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ABSTRACT
Recent exoplanet statistics indicate that photo-evaporation has a great impact on the mass and bulk composition of close-in
low-mass planets. While there are many studies addressing photo-evaporation of hydrogen- or water-rich atmospheres, no
detailed investigation regarding rocky vapour atmospheres (or mineral atmospheres) has been conducted. Here, we develop a
new 1D hydrodynamic model of the ultraviolet (UV)-irradiated mineral atmosphere composed of Na, Mg, O, Si, their ions and
electrons, including molecular diffusion, thermal conduction, photo-/thermochemistry, X–ray and UV heating, and radiative line
cooling (i.e. the effects of the optical thickness and non-local thermal equilibrium). The focus of this paper is on describing our
methodology but presents some new findings. Our hydrodynamic simulations demonstrate that almost all of the incident X-ray
and UV energy from the host star is converted into and lost by the radiative emission of the coolant gas species such as Na, Mg,
Mg+, Si2+, Na3+, and Si3+. For an Earth-size planet orbiting 0.02 au around a young solar-type star, we find that the X-ray and
UV heating efficiency is as small as 1 × 10−3, which corresponds to 0.3 M⊕ Gyr−1 of the mass-loss rate simply integrated over
all the directions. Because of such efficient cooling, the photo-evaporation of the mineral atmosphere on hot rocky exoplanets
with masses of 1 M⊕ is not massive enough to exert a great influence on the planetary mass and bulk composition. This suggests
that close-in high-density exoplanets with sizes larger than the Earth radius survive in the high-UV environments.

Key words: planets and satellites: atmospheres – planets and satellites: physical evolution – planets and satellites: terrestrial
planets.

1 IN T RO D U C T I O N

Atmospheric escape is an important process that changes the mass
and bulk composition of close-in exoplanets, which are highly
irradiated by stellar X-rays and ultraviolet (UV, collectively called
X + UV, hereafter). For example, the California-Kepler exoplanet
survey has revealed that there are two dominant clusters of exoplanets
with periods of <100 d: The radii of planets in one cluster are Rp

< 1.5 R⊕ and those in another cluster are Rp = 2–3 R⊕ (Fulton
et al. 2017). Some theories demonstrate that such a bimodal size
distribution is an outcome of atmospheric escape (Owen & Wu
2017; Jin & Mordasini 2018); that is, the former cluster consists
of bare rocky planets that have lost their primordial hydrogen-rich
atmospheres. Similar bimodality is predicted theoretically for water-
rich planets (Kurosaki, Ikoma & Hori 2013; Lopez 2017), although
its boundary seems inconsistent with the observed distribution above.

An interesting question is whether rocky vapour atmospheres are
stable or not in strong stellar X + UV environments. Some super-
Earths detected so far are dense and hot enough that they are likely
to be rocky planets with rocky vapour atmospheres on top of magma
oceans, which include CoRoT-7 b (Queloz et al. 2009) and Kepler-
78 b (Sanchis-Ojeda et al. 2013). If such hot rocky exoplanets (HREs,
hereafter) have no highly volatile elements such as H, C, N, S, and

� E-mail: yuichi.ito.kkyr@gmail.com

Cl, their atmospheres are composed mainly of Na, O2, and SiO
(e.g. Schaefer & Fegley 2009; Miguel et al. 2011; Ito et al. 2015,
see Schaefer, Lodders & Fegley 2012, for the volatile-rich cases).
Same as in Ito et al. (2015), we call such an atmosphere the mineral
atmosphere in this study.

Hydrodynamic escape of highly irradiated atmospheres is known
to occur in an energy-limited fashion (Sekiya, Nakazawa & Hayashi
1980; Sekiya, Hayashi & Kanazawa 1981; Watson, Donahue &
Walker 1981); the mass-loss rate, Ṁ , is given by

Ṁ = ε
Rp

GMp

πFX+UVR2
X+UV, (1)

where G is the gravitational constant, Mp and Rp are the planetary
mass and radius, respectively, FX + UV is the incident X + UV
flux, RX + UV is the effective radius for X+UV absorption, and
ε is the net X + UV heating efficiency that is defined as the
ratio of the net heating rate (i.e. stellar-energy absorption minus
cooling) to the stellar-energy absorption rate. Given RX + UV � Rp,
most of the physics and atmospheric properties are hidden in ε,
which is determined by the heating and cooling processes in the
atmosphere. Combined simulations of atmospheric hydrodynamics
and photochemistry demonstrate that ε ∼ 0.03–0.4 for hydrogen-
rich atmospheres, including hot-Jupiter envelopes, and oxygen-rich
terrestrial atmospheres (e.g. Tian 2015, references therein).

Valencia et al. (2010) examined the stability of a possible mineral
atmosphere of CoRoT-7 b as an example of HREs. They first
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estimated that the equilibrium vapour pressure is high enough and,
thus, the atmosphere is thick enough to absorb the incident stellar
UV completely. Then, assuming the energy-limited hydrodynamic
escape with ε = 0.4, they demonstrated that CoRoT-7 b could have
lost several Earth masses via the escape, provided the planet had been
born as a bare rocky planet. However, such a substantial mass loss
may not be consistent with the Kepler’s discovery of numerous close-
in Earth- and super-Earth-sized exoplanets, which was made later.

As yet, however, we have a poor understanding of the heating and
cooling processes in the mineral atmosphere and, thus, no exact
idea about the correct value of ε. When it comes to hydrogen-
rich atmospheres, there are many studies about such heating/cooling
processes done in the context of photo-evaporation of hot Jupiters. In
such atmospheres, the infrared (IR) emission by H3+ is the dominant
cooling process, in addition to advective cooling, while heating
occurs via photodissociation and ionization of hydrogen due to stellar
EUV irradiation (e.g. Yelle 2004; Garcı́a-Muñoz 2007b). Murray-
Clay, Chiang & Murray (2009) showed that hydrogen Lyman-α
line (H-Lyα) emission becomes the dominant cooling mechanism
in hydrogen-rich atmospheres in extremely high EUV conditions
like for close-in planets around T Tauri stars.

Similarly to the H-Lyα cooling for hydrogen-rich atmospheres,
radiative cooling of the sodium D line (Na-D) could be a dominant
cooling mechanism in sodium-rich mineral atmospheres. Electronic
transition from the 3p to the 3s level of sodium for Na-D is
characterized by the large value of the Einstein coefficient for
spontaneous emission, A � 6 × 107 s−1, and the low excitation
energy, Eex � 2.1 eV, whereas A � 6 × 108 s−1 and Eex � 10.2 eV
for H-Lyα (see NIST Data base1: Kramida et al. 2020). Provided
radiation is emitted by gas in collisional equilibrium, namely, the
atmospheric gas is optically thin in a local thermal equilibrium
(LTE), the radiative cooling rate is simply given by AEexexp (−
Eex/T), where T is the temperature in eV. In such an ideal condition,
the Na-D cooling rate is approximately 1012, 106, and 102 times as
high as the H-Lyα cooling rate at T = 3000, 5000, and 10 000 K,
respectively. This simple analysis suggests that the hydrodynamic
escape of mineral atmospheres is less massive compared to that
of hydrogen-rich atmospheres. However, the condition of LTE and
extremely small optical thickness is not always achieved in the
atmospheric region where hydrodynamic escape is driven.

This study is aimed to clarify the cooling/heating processes and
stability of the sodium-rich mineral atmosphere on top of a magma
ocean of a volatile-free HRE. To do so, we develop a theoretical
model of hydrodynamic escape, incorporating the detailed photo-
chemical processes. Then, we derive the values of the net X + UV
heating efficiency, ε, and the mass-loss rate. The focus of this paper is
on describing our methodology, although we show some new findings
regarding the escape of the mineral atmosphere. In this paper, we
consider only 1 M⊕ HREs; Dependence on planetary mass and other
parameters will be investigated in detail in our forthcoming paper.

The rest of this paper is organized as follow: in Section 2, we
describe the hydrodynamic model of the mineral atmosphere of
an HRE. In Section 3, we perform some benchmark tests of our
model for isothermal transonic escape and hydrodynamic escape
of a hydrogen-rich atmosphere. In Section 4, we present results
of our new hydrodynamic calculations, which include the profiles
of density, temperature, and velocity as well as energy budget in
the mineral atmosphere. Finally, we discuss the X + UV heating
efficiency of the mineral atmosphere based on our findings and the

1https://www.nist.gov/pml/atomic-spectra-database

Figure 1. Schematic illustration of the HRE (upper panel) and processes
considered in this study (lower panel). Note that we explore only the
hydrodynamic part of the mineral atmosphere and give the lower boundary
conditions according to Ito et al. (2015). See the text for the details.

caveats of our model in Section 5, and summarize our results in
Section 6.

2 MO D EL

We construct a 1D hydrodynamic model of an X + UV-irradiated,
mineral atmosphere of an HRE orbiting a G-type star (see Fig. 1).
We find steady-state solutions of transonic, hydrodynamic gas flow
of the atmosphere in the stream-tube along the line connecting the
planetary and stellar centres. We integrate the hydrostatic structure
of the lower atmosphere separately, following Ito et al. (2015),
to determine the lower boundary conditions at r = Rp for the
hydrodynamic upper atmosphere.

The lower atmosphere is assumed to be always in the thermal and
chemical equilibrium with the underlying magma ocean. That is, the
supply of gas from the magma ocean occurs immediately to make
up for the loss by the atmospheric escape (Valencia et al. 2010).
Following previous chemical-equilibrium calculations for mineral
atmospheres (Schaefer & Fegley 2009; Miguel et al. 2011; Ito et al.
2015), we assume that the magma is the same in composition as the
bulk silicate Earth (BSE) without highly volatile elements such as
H, C, N, S, and Cl. Although such simulated mineral atmospheres
contain various gas species, we consider only the major species in this
study, for simplicity. From the chemical point of view, monoatomic
gases would be major species in the upper atmosphere where the
absorption efficiency of X + UV and temperature are high enough
that polyatomic molecules are completely dissociated and density
is too low for two-body recombination to occur efficiently. Thus,
we consider Na, O, and Si, which are the most abundant chemical
elements in the upper atmosphere with a substellar-point equilibrium
temperature of � 2200 K (see fig. 5 in Ito et al. 2015). Also, in
addition to the alkali metal Na, we consider the alkaline-earth metal
Mg, which possibly becomes a strong coolant like Na because its ions
behave like alkali metal atoms in the sense that a single electron exists
in the outermost shell. In summary, we consider Na, O, Si, Mg, their
ions (up to +4 charge) and electrons as the constituents of the upper
atmosphere. The calculations of energy budget shown below, which
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is of particular interest in this study, confirm that these components
except for oxygen and its ions make important contribution to the
heating and cooling rate in the mineral atmosphere. Also, although
K and Fe are more abundant than Mg in the atmosphere (Ito et al.
2015), they are not considered in this model, for simplicity. Note
that since their cooling effects in the atmosphere are smaller than Na
based on a simple analysis for cooling rates in LTE and optically thin
conditions (see Section 5.2.4), these would affect the energy budget
in the atmosphere only slightly.

While planetary and stellar magnetic fields would affect the motion
of ionic gases and electrons, we focus on investigating the thermal-
escape process and neglect the effects in this paper; that is, we assume
that the atmosphere is neutral as a whole (ambipolar constraint).
Also, all the gas species including neutrals, ions and electrons are
assumed to be the same in temperature, which is also assumed in
hydrodynamic simulations for hot Jupiters (e.g. Yelle 2004; Garcı́a-
Muñoz 2007b).

In the rest of this section, we describe the basic equations (Sec-
tion 2.1), chemical reactions (Section 2.2), heating/cooling processes
(Section 2.3), diffusion/conduction (Section 2.4), boundary condi-
tions (Section 2.5), and numerical scheme (Section 2.6) in this model.

2.1 Hydrodynamic equations

Following previous models of hydrodynamically escaping atmo-
spheres (e.g. Watson et al. 1981; Garcı́a-Muñoz 2007b; Tian et al.
2008), we integrate the equations of continuity, motion, and energy
for a spherically symmetric flow of an inviscid, multicomponent gas:

∂

∂t

(
r2ρs

) = − ∂

∂r

[
r2ρs(u + us)

] + r2ρ̇s , (2)

∂

∂t

(
r2ρu

) = − ∂

∂r

[
r2(ρu2 + P )

] + r2ρfext + 2Pr, (3)

∂

∂t

(
r2ρE

) = − ∂

∂r

[
r2(ρE + P )u + r2q

] + r2(ρufext + Qnet), (4)

where t is time and r is the radial distance from the planetary
centre. All the other quantities are functions of r and t: ρs and
ρ̇s are respectively the mass density and net mass production rate
per unit volume of gas species s, ρ is the total mass density (i.e.
ρ = ∑

s∈S ρs=
∑

s∈S msns , where ms and ns are the mass and
number density of species s, respectively, and S represents the set
of gas species, namely, S = Na, Na+, Na2 +, etc.), u is the bulk
velocity, us is the diffusion velocity of species s (or the component of
a velocity difference caused by diffusion), P and E are the pressure
and the total energy density (or the sum of the kinetic energy density
and the specific internal energy of the bulk gas flow), respectively,
fext is the external force, q is the heat flux, and Qnet is the net energy
deposition rate.

We assume that the atmosphere consists of perfect monoatomic
gases. The total energy density is given by

E = 1

2
u2 + 1

γ − 1

P

ρ
, (5)

and the sound speed is cS = √
γP/ρ with the heat capacity ratio

γ = 5/3.
The external force fext is given by

fext = −GMp

r2
+ GM∗

(a − r)2
−

(
M∗

M∗ + Mp

a − r

)
G(M∗ + Mp)

a3
,

(6)

where a is the separation between the planetary and stellar centres,
Mp and M∗ are the planetary and stellar masses, respectively. The first,
second, and third terms on the right-hand side represent the planetary

gravity, the stellar gravity, and the centrifugal force, respectively. The
last two terms are collectively termed the tidal force.

Finally, the quantities ρ̇s , Qnet, us, and q are determined from
the models of chemical reaction, heating/cooling processes, and
diffusion/thermal conduction, which are described below.

2.2 Chemical reaction

Since the atmosphere considered in this study is composed of
atoms and their ions, ionization, and recombination dominate the
atmospheric chemistry. Here, we consider reactions relevant both to
radiative and thermal processes. All those processes except inverse
ones are listed in Table A1: such inverse processes are the thermal
recombination of each ion (i.e. three-body recombination opposite
to the thermal ionization reactions named TI 1–16 in Table A1).
For the thermal recombination, we assume an electron as the third
body that receives the reaction heat and calculate the reaction rate
constant of thermal recombination from that of thermal ionization
and the equilibrium constant given by the Saha’s ionization equation
(equation 9.45 in Rybicki & Lightman 1986). We ignore direct
exchange of electric charges between atoms and ions for simplicity,
since those reaction rates are unavailable for almost all of the species
considered in this model. Note that, instead of the charge exchange,
the thermal ionization and recombination reactions of each atom or
ion with electrons lead to removing and adding their electrons, and
then these two processes consequently exchange the charge between
different atoms and ions in this model.

Consider a photo-ionization process such that an i-times charged
ion of chemical element Y, which is denoted by Yi, leads to a further
loss of x electrons and produces an ion with an i + x charge (i.e. Yi + x).
Using the symbol n(Yi), instead of ns, the rate of photo-ionization
from Yi to Yi + x is given by

dn(Y i+x)

dt
= n(Y i)

∫
F ∗

λ exp(−τλ) σY i ,λ ηi→(i+x), Y ,λ dλ, (7)

where F ∗
λ is the emergent photon flux from the host star, τλ is the

optical depth at wavelength λ measured from infinity, σY i ,λ is the
photo-ionization cross-section of species Yi, and ηi → (i + x), Y, λ is
the probability that a collision with a photon results in removing
x electrons from Yi and yielding Yi + x.

As for the stellar spectrum F ∗
λ , we adopt the solar-type star models

that Claire et al. (2012) developed by combining the observed
spectra of the Sun and solar analogues of different ages. Three
model spectra of different stellar ages 0.1, 1, and 4.56 Gyr are
presented in Fig. 2. The photo-ionization cross-section σY i ,λ is given
by Verner & Yakovlev (1995). As for ηi → (i + x), Y, λ, we consider
single and multiple electron emission that occurs when X + UV
removes an electron from an atom and then such electron emission
from an inner-shell of the atom brings about further emission of
electrons (which is termed the Auger effect). Since we consider only
up to 4+ ions in this study, we use the form of ηi → (i + x), Y, λ given
by Kaastra & Mewe (1993) for i + x ≤ 4 and assume ηi → (i + x), Y, λ

= 0 for i + x ≥ 5. Note that the function is normalized so that the
sum of ηi → (i + x), Y, λ is unity.

To integrate equation (7), we consider 23 spectral intervals in the
wavelength region between 0.1 and 250 nm in such a way

λk =

⎧⎪⎪⎨
⎪⎪⎩

0.1 nm (k = 1)
1.0 nm (k = 2)
1.0 + 2.0(k − 2) nm (3 ≤ k ≤ 14)
25 × 100.1(k−14) nm (15 ≤ k ≤ 24)

(8)
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Figure 2. Spectrum models of the host star from Claire et al. (2012). The
photon fluxes at 1 au from the host star with age of 0.1 Gyr (red), 1 Gyr
(green), and 4.56 Gyr (blue) are shown as functions of wavelength. The host
star is assumed to be a solar-type star.

In each bin of width �λk (≡ λk + 1 − λk), we calculate the averaged
value of the photo-ionization cross-section, σ̄s,k , as

σ̄s,k =
∫

λ∈�λk

σs,λ

F ∗
λ

〈F ∗
λ �λ〉k dλ, (9)

where 〈F ∗
λ �λ〉k is the photon flux in the kth bin given by

〈F ∗
λ �λ〉k =

∫
λ∈�λk

F ∗
λ dλ. (10)

Note that we simply use the value of F ∗
λ calculated at λ = 0.5 nm

over wavelength between 0.1 and 0.5 nm, where the data of F ∗
λ are

unavailable in Claire et al. (2012). Likewise, the averaged photon
energy at the kth bin is given by

hc

λ̄k

=
∫

λ∈�λk

hc

λ

F ∗
λ

〈F ∗
λ �λ〉k dλ, (11)

where c is the light velocity and h is the Planck constant. Note that
while we use the above averaged values, σ̄s,k and λ̄k , at each bin
below, we do not indicate so for the sake of shorthand.

Finally, the net mass production rate, ρ̇s in equation (2), is
calculated from reactions tabulated in Table A1. For instance, in
the case of a reaction of two-body reactants s1 and s2 and a single
product s3 with a rate coefficient kr, the mass production rate of
species s3 is given by ρ̇s3 = ms3krns1ns2 .

2.3 Heating and cooling processes

In this model, we consider the absorption of stellar X + UV by
atoms and ions via photo-ionization. The absorbed energy is used
for removing the outermost electrons (i.e. normal ionization) and
also the inner-shell electrons, which induces characteristic X-ray
emission, and is also partitioned into the thermal energy. In addition,
we consider chemical reactions and radiative transitions as other
heating and cooling processes. Thus, the net energy deposition rate,
Qnet, is given by

Qnet = QX+UV − QEi − QX − Qchem − Qrad, (12)

where QX + UV is the total energy of X + UV absorbed per unit time
given by

QX+UV =
∑

Y

3∑
i=0

n(Y i)
∫

hc

λ
F ∗

λ e−τλ σY i ,λ dλ; (13)

QEi is the energy loss rate via photo-ionization, which is given
by the sum of the photo-ionization rates given in equation (7)
times corresponding ionization energies; QX is the energy loss
rate via characteristic X-ray emission, the probability of which is
calculated from Kaastra & Mewe (1993) with the assumption that
the characteristic X-ray is lost completely from the atmosphere to
space, and, thus

QX =
∑

Y

3∑
i=0

4−i∑
x=1

n(Y i)
∫ (∑

k

ηk
X,λE

k
X,λ

)
F ∗

λ e−τλ σY i ,λ dλ, (14)

where ηk
X,λ and Ek

X,λ are the emission probability and energy of the
kth characteristic X-ray (see Kaastra & Mewe 1993); Qchem is the
endothermic/exothermic rate of thermochemical reactions (i.e. reac-
tions except photo-ionization and radiative recombination), whose
ionization energy data are taken from the NIST data base2: Kramida
et al. 2020; and Qrad is the net radiative energy absorbed/emitted per
time by energy level transition.

We define the primary X + UV heating rate, Q′
X+UV, as

Q′
X+UV = QX+UV − QEi − QX, (15)

and, hereafter, use this quantity, instead of QX + UV, namely,

Qnet = Q′
X+UV − Qchem − Qrad. (16)

2.3.1 Energy level transition

As for Qrad, we consider atomic-line radiation, taking the effects
of non-LTE into account in the following way. First, since energy-
level transitions occur frequently enough on the hydrodynamic time-
scale of interest, we assume that the populations of energy levels are
always in statistical equilibrium such that both collisional-radiative
excitation and de-excitation balance each other. We consider all
the energy levels below 10 eV or below the one from which a
permitted radiative transition occurs (the Einstein coefficients being
taken from NIST MCHF/MCDHF data base3: Froese Fischer et al.
2020). Table A2 shows the energy levels of each species used in this
model. Note that the radiative lines of Na+, Na2+, Mg2+, and Mg3+

are ignored in this model (see Table A2) since they would not be
effective compared to the others. This is because their first excited
levels have very high excitation energy over 20 eV as their electron
configurations are like those of noble gases and halogens; that is, they
are hardly excited via collisions and then hardly play a dominant role
in cooling.

Then, for taking the effects of radiative transfer approximately
into account, we adopt the escape probability (EP) method (e.g.
Irons 1978; Rybicki 1984), which assumes that the local emission
and absorption line profiles are equal to each other and that the
source function is the same everywhere in a medium. The former
assumption is generally valid in the cores of strong lines. The
latter is not exactly valid in planetary atmospheres because of
inhomogeneous temperature and line profiles, although being often
adopted in modelling of interstellar clouds (e.g. Osterbrock 1989) and
hydrodynamic simulations for the photo-evaporation of protoplan-
etary discs and hydrogen-rich atmospheres of close-in exoplanets
(e.g. Ercolano et al. 2008; Owen et al. 2010; Salz et al. 2016). The
latter assumption, however, brings about no significant error. Dumont
et al. (2003) compared the EP method with the so-called accelerated
lambda-iteration method (e.g. Hubeny 2001), which is one of the
most efficient and secure line transfer methods, for the typical active

2https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
3http://nlte.nist.gov/MCHF/
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galactic nucleus or X-ray binary emission medium. They showed that
results obtained from the two methods differed by tens of per cent in
computed energy balance, indicating that the EP method would cause
only about 10 per cent error in temperature in LTE regions, because
temperature is proportional to the fourth root of emission intensity in
LTE. Also, the EP method is valid in wide, optically thin, non-LTE
regions, because it yields the exact solution in extremely optically
thin media. To estimate the error of the EP method in optically thick
non-LTE regions, one has to compare it to other efficient and secure
line transfer methods; evaluating such an error is beyond the scope
of this study.

In the EP method, the local mean intensity integrated over
frequency around the atomic line, J (= ∫

d
∫

Iν dν /4π), which is
needed to obtain radiative transition rates, is then given by (Hubeny
2001)

J = (1 − P ′
e)S, (17)

where P ′
e is the probability for photons to escape from the atmo-

spheric gas (termed the EP), which depends on the optical depth, τ ,
and S is the source function given by

S = 2hν3
0

c2

(
gunl

glnu

− 1

)−1

, (18)

nu and nl are the number densities of the upper and lower energy
levels, respectively, gu and gl are the degeneracies of the upper and
lower levels, respectively, and ν0 is the frequency of the atomic line
between the upper level u and lower level l. In this study, we adopt
the formula of P ′

e that Chatzikos et al. (2013) derived considering
the absorption effect of an external radiation field as

P ′
e = Pe(1 − Jext/S), (19)

where Pe is the EP without external field and Jext is the mean intensity
in the external radiation field. In this study, we assume that the
line radiation from ions propagates both upwards and downwards,
whereas that from neutral atoms propagates only upwards. This is
because the lower atmosphere is composed mainly of neutral atoms,
so that it is optically thick for line radiation from neutral atoms. Thus,
letting pe(τ ) and pe(τ tot − τ ) be the EPs from r to space and from r to
the lower boundary in the atmosphere, respectively, one can write

Pe =

⎧⎪⎨
⎪⎩

pe(τ ) + pe(τtot − τ )

2
for ions

pe(τ ) for atoms

(20)

where τ is the frequency-integrated optical depth.
Since the atmospheric gas of interest in this study is relatively

tenuous, we consider only the Doppler broadening for calculating τ .
Then, Pe is given by (Kwan & Krolik 1981)

Pe =
⎧⎨
⎩
[
τ
√
π
(

1.2 +
√

ln τ

1+10−5τ

)]−1
(τ ≥ 1),

(2τ )−1
[
1 − exp(−2τ )

]
(τ < 1).

(21)

If the optical thickness at the line centre is denoted by τ 0, τ =√
πτ0. To be consistent with the EP model, we assume that the

line profile including the Doppler width is unchanged through a
medium, provided temperature is constant. τ 0 is much less sensitive
to temperature than to number density, because τ 0 is inversely
proportional just to the square root of temperature (see Rybicki &
Lightman 1986). For calculating the Doppler width of ions, we
adopt the typical temperature for highly ionized interstellar media,
1 × 104 K (e.g. Osterbrock 1989), for simplicity, since we do not
know the temperature of the upper atmosphere a priori and have

confirmed that choice of the temperature has little effect on the
results. Also, as for neutral atoms, we use the temperature at the inner
boundary of the calculated region in this model, which is described
in Section 2.5, since almost all of the neutrals are in the lower region
of the atmosphere.

Also, Jext is assumed as

Jext = J ∗
ν0

+ 1

2
Bν0(T0), (22)

where J ∗
ν0

(= F ∗
ν0

/4π) is the mean intensity of the incident radiation
at frequency ν0 from the host star, and Bν0(T0) is the Planck function
for the temperature at the atmospheric lower boundary, T0. The first
and second terms correspond, respectively, to the irradiation by the
host star and to the thermal radiation from below. We take the value
of F ∗

ν0
from Claire et al. (2012).

Using equations (17)–(22), one can write the equation for tran-
sition between energy levels in statistical equilibrium in the matrix
form

χnx = 0, (23)

where nx is the vector of the number densities of energy levels. The
sum of the components of nx , nx, is equal to the total number density
of species s:∑

nx = ns. (24)

The elements of the lower- and upper-triangle matrices of χ are
written, respectively, as

χlu = Clu, χul = Cul + AulP
′
e, (25)

where Clu, Cul, and Aul are the collisional de-/excitation transition
rates and the Einstein coefficient for the spontaneous de-excitation
rate from the upper level u to the lower level l, respectively.
We assume that only collision with electrons causes de-/excitation
transition of atoms and ions; that is,

Cul = qulne, Clu = qlune, (26)

where ne is the number density of electrons, qul and qlu are the
collisional de-/excitation transition rate coefficients and the mutual
relationship is given by (Osterbrock 1989)

qul = gl

gu

qlu exp(�Elu/kbT ), (27)

where T is the temperature, kb is the Boltzmann constant, and �Elu

is the transition energy between u and l,

qlu = 8.629 × 10−6

glT 1/2
γlu exp(−�Elu/kbT ), (28)

and γ lu is a dimensionless quantity called the effective collision
strength. We ignore its small temperature dependence in this study,
for simplicity. Table A3 summarizes the values of Aul and γ lu for
each transition used in this model. For �Elu, we use each different
values of each excitation energy summarized in Table A2.

From equations (23) and (24), we determine the level populations
in each gas species. Finally, Qrad is given by

Qrad =
∑
s∈S

∑
u

∑
l

�EluAulP
′
ens,u, (29)

where ns, u is the number density of gas species s with energy level u.

2.4 Diffusion and conduction

We consider multicomponent diffusion, following the formula de-
scribed by Garcı́a-Muñoz (2007a). This formula is based on the
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momentum equations for multicomponent gas derived by Burgers
(1969) and arranged in the classical Stefan–Maxwell form. In this
study, we adopt the first-order approximation of this method for the
mineral atmosphere in ambipolar constraint, which is also used in
hydrodynamic simulations for hot Jupiters (Garcı́a-Muñoz 2007b).
For calculating the diffusion velocity of species s, us, from the
approximate diffusion matrix (see appendix A in Garcı́a-Muñoz
2007b, for the details), one needs the binary diffusion coefficient
between species i and k, Di,k . Following Garcı́a-Muñoz (2007a), for
the atom–atom and atom–electron binary diffusions, we calculate
Di,k from the hard sphere model as

nDi,k = 1.95 × 106 T 1/2

m̄
1/2
i,k

cm−1 s−1, (30)

where m̄i,k = mimk/(mi + mk). For the atom–ion binary diffusion,
the interaction between ions and atoms is assumed to be due to the
induced polarization potential and Di,k is given by

nDi,k = 4.13 × 10−8 T

m̄
1/2
i,k

1

(αnZ
2
i )1/2

cm−1 s−1, (31)

where αn is the polarizability of the atom and Zi is the charge number
for the ion. The values of αn are taken from CRC Handbook (2011).
For the ion–ion binary diffusion, we use the formula of the Coulomb
interaction as

nDi,k = 1.29 × 10−3 T 5/2

m̄
1/2
i,k

1

Z2
i Z

2
k ln β

cm−1 s−1, (32)

where β is given as β = 1.26 × 104(T3/ne)1/2 (Burgers 1969). For
the ion–electron binary diffusion, following Schunk & Nagy (2000),
we calculate Di,k as

nDi,k = 2.8 × 109 T 5/2

Z2
i

cm−1 s−1. (33)

Finally, we calculate us from equations (A3), (A4), and (A7)–(A12)
of Garcı́a-Muñoz (2007a) with the binary diffusion coefficients
described above.

We assume that heat transport occurs via thermal conduction and
heat exchange due to chemical diffusion. The heat flux q is calculated
as (Garcı́a-Muñoz 2007b)

q = −κ
∂T

∂r
+

∑
s∈S

ρshsus, (34)

where κ is the thermal conductivity and hs is the specific enthalpy of
species s given by hs = γ kbT/[(γ − 1)ms]. κ is given as a sum of the
thermal conductivities of species s, κ s, namely

κ = 1

n

∑
s∈S

nsκs ; (35)

for neutrals, κ s is given from equations (14.30) and (14.42) of
Banks & Kockarts (1973) as

κs = 75

64

(
k3

bT

msπ

)1/2
1

d2
s

erg cm−1K−1s−1, (36)

where ds is the atomic diameter for which we adopt the van der
Waals size; for ions, κ s is given from equation (22.105) of Banks &
Kockarts (1973) as

κs = 7.37 × 10−8 T 5/2

(ms/mp)1/2
erg cm−1K−1s−1, (37)

Figure 3. Temperature–pressure profile in the hydrostatic part of the mineral
atmosphere on top of the volatile-free BSE magma ocean of a super-Earth
with gravity of 25 m s−2 for the substellar-point equilibrium temperature, Teq,
of 3000 K (red solid), which we have calculated in the same way as Ito et al.
(2015). The host star is assumed to be a Sun-like star with radius of 1 R� and
effective temperature of 6000 K and emit the blackbody radiation of 6000 K.
The open circle shows the temperature at the bottom of the atmosphere and
the filled circle, which is almost overlapped with the open one, shows the
temperature at the ground. The orange dashed–dotted line represents the total
vapour pressure for the BSE composition, which corresponds to the ground.

where mp is the proton mass; for electrons, κ s is given from equation
(22.122) of Banks & Kockarts (1973) as

κs = 1.23 × 10−6T 5/2 erg cm−1K−1s−1. (38)

2.5 Boundary conditions

For simulating the hydrodynamic flow, we integrate equation (2)
for S gas species and equations (3) and (4). Thus, we need S + 2
boundary conditions.

The lower boundary of the escaping atmosphere is defined as
a spherical surface above which the incident stellar X+UV is
completely absorbed. To be exact, the optical depths at all the
wavelength bins in the X + UV are larger than 10 at the lower
boundary. Since the hydrostatic equilibrium approximation is valid
in such a deep atmosphere, we determine the lower boundary
temperature and mass density from our hydrostatic model of the
mineral atmosphere developed in Ito et al. (2015). Fig. 3 shows
an example of the temperature–pressure profile in the hydrostatic
atmosphere at the substellar point of the planet with Teq of 3000 K,
which corresponds to 0.02 au around a Sun-like star (see equation 16
in Ito et al. 2015, Ap = 0).

Also, the hydrostatic model provides the molar fractions of neutral
atomic species at the lower boundary. For instance, in the above case,
the molar fractions of Na, O, Si, and Mg are 0.375, 0.484, 0.127, and
0.0139. At the lower boundary, the molar fractions of all the ionic
species are set to zero. In addition, we set the velocity at the lower
boundary, u1, to the value extrapolated from the upper atmosphere at
each time-step in the following way:

R2
pρ1u1 =

∫ Ro

Rp
r2ρudr

Ro − Rp

, (39)

where Rp and Ro the radial distances of the lower and upper
boundaries from the planet’s centre, respectively, and ρ1 is the density
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756 Y. Ito and M. Ikoma

at r = Rp. This extrapolation prevents the mass flux from depending
on the lower boundary condition.

The upper boundary conditions are less important in this study,
since we focus on an escaping atmosphere with a supersonic velocity,
which means no information of the upper boundary is propagated
to regions with subsonic velocities where the escaping flow is
driven. Thus, we set simply the quantities such as ns, T, and u at
the upper boundary to values extrapolated from the interior of the
computational domain, following Garcı́a-Muñoz (2007b). We set the
upper boundary radius to 10 Rp.

2.6 Numerical scheme

To find the steady state of the hydrodynamic flow, we perform time
integration of the conservative forms of equations (2)–(4) based on
spatial and time discretizations:

d

dt
U := lim

�t→0

U(t + �t) − U(t)

�t
(40)

= LH + LR, (41)

where

LH = −(�F + �Fd)/�r + SH , (42)

LR = SR, (43)

�r is the size of the non-overlapping spatial cell at r, and

U =
⎡
⎣ r2ρs

r2ρu

r2ρE

⎤
⎦, F =

⎡
⎣ r2ρsu

r2(ρu2 + P )
r2(ρE + P )u

⎤
⎦, Fd =

⎡
⎣r2ρsus

0
r2q

⎤
⎦, (44)

SH =
⎡
⎣ 0

r2ρfext + 2Pr

r2(ρufext + Qnet)

⎤
⎦, SR =

⎡
⎣r2ρ̇s

0
0

⎤
⎦. (45)

Using these expressions, we explain the spatial discretization and the
numerical schemes for the advection term and marching time, below.

The computational region of the atmosphere is divided into Nr

layers. The thickness of each layer is assumed to increase with alti-
tude in such a way that the thickness ratio between two neighbouring
layers, lr, is constant. Following Garcı́a-Muñoz (2007b), we use
Nr = 600 and lr = 1.014. Also, all the variables in each cell are
defined at the centre of each cell. For �Fd, we calculate Fd at the
cell boundaries using the values of variables at the centres of the
neighbouring cells. For �F, we use the finite-volume method with
second-order accuracy.

The above spatial discretization sometimes causes a numerical
instability during time integration of �F, because of unattenuated
short-wavelength numerical disturbances (see also Hirsch 1990).
To ensure the numerical stability, we add an artificial dissipation
flux FAD to F as (Swanson & Turkel 1992; Swanson, Radespiel &
Turkel 1998)

F′ = F + FAD, (46)

FAD = ζ A′�∇�UAD�r3, (47)

where � and ∇ are the forward and backward spatial difference
operators, respectively, ζ is a constant (=0.01 in this study), UAD is
given by

UAD =
⎡
⎣ r2ρs

r2ρu

r2(ρE + P )

⎤
⎦, (48)

and A′ is a square matrix of S + 2 rows and columns which is given
by

A′ = �|λ̂′|�−1. (49)

� is the eigenmatrix of ∂ F/∂U defined as

∂ F
∂U

= �λ̂�−1, (50)

where λ̂ is the eigenvalue matrix, which is a diagonal one with S +
2 rows and columns given by

λ̂′ = diag(λ̂′
1, λ̂

′
2, λ̂

′
2, · · · , λ̂′

2, λ̂
′
2, λ̂

′
3). (51)

The three dots mean that all the elements except the first one (λ̂′
1)

and the final one (λ̂′
3) are λ̂′

2.
In this matrix,

λ̂′
j =

{
max

(∣∣λ̂j

∣∣ , Vn max(λ̂j )
)

(j = 1, 3)

max
(∣∣λ̂j

∣∣ , Vl max(λ̂j )
)

(j = 2),
(52)

with reduction constants Vn and Vl, and λ̂j is the eigenvalue of
∂ F/∂U . Here, we use Vn = 0.25 and Vl = 0.025, which are their
typical values (Swanson & Turkel 1992). From equations (44) and
(50), λ̂1 = u − cS , λ̂2 = u, and λ̂3 = u + cS . Note that when FAD

makes a major contribution to F′ throughout the atmosphere, this
computation may be invalid. Basically, the steeper the gradients of
physical quantities in the atmosphere are, the larger FAD is, because
FAD includes the third-order differential of UAD. We have, however,
made sure that the contribution of FAD to F′ is less than 1 per cent in
the simulation region above 1.1 Rp where is the atmospheric region
of interest in this study.

Equation (40) includes chemical reaction terms, LR, which
differ greatly in magnitude (i.e. mathematically stiff for stable time
integration). To time integrate such a system of stiff differential
equations, we use the implicit-explicit Runge–Kutta method with six-
step and fourth-order accuracy named ARK4(3)6L[2]SA, which was
developed by Kennedy & Carpenter (2003). Treating LR implicitly
and LH explicitly, we calculate the time marching for U by the
integration of equation (40). Then, for the user specific tolerance
error, we set that the relative error for all elements of U is 10−4

and the absolute error for ρs is 10−10ρ. Also, we use the variable
time-step as (Kennedy & Carpenter 2003)

�t = min (�tCFL, �tPID), (53)

where �tCFL is the time-step limited by the Courant–Friedrichs–
Lewy (hereafter, CFL) condition, and �tPID is the time-step con-
trolled by proportional-integral-differential controllers. �tCFL is
given by

�tCFL = ζCFL min

(
�r

|cS + u|
)

, (54)

where ζ CFL is the CFL number that equals 2.01. And, �tPID is given
from equation (30) of Kennedy & Carpenter (2003) as

�t
(n+1)
PID = 0.9�t (n)

∥∥∥ j

δ(n+1)

∥∥∥0.49/p
∥∥∥∥ δ(n)

j

∥∥∥∥
0.34/p ∥∥∥ j

δ(n−1)

∥∥∥0.1/p

, (55)

where J is the user specific tolerance error, p is the value that equals
the order of accuracy minus one, thus three in this model, and δ(n + 1)

is the numerical error of U(t + �t(n)). The error is estimated by
the difference between the fourth-order accuracy values and the
third-order accuracy values (see Kennedy & Carpenter 2003, for
the details).

This numerical method is similar to that used in Garcı́a-Muñoz
(2007b). The main difference between their and our numerical
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Hydrodynamic escape of mineral atmosphere 757

Figure 4. Comparison of our numerical solution with the analytical solution
for an isothermal atmosphere that is escaping hydrodynamically. The velocity
difference between the analytical one, uana, and our numerical one, unum, in
the unit of the sound velocity, cS, is shown as a function of radial distance,
r, in the unit of the critical radius, Rc (see equation [57] for its definition).
Here, we have assumed that the atmosphere consists only of hydrogen atoms
and its temperature is 5000 K. The planetary masses and radii are 10 M⊕ and
2 R⊕, respectively. We have ignored the effect of the tidal force.

schemes is whether the artificial dissipative terms of the discrete
equations are scaled by the eigenvalues of the Jacobian matrix or
by the spectral radius (see Swanson & Turkel 1992, for the details).
The time integration based on a Runge–Kutta method is also used
in Garcı́a-Muñoz (2007b). Following Garcı́a-Muñoz (2007b), we
decide that the system has converged to a steady state, when the
relative changes in ρ, ρu, and ρE averaged over the Nr layers are
below 10−6 for 1000 s. It is also required that the sum of the mass flux
terms, including those of the artificial dissipation, from the continuity
equations over all species fluctuate within 1 per cent throughout the
calculated region.

3 BEN C HMARK TESTS

We perform two benchmark tests of the simulation code for at-
mospheric escape that we have newly developed. As described
below, we confirm that our numerical simulations correctly reproduce
the analytical hydrodynamic solution of an isothermal atmosphere
(Section 3.1) and numerical solutions for a highly UV-irradiated
hydrogen-dominated atmosphere derived by Garcı́a-Muñoz (2007b)
(Section 3.2).

3.1 Isothermal transonic escape

For an isothermal transonic atmosphere, the velocity is analytically
given by (Parker 1964)

− u2

c2
s

+ ln
u2

c2
s

= −4
Rc

r
− 4 ln

r

Rc

+ 3, (56)

where

Rc = GMpm̄

2kbT
, (57)

which is termed the critical radius, and m̄ is the mean mass per
gaseous particle. Our numerical solution is compared with equa-
tion (56) in Fig. 4 for a super-Earth of mass 10 M⊕ and radius 2 R⊕
having an atmosphere composed only of atomic hydrogen whose
temperature is 5000 K. Here, we have ignored the tidal force, namely,

the last two terms of equation (6). Fig. 4 shows that the numerically
calculated velocity reproduces the analytical solution with enough
accuracy (at most one per cent uncertainty of sound velocity).

3.2 Hydrodynamic escape from hot Jupiter

Garcı́a-Muñoz (2007b) performed numerical simulations of hy-
drodynamic escape of a highly UV-irradiated hydrogen-dominated
atmosphere, supposing the hot Jupiter orbiting at 0.047 au, HD
209458 b (see also Yelle 2004). With the same elementary processes
and conditions as those considered in Garcı́a-Muñoz (2007b), we
calculate the atmospheric structure. Note that we use the fitting
polynomial function of temperature (Koskinen et al. 2007) for the
radiative cooling rate of H3+ shown in Neale, Miller & Tennyson
(1996), although Garcı́a-Muñoz (2007b) gives no clear description
of how to use the cooling rate.

In Figs 5 and 6, we reproduce some of the results of Garcı́a-Muñoz
(2007b): the former shows the velocity, pressure, and temperature
profiles, which can be compared directly with the previous study’s
results (dashed lines) that are shown in figs 3 and 4 of Garcı́a-Muñoz
(2007b). Here, we consider two cases without and with the tidal
effect; the former and latter are referred to as the ‘SP’ case and the
‘SP-TF’ case, respectively. Fig. 6 shows the radial distributions of the
number densities of five gaseous species (top panel) and the heating
and cooling rate (bottom panel) calculated in the SP case; The latter
panel is shown in the same form as fig. 2 of Garcı́a-Muñoz (2007b).

Our results are quite similar to those of Garcı́a-Muñoz (2007b),
although small differences have arisen due to differences in the
numerical scheme and the fitting function for the radiative cooling
rate of H3+. For instance, in the SP case, the sonic point is located
at r = 4.6 Rp in our model, but 4.3 Rp in Garcı́a-Muñoz (2007b).
Also, our model estimates the escaping mass flux to be 1.42 × 1011

and 1.47 × 1011 g s−1 in the SP and SP-TF cases, respectively,
while the estimates by Garcı́a-Muñoz (2007b) are 1.48 × 1011 and
1.52 × 1011 g s−1, respectively; that is, the differences are less than
5 per cent. Thus, it would be fair to say that our model is in good
agreement with Garcı́a-Muñoz (2007b).

4 R ESULTS

We show results of our hydrodynamic simulations for the mineral
atmosphere, including the radial profiles of density, temperature, and
velocity and the distribution of atoms and ions. Also, we investigate
the energy budget at each altitude in the atmosphere. From those
results, we estimate the planetary mass-loss rate as

ṁ = 4πr2ρu, (58)

assuming a steady, spherically symmetric escape. Note that equa-
tion (58) places an upper limit to the mass-loss rate, because
this model considers the stream tube of the atmosphere above the
substellar point, where the tidal effect and X + UV irradiation are
greatest.

Below, we consider an HRE of mass 1 M⊕ with the mineral
atmosphere orbiting at 0.02 au from a solar-type star. In Sections 5.2.3
and 4.2, we investigate the atmospheric structure and energy budget,
respectively, for stellar age of 0.1 Gyr. The stellar age dependence
is investigated by comparison with results for stellar age of 1 Gyr
in Section 4.3. In both sections, we find that the most volatile gas,
sodium, can be removed completely from the mineral atmosphere,
which motivates us to evaluate the influence of the absence of sodium
on the atmospheric escape in Section 4.4. Table 1 lists the simulation
settings and calculated mass-loss rates.
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Figure 5. Reproduction of hydrodynamic simulations of Garcı́a-Muñoz
(2007b, dashed lines) that assume a highly UV-irradiated hydrogen-
dominated atmosphere of the hot Jupiter HD 209458 b (see the text for the
details). (a) Velocity, (b) pressure, and (c) temperature are shown as functions
of the radial distance (in the unit of planetary radius, Rp). We consider two
cases with (SP-TF; green) and without (SP; violet) the tidal effect given by
the last two terms of equation (6).

Figure 6. Reproduction of hydrodynamic simulations of Garcı́a-Muñoz
(2007b, dashed lines) that assume a highly UV-irradiated hydrogen-
dominated atmosphere of the hot Jupiter HD 209458 b with no tidal effect
(SP). The top panel (a) shows the distributions of the number densities of
the five gas species, H (violet), H2 (green), H+ (cyan), H+

2 (orange), and
H+

3 (yellow); the bottom panel (b) shows the distributions of the heating
and cooling rates, Q (violet), Qrad (light blue), Qchem (cyan), and Qabs (red),
following the definitions of these terms described in Garcı́a-Muñoz (2007b).
The radial distance is measured in the unit of planetary radius, Rp.

4.1 Atmospheric structure

Fig. 7(a) shows the radial profiles of mass density ρ (black),
temperature T (orange), and velocity u (cyan) of the atmospheric
gas in the case of the 0.1-Gyr-old host star. Also, Fig. 8 shows the
mass/number density profiles of singly to quadruply charged ions
for (a) all the species, (b) Na, (c) O, (d) Mg, and (e) Si. First,
as found in Fig. 7(a), the velocity increases with altitude and then
exceeds the local speed of sound at r � 3.2 Rp, the point of which is
termed the sonic point. Thus, a transonic, hydrodynamic escape of
the atmosphere turns out to occur.

The mass density decreases with altitude rapidly below r = 1.6 Rp,
but slowly above that altitude, indicating that the pressure scale height
increases rapidly from that altitude on. This can be readily understood
from the fact that temperature increases greatly beyond r = 1.6 Rp

to 1.8 × 104 K at r = 10 Rp. Also, as shown in Fig. 8(a), all the
neutrals are photo-ionized almost completely at r � 1.6Rp by the
X + UV irradiation and, then, electrons dominate in number for r >

1.6 Rp. This reduces the mean mass of a gas particle m̄, leading to an
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Hydrodynamic escape of mineral atmosphere 759

Figure 7. Profiles of mass density ρ (black), temperature T (orange), and velocity u (cyan) in the mineral atmosphere on the HRE with mass Mp of 1 M⊕ and
inner radius Rp of 1 R⊕ that is orbiting at 0.02 AU around the solar-type host star with age of (a) 0.1 Gyr and (b) 1 Gyr. The unit of u is the local sound velocity,
meaning the cyan line represents the Mach number. The red and grey diamonds indicate the sonic point and exobase, respectively.

Table 1. Simulation settings and calculated mass-loss rates.

Case Planetary mass and radius Stellar age Pressure and temperature at the bottom Composition X + UV heating efficiency Mass-loss rate
[M⊕], [R⊕] [Gyr] [dyne cm−2], [K] [M⊕ Gyr−1]

A 1, 1 0.1 300, 3500 w/ Na 1.6 × 10−3 3.0 × 10−1

B 1, 1 1 300, 3500 w/ Na 2.2 × 10−4 3.7 × 10−2

C 1, 1 0.1 20, 3800 w/o Na 3.8 × 10−3 4.4 × 10−1

increase in the pressure scale height. For instance, the scale height
is larger approximately by a factor of fifteen at r = 1.6Rp than that
at r = 1Rp, since the mean mass decreases to one-third of the value
at r = 1Rp by ionization, the temperature doubles, and the gravity
approximately decreases to 1/1.62 at r � 1.6Rp .

Above r = 1.6 Rp, gas density is too low for recombination to occur
efficiently. Thus, regardless of element, all the atoms are completely
ionized in the upper atmosphere, as shown in Fig. 8(b)–(e). Also,
the similarity in those profiles indicates that gravitational separation
is ineffective. For instance, the fraction of the lightest element O
increases by at most 1 per cent throughout the atmosphere. This is
because the bulk velocity of gas is much higher than the diffusion
velocity of each species and these ionic gases diffuse along with
electrons due to the ambipolar electric force.

Note that a hydrodynamic description is invalid for such a low-
density gas that collisions between gaseous particles occur on time-
scales longer than hydrodynamic one. In other words, results shown
in this study are invalid above the exobase of the atmosphere, the
altitude rexo of which is defined as

∫ ∞

rexo

nσdr = 1. (59)

In the present case, rexo is estimated to be ∼9.8 Rp (grey diamond
in Fig. 7a), using the typical collision cross-section σ = 3 × 10−15

cm2 and the calculated number densities of ions and neutrals. Since
the sonic point (r ∼ 3.2 Rp) is located well below the exobase,
the hydrodynamic description for the lower atmosphere is valid.
Although the hydrodynamic description is invalid for r � 9.8Rp, the
structure of the upper atmosphere has no influence on that of the lower
atmosphere, because the fluid motion is already supersonic above the

exobase. We also have confirmed that hydrodynamic description is
valid in the other simulations of this study.

4.2 Energy budget

Fig. 9 shows the energy budget in the mineral atmosphere: panel (a)
shows the heating and cooling rates (represented by solid and dashed
lines, respectively), which include Qnet, QX + UV, Q′

X+UV, Qchem, and
Qrad; panel (b) shows the contribution of the effective coolants,
Na, Mg+, Si2+, Na3+, and Si3+to Qrad. The radial profiles of those
heating/cooling rates are found to be qualitatively different from
each other, while all the rates decrease with altitude because of
the decrease in gas density (see Fig. 7a). The stellar X + UV is
completely absorbed in the atmosphere without reaching the lower
boundary (r = 1 Rp) and energy deposition (i.e. heating) occurs
mainly below r = 1.6 Rp (see the pink line, QX + UV, and the red line,
Q′

X+UV). The net effect of the thermo-chemical reactions (Qchem;
green dashed line) is cooling everywhere in the atmosphere and the
net cooling rate decreases rapidly with altitude. Because thermal
ionization, which converts thermal energy to ionization energy,
dominates over thermal recombination, it acts as a net cooling.
Transition between energy levels occurs by absorption of external
radiation (excitation) and radiative emission (de-excitation). Its net
effect turns out to be heating in the lower atmosphere below r ∼
1.08Rp and cooling for r > 1.08Rp (see Qrad represented by the cyan
solid and dashed lines, respectively, in the inset of Fig. 9a).

Atmospheric escape is controlled by energy budget. As shown
in Fig. 9(a), the primary X + UV heating, Q′

X+UV, is almost in
balance with the radiative cooling, Qrad, which is due mainly to line
emission, in the region between r ∼ 1.2 and ∼7.5Rp. Consequently,
the net energy deposition rate, Qnet, is much smaller than Q′

X+UV
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760 Y. Ito and M. Ikoma

Figure 8. Distributions of the gaseous species in the mineral atmosphere on the HRE with mass of 1 M⊕ and radius of 1 R⊕ that is orbiting at 0.02 au from
the solar-type host star with age of 0.1 Gyr. The horizontal axis is the distance from the planetary centre in the unit of planetary radius Rp. Panel (a) – the mass
densities of all the neutrals (navy) and all the singly-charged (blue), doubly charged (cyan), triply charged (green), and quadruply charged (dark green) ions.
The total mass density is also shown by the thick black line. Lower panels – the number densities of the neutrals and the singly to quadruply charged ions of (b)
Na, (c) O, (d) Mg, and (e) Si. Colour coding is the same as in the top panel except the black dotted lines for electrons.

and Qrad. (Note that the radiative heating due mainly to external-
radiation absorption is almost balanced with the energy consumption
via chemical reactions, Qchem, below ∼1.08Rp.) This indicates that
advective energy transfer is ineffective below 7.5Rp. To be more
specific, the Na-D emission makes a major contribution to the
radiative cooling below 1.6 Rp (see the navy line in Fig. 9b). For

r > 1.6 Rp, Na is rapidly photo-ionized and, then, the energy budget
becomes dominated by emission due to energy-level transition of
outermost electrons of multiply charged ions such as Mg+, Si2+,
Na3+, and Si3+, as shown in Fig. 9(b). Above 7.5Rp, instead, Qnet is
larger than Qrad, indicating that the absorbed X + UV energy is used
to drive the advection (i.e. escape) of the atmosphere.
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Figure 9. Energy budget in the mineral atmosphere on the HRE with mass
of 1 M⊕ and radius of 1 R⊕ that is orbiting at 0.02 au from the solar-type
host star with age of 0.1 Gyr. The horizontal axis is the radial distance
from the planetary centre in the unit of planetary radius Rp. Panel (a) –
heating (solid line) and cooling (dashed line) rates including the net energy
deposition rate Qnet (violet), the total X + UV energy absorption rate QX + UV

(dark pink), the primary X + UV heating (QX + UV minus the energy loss
rate via photo-ionization QEi and via characteristic X-ray emission QX; see
equation [15]) Q′

X+UV (red), the heat generation rate due to chemical reactions
Qchem (green), and the rate of radiative absorption/emission by energy level
transitions Qrad (royal blue). The inset is an enlarged view of the energy
budget for 1 ≤ r/Rp ≤ 1.2. Panel (b) – contributions of the dominant coolant
species Na (navy), Mg+ (blue), Si2+ (cyan), and Na3+ plus Si3+ (green) to
the radiative heating and cooling by atomic lines, Qrad (royal blue).

We define the net X + UV heating efficiency, εX + UV, as

εX+UV =
∫

r≤rs
r2Qnetdr∫

r≤rs
r2QX+UVdr

, (60)

where rs is the radial distance of the sonic point. Here, we have
considered only the region below r = rs since information cannot
propagate from supersonic regions down to subsonic ones. Integrat-
ing equation (60) over the range where the X + UV heating rate
is higher than the line absorption rate (i.e. QX + UV ≥ Qrad), we
estimate that εX + UV� 1.6 × 10−3. The mass-loss rate comes out to
be 0.3 M⊕ Gyr−1 or 5.7 × 1010 g s−1.

4.3 Stellar age dependence

Stellar age affects the structure and escape of the atmosphere, since
the stellar emission spectrum including X-ray and UV (� 250 nm)

Figure 10. Case of a 1 M⊕ HRE orbiting a 1-Gyr-old star. Panel (a) – the total
mass density (thick black) and the mass densities of all the neutrals (navy) and
all the singly charged (blue), doubly charged (cyan), triply charged (green),
and quadruply charged (dark green) ions. Panel (b) – heating (solid) and
cooling (dotted) rates including the net energy deposition rate Qnet (violet),
the total X + UV energy absorption rate QX + UV (dark pink), the primary
X+UV heating (total X + UV deposition rate minus thermal- and photo-
ionization rate) Q′

X+UV (red), the heat generation rate due to chemical
reactions Qchem (green), and the rate of radiative absorption/emission by
energy level transitions Qrad (royal blue).

differs with age (see Fig. 2). Fig. 7(b) is the same as Fig. 7(a), but for
the stellar age of 1 Gyr. Comparing both panels, one finds that each
quantity undergoes a qualitatively similar change, although being
slightly smaller as a whole in the old-star case than in the young-star
case. Such similarity and small difference can be understood from
the energy budget as follows.

Fig. 10 shows (a) the mass density profiles of all the neutrals
and ions and (b) the energy budget in the atmosphere. Comparing
Fig. 10(a) with Fig. 8(a), one finds that the ionization degree is
slightly lower in the old-star case than in the young-star case. For
example, at r = 3Rp, the major species is secondary-charged ions
in the former case, while being thirdly charged ones in the latter
case. Such a difference in ionization degree is due simply to that in
the incident X+UV flux, which can ionize those atoms. The older
star emits ∼10 times lower flux of X + EUV than the younger star,
whereas the fluxes of FUV and visible light scarcely differ between
the two stars.

The mass-loss rate ṁ is estimated to be 3.7 × 10−2 M⊕ Gyr−1 in the
old-star case, which is approximately 10 times lower than that in the
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Figure 11. Inverse of the local heating efficiency, (Qnet/QX + UV)−1 (see
equation [60]), at each altitude in the mineral atmosphere of a 1 M⊕ HRE
orbiting a G-type host star with age of (a) 0.1 Gyr and (b) 1 Gyr. The
total X + UV energy absorption rate (QX + UV; solid dark pink) and the
contributions of absorption rates at λ = 0.1–25 nm (X-ray; dashed light
green); λ = 25–125 nm (EUV; dashed brown); and λ = 125–250 nm (FUV;
dashed dark green) to QX + UV are normalized by the net energy deposition
rate, Qnet.

young-star case. Also, the net X + UV heating efficiency, εX + UV,
decreases from 1.6 × 10−3 in the young-star case to 2.2 × 10−4

in the old-star case. At first glance, it may sound strange that the
X + UV heating efficiency is greatly changed despite of similarity
in the dominant heating/cooling processes (compare Figs 9a and
10b) and in the X + UV irradiation energy integrated over λ �
250 nm (� 4.9 × 106 erg cm−2 s−1 for the younger case and
� 3.4 × 106 erg cm−2 s−1 for the older case, Fig. 2). Such an
interpretation is, however, incorrect. Fig. 11 shows the ratio of
the X + UV heating rate to the net energy deposition rate (Qnet),
equivalent to the inverse of the local heating efficiency, where we
include the contributions of respective wavelength regions λ = 0.1–
25 nm (‘X-ray’; dashed light green), 25–125 nm (‘EUV’; dashed
brown) and 125–250 nm (‘FUV’; dashed dark green) for the young-
star (a) and old-star (b) cases. Note that we show the inverse of
the local heating efficiency in order to clarify the contributions
of respective wavelength regions. The inverse of the local heating
efficiencies for X-ray and EUV wavelengths change with stellar
age only slightly, whereas the peak value for FUV wavelengths
is lower by a factor of 10 in the old-star case than in the young-

Table 2. Calculated mass-loss rates for different X + UV irradiation fluxes.

Case Wavelength of changed photon flux Mass-loss rate
(nm) (M⊕ Gyr−1)

0.1 × X-ray 0.1–25 1.3 × 10−1

10 × X-ray 0.1–25 1.0
0.1 × EUV 25–125 1.9 × 10−1

10 × EUV 25–125 1.1
0.1 × FUV 125–250 2.9 × 10−1

10 × FUV 125–250 3.8 × 10−1

Notes: in Section 4.3, we have done a sensitivity test to stellar spectra
by artificially raising/lowering the emission flux by 10-fold in specific
wavelength regions for the 0.1-Gyr-old star (Case A). Here we call the
radiation with wavelength of 0.1–25, 25–125, and 125–250 nm X-ray, EUV,
and FUX, respectively.

star case. In addition, the X-ray contribution to the inverse of the
local heating efficiency is lower than for both EUV and FUV for
both stellar ages. Therefore, the X-ray and EUV make the dominant
contribution to the atmospheric escape, while FUV accounts for a
large proportion of FX + UV; for example, in the young-star case,∫

FX + UVdλ � 3.9 × 105, 1.4 × 106, and 3.1 × 106 erg cm−2 s−1 for
X-ray, EUV, and FUV, respectively.

To gain a deeper understanding of the sensitivity of mass-loss
rate to stellar spectrum, we perform the simulations by artificially
raising or lowering the young-star emission flux by 10-fold in
specific wavelength regions (X-ray, EUV, or FUV). Table 2 shows
the calculated mass-loss rates for the different cases. The mass-loss
rate is found to be relatively insensitive to difference in FUV. This
means that the X-ray and EUV effectively drive the atmospheric
motion rather than FUV. Thus, the mass-loss rate in the old-star case
is approximately 10 times lower than that in the young-star case
because the X-ray and EUV fluxes are lower. Note that although
FUV is less important for the mass-loss rates, the difference in the
net X + UV heating efficiencies, εX + UV, between the young and
old cases is due to that in FUV heating efficiency because FX + UV

accounts for a large proportion of FUV. In Section 5.1.2, we discuss
why such a short-wavelength radiation dominates the escape of the
mineral atmosphere.

4.4 Impact of sodium on atmospheric escape

Alkali metals such as Na and K are minor elements in normal rocky
planets (e.g. ∼0.1 wt per cent in the BSE composition), although they
are major components in mineral atmospheres (Schaefer & Fegley
2009; Miguel et al. 2011; Ito et al. 2015). The mass-loss rate derived
above (see Table 1) is massive enough to remove completely Na from
the atmosphere and interior. Indeed, one can estimate that the Na of
0.1 wt per cent of 1 M⊕ is removed in ∼10 Myr, provided convection
in the magma ocean is vigorous enough to supply Na quickly to the
surface. After such a selective loss of Na, the major atmospheric
components become SiO, Si, Mg, O, and O2 (Schaefer & Fegley
2009).

Here, we investigate the impact of absence of Na on the escape
of the mineral atmosphere. Fig. 12 shows the radial profiles of mass
density, temperature, and velocity (solid lines) and those of mass
densities of all the neutral atoms and ions (dotted lines) in the Na-
free mineral atmosphere on an Earth-mass HRE. Also, Fig. 13 shows
(a) the energy budget in the atmosphere and (b) the contribution
of the effective coolants such as Mg, Mg+, Si2+, and Si3+ to Qrad.
In those calculations, we have artificially set the molar fraction of
Na to be zero, and have re-normalized the mole fractions of the
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Figure 12. Profiles of mass density ρ (black), temperature T (orange), and
velocity u (cyan) in the Na-free mineral atmosphere on the HRE with mass
of 1 M⊕ and inner radius of 1 R⊕ that is orbiting at 0.02 au around the
solar-type host star with age of 0.1 Gyr. The velocity is given in the unit of
the local sound velocity, namely, the Mach number. Dotted lines show the
mass densities of all the neutrals (navy) and all the singly charged (blue),
doubly charged (cyan), triply charged (green), and quadruply charged (dark
green) ions.

other species from those set above so that the sum of the mole
fractions becomes unity. Note that we have set the lower boundary
at a lower pressure (=20 dyne cm−2) in this case than in the cases
above (=300 dyne cm−2). This is because the first ionization energy
of Na and Mg corresponds to 250 and 160 nm in terms of wavelength,
respectively, and, thus, the Na-free atmosphere absorbs the incident
X + UV photons only of wavelength�160 nm, which are completely
absorbed above the pressure.

Comparing Figs 8(a) and 12, one finds that the number of singly
charged ions is much smaller near the lower boundary in the Na-
free atmosphere than that in the Na-containing atmosphere. This is
because the other atoms have higher ionization energies than Na.
Because of such a low number density of electrons deep in the
atmosphere, the cooling via thermochemical reactions (Qchem) makes
a tiny contribution to the energy budget throughout the atmosphere,
as shown in Fig. 13(a). Also, the Na-free atmosphere is warmer
below 1.6 Rp than the Na-containing atmosphere in which Na is
the dominant coolant (see Fig. 9b). Instead, in this region of the
Na-free atmosphere, line emission by Mg occurs effectively because
of high temperature; namely, Mg is the dominant coolant instead
of Na, as shown in Fig. 13(b). The mass-loss rate is estimated
to be ṁ = 4.4 × 10−1 M⊕ Gyr−1, which is ∼ 50 per cent higher
than that for the Na-containing atmosphere. In summary, even
in the atmosphere without the strongest coolant Na, Mg acts as
a substitute to cool the atmosphere efficiently and, consequently,
brings about a similar mass-loss rate with that in the Na-containing
atmosphere.

5 D ISCUSSION

5.1 XUV heating efficiency

In Section 4, our hydrodynamic simulations have shown that the
net X + UV heating efficiency for the mineral atmosphere, εX + UV,
is on the order of 10−4–10−3. Such values are much larger than
the simple estimates (∼10−13–10−6) that we made in Introduction,

Figure 13. Energy budget in the Na-free mineral atmosphere on the HRE
with mass of 1 M⊕ and inner radius of 1 R⊕ that is orbiting at 0.02 au around
the solar-type host star with age of 0.1 Gyr. Panel (a) – heating (solid) and
cooling (dotted) rates including the net energy deposition rate Qnet (violet),
the total X + UV energy absorption rate QX + UV (dark pink), the primary
X + UV heating (QX + UV minus the energy loss rate via photo-ionization QEi

and via characteristic X-ray emission QX; see equation [15]) Q′
X+UV (red),

the heat generation rate due to chemical reactions Qchem (green), and the rate
of radiative absorption/emission by energy level transitions Qrad (royal blue).
Panel (b) – contributions of the dominant coolant species Mg (navy), Mg+
(blue), Si2+ (cyan), and Si3 + (green) to the radiative heating and cooling by
atomic lines, Qrad (royal blue).

taking Na-D line cooling into account, under the assumption that
the mineral atmosphere is optically thin in LTE for T = 3000–
5000 K. On the other hand, the typical value of heating efficiency is
as large as ∼0.1 for hydrogen-dominated atmospheres and oxidized
terrestrial atmospheres (e.g. Tian 2015, and references therein). Here,
we provide an interpretation of the cooling process and escape
mechanism of the X+UV-irradiated mineral atmosphere that control
the X + UV heating efficiency.

5.1.1 Dominant cooling processes

The dominant cooling process in the mineral atmosphere is the line
emission during electronic transitions in the coolant species such
as Na, Mg, Mg+, Si2+, Na3+, and Si3+, as shown in Figs 9 and
13. Among them, Na is the most effective coolant, because of the
permitted transition of the peripheral electron from the 3p level to
the 3s level (D line) with large Einstein coefficient (equivalent to
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6.23 × 107 s−1) and low excitation energy (equivalent to 2.4 × 104 K).
To be more specific, the peripheral electron of Na (3s→3p) is
readily excited through collision with electrons produced through
photo-ionization of metals, but is de-excited (3p→3s) immediately
through the D-line emission. In general, alkali metals such as Na and
alkaline-earth metals such as Mg, which have one and two peripheral
electrons, respectively, can generate line emission in similar ways.
Among the species considered in this study, Na, Mg, Mg+, Si2+,
and Si3+ have such electron configurations, namely, [Ne] 3s1, [Ne]
3s2, [Ne] 3s1, [Ne] 3s2, and [Ne] 3s1, respectively. Thus, almost all
of the absorbed X+UV energy ends up being lost by such efficient
emission. This is why the X + UV heating efficiency is sufficiently
low in the mineral atmosphere of the 1 M⊕ HRE.

Indeed, as shown with the royal-blue solid lines (Qrad) in Figs 9
and 13, the net effect of stellar irradiation is heating in the deep
atmosphere where temperature is below the radiative equilibrium
temperature determined mainly by atomic-line cooling. Provided
radiative absorption and emission are in equilibrium at a wavelength
ν0, the equilibrium temperature T

′
is given by (e.g. Chatzikos et al.

2013)

c2Jext,ν0

2hν3
0

= 1

exp(hν0/kbT ′) − 1
. (61)

For the Na-D, T
′

is estimated to be ∼ 3300 K under the conditions
considered in this study (Jext,ν0 ∼ 1.6 × 10−6 erg cm−2 Hz−1 and
ν0 ∼ 5.1 × 1014 Hz). Since the temperature near r = 1Rp is
about 3000 K (see Fig. 7) and relatively lower than the above
value of T

′
, the deep atmosphere is heated via the absorption by

Na and other neutrals. Whereas the thermal energy equivalent to
such an equilibrium temperature (∼2 × 1010 erg g−1) is sufficiently
smaller than the planetary gravitational potential of HREs with mass
of 1 M⊕ (∼6 × 1011 erg g−1), the former is comparable to the
latter for sub-Earth-mass HREs. If such heating processes occur
in their atmosphere, sub-Earth-mass HREs are predicted to lose a
substantial fraction of planetary mass via the escape of the mineral
atmosphere. Detailed investigation will be done in our forthcoming
paper.

The effects of optical thickness and non-LTE have great influence
on the radiative heating and cooling that occur through energy
transitions. Fig. 14 shows the radiative line heating/cooling rate, Qrad

(black), for the Na-bearing atmosphere illuminated by the young host
star (Case A in Table 1). To quantify the significance of those effects,
we also show Qrad calculated under the assumption of zero optical
thickness (red; Pe = 1), no external radiation (royal blue; Jext =
0) or LTE (green). It turns out that the optical thickness reduces
Qrad by up to nine orders of magnitude at r � 1.6Rp, while the
non-LTE effect does so by up to seven orders of magnitude at r �
1.4Rp. At r = 1.6Rp, the non-LTE effect is found to be already
important, while the optical depths for some of the radiative lines
are still larger than unity and also the LTE condition starts to be
broken below the altitude (see the inset). For example, although the
optical depth for the Na-D is as large as ∼300 at r = 1.6Rp, the Na
cooling rate (black thin line) is as almost the same as that for zero
optical thickness (red thick line). This is due to the non-LTE effect
limited by the collisional transition (green thin dashed line). Thus, the
non-LTE effect rather than the effect of optical thickness suppresses
the cooling at r ≥ 1.6Rp. This is why the dominance of these two
effects on Qrad is switched at r = 1.4–1.6 Rp. Finally, the impact of
external radiation is smaller than the other two effects throughout the
atmosphere, while it changes the net radiative effect from cooling

Figure 14. Radiative line heating (solid) and cooling (dashed) rates, Qrad

(black), in the mineral atmosphere on the HRE with mass of 1 M⊕ and radius
of 1 R⊕ that is orbiting at 0.02 au from the solar-type host star with age
of 0.1 Gyr. For each contribution to be clarified, Qrad calculated under the
assumption of zero optical thickness (Pe = 1), no external radiation (Jext = 0)
or LTE are also shown by red, royal blue, and green lines, respectively. Note
that in the LTE case, we have calculated Qrad by imposing a sufficiently high
number density of electrons (1015 cm−3) everywhere. Also, the contribution
of Na to the energy deposition rate in each case is shown by a thin line. The
inset is an enlarged view of the energy budget for 1.4 ≤ r/Rp ≤ 1.7.

to heating in the deep atmosphere, as we explained in the previous
paragraph.

5.1.2 Escape mechanism

The escape of the mineral atmosphere is driven by the following
mechanism. As demonstrated in Section 4, almost all of the primary
X+UV heating energy is lost by the radiative emission over a wide
region below several planetary radii. In the sense that advection
accounts for only a small fraction of the energy budget, the at-
mospheric thermal structure is almost in the radiative equilibrium
where the heating by X + UV and the radiative absorption/emission
by energy level transitions balance with each other. The small
amount of residual energy is partitioned into the enthalpy, γ P/[(γ
− 1)ρ], kinetic energy, u2/2, and potential (gravity plus tide) of the
atmospheric gas, V(r), which is given by

V (r) = −GMp

r
− GM∗

a − r
−

(
M∗

M∗ + Mp

a − r

)2
G(M∗ + Mp)

2a3

(62)

(see equations 5 and 6). Fig. 15 shows the sum of the kinetic energy,
enthalpy, and potential per gas particle measured from that at r = 1 Rp

in Case A. To clarify each contribution, we also plot only the potential
by the dotted line. The potential V(r) peaks at r � 4.7 Rp (or the L1
point) and its peak value, Vmax, is ∼0.7 GMp/Rp.

For the gas at an altitude to end up escaping from the planet,
its kinetic energy plus enthalpy (or E + P/ρ hereafter de-
noted by W) must be larger than Vmax − V. At r � 1.2 Rp,
W � (Vmax − V). At r = 1.2–1.6Rp, W increases up to 0.1(Vmax − V)
mainly because of an increase in number density of electrons by the
ionization of first charged ions and a slight rise in the temperature
(see Fig. 7a). Beyond 1.6 Rp, the temperature increases greatly with
altitude because of inefficient non-LTE cooling, which is limited
by collisional transitions. The temperature increase and photo-
ionization lead to reducing the mean mass of a gas particle, resulting
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Figure 15. The sum of enthalpy, kinetic energy, and gravitational potential
per gas particle (in the unit of GMp/Rp) relative to that at r = 1 Rp in the
mineral atmosphere on the HRE with mass of 1 M⊕ and radius of 1 R⊕
that is orbiting at 0.02 au from the solar-type host star with age of 0.1 Gyr.
The contribution of the gravitational potential is plotted by the dotted line
separately.

in an increase in W. Consequently W exceeds Vmax − V, so that the
atmosphere transitions from a hydrostatic state to a hydrodynamic
one.

Outward motion occurs below r = 1.2Rp, since otherwise the
steady state is never maintained. This means that the outward motion
is driven not by the X+UV heating, but by the pressure gradient
caused by the advection of the hydrodynamic region. The energy
that the atmosphere receives via X + UV irradiation is almost
entirely lost by spontaneous emission (or radiative cooling) caused
by the alkali metals and alkaline-earth-metal-like ions, as described
in Section 5.1.1. Thus, such radiative cooling, which occurs over
a wide region, controls the escape of the mineral atmosphere. This
is obviously different from the energy-limited escape of hydrogen-
dominated atmospheres which is controlled by the radiative cooling
in a narrow region of the deep atmosphere (e.g. as for hot Jupiters’
hydrogen-dominated atmospheres, the cooling of H3+ is dominant
in the narrow region between 1.0 and 1.1Rp; Garcı́a-Muñoz 2007b).
In addition, at the sonic point (r ∼ 3.1Rp; see Fig. 7), more of the
deposited energy is partitioned into the enthalpy and kinetic energy
than into the potential energy. In such a case, the escape flux is
not necessarily proportional to the gravitational potential (see also
section 3.5 of Garcı́a-Muñoz 2007b). This is also different from
the energy-limited escape. Note that the gravity dependence of the
mass-loss rate of the mineral atmosphere will be investigated in our
forthcoming paper.

Also, such a mechanism for the atmospheric motion naturally
explains the dependence of the escape rate on stellar X + UV spectra
shown in Section 4.3. Since neutrals are completely ionized deep
in the atmosphere, ions are the dominant absorbers in the region
above r = 1.2Rp where the absorbed X + UV energy drives the
atmospheric motion effectively, as shown in Fig. 15. Those ions
absorb the incident stellar radiation of λ ≤ 90 nm, while the atoms
except O absorb longer waves of λ > 125 nm. This is why the short-
wavelength radiation of λ ≤ 125 nm makes the dominant contribution
to the atmospheric escape, as shown in Section. 4.3. Therefore, the
mass-loss rate of the mineral atmosphere strongly depends on the
flux of X + UV with energy high enough to ionize the ions, which
are the major gas species at high altitudes.

5.2 Caveats

5.2.1 Eddy diffusion

We have ignored eddy diffusion in this study, for simplicity. Eddy
diffusion carries neutral species upwards, modifying the profiles
of mass density, temperature, and velocity. The 3D simulations of
atmospheric circulation are necessary to know the efficiency of eddy
diffusion. The effect of eddy diffusion itself is, however, negligible
at altitudes higher than r ∼ 1.1Rp, where the optical thickness of
the Na gas is unity because the photo-ionization occur more rapidly
than the eddy diffusion. For instance, at such high altitudes, the eddy
diffusion time-scale is estimated to be of the order of 103 s with use
of the typical diffusion coefficient, 1011 cm2 s−1, from Parmentier,
Showman & Lian (2013), while the photo-ionization time-scale of
Na and also advection time-scale are of the order of 102 s.

5.2.2 Inhibition of ion escape: magnetic field and stellar wind

As demonstrated in Section 4, the escaping gas is completely ionized
and charged. Thus, its motion is subject to magnetic fields. In
particular, escape of ions is inhibited by a planetary magnetic field,
provided the magnetic pressure dominates over the ions’ thermal
pressure. While magnetic fields of HREs have not been detected,
if HREs have large closed magnetospheres, then the escaping ions
in mineral atmospheres would be bound by the magnetic fields and
return to the planets. On the other hand, if the magnetic fields of
HREs are open to the stellar wind at sufficiently high altitudes, the
escaping ions go out along the magnetic field lines (see Terada et al.
2009, for the cases of the Earth and Mars). Detailed investigation of
interaction between the stellar wind and planetary magnetic field is
beyond the scope of this study and will be done in our future study.

5.2.3 Horizontal variation

In this study, we have considered a radially one-dimensional flow of
the atmosphere above the substellar point and assumed spherical
symmetry when estimating the mass-loss rate. However, HREs
tidally locked to their host star obviously have axially asymmetric
surface environments. The mineral atmosphere of � 0.1 bar is
so tenuous that horizontal heat transport via atmospheric winds is
inefficient. Consequently, at each location, the atmospheric pressure
is almost determined by the vapour pressure of magma for the
local equilibrium temperature (Castan & Menou 2011; Ding &
Pierrehumbert 2018). This means that the magma ocean is localized
to some areas of the dayside; for the equilibrium temperature of
3000 K, the dayside is covered entirely with magma, while the
magma ocean is localized to limited areas for lower equilibrium
temperatures. In addition, since the atmosphere with vapour pressure
near the edge of the magma ocean (� 1500 K) is optically thin
against X-ray and UV radiation (see fig. 2 of Kite et al. 2016),
photo-evaporation would never take place near the terminator. To
quantify the effects of asymmetry in detail, 3D atmospheric models
are needed. In any case, such effects do not affect our conclusion
that the escape of the mineral atmospheres of Earth-mass HREs is
inefficient.

Also, Kite et al. (2016) propose that gases vapourizing at the
substellar point are transported by atmospheric winds horizontally
and then will condense mostly before reaching the edge of the magma
ocean on the dayside. This process may cause compositionally var-
iegated atmosphere and magma ocean, depending on the efficiency
of mixing in the magma ocean and mantle. This may also change the
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Figure 16. Cooling rates of Na (violet), Mg (green), K (light blue), and Fe
(yellow) in a optically thin and LTE condition with different temperatures.
Note that, based on the molar fraction difference between Na and the others in
the mineral atmosphere shown in Fig, 3, the cooling rate of Na is represented
as it of one molecule but the others are divided by 30 for Mg and divided by
15 for K and Fe.

main gas components to CaO and AlO, which are the most refractory
gases. Then, the atmospheric pressure is much lower than the Na-
containing atmosphere and may be too small to absorb X-ray and
UV photons, depending on surface temperature (see their fig. 2).
If thick enough, the atmosphere may photo-evaporate with a similar
mass-loss rate to the Na-containing atmosphere. This is because CaO
and AlO, after dissociation and ionization, possibly become strong
coolants as their ions such as Ca+ and Al2+ behave like alkali metal
atoms in the sense that a single electron exists in the outermost
shell.

5.2.4 Cooling rates of other main gas components

Although gas-melt equilibrium calculations (Schaefer & Fegley
2009; Miguel et al. 2011; Ito et al. 2015) show that the mineral
atmosphere contains various elements, this study has considered only
Na, O, Si, and Mg and ignored the relatively abundant elements K
and Fe. For example, according to Ito et al. (2015), the abundances
of K and Fe are similar to each other and are about twice as large
as that of Mg which is about 1/30th of the Na abundance for the
substellar-point equilibrium temperate of 3000 K.

In Fig. 16, we compare the cooling rates of Na (violet), Mg (green),
K (light blue), and Fe (yellow), assuming the collisional equilibrium
(i.e. optically thin and LTE conditions). We have calculated those of
K and Fe using their line properties shown in NIST Data base4 and
their partition functions (Irwin 1981). The cooling rates of K and Fe
are found to be lower than that of Na but higher than that of Mg. This
indicates that addition of K and Fe has little effect on the mass-loss
rate of the Na-containing mineral atmosphere. On the other hand, Fe
may contribute to cooling in the atmosphere to a certain extent, if Na
and K are removed from the atmosphere via photo-evaporation (see
Section 4.4). However, given that the mass-loss rate of the Na-free
atmosphere is only slightly different from that of the Na-containing
atmosphere (see Section 4.4), Fe would have no large effect on the
mass-loss rate, since the difference in collisional-equilibrium cooling

4https://www.nist.gov/pml/atomic-spectra-database

rate between Fe and Mg is much smaller than that between Na and
Mg (see Fig. 16).

5.2.5 Sensitivity to rate and diffusion coefficients

This model includes various processes such as photo-ionization
heating, non-LTE atomic line cooling and diffusion. Although the
rate coefficients of some gas species in the mineral atmosphere have
not been experimentally measured, we have used the values from
open data bases and published literature if available, but from classic
theories if not. Below, we discuss the sensitivity of the results to the
rate and diffusion coefficients.

For the binary diffusion coefficients, the values derived based on
the classic theory (Burgers 1969; Schunk & Nagy 2000) may differ
from their actual values. However, as a sensitivity test, we have
performed the Case A simulations with the diffusion coefficients
multiplied by 10 or 100 and then found that the fraction of the
lightest element O increases by at most 2 per cent or 15 per cent,
respectively, throughout the atmosphere. The reason for such small
differences is that the bulk velocity of gas is much higher than the
diffusion velocity of each species, as mentioned in Section 5.2.3.
Thus, these coefficients would not be important for the gravitational
separation, as long as the actual values differ by a factor of up to ∼
100 from those considered in this model.

Also, we have performed the Case A simulations by artificially
lowering thermal reaction rates by a factor of 10, which has resulted
in only a small difference in the mass-loss rate (at most 1 per cent).
In the atmosphere, the lowered thermal reaction rates reduce the heat
generation rate, Qchem, leading to an increase in temperature at r
= 1.0–1.2 Rp only by about 200 K. Then, the radiative cooling rates,
Qrad, increases due to the higher temperature. As a consequence,
the net X + UV energy deposition and mass-loss rates are hardly
changed because the increase in Qrad compensates for the decrease
in the heat generation rate, Qchem. On the other hand, the values of
rate coefficients related to X + UV heating and non-LTE cooling
are relatively important because no other processes can compensate
for any change in those rates. When the collisional transition rates
are reduced artificially by 10 or photo-ionization cross-sections are
reduced by 2 in Case A, the mass-loss rates respectively increase
or decrease by about a factor of 2. Although the cross-sections of
some neutral atoms considered in this model agree very well with
experimental data (see Verner & Yakovlev 1995), many of the cross-
sections and collisional transition rates have not been well-studied
experimentally. Future studies of such key processes will be quite
helpful.

5.3 Implication for observations

This study has revealed that the hydrodynamic escape of the mineral
atmosphere on a 1 M⊕ HRE is massive enough to remove Na and
K from the atmosphere and interior (see also Section 4.4), although
its flux is too weak to change the bulk planet mass and composition.
According to Ito et al. (2015), emission spectra of the mineral
atmosphere contain prominent features due to Na and K at ∼0.6
and 0.8 μm, respectively, and due to SiO at 4 and 10 μm. Thus,
detection of SiO and non-detection of Na and K would yield a piece
of the evidence that the HRE has experienced the escape of the
mineral atmosphere.

Transit observation in the UV is useful for detection and char-
acterization of escaping planetary atmospheres (e.g. Vidal-Madjar
et al. 2003; Ehrenreich et al. 2015). Our models have shown that
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the major components in the upper part of the flow of the mineral
atmosphere are multiply charged ions produced via X + UV photo-
ionization. Since those ions have strong absorption power in the UV
(e.g. the Einstein coefficient for the transition between the 3s and
the 3p level of Si3 + at ∼ 139 nm ∼ 8 × 108 s−1), such expanding
mineral atmospheres possibly bring about large transit depths in the
UV than in the optical. Indeed, Bourrier et al. (2018) reported on the
detection of variations in line emission intensity in the FUV from the
G-type star 55 Cnc including O, C+, C2+, N4+, Si+, Si2+, and Si3+.
Such an observation might have detected the escape of the mineral
atmosphere because a relatively high-density super-Earth, 55 Cnc e,
which has a mass of 8.09 M⊕ and a radius of 1.99 R⊕ (Dragomir
et al. 2014; Nelson et al. 2014), orbits very close to (0.015 au) the
host star and would have a molten rocky surface (Demory et al.
2016). Although the observed variations of 55 Cnc are too complex
to conclude that they originate purely from 55 Cnc e or from the host
star, our study suggests that the variations of the Si ions’ lines could
be induced by the escaping Si ions from the planet.

5.4 Mass loss of hot rocky planets

We have found that the mass-loss rate of the mineral atmosphere
ṁ is as low as 3.7 × 10−2–3.0×10−1 M⊕ Gyr−1 in Section 4. This
indicates that 1 M⊕ HREs hardly lose their mass via the atmospheric
escape. Below is a rough estimation of the lost mass.

Given the observational fact that the flux of X-ray and UV from
solar-type stars is constant until the stellar age is ∼ 0.1 Gyr (≡ t0)
and, then, decreases with stellar age (Ribas et al. 2005), we assume
that ṁ (t) = ṁ0 for t ≤ t0 and ṁ0 (t/t0)−α for t > t0 with a constant
power index α. Integrating this equation, one obtains the total mass
lost in t as

Mesc(t) = 1

4
ṁ0t0

[
1 + (t/t0)1−α − 1

1 − α

]
, (63)

where the 1/4 is the geometric reduction factor of ṁ to account for
a difference in the received X + UV cross-sectional area over the
planet’s surface. From Cases A and B, α ∼ 0.9. By use of α = 0.9,
t0 = 0.1 Gyr, and ṁ0 = 3.0 × 10−1 M⊕ Gyr−1 in equation (63), it
is estimated that Mesc (10 Gyr) ∼5 × 10−2 M⊕ for HREs, which is
much smaller than 1M⊕. Note that Na depletion would yield a slight
increase in Mesc (see Section 4.4).

As mentioned in Introduction, Valencia et al. (2010) estimated
that CoRoT-7 b might have lost a significant fraction of its initial
mass through a massive escape of the mineral atmosphere, base on
an energy-limited escape approximation with the X + UV heating
efficiency of 0.4 (see their fig. 6). Our finding from the detailed
heating/cooling calculations is, however, that the X + UV heating
efficiency, εX + UV, is as low as 10−4–10−3 for the mineral atmosphere
considered in this study, because of the efficient radiative cooling of
the gas species such as Na and Mg. Although only a 1 M⊕ HRE
is considered in this study, the values of εX + UV are similar or less
for super-Earths. Such a low heating efficiency leads to reducing
the lost mass by a few order of magnitude relative to the previous
estimate. Thus, our results suggest that HREs survive in such strong
stellar X + UV environments. This is consistent with the detection
of several hundred close-in exoplanets whose radii are less than 2
Earth radii (e.g. Fulton et al. 2017).

6 C O N C L U S I O N S

In this study, we have developed a 1D hydrodynamic model of the
highly UV-irradiated, mineral atmosphere on a 1M⊕ rocky planet

covered with a magma ocean, including the effects of molecular
diffusion, thermal conduction, photo-/thermochemistry, X-ray and
UV heating, and radiative line cooling To detail the radiative cooling,
which is key to understanding of the energy balance that controls
photo-evaporation, we have adopted the formulae of the cooling
rates based on the radiative/collisional transitions of gas species
and the escape probably method for taking the effect of radiative
transfer into account approximately. Our results have demonstrated
that alkali metals such as Na, alkaline-earth metals, such as Mg,
and ions with the same electron configurations as them act as
strong coolants in the mineral atmosphere. Thereby, almost all of
the incident X-ray and UV energy from the host star is converted
into and lost by the radiative emission of the coolant gas species.
We have estimated the net X + UV heating efficiency εX + UV to
be on the order of 10−4–10−3. Thus, we conclude that the photo-
evaporation of the mineral atmospheres on 1 M⊕ HREs is not intense
enough to exert a great influence on the mass and bulk composition
but efficient enough to remove sodium completely. In this paper, we
have focused on describing our methodology. Future experimental
works for determining rocky vapour properties such as collisional
transition rates and photo-ionization cross-sections will be quite
helpful for improving the hydrodynamic escape models of mineral
atmospheres. We will explore the dependence on gravity and other
parameters in our forthcoming paper.
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Table A1. Atomic chemistry in mineral atmosphere.

Reaction Rate coefficient Ref.

PI1 Na + hν → Na+ + e - A, B
PI2 → Na2 + + 2e - A, B
PI3 → Na3 + + 3e - A, B
PI4 Na+ + hν → Na2 + + e - A, B
PI5 → Na3 + + 2e - A, B
PI6 Na2 + + hν → Na3 + + e - A, B
PI7 → Na4 + + 2e - A, B
PI8 Na3 + + hν → Na4 + + e - A, B
PI9 O + hν → O+ + e - A, B
PI10 → O2 + + 2e - A, B
PI11 → O3 + + 3e - A, B
PI12 O+ + hν → O2 + + e - A, B
PI13 → O3 + + 2e - A, B
PI14 O2 + + hν → O3 + + e - A, B
PI15 → O4 + + 2e - A, B
PI16 O3 + + hν → O4 + + e - A, B
PI17 Mg + hν → Mg+ + e - A, B
PI18 → Mg2 + + 2e - A, B
PI19 → Mg3 + + 3e - A, B
PI20 → Mg4 + + 4e - A, B
PI21 Mg+ + hν → Mg2 + + e - A, B
PI22 → Mg3 + + 2e - A, B
PI23 → Mg4 + + 3e - A, B
PI24 Mg2 + + hν → Mg3 + + e - A, B
PI25 → Mg4 + + 2e - A, B
PI26 Mg3 + + hν → Mg4 + + e - A, B
PI27 Si + hν → Si+ + e - A, B
PI28 → Si2 + + 2e - A, B
PI29 → Si3 + + 3e - A, B
PI30 → Si4 + + 4e - A, B
PI31 Si+ + hν → Si2 + + e - A, B
PI32 → Si3 + + 2e - A, B
PI33 → Si4 + + 3e - A, B
PI34 Si2 + + hν → Si3 + + e - A, B
PI35 → Si4 + + 2e - A, B
PI36 Si3 + + hν → Si4 + + e - A, B

TI1 Na + e → Na+ + 2e 1.01×10−7
(

1+U1/2

0.275+U

)
U0.23 exp(−U ), U = 5.1/T [eV] C

TI2 Na+ + e → Na2 + + 2e 7.35×10−9
(

1+U1/2

0.056+U

)
U0.35 exp(−U ), U = 47.3/T [eV] C

TI3 Na2 + + e → Na3 + + 2e 8.1×10−9
(

1+U1/2

0.148+U

)
U0.32 exp(−U ), U = 71.6/T [eV] C

TI4 Na3 + + e → Na4 + + 2e 1.14×10−8
(

1
0.553+U

)
U0.28 exp(−U ), U = 98.9/T [eV] C

TI5 O + e → O+ + 2e 3.59×10−8
(

1
0.073+U

)
U0.34 exp(−U ), U = 13.6/T [eV] C

TI6 O+ + e → O2 + + 2e 1.39×10−8
(

1+U1/2

0.212+U

)
U0.22 exp(−U ), U = 35.1/T [eV] C

TI7 O2 + + e → O3 + + 2e 9.31×10−9
(

1+U1/2

0.27+U

)
U0.27 exp(−U ), U = 54.9/T [eV] C

TI8 O3 + + e → O4 + + 2e 1.02×10−8
(

1
0.614+U

)
U0.27 exp(−U ), U = 77.4/T [eV] C

TI9 Mg + e → Mg+ + 2e 6.21×10−7
(

1
0.592+U

)
U0.39 exp(−U ), U = 7.6/T [eV] C

TI10 Mg+ + e → Mg2 + + 2e 1.92×10−8
(

1
0.0027+U

)
U0.85 exp(−U ), U = 15.2/T [eV] C

TI11 Mg2 + + e → Mg3 + + 2e 5.56×10−9
(

1+U1/2

0.107+U

)
U0.30 exp(−U ), U = 80.1/T [eV] C

TI12 Mg3 + + e → Mg4 + + 2e 4.35×10−9
(

1+U1/2

0.159+U

)
U0.31 exp(−U ), U = 109.3/T [eV] C

TI13 Si + e → Si+ + 2e 1.88×10−7
(

1+U1/2

0.376+U

)
U0.25 exp(−U ), U = 8.2/T [eV] C

TI14 Si+ + e → Si2 + + 2e 6.43×10−8
(

1+U1/2

0.632+U

)
U0.20 exp(−U ), U = 16.4/T [eV] C

TI15 Si2 + + e → Si3 + + 2e 2.01×10−8
(

1+U1/2

0.473+U

)
U0.22 exp(−U ), U = 33.5/T [eV] C

TI16 Si3 + + e → Si4 + + 2e 4.94×10−9
(

1+U1/2

0.172+U

)
U0.23 exp(−U ), U = 54.0/T [eV] C

RR1 Na+ + e → Na + hν f(5.095 × 10−12, 0, 3.546 × 102, 2.310 × 106, 0.9395, 4.297 × 105) D
RR2 Na2 + + e → Na+ + hν f(5.176 × 10−11, 0.4811, 7.751 × 101, 1.351 × 107, 0.3467, 3.140 × 105) D
RR3 Na3 + + e → Na2 + + hν f(3.192 × 10−10, 0.6726, 1.640 × 101, 1.263 × 107, 0.1232, 3.725 × 105) D
RR4 Na4 + + e → Na3 + + hν f(1.087 × 10−9, 0.7284, 6.132, 1.088 × 107, 0.0629, 4.559 × 105) D
RR5 O+ + e → O + hν f(6.622 × 10−11, 0.6109, 4.136, 4.214 × 106, 0.4093, 8.770 × 104) D
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Table A1 – continued

Reaction Rate coefficient Ref.

RR6 O2 + + e → O+ + hν f(2.096 × 10−9, 0.7668, 1.602 × 10−1, 4.377 × 106, 0.1070, 1.392 × 105) D
RR7 O3 + + e → O2 + + hν f(2.501 × 10−9, 0.7844, 5.235 × 10−1, 4.470 × 106, 0.0447, 1.642 × 105) D
RR8 O4 + + e → O3 + + hν f(3.955 × 10−9, 0.7813, 6.821 × 10−1, 5.076 × 106, 0, 0) D
RR9 Mg+ + e → Mg + hν f(5.452 × 10−11, 0.6845, 5.637, 1.551 × 106, 0.3945, 8.360 × 105) D
RR10 Mg2 + + e → Mg+ + hν f(1.345 × 10−11, 0.1074, 7.877 × 102, 7.925 × 107, 0.4631, 5.027 × 105) D
RR11 Mg3 + + e → Mg2 + + hν f(1.249 × 10−10, 0.5600, 7.748 × 101, 2.015 × 107, 0.1917, 5.139 × 105) D
RR12 Mg4 + + e → Mg3 + + hν f(4.031 × 10−10, 0.6803, 3.205 × 101, 1.626 × 107, 0.0764, 5.399 × 105) D
RR13 Si+ + e → Si + hν 5.9 × 10−13(T[K]/104)−0.601 E
RR14 Si2 + + e → Si+ + hν 1 × 10−12(T[K]/104)−0.786 E
RR15 Si3 + + e → Si2 + + hν f(6.739 × 10−11, 0.4931, 2.166 × 102, 4.491 × 107, 0.1667, 9.046 × 105) D
RR16 Si4 + + e → Si3 + + hν f(5.134 × 10−11, 0.3678, 1.009 × 103, 8.514 × 107, 0.1646, 1.084 × 106) D

Notes: rate coefficients in cgs units. References are A, Kaastra & Mewe (1993); B, Verner & Yakovlev (1995); C, Voronov (1997);D, Badnell (2006);
E, Aldrovandi & Pequignot (1973). The function of the rate coefficient from Badnell (2006) is given by f (x1, x2, x3, x4, x5, x6) = x1[

√
T /x3(1 +√

T /x3)1−Y (1 + √
T /x4)1+Y ]−1, Y = x2 + x5 exp(−x6/T ). And, based on the Saha ionization equation, the rate of thermal recombination is calculated.

Table A2. Energy levels of atoms.

Spices Configuration Statistical weight Excitation energy (cm−1)

Na 3s 2 0
3p 6 17106.03

Na3+ 2p4(3P) 9 540.8122
2p4(1D) 5 31105.89
2p4(1S) 1 65514.89

O 2p4(3P) 9 76.83111
2p4(1D) 5 15868.34
2p4(1S) 1 33792.22

2p33s(5S◦) 5 73767.79
2p33s(3S◦) 3 76795.82

O+ 2p3(4S◦) 4 0
2p3(2D◦) 10 26818.61
2P3(2P◦) 6 40469.22

O2+ 2s22p2(3P) 9 207.46
2s22p2(1D) 5 20273.11
2s22p2(1S) 1 43186.75
2s12p3(5S◦) 5 60324.71

O3+ 2p2(2P◦) 6 258.14
2p2(4P) 12 71724.05

Mg 3s2 1 0
3s3p(3P◦) 9 21890.85
3s3p(1P◦) 3 35052.25

Mg+ 3s 2 0
3p 6 35863.03

Si 3s23p2(3P) 9 125.54
3s23p2(1D) 5 6386.84
3s23p(1S) 1 15535.64

3s3p3 5 32236.95
3s23p4s(3P◦) 9 39890.38

Si+ 3s23p 6 186.65
3s3p2(4P) 12 41817.71
3s3p2(2D) 10 54540.73

Si2+ 3s2 1 0
3s3p(3P◦) 9 52985.88
3s3p(1P◦) 3 82885.54

Si3+ 3s 2 0
3p 6 71693.39

Notes: those data are calculated from the dataset in MCHF/MCDHF data base (http://nl
te.nist.gov/MCHF/). For grouping the fine-structure levels shown in MCHF/MCDHF
data base, we sum the statistical weight, and average the excitation energy by weighting
the statistical weight of each level.
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Table A3. Radiative and collisional transition between levels.

Spices Transition Einstein coefficient (1/s) Effective collision strength Ref.

Na 3s - 3p 6.23 × 107 12.1 A∗
Na3+ 2p4(3P) - 2p4(1D) 0.814 1.09 B

2p4(3P) - 2p4(1S) 7.30 0.178 B
2p4(1D) - 2p4(1S) 3.25 0.211 B

O 2p4(3P) - 2p4(1D) 8.57 × 10−3 0.293 C
2p4(3P) - 2p4(1S) 7.87 × 10−2 3.23 × 10−2 C

2p4(3P) - 2p33s(5S◦) 1.84 × 103 0.232 C
2p4(3P) - 2p33s(3S◦) 5.64 × 108 0.353 C

2p4(1D) - 2p4(1S) 1.26 8.83 × 10−2 C
2p4(1D) - 2p33s(5S◦) 1.36 0.05 ∗∗
2p4(1D) - 2p33s(3S◦) 1.75 × 103 8.23 × 10−4 C
2p4(1S) - 2p33s(5S◦) 0 0.05 ∗∗
2p4(1S) - 2p33s(3S◦) 6.2 × 10−2 0.05 ∗∗

2p33s(5S◦) - 2p33s(3S◦) 0 0.05 ∗∗
O+ 2p3(4S◦) - 2p3(2D◦) 7.68 × 10−5 1.33 D

2p3(4S◦) - 2p3(2P◦) 4.51 × 10−2 0.406 D
2p3(2D◦) - 2p3(2P◦) 9.68 × 10−2 1.70 D

O2+ 2s22p2(3P) - 2s22p2(1D) 2.71 × 10−2 2.28 E
2s22p2(3P) - 2s22p2(1S) 2.25 × 10−1 0.292 E
2s22p2(3P) - 2s12p3(5S◦) 8.07 × 102 1.20 E
2s22p2(1D) - 2s22p2(1S) 1.68 0.581 E
2s22p2(1D) - 2s12p3(5S◦) 5.77 × 10−3 0.05 ∗∗
2s22p2(1S) - 2s12p3(5S◦) 3.76 × 10−11 0.05 ∗∗

O3+ 2p2(2P◦) - 2p2(4P) 1.20 × 102 1.12 F
Mg 3s2 - 3s3p(3P◦) 8.45 × 101 2.97 G

3s2 - 3s3p(3P◦) 4.66 × 108 1.47 G
3s3p(3P◦) - 3s3p(1P◦) 0 1.98 G

Mg+ 3s-3p 2.59 × 108 17.5 H
Si 3s23p2(3P) - 3s23p2(1D) 2.53 × 10−3 0.478 I

3s23p2(3P) - 3s23p(1S) 2.49 × 10−2 3.79 × 10−3 I
3s23p2(3P) - 3s3p3 7.46 × 102 1.76 × 10−6 I

3s23p2(3P) - 3s23p4s(3P◦) 2.30 × 108 1.99 I
3s23p2(1D) - 3s23p(1S) 8.88 × 10−1 2.65 × 10−2 I

3s23p2(1D) - 3s3p3 3.42 × 10−2 2.37 × 10−3 I
3s23p2(1D) - 3s23p4s(3P◦) 4.85 × 105 1.53 × 10−2 I

3s23p(1S) - 3s3p3 2.16 × 10−11 1.1 × 10−2 I
3s23p(1S) - 3s23p4s(3P◦) 2.00 × 104 3.27 × 10−3 I

3s3p3 - 3s23p4s(3P◦) 0 0.768 I
Si+ 3s23p - 3s3p2(4P) 2.81 × 103 5.63 J

3s23p - 3s3p2(2D) 3.04 × 106 17.4 J
3s3p2(4P) - 3s3p2(2D) 1.50 × 10−2 10.7 J

Si2+ 3s2 - 3s3p(3P◦) 5.82 × 103 5.45 K
3s2 - 3s3p(1P◦) 2.45 × 109 5.59 K

3s3p(3P◦) - 3s3p(1P◦) 0 8.29 K
Si3+ 3s - 3p 8.66 × 108 15.6 H

Notes: the values of Einstein coefficient are calculated from MCHF/MCDHF data base (http://nlte.nist.gov/MCHF/).
References of effective collision strength are A, Igenbergs et al. (2008); B, Butler & Zeippen (1994), C, Zatsarinny &
Tayal (2003)(10 × 103); D, Pradhan (1976); E, Lennon & Burke (1994); F, Liang, Badnell & Zhao (2012); G, Merle,
Thévenin & Zatsarinny (2015), H, Liang, Whiteford & Badnell (2009); I, Cincunegui & Mauas (2001); J, Tayal (2008); and
K, Dufton & Kingston (1989). The values of effective collision strength for O3+ and Mg+ are assumed as those at T[K] =
8 × 103, and the others are assumed as those at T[K] = 104.
Calculated value of effective collision strength from the cross-section shown in the reference.
∗ Approximated values of effective collision strength as forbidden transition, following Allende Prieto et al. (2003).
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