSS QSOs, we assume the functional fit
to b(z) published in Laurent et al. 2017 (and further validated using
finer redshift bins in Krolewski et al. 2020).

To measure the angular cross-correlation wps(θ , zi) between
photometric sources and spectroscopic sources, with the latter first
divided into narrow redshift bins zi ± δzi, we use the Landy–Szalay

Figure 4. Visualizing how the redshifts of the external spectroscopic cat-
alogues (histograms) overlap with the redshift distribution of DESI LRGs
selected from DECaLS, as estimated using photometric redshifts (solid line).

pair-count estimator (Landy & Szalay 1993),

ŵLS(θ ) = D1D2 − D1R2 − D2R1 + R1R2

R1R2
, (16)

where DD, DR, and RR are the counts of data–data, data–random, and
random–random pairs at average separation θ , within annular bins
θ ± δθ . We use 16 logarithmically spaced angular bins from θ =
0.001◦ to θ = 1◦. For each redshift bin, we convert the angular bins
into bins of projected distance rp using the mean redshift of the bin. If
we make the modest approximation that every photometric object is
at the same redshift as the spectroscopic object it is being correlated
with, we can obtain the angular correlation function binned in rp

rather than θ , wps(rp, zi).
We estimate the errors on wps using bootstrapping (Efron 1979).

Rather than resampling on individual objects, which has been shown
to lead to unreliable errors (Mo, Jing & Boerner 1992; Fisher et al.
1994), we partition the sky into equal area subregions, using the
HEALPIX scheme with coarse resolution NSIDE = 4. We discard
any subregions that are fully disjoint from either the photometric
or spectroscopic survey, then randomly select (with replacement)
from the remaining subregions until the number of randoms in
each bootstrap realization is similar to the total number of randoms
in the overlapping part of the footprint.10 The mean and variance
are estimated from 500 bootstrap realizations, and are found to be
highly robust to increasing or decreasing the number of bootstrap
realizations.

As Table 2 and Fig. 4 show, the three spectroscopic catalogues
vary widely in their available overlapping area, their number density,
and the widths of their redshift distributions. In order to maximize
the signal to noise of each cross-correlation, the hyper parameters
are adjusted individually. For instance, since VIPERS is made up of
two very small windows, we must use a higher resolution of NSIDE =
16 to create the subregions for bootstrapping. The greatest signal to
noise is achieved from the cross-correlation with the CMASS sample,
whose large overlapping area and high number density near the peak
of the LRG distribution allows us to use finer redshift bins of δz =
0.05 compared to δz = 0.1 used for the other two samples.

10Since the randoms are uniformly distributed and massively oversampled,
the number of randoms can be treated as a proxy for the effective area.
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Table 2. Summary of the external spectroscopic catalogues and the param-
eters of the cross-correlation analysis. ‘Overlapping area’ is the approximate
intersection of the spectroscopic and DESI-DECaLS DR8 footprints. ‘Over-
lapping number’ is the number of spectroscopic objects falling within this
overlap with redshifts in the range 0.1 < z < 1.2 (see Fig. 4 for a visualization
of the overlap in redshift distributions). For bootstrapping, we reject any pixels
lying entirely outside either survey; the remaining subregions are sampled
with replacement to create the bootstrap ensembles.

Spectroscopic catalogue CMASS VIPERS eBOSS QSO

Overlapping area (deg2) ∼7461 ∼23.5 ∼940
Overlapping number 615 056 68 022 19 266
Redshift bin size used 0.05 0.1 0.1
NSIDE resolution used 4 16 4
# Subregions for bootstrap 66 8 18
# Bootstrap ensembles 500 500 500
rp,min, rp,max (h−1 Mpc) 0.5, 5 0.005, 1 0.5, 5

Figure 5. The normalized redshift distribution derived from cross-
correlations with external spectroscopy (grey error bars) and resulting cubic
B-spline fit (black solid line). The normalized redshift distribution derived
from photo-z’s is shown for comparison (red dashed line). The spline fit is
dominated by the cross-correlation with CMASS galaxies (blue highlight).

3.5 Results

Following equation (3), we obtain an estimate for dNp/dz from each
cross-correlation. Bootstrap errors from wps are propagated to φ(z) by
performing the full calculation, including normalization, with each
bootstrap separately, and then determining the standard deviation in
φ(z). We use a cubic B-spline to fit the combined results, where
each value φi is weighed by the inverse of its standard deviation,
wi = 1/σ i. A common rule of thumb recommends using a value
of the smoothness parameter s in the range m ± √

2m, where m
is the number of data points being fit. Based on this, we choose
a value of s = 41, which results in six interior knots. In order
to respect the physicality of φ(z) ≥ 0 for all z, we force any
negative spline coefficients to be zero. The clustering-based φ(z)
points and fit are shown in Fig. 5, along with the photo-z derived
φ(z). Unsurprisingly, the spline fit is dominated by the CMASS
cross-correlations (highlighted in blue in the figure) due to the
comparatively high signal to noise of these cross-correlations. The
photo-z and clustering redshift distributions are qualitatively similar
but not identical, with the clustering φ(z) having a sharper peak.

Figure 6. Projection kernels for the galaxy sample (dashed blue line) and
CMB lensing (dotted red line), both normalized to a unit maximum.

4 MEASURI NG ANGULAR POWER SPECTRA

4.1 Angular power spectra in the Limber approximation

Galaxy overdensity (δg) and CMB lensing convergence (κ) are both
projections of 3D density fields, expressed as line-of-sight integrals
over their respective projection kernels. The angular cross-spectrum
between two such fields X and Y is given by

CXY
� =

∫
dχ1

∫
dχ2 WX(χ1) WY (χ2)

×
∫

2

π
k2dk PXY (k; z1, z2) j�(kχ1) j�(kχ2), (17)

where WX and WY are the projection kernels, PXY is the real-space
power cross-spectrum, and j� is spherical Bessel functions of the
first kind. As we are primarily interested in angular scales �1◦ (� �
100), we can adopt the Limber approximation (Limber 1953; Rubin
1954) and its first-order correction (Loverde & Afshordi 2008), under
which the k integral evaluates to

PXY

(
k = � + 1

2

χ1
; z

)
1

χ2
1

δD(χ1 − χ2). (18)

Hence the angular cross-spectrum may be expressed as a single
integral over line-of-sight comoving distance,

CXY
� =

∫
dχ WX(χ )WY (χ )

1

χ2
PXY

(
k = � + 1

2

χ
; z

)
(19)

=
∫

dz
H (z)

c
WX(z)WY (z)

1

χ2
PXY

(
k = � + 1

2

χ
; z

)
. (20)

The projection kernels for galaxy overdensity and CMB lensing
convergence are, respectively,

Wg(z) = φ(z) = c

H (z)
φ(χ ) = c

H (z)
Wg(χ )

Wκ (z) = 3

2c
�m0

H 2
0

H (z)
(1 + z)

χ (χ∗ − χ )

χ∗
= c

H (z)
Wκ (χ ), (21)

where χ∗ = χ (z∗ ≈ 1100) ≈ 9400 h−1 Mpc is the distance to
the surface of last scattering, and φ(z) is the normalized redshift
distribution of the galaxy sample. These kernels are plotted in Fig. 6.
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Plugging in and simplifying the expressions for the spectra,

C
κg
� =

∫
dχ

3�m0H
2
0

2c2

1 + z

χ2

χ (χ∗ − χ )

χ∗
φ(χ )Pmg

(
k = � + 1

2

χ
; z

)

=
∫

dz
3�m0H

2
0

2cH (z)

1 + z

χ2

χ (χ∗ − χ )

χ∗
φ(z)Pmg

(
k = � + 1

2

χ
; z

)

C
gg
� =

∫
dχφ(χ )2 1

χ2
Pgg

(
k = � + 1

2

χ
; z

)

=
∫

dz
H (z)

c
φ(z)2 1

χ2
Pgg

(
k = � + 1

2

χ
; z

)

Cκκ
� =

∫
dχ

(
3�m0H

2
0

2c2

1 + z

χ2

χ (χ∗ − χ )

χ∗

)2

Pmm

(
k = � + 1

2

χ
; z

)

=
∫

dz
H (z)

c

(
3�m0H

2
0

2cH (z)

1 + z

χ2

χ (χ∗ − χ )

χ∗

)2

×Pmm

(
k = � + 1

2

χ
; z

)
. (22)

4.2 Estimating angular power spectra

Many different approaches for estimating angular power spectra
from cosmological maps exist in the literature, including maximum
likelihood estimators (Bond, Jaffe & Knox 1998; Wandelt & Hansen
2003), the optimal quadratic estimator (Tegmark 1997; Tegmark &
de Oliveira-Costa 2001), and Bayesian sampling techniques (e.g.
Eriksen et al. 2004; Taylor, Ashdown & Hobson 2008). While
these methods have the advantage of recovering the unbiased power
spectrum directly, they are computationally expensive to implement,
particularly for the high-resolution maps produced by modern ex-
periments, since they scale as O(�6

max). Suboptimal but numerically
efficient pseudo-C� algorithms (Hivon et al. 2002) are a popular
alternative when dealing with multipoles � > 30 (Efstathiou 2004a),
as they take advantage of speedy spherical harmonics transforms
to recover the power spectrum in O(�3

max) time. Below, we briefly
outline the pseudo-C� approach.

Any scalar function, T (n̂), defined on a sphere may be expanded
into spherical harmonics, Y�m, with expansion coefficients a�m as

T (n̂) =
∞∑

�=0

�∑
m=−�

a�mY�m(n̂) (23)

a�m =
∫

4π

d� T (n̂) Y ∗
�m(n̂). (24)

The angular power spectrum C� measures the amplitude as a function
of wavelength averaged over direction,

C� = 1

2� + 1

�∑
m=−�

|a�m|2. (25)

This is the observed angular power spectrum of a given Gaussian
realization; the average over an ensemble of universes, 〈C�〉 ≡ C th

� , is
specified by the physics (primordial perturbations, galaxy formation,
etc.) with uncertainty due to cosmic variance given by

σ 2
� = CXX

� CYY
� + (

CXY
�

)2

2� + 1
. (26)

However, in practice, we are not dealing with measurements over
the full sky, but rather a masked and weighted partial sky. We
must account for the effect of the masking window function W (n̂),

which couples different � modes and biases the estimator. Naive
calculation of the spherical harmonics transform on a partial sky map
produces the pseudo-angular power spectrum, whose coefficients are
a convolution of the mask and the true coefficients,

C̃� = 1

2� + 1

�∑
m=−�

|ã�m|2 (27)

ã�m =
∫

4π

d� T (n̂) W (n̂) Y ∗
�m(n̂). (28)

Fortunately, their ensemble averages are related simply as

〈C̃�〉 =
∞∑

�′=0

M��′ 〈C�′ 〉, (29)

where the mode–mode coupling matrix M can be determined purely
from the geometry of the mask. This �-by-� matrix is generally
singular in the case of large sky cuts. In order to perform matrix
inversion, a common method is to use a set of discrete bandpower bins
L and assume the angular power spectrum is a step-wise function in
each bin. Using this approach, the MASTER algorithm (Hivon et al.
2002) is able to efficiently calculate and invert the L-by-L mode–
mode coupling matrix to extract the binned angular power spectrum
from the binned pseudo-angular power spectrum,

〈CL〉 =
∑
L′

M−1
LL′ 〈C̃L′ 〉. (30)

We use the implementation NaMaster (Alonso et al. 2019) to
calculate the mode–mode coupling matrix and decoupled angular
power spectra in bandpower bins. Multipole resolution is limited by
� ≈ 180◦/ϕ, where ϕ is the smallest dimension of the angular patch,
and the minimum multipole that can be meaningfully constrained is
the wavelength corresponding to this angular scale (Peebles 1980).
Since the angular power of the mask is concentrated at large modes,
dropping to below 10 per cent power at � ∼ 20, we choose a
conservative binning scheme with linearly spaced bins of size � =
20 from �min = 30 to �max = 1500. However, following the approach
of Krolewski et al. (2020), we run NaMaster out to �max = 6000 to
avoid power leakage near the edge of the measured range.

Evaluating the observational results requires consistent application
of the same binning scheme to the theory curves. Since the theory
curves are not necessarily piecewise constant, they must first be
convolved with the mode–mode coupling matrix M��′ , then binned
into the appropriate bandpowers, and then finally decoupled.

Additionally, the observed autospectra will be a combination of
signal plus noise,

C
gg
L = S

gg
L + N

gg
L (31)

Cκκ
L = Sκκ

L + Nκκ
L . (32)

Here, Ngg is the shot noise of the galaxy field, approximately equal to
1/n̄ (where n̄ is the mean number of galaxies per square steradian),11

while an estimate of the lensing noise Nκκ
� due to e.g. instrumental

and atmospheric effects is provided by the Planck collaboration
and binned into bandpowers using the method discussed above. In
subsequent analysis, we have subtracted the noise terms from the
observed autospectra, as well as dividing out the appropriate pixel
window functions.

11We have checked that our fitting results are insensitive to the amplitude of
the shot-noise term we subtract from the galaxy–galaxy spectrum, and since
it is somewhat degenerate with the counter-term αa in the perturbation theory
model, we elect to fix the noise term to the Poisson expression.
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4.3 Estimating covariance matrices

The Gaussian or ‘disconnected’ part of the covariance matrix, i.e. the
covariance for perfectly Gaussian fields, dominates the total covari-
ance matrix on linear and weakly non-linear scales. While trivial to
compute for full-sky fields, the exact correlations between different
modes induced by a partial sky are computationally expensive to
calculate, requiring O(�6

max) operations (Efstathiou 2004b; Garcı́a-
Garcı́a, Alonso & Bellini 2019). A common approximation assumes
that the off-diagonal elements remain negligible after mode coupling
and simply modifies the diagonal elements by rescaling the number
of degrees of freedom,

�XY
��′ = (

σ XY
�

)2
δ��′

(
σ XY

�

)2 =

[(
CXX

� + NXX
�

) (
CYY

� + NYY
�

) + (
CXY

� + NXY
�

)2
]

th

fsky(2� + 1)

w4

w2
2

,

(33)

where fsky is the fraction of the sky masked,

fsky =
∫

4π

d� W (n̂), (34)

and wi is related to the ith moment as

wi = 1

fsky

∫
4π

d� Wi(n̂). (35)

The factor fskyw
2
2/w4 accounts for the loss of modes induced by

masking. This analytical expression has been shown to reproduce
errors that are nearly identical to those obtained from Monte Carlo
simulations (Hivon et al. 2002).

We average over the bandpower bins with the inverse weighting

1(
σ XY

L

)2 = 1

�

∑
�∈L

1(
σ XY

�

)2 , (36)

where � is the width of the bandpower bin.

4.4 Pixelized maps and masks

To create the galaxy density map, we pixelize the sky using the
HEALPIX scheme with resolution NSIDE = 512, corresponding to a
pixel area of approximately 0.013 deg2. This resolution was chosen
to avoid the shot noise limit in which most pixels contain zero or one
galaxies (for our sample with mean density ≈610 per square degree,
it produces an average of 5–10 galaxies per pixel), while still probing
the scales of interest, �max ∼ 3 × NSIDE ≈ 1500. Using galaxy and
random catalogues with the masks of Section 2.2.3 applied to both,
we calculate the density contrast δ = n/n̄ − 1 within each pixel.
Under the HEALPIX scheme, pixels have identical areas; however, the
effective area of some pixels may be less than this if they straddle
the irregular shape of the footprint boundary or overlap with masked
regions around bright stars, large galaxies, etc. Since our masks are
applied to both the galaxy and random catalogues in a consistent
manner, we can use the random catalogue to estimate the effective
area of each pixel, and thus calculate accurate mean galaxy densities
even in pixels that are partially masked.

To construct the pixelized galaxy mask, we measure where the
distribution of effective areas deviates from a Poisson distribution,
since the effective areas are estimated directly from the number
of randoms per pixel, which is a Poisson process. We determine
a cutoff of aeff/atot = 0.5, and confirm that the pixels below this
cutoff lie mainly along footprint boundary, as shown in Fig. 7. Here,

Figure 7. Upper: Histogram of the effective areas of pixels created with
HEALPIX resolution NSIDE = 512, showing a slight deviation from a Poisson
distribution at the low end due to pixels straddling the footprint boundary or
holes from the galaxy mask. Lower: Binary map showing that pixels selected
as aeff/atot < 0.5 (red pixels) lie predominately on the edges of the footprint.
Most pixels have aeff/atot ≥ 0.5 and are shown in green.

the effective area is calculated by using the random catalogue pre-
masking, hence why the distribution is centred at aeff/atot ≈ 1. The
equivalent distribution calculated using masked randoms results in
a slightly lower mean ãeff/atot ≈ 0.95 (matching the masked sky
fraction of Table 1) and an enhanced left tail since a substantial
fraction of pixels are now partially masked. However, we do not
necessarily need to discard these partially masked pixels as long as
we are able to accurately estimate the density within them, since the
pixelization smooths the density on scales smaller than the pixel size.
Hence, for our binary pixel mask, we use the cutoff calculated using
the unmasked randoms, with the mask set to 1 for aeff/atot > 0.5 and
0 otherwise.

The galaxy density map and mask are then upgraded to NSIDE =
2048 to match the resolution of the Planck CMB lensing map and
mask, and converted from equatorial to galactic coordinates. To
improve the stability of the matrix inversion, the Planck mask is
apodized using a 1◦ FWHM Gaussian.12 The resulting masked galaxy
density and CMB lensing convergence maps are shown in Fig. 8.

5 MAG NI FI CATI ON BI AS

Magnification bias is a well-known weak lensing effect (for a review
of weak lensing, we refer the reader to Bartelmann & Schneider
2001) that modulates the number density of galaxies in a flux-
limited survey. When distant galaxies are magnified by gravitational
lenses along the line of sight, their observed number per unit area
is decreased due to the apparent stretching of space between and
around them. At the same time, there is a corresponding increase in

12Krolewski et al. (2020) determined this to be the optimal smoothing scale
for the Planck mask by testing on Gaussian simulations.
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Figure 8. Maps of Planck BASE CMB lensing convergence (upper) and
DESI LRG galaxy overdensity (lower) in galactic coordinates, using HEALPIX

scheme with resolution NSIDE = 2048, Mollweide projection, and the
astronomy convention (east towards left). Both maps are multiplied by
their corresponding masks. The CMB lensing convergence is additionally
smoothed on a scale of 10 arcmin for visual clarity.

their observed brightness. As a consequence, the lensed galaxies
are drawn from a fainter source population than the unlensed
galaxies, leading to an increase in the number count as galaxies
that would normally fall below the limiting magnitude of the survey
become detectable with magnification. Through these two competing
effects, magnification induces correlations between the galaxies and
intervening matter in their foreground, and thus can bias the galaxy–
galaxy and galaxy–convergence angular power spectra (see e.g.
Loverde, Hui & Gaztañaga 2008; Ziour & Hui 2008, and references
contained therein).

In practice, the magnification bias introduces an additional term
in the galaxy window function,

Wg(z) −→ Wg(z) + Wμ(z), (37)

which, to first order, is given by

Wμ(z) = (5s − 2)
3

2c
�m0

H 2
0

H (z)
(1 + z)

∫ z∗

z

dz′g(z′), (38)

g(z′) = χ (z)(χ (z′) − χ (z))

χ (z′)
φ(z′), (39)

where s is the slope of the cumulative magnitude function, i.e. the
response of the number density of the sample to a multiplicative
change in brightness at the limiting magnitude of the survey,

s = d log10 n(m < mlim)

dm
|m=mlim . (40)

Figure 9. The magnification bias terms of equations (41) and (42) as a
fraction of the total observed (after subtracting shot noise, in the galaxy–
galaxy case) spectra, i.e. before correcting for magnification bias. The error
bars represent error on the fraction and are dominated by the errors of the
denominator.

This Wμ term in the galaxy window function leads to additional
terms in the galaxy–convergence and galaxy–galaxy angular power
spectra,

C
κg
� −→ C

κg
� + C

κμ
� (41)

C
gg
� −→ C

gg
� + 2C

gμ

� + C
μμ
� . (42)

We calculate s by perturbing the observed optical and IR mag-
nitudes of the imaged objects by a small differential in each
direction m = ±0.01, then reapplying target selection (as defined
in Section 2.2.2) and measuring the corresponding shifts in the
number density of the new LRG samples. Using the finite difference
method, we determine s = 0.999 ± 0.015, with the error computed
as s = (log10(N ) − log10(N − √

N ))/m.
We plot the magnification bias corrections13 as a fraction of the

observed spectra (after noise subtraction) in Fig. 9. The corrections to
the galaxy–galaxy spectrum are at a level of approximately 5 per cent
over most of the range of scales considered, with 1–2 per cent increase
at edges of the range � < 100 and � > 900, while the correction to
the cross-spectrum is flat within error bars14 at 4–5 per cent. Though
the DESI LRG redshift distribution is relatively narrow and peaks
at z < 1, the high number density and low clustering bias coupled
with a steep faint end slope contribute to effects at the level of a
few per cent, as Fig. 9 shows.

In all subsequent results, the magnification bias terms have been
subtracted from the observed spectra.

6 R ESULTS

A cross-correlation measurement between DESI-like LRGs selected
from DECaLS imaging and CMB lensing from Planck 2018 is
detected at a significance of S/N =27.2 over the range of scales
�min = 30 to �max = 1000. In Fig. 10, we plot per-multipole and
cumulative signal-to-noise ratios for both the galaxy–galaxy and

13These terms are calculated using the photometric redshift distribution, so
as to avoid assuming a bias evolution model.
14The error bars are dominated by the errors in the cross-spectrum, which
become significant at � > 700.
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Figure 10. Per multipole (upper) and cumulative (lower) signal-to-noise
ratio for the galaxy–galaxy (blue dotted line) and galaxy–convergence (red
dashed line) angular power spectra measurements.

galaxy–convergence spectra, where the signal-to-noise ratio of the
XY angular power spectrum at multipole � is given by(

S

N

)
(�) = CXY

�

σ XY
�

(43)

and the cumulative signal-to-noise ratio up to �max is

(
S

N

)
(< �max) =

√√√√ �max∑
�′=�min

(
CXY

�′
)2(

σ XY
�′

)2 . (44)

The galaxy–galaxy S/N peaks at � ∼ 500 whereas the galaxy–
convergence generally decreases over the range of scales considered.
We note that the theoretical galaxy–convergence S/N would be
expected to peak at � ∼ 100 and fall off at smaller �; as this is
within the regime at which both the pseudo-C� framework and the
Limber approximation begin to break down, this feature is washed
out in the observed S/N.

We also compare the cross-spectrum using the baseline MV CMB
lensing map versus using the TT-only tSZ-deprojected map. The two
curves are shown in the top panel of Fig. 11, and clearly lie well within
1σ of one another. The fractional difference is shown in the lower
panel. Since the error bars on the cross-spectra are generally large,
they dominate the errors on the fraction, but as Fig. 11 illustrates, the
errors associated with tSZ are of the order of a few per cent and very
subdominant to the overall lensing noise.

In the following subsections, we present the angular power spectra
and interpret them using two different models for the galaxy–galaxy
and matter–galaxy 3D power spectra: the HaloFit dark matter power
spectrum multiplied by a linear large-scale bias, and a convolutional
Lagrangian effective field theory with Lagrangian bias. Additionally,

Figure 11. Upper: Comparison of observed cross-spectrum C
κg
L calculated

from BASE (red circles) versus DEPROJ (green triangles) lensing maps.
Lower: The difference between the two measurements as a fraction of the
theoretical prediction, with three bands illustrating 1 per cent, 5 per cent, and
10 per cent.

we perform the fits using both photometric- and clustering-derived
redshift distributions for the galaxy sample, which not only suggests
an estimate of the error associated with uncertainty in the redshift
distribution, but also allows us to evaluate the bias at an effective
redshift z ≈ 0.68 in both models and to test the assumption of passive
bias evolution.

6.1 HaloFit modelling

Within a framework for modelling the galaxy–galaxy and matter–
galaxy power spectra Pgg(k), Pmg(k), the observed angular power
spectra C

gg
� , C

κg
� can constrain cosmological and galaxy bias param-

eters. A particularly simple and interpretable model is to use the
HaloFit (Smith et al. 2003) fitting function for the non-linear dark
matter power spectrum, P HF

mm(k), and multiply by scale-independent
linear biases to obtain the galaxy–galaxy and galaxy–matter power
spectra,

Pgg(k, z) = bgg(z)2P HF
mm(k, z) (45)

Pκg(k, z) = bκg(z)P HF
mm(k, z). (46)

Differences between bgg and bκg are expected, due in large part to the
stochastic contribution arising from the fact that the galaxy field is a
discrete sampling of the underlying dark matter distribution. As such,
this stochastic component, which may include scale-dependent and
non-Poissonian behaviour, affects the galaxy–galaxy autospectrum
and matter–galaxy cross-spectrum differently.

Using the Boltzmann code CLASS (Blas, Lesgourgues & Tram
2011) to calculate the HaloFit dark matter power spectrum for the
fiducial Planck 2018 cosmology, we take the photometric φ(z) and
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assume a bias evolution bgg(z), bκg(z) ∝ D(z)−1. We then perform
weighted least-squares fits of the present-day biases. The results are
given in Table 3, with the fits repeated for �max = 200, 400, 600,
800, and 1000; the � max = 1000 model is plotted against the data in
Fig. 12. We find that the linear biases are unaffected by the choice of
�max and that the cross-bias bκg is consistently lower than the galaxy
bias bgg, with the latter agreeing well with DESI survey expectations
and the findings of Kitanidis et al. 2020. The lower-than-expected
bκg could arise from choosing an incorrect fiducial cosmology (e.g.
lowering �m would reduce bκg with only a small impact on bgg;
see also Hang et al. 2021). It could also be due to the assumed bias
evolution, the assumed form for φ(z) or limitations of our model. We
shall consider these next.

We then repeat the same measurement using the clustering-derived
φ(z) discussed in Section 3, again finding that the choice of �max

has negligible impact. The results, given in Table 4, show that
uncertainty in the redshift distribution causes a difference in the
derived galaxy bias parameters of σbgg = 0.08. By contrast, the
cross-bias is extremely stable with respect to changes in the redshift
distribution, not changing at all when the redshift distribution is
changed from the photometric estimate to the clustering estimate; this
may be explained by the fact that the cross-spectrum only depends
on one factor of φ(z) while the autospectrum requires φ2(z).

Another advantage of using the clustering-based φ(z) is the ability
to extract a galaxy redshift kernel with bias evolution baked in, rather
than assuming a parametric form e.g. b(z) ∝ D(z)−1. As discussed
in Section 3.2.1, this type of modelling allows us to constrain beff ≈
b(zeff) rather than the present-day bias. We find the results, given in
Table 5, to be in perfect agreement with the results of Table 4 under
the assumption b(z) ∝ D(z)−1 used in the latter, giving for instance
bgg = 1.56 ± 0.01 and bκg = 1.31 ± 0.05 for the �max = 1000 case.

6.2 Perturbation theory modelling

We next apply an analytical model that allows more nuance in
the handling of bias. Higher order perturbation theory is a natural
approach considering that the cross-correlation is most sensitive to
structure at large scales, as shown in Fig. 10. We use a Lagrangian
bias model and the convolution Lagrangian effective field theory
(hereafter CLEFT) outlined in Vlah, Castorina & White (2016) and
the references contained therein. Under this formalism, the matter–
galaxy and galaxy–galaxy power spectra are (see e.g. equation 2.7
from Modi, White & Vlah 2017 and equation B.2 from Vlah et al.
2016):

Pmg =
(

1 − α×k2

2

)
PZ + P1L + b1

2
Pb1 + b2

2
Pb2 (47)

Pgg =
(

1 − αak
2

2

)
PZ + P1L + b1Pb1 + b2Pb2

+ b1b2Pb1b2 + b2
1Pb2

1
+ b2

2Pb2
2
, (48)

where we have dropped the terms corresponding to shear bias as
we find they mainly affect scales � > 1000. Here, PZ and P1L

are the Zeldovich and 1-loop dark matter contributions (see e.g.
Vlah, White & Aviles 2015), b1 and b2 are the Lagrangian bias
parameters for the galaxy sample, and the effective field theory terms
α× and αa (which are not necessarily the same) are free parameters
encapsulating the small-scale physics not modelled by Lagrangian
perturbation theory.

Under the CLEFT formalism, the power spectrum contributions
PZ, P1L, Pb1 , Pb2 , etc., can be computed analytically and combined
with the free parameters α×, αa, b1, b2. With these additional

degrees of freedom, CLEFT provides a more flexible model than
the phenomenological approach of Section 6.1, and allows us to fit
the cross-spectrum and galaxy autospectrum simultaneously.

We use a version of the public code VELOCILEPTORS15 (Chen,
Vlah & White 2020) to calculate the power spectrum terms and the
Markov Chain Monte Carlo (MCMC) likelihood estimator EMCEE16

(Foreman-Mackey et al. 2013) to optimize our model parameters. To
reduce model expense, we evaluate the power spectrum terms at a
single effective redshift,

zXY
eff =

∫
dχ z WX(χ )WY (χ )/χ2∫
dχ WX(χ )WY (χ )/χ2

, (49)

which is zeff = 0.67 for κg and zeff = 0.68 for gg.17 Given the narrow
redshift distribution and likely passive bias evolution of our galaxy
sample, this substitution should not affect the C�’s significantly
(Modi et al. 2017), and we confirm that the overall impact on the
scales of interest is sub per cent level. Additionally, this allows us to
more easily interpret the Lagrangian bias parameters as being also
evaluated at the effective redshift. We use the photometric redshift
distribution to eliminate the need to assume a shape for the bias
evolution.

We perform a joint fit on both the galaxy–galaxy autospectrum
and galaxy–convergence cross-spectrum using a simple Gaussian
likelihood function:

L(d|ϑ) ∝ exp

{
−1

2
(Ĉ(ϑ) − C) �−1 (Ĉ(ϑ) − C)T

}
. (50)

The vectors C and Ĉ(ϑ) are, respectively, the observed and predicted
angular power spectra, with the auto- and cross-spectrum measure-
ments joined together as

CL = (
C

κg
L , C

gg
L

)
(51)

for each bandwidth bin L. The covariance matrix is created from the
four constituent covariance matrices,

�LL′ =
(

�
κg
LL′

(
�

κg−gg

LL′
)T

�
κg−gg

LL′ �
gg
LL′

)
. (52)

The covariance matrices �
κg
LL′ and �

gg
LL′ are given by equations (33).

Similarly, the Gaussian part of the covariance between the autospec-
trum and cross-spectrum measurements is given by

�
κg−gg

LL′ = (
σ

κg−gg

L

)2
δLL′ , (53)

where

1(
σ

κg−gg

L

)2 = 1

�

∑
�∈L

1(
σ

κg−gg

�

)2 (54)

(
σ

κg−gg

�

)2 =
[
2C

κg
�

(
C

gg
� + N

gg
�

)]
th

fsky(2� + 1)

w4

w2
2

. (55)

We use flat priors for the four model parameters, and additionally
impose a loose Gaussian prior on b2 centred on the peak-background
split prediction for a given b1. The results of the MCMC analysis are
listed in Table 6 for �max = 200, 400, 600, 800, and 1000. Although
the higher �max is formally larger than the regime of validity of
perturbation theory (�max � 500), we none the less find that the best-
fitting parameters remain stable within error bars and the inclusion
of the higher � data helps to fix the EFT counter terms. The corner

15https://github.com/sfschen/velocileptors
16https://github.com/dfm/emcee
17To jointly fit the auto- and cross-spectrum, we assume zeff = 0.68 for both.
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Table 3. Fitting linear bias from the observed C
gg
� , C

κg
� up to different �max using the HaloFit model for the non-linear dark matter power

spectrum, photometric φ(z), and the assumption b(z) ∝ D(z)−1.

HaloFit model, photo φ(z)
�max bgg χ2

gg/d.o.f. PTEgg SNRgg(< �max) bκg χ2
κg/d.o.f. PTEκg SNRκg(< �max)

200 1.57 ± 0.05 0.7/8 0.9995 15.5 1.27 ± 0.07 4.2/8 0.8386 17.6
400 1.63 ± 0.03 3.4/18 0.9999 29.9 1.32 ± 0.06 8.1/18 0.9771 23.1
600 1.66 ± 0.02 8.4/28 0.9999 41.3 1.32 ± 0.05 12.1/28 0.9961 25.2
800 1.67 ± 0.02 9.9/38 1.0000 49.0 1.32 ± 0.05 20.9/38 0.9890 26.5
1000 1.64 ± 0.02 30.4/48 0.9777 53.0 1.32 ± 0.05 26.8/48 0.9943 27.2

Figure 12. The observed galaxy–galaxy (upper plot, blue diamonds) and
galaxy–convergence (lower plot, red diamonds) angular power spectra, after
subtracting noise and correcting for magnification bias. Solid lines correspond
to the theoretical predictions using a HaloFit matter power spectrum and the
best-fitting linear biases from Table 3. The dotted horizontal line is the galaxy
shot noise floor, and the dashed black curve is the lensing noise.

plots visualizing the 1D and 2D posterior distributions are shown
in Fig. 13, and the resulting theory predictions are plotted against
the binned data in Fig. 14, both for the �max = 1000 case. The
values and errors are based on 16th, 50th, and 84th percentiles of the
posterior distributions. The model is able to constrain b1 very well,
and provides a more flexible fit to the shape of the data.

We can compare the Lagrangian b1 to the Eulerian bias found in
the previous section,

b(zeff ) = 1 + b1(zeff ) (56)

= b(0)/D(zeff ). (57)

For zeff = 0.68, the best-fitting b1 = 1.31 corresponds to b(0) =
1.63, in excellent agreement with the result from our HaloFit
model using the photometric redshift distribution. Furthermore, after

accounting for the uncertainty associated with photometric versus
clustering redshift distributions σbgg = 0.08, the effective bias from
the perturbation theory model is consistent with the effective bias
measured using the clustering b(z)φ(z) (Table 5). Thus, these two
models show excellent consistency with each other, and both are
consistent with the assumed bias evolution model. The LPT-based
model provides a statistically acceptable fit to both C

gg
� and C

κg
�

for our fiducial cosmology, however, if one artificially introduces an
additional degree of freedom that scales the amplitude of C

κg
� we find

an even better fit is obtained when the model prediction is lowered
by 10–20 per cent. This is similar to the lower bκg preferred by our
HaloFit model, compared to bgg.

6.3 Bandpower covariance

In order to evaluate whether correlated bandpower bins contribute
to low reduced chi-square in the fits, we repeat the full analysis
using bandpower bins of � = 100 instead of 20. The recovered
bias parameters remain the same, and the reduced chi-square of the
fits do not appreciably change. Since χ2/d.o.f. should be preserved
under changes in binning scheme if the bins are uncorrelated, we
consider this sufficient evidence that our bins of � = 20 are
largely uncorrelated. As another test, we also performed the fits using
�min = 100 instead of �min = 30 and again found that the results and
goodness-of-fit remained stable suggesting that large scales are not
driving our fitting results.

7 C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

In this paper, we present a cross-correlation between DESI-like LRGs
selected from DECaLS DR8 and all-sky CMB lensing maps from
Planck, and report a detection significance of S/N = 27.2 over a wide
range of scales from �min = 30 to �max = 1000.

To correct for the effects of magnification bias on the galaxy–
galaxy autospectrum and galaxy–convergence cross-spectrum, we
calculate the slope of the LRG cumulative magnitude function at
the limiting magnitude of the survey, determining a value of order
unity, s = 0.999 ± 0.015. We find that the resulting corrections to
the spectra are of the order of 4–6 per cent. We also test the impact
of tSZ bias in the lensing map, showing the associated errors on
the galaxy–lensing cross-correlation to be highly subdominant to the
overall lensing noise.

Within two different frameworks for modelling galaxy clustering
and using two different methods for estimating the redshift dis-
tribution of the LRG sample, we fit the galaxy bias in multiple
complementary ways and cross-check the results, both for internal
consistency and to ascertain the impact of uncertainty in the redshift
distribution on the inferred bias parameters.

(i) Under a simple linear bias times HaloFit model, using a
photometric φ(z) and an assumed bias evolution b(z) ∝ D(z)−1,
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Table 4. Fitting linear bias from the observed C
gg
� , C

κg
� up to different �max using the HaloFit model for the non-linear dark matter power

spectrum, clustering φ(z), and the assumption b(z) ∝ D(z)−1.

HaloFit model, clustering φ(z)
�max bgg χ2

gg/d.o.f. PTEgg SNRgg(< �max) bκg χ2
κg/d.o.f. PTEκg SNRκg(< �max)

200 1.50 ± 0.05 0.8/8 0.9992 15.5 1.27 ± 0.07 4.0/8 0.8571 17.6
400 1.55 ± 0.03 3.4/18 0.9999 29.9 1.32 ± 0.06 8.0/18 0.9786 23.1
600 1.59 ± 0.02 8.7/28 0.9998 41.3 1.32 ± 0.05 11.9/28 0.9966 25.2
800 1.59 ± 0.02 10.2/38 1.0000 49.0 1.32 ± 0.05 20.8/38 0.9895 26.5
1000 1.56 ± 0.01 29.9/48 0.9812 53.0 1.32 ± 0.05 26.7/48 0.9946 27.2

Table 5. Fitting effective bias beff ≈ b(zeff = 0.68) from the observed C
gg
� , Cκg

� up to different �max using the HaloFit model for the non-linear
dark matter power spectrum, clustering b(z)φ(z) (normalized), and no assumptions regarding the shape of the bias evolution.

HaloFit model, clustering b(z)φ(z)
�max beff

gg χ2
gg/d.o.f. PTEgg SNRgg(< �max) beff

κg χ2
κg/d.o.f. PTEκg SNRκg(< �max)

200 2.14 ± 0.07 0.8/8 0.9992 15.5 1.80 ± 0.10 4.0/8 0.8571 17.6
400 2.21 ± 0.04 3.4/18 0.9999 29.9 1.89 ± 0.08 8.0/18 0.9786 23.1
600 2.26 ± 0.03 8.7/28 0.9998 41.3 1.88 ± 0.08 12.0/28 0.9964 25.2
800 2.27 ± 0.02 10.2/38 1.0000 49.0 1.88 ± 0.07 20.8/38 0.9895 26.5
1000 2.23 ± 0.02 29.9/48 0.9812 53.0 1.88 ± 0.07 26.7/48 0.9946 27.2

Table 6. Fits of the perturbation theory based model to C
gg
� and C

κg
� as a function of �max. The second column lists the priors

used for the LPT model parameters, while the third column is the medians and 1σ confidence intervals based on the 16th and
84thpercentiles of the posterior distributions. All priors are flat except for the prior on b2, which is a Gaussian loosely centred at the
peak-background split prediction for a given b1.

CLEFT model, photo φ(z)
Posterior

Parameter Prior �max = 200 �max = 400 �max = 600 �max = 800 �max = 1000

b1 ∈ [0.5, 1.5] 1.33+0.05
−0.05 1.30+0.05

−0.06 1.31+0.05
−0.05 1.32+0.04

−0.04 1.33+0.04
−0.04

b2 ∈ [−1, 2], ∝ N
(
b̃2, 0.3

)
0.529+0.292

−0.318 0.192+0.283
−0.316 0.347+0.291

−0.332 0.352+0.294
−0.305 0.514+0.255

−0.283

α× ∈ [−100, 100] 94.42+4.09
−8.49 87.73+8.64

−12.78 50.51+9.90
−10.91 28.84+7.59

−7.60 19.74+5.94
−6.13

αa ∈ [−100, 100] −77.88+33.45
−16.25 20.68+50.71

−55.44 21.33+38.25
−36.01 14.28+24.73

−24.88 33.23+17.54
−18.25

we determine best-fitting values for the present-day bias bgg =
1.64 ± 0.02 and bκg = 1.32 ± 0.05. This value of the galaxy bias
is similar to the prediction in the DESI Final Design Report (DESI
Collaboration 2016), bLRG(z) = 1.7/D(z), though bκg is lower by a
statistically significant amount. This could indicate either a failure
of the model or input assumptions or that the fiducial ‘Planck 2018’
cosmology is incorrect.

(ii) Under a simple linear bias times HaloFit model, using a
clustering φ(z) and an assumed bias evolution b(z) ∝ D(z)−1,
we determine best-fitting values for the present-day bias bgg =
1.56 ± 0.01 and bκg = 1.32 ± 0.05. We note that the value of bgg

changes by σbgg = 0.08 in switching from the photometric estimate of
φ(z) to the clustering estimate of φ(z), whereas the cross-correlation
is far more robust to this uncertainty in the redshift distribution, with
the inferred parameter bκg unchanged.

(iii) Under a simple linear bias times HaloFit model, using a
clustering b(z)φ(z) with bias evolution implicitly folded into the
overall redshift kernel, we determine best-fitting values for the
effective bias beff ≈ b(zeff = 0.68), finding beff

gg = 2.23 ± 0.02 and
beff

κg = 1.88 ± 0.07. We find perfect consistency with the results of
(ii) under the latter’s assumed bias evolution.

(iv) Using perturbation theory with a Lagrangian bias model, and
using a photometric φ(z), we determine model parameters evaluated
at the effective redshift zeff = 0.68. The Lagrangian bias parameter
b1 = 1.31 ± 0.05, when converted into Eulerian bias b = 1 +
b1, agrees with the results of (iii) within the error found to be
associated with uncertainty in the redshift distribution. Furthermore,
after applying the bias evolution assumption b(z) ∝ D(z)−1, this
result is also in perfect agreement with the results of (i). In contrast
to the HaloFit model, the perturbative model (with scale-dependent
bias) provides a consistent, statistically good fit to both spectra over
the full �-range considered with our fiducial cosmology. However,
even with this model we find weak statistical preference for C

κg
� to

lie lower than the theoretical prediction.

In summary, we find strong constraints on the present day and ef-
fective linear bias, with the largest errors on these inferred parameters
originating from errors in the galaxy redshift distribution but having
negligible effect on the cross-bias term bκg. We also present a united
framework for modelling bias in a bias evolution agnostic way, and
use this to validate the assumption of passive bias evolution for LRGs.
In future works, we intend to use the same framework to perform
joint constraints on cosmological and galaxy bias parameters.
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Figure 13. Marginalized 1D and 2D posterior probability distributions of
the parameters. Vertical lines are median values.

As this work was nearing completion, we became aware of a
similar analysis by Hang et al. (2021). Those authors computed the
clustering of several photometric galaxy samples, constructed from
the Legacy Survey data, and their cross-correlation with the Planck
lensing maps. Where our results overlap they are in agreement,
with both analyses finding that the κg spectrum is lower than the
predictions of a HaloFit-based model fit to the gg autospectrum.
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APPENDIX: CLUSTERING R EDSHIFT
FORMALISM

A1 Detailed derivation

The angular cross-correlation function is related to the spatial cross-
correlation function by the equation

wps(θ, zi) =
∫ ∞

0
dχ1

∫ ∞

0
dχ2 φp(χ1)φs(χ2)

× ξps

(√
χ2

1 + χ2
2 − 2χ1χ2 cos θ, zi

)
, (A1)

where the φ(χ )’s are the normalized radial distributions, and are
related to the normalized redshift distributions φ(z) by φ(χ ) =
φ(z)H(z)/c. Applying algebraic massaging to the argument of ξ ps,
we have√

χ2
1 + χ2

2 − 2χ1χ2 cos θ

=
√

2

(
χ1 + χ2

2

)2

(1 − cos θ ) + (χ2 − χ1)2

2
(1 + cos θ ). (A2)

Since we are restricting to θ ≤ 1◦, we can use the small-angle
approximation,18 cos θ ≈ 1 − θ2/2, to simplify this expression.

wps(θ, zi) =
∫ ∞

0
dχ1

∫ ∞

0
dχ2 φp(χ1)φs(χ2)

× ξps

⎛
⎝
√(

χ1 + χ2

2

)2

θ2 + (χ2 − χ1)2, zi

⎞
⎠ (A3)

Furthermore, if the redshift bins are sufficiently narrow, we can
treat the spectroscopic redshift distribution as a Dirac delta function
φs(z) ∝ δD(z − zi) for each bin and perform the dχ2 integral directly.
We also note that the dχ1 integral is, in practice, only evaluated over
the range of redshifts for which φp(z) is non-zero, zmin to zmax.

wps(θ, zi) ∝
∫ χmax

χmin

dχ φp(χ )

× ξps

⎛
⎝
√(

χ + χi

2

)2

θ2 + (χ − χi)2, zi

⎞
⎠ (A4)

We now rewrite ξ ps in terms of the underlying dark matter
correlation function times the linear biases of the photometric and
spectroscopic samples,

wps(θ, zi) ∝
∫ χmax

χmin

dχ φp(χ )bp(χ )bs(χi)

× ξmm

⎛
⎝
√(

χ + χi

2

)2

θ2 + (χ − χi)2, zi

⎞
⎠ . (A5)

Next, we apply the Limber approximation (generally valid for
scales θ ≤ 1◦), which assumes that φp and bp do not vary appreciably
over the characteristic scale defined by ξmm, and thus can be taken
out of the integral. Since the integrand is sharply peaked around χ =
χ i, this gives

wps(θ, zi) ∝ φp(χi)bp(χi)bs(χi)

×
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ2 + (χ − χi)2, zi

)
(A6)

= φp(zi)
H (zi)

c
bp(zi)bs(zi)I (θ, zi), (A7)

where

I (θ, zi) ≡
∫ χmax

χmin

dχ ξmm

(√
χ2

i θ2 + (χ − χi)2, zi

)
(A8)

can be computed directly from theory.

A2 Understanding I(z)

To understand the shape of I(z), it is useful to switch the integration
variable from dχ to dz = H(z)/cdχ , such that we have

I (θ, zi) =
∫ zmax

zmin

dz
c

H (z)
ξmm

(√
χ2

i θ2 + (χ − χi)2, zi

)
. (A9)

For linear scales, ξmm(r, z) = D(z)2ξmm(r, z = 0)⇒

I (θ, zi) =
∫ zmax

zmin

dz
cD(z)2

H (z)
ξmm

(√
χ2

i θ2 + (χ − χi)2, 0
)
. (A10)

Since the integrand is sharply peaked around χ (z) = χ i,

I (θ, zi) ≈ cD(zi)2

H (zi)

∫ zmax

zmin

dz ξmm

(√
χ2

i θ2 + (χ − χi)2, 0
)
. (A11)

18At 1◦, this approximation is accurate to within ≈4 × 10−9.
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This form tells us that I(θ , zi) ∝ D(zi)2/H(zi) multiplied by an
integral that is only weakly dependent on zi through the comoving
distance χ i = χ (zi). Furthermore, we note that if both biases are
passively evolving b(z) ∝ D(z)−1, then equation (A7) reduces to a
direct proportionality wps(θ , zi) ∝ φ(zi) for linear scales.

A3 Normalization and scale-dependent bias

One of the principal challenges of determining φ(z) through cross-
correlation analysis is the fact that each cross-correlation measure-
ment is only reliable over the subset of the redshift range in which
the two samples overlap. Hence, while it is often touted that only
the redshift dependence of the various functions such as bias are
required to constrain φ(z), as the many proportionality constants
can be normalized away, the different measurements must first be
connected piecewise. Even when all nuisance parameters can be
tracked and accounted for, the analysis is ultimately limited by
the fact that the biases may be somewhat scale dependent on the
scales in which signal to noise is high for angular cross-correlations.
Hence, the choice of which scales to integrate over, as discussed
in Section 3, can lead to additional factors. In practice, we often
need to integrate over different physical scales for different cross-
correlations to optimize S/N (for example, VIPERS has high surface
density but very small area, so the information lies mostly in smaller
scales compared to CMASS and eBOSS), leading to some residual
offsets between the measurements.

As an example to probe how scale dependence can change the
clustering-derived φ(z), we consider the ‘P-model’ (Smith, Scoc-
cimarro & Sheth 2007; Hamann et al. 2008; Cresswell & Percival
2009), where the non-linear correction to the bias is represented as
an additional constant in the power spectrum that accounts for non-
Poissonian shot noise associated with the 1-halo term (Peacock &
Smith 2000; Seljak 2000; Schulz & White 2006; Guzik, Bernstein &
Smith 2007; Wechsler & Tinker 2018),

Pg(k) −→ b2
gPmm(k) + P ⇒ (A12)

ξps(r) −→ bpbsξmm(r) + ξP (r), (A13)

where ξP (r) is simply the Hankel transformed P ,

ξP (r) =
∫

dk

k

k3

2π2
P j0(kr) (A14)

= P
2π2

∫
dk k2j0(kr). (A15)

Hence,

wps(θ, zi) ∝ φp(zi)
H (zi)

c
(bp(zi)bs(zi)I (θ, zi) + J (θ, zi)), (A16)

where

J (θ, zi) ≡
∫ χmax

χmin

dχ ξP
(√

χ2
i θ2 + (χ − χi)2, zi

)
. (A17)

Without knowing the value of P , the exact normalization (and,
indeed, the shape) of φp(z) cannot be computed, since

φp(zi) ∝
wps(θ, zi) c

H (zi)

bp(zi)bs(zi)I (θ, zi) + J (θ, zi)
. (A18)

Assuming that the scale-dependent term is subdominant, J/I � 1, we
can expand in this ratio,

φp(zi) ∝
wps(θ, zi) c

H (zi)

bp(zi)bs(zi)I (θ, zi)

1

1 + J (θ,zi)
bp(zi )bs(zi )I (θ,zi)

≈ wps(θ, zi) c
H (zi)

bp(zi)bs(zi)I (θ, zi)
(1 − J (θ, zi)

bp(zi)bs(zi)I (θ, zi)
+ O2) (A19)

and thus obtain an estimate of the leading order effect of including
scale-dependent bias for a given P and range of redshifts and angles.
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