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ABSTRACT
A promising method for measuring the cosmological parameter combination fσ 8 is to compare observed peculiar velocities
with peculiar velocities predicted from a galaxy density field using perturbation theory. We use N-body simulations and semi-
analytical galaxy formation models to quantify the accuracy and precision of this method. Specifically, we examine a number of
technical aspects, including the optimal smoothing length applied to the density field, the use of dark matter haloes or galaxies
as tracers of the density field, the effect of noise in the halo mass estimates or in the stellar-to-halo mass relation, and the effect
of finite survey volumes. We find that for a Gaussian smoothing of 4 h−1 Mpc, the method has only small systematic biases at
the level of 5 per cent. Cosmic variance affects current measurements at the 5 per cent level due to the volume of current redshift
data sets.

Key words: galaxies: kinematics and dynamics – galaxies: statistics – cosmology: large-scale structure of Universe –
cosmology: observations.

1 IN T RO D U C T I O N

Peculiar velocities are the only practical way of measuring the
underlying distribution of dark matter (DM) on large scales (Willick
et al. 1997), in the nearby (low-redshift) Universe. Specifically, they
can be used to measure the cosmological parameter combination
f(�m)σ 8, where the first term is the logarithmic growth rate of
fluctuations, with f (�m) = �0.55

m in the Lambda cold dark matter
(�CDM) model, and σ 8 is the root mean square matter density
fluctuation in a sphere of radius 8 h−1 Mpc. Although peculiar
velocities have been used for similar purposes since the early 90s
(see reviews by Dekel 1994; Strauss & Willick 1995), there has been
a recent revival of interest in measuring fσ 8 (Pike & Hudson 2005;
Davis et al. 2011; Hudson & Turnbull 2012; Turnbull et al. 2012;
Carrick et al. 2015; Huterer et al. 2017; Dupuy, Courtois & Kubik
2019; Qin, Howlett & Staveley-Smith 2019; Adams & Blake 2020;
Boruah, Hudson & Lavaux 2020; Said et al. 2020).

The use of peculiar velocities as a probe of fσ 8 has taken on
renewed importance in light of the 3.2σ conflict between cos-
mic microwave background (Planck Collaboration VI 2018) and
weak lensing measurements (Asgari et al. 2019) of the parameter
combination S8 ≡ �0.5

m σ8, with the latter giving lower values. This
combination is very similar to fσ 8, differing by only 0.05 in the
exponent of �m. As shown by Boruah et al. (2020), some recent
peculiar velocity measurements also yield lower values of S8 than
Planck (as do most other probes of this parameter combination).

One method for measuring fσ 8 involves regressing the observed
peculiar velocities (from e.g. supernovae, Tully–Fisher, or Funda-
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mental Plane standard candles/rulers) on their predicted peculiar
velocities from the density field of galaxies, obtained from a redshift
survey. Specifically, the slope of this regression, βg, is then combined
with a measurement of the fluctuations of galaxies, σ 8,g to yield an
estimate of

f σ8 = βgσ8,g, (1)

as first suggested by Pike & Hudson (2005). The background theory
and assumptions implicit in this method are discussed in more detail
in Section 2.

The goal of this paper is to test the accuracy and precision of this
method using large cosmological N-body simulations at a redshift of
zero of DM haloes as a proxy for galaxies, as well as semi-analytical
models of galaxy formation. Our approach is not to simulate all
the observational properties of the surveys simultaneously (as in, for
example, Nusser, Davis & Branchini 2014), but rather to consider one
by one the different physical effects that may bias or add uncertainty
to our results. In this sense, the paper is similar in spirit to Berlind,
Narayanan & Weinberg (2000).

This paper is organized as follows. Section 2 describes the theo-
retical framework of the relationship between peculiar velocities and
the density fluctuation field from linear perturbation theory, and the
relevant cosmological parameters. Section 3 presents the simulation
data and semi-analytical models that are used for the analyses
performed in this paper. Section 4 describes the prescription for
how we predict peculiar velocities. In Section 5, we investigate how
the choice of smoothing kernel impacts our estimates of β/f and the
amount of scatter generated in velocity–density cross-correlations.
Section 6 investigates how uncertainties corresponding to 0.1 and 0.2
dex in halo mass measurements influence the predictions of β/f and
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σ 8,h. In Section 7, we instead explore how using either the stellar-
to-halo mass relation (SHMR) or galaxy observables to weigh the
density field impacts these cosmological estimates. Section 8 focuses
on how these estimates are affected by volume limited surveys.
Finally, Section 9 presents our conclusions.

2 PECULIAR V ELOCITIES FROM LINEAR
P E RTU R BAT I O N TH E O RY

In linear perturbation theory, it is possible to relate the density field
to the peculiar velocities of the galaxies at low redshift using

v(r) = H0f (�m)

4π

∫
δ(r ′)

(r ′ − r)

|r ′ − r|3 d3r ′, (2)

where v(r) is the peculiar velocity field and δ(r) is the matter density
fluctuation field given by

δ(r) = ρ(r) − ρ̄

ρ̄
, (3)

where ρ(r) is the matter density field and ρ̄ is its cosmic average. This
calculation is only valid in the linear regime, where δ � 1, allowing
higher order terms to be ignored (Peebles 1993). For example, it does
not predict the transverse components of a galaxy within a galaxy
group. In �CDM, the rms matter density in spheres increases with
decreasing sphere radius, so we expect linear theory to break down
on small scales. In practice then, to apply equation (4) one needs to
smooth δ(r).

In the linear regime, the density modes in Fourier space grow
independently of one another. As a result it is easier to write
equation (2) in Fourier space as follows:

vk = iH0f
k

|k|2 δk, (4)

where H is the Hubble constant (H = 100 h km s−1Mpc−1). The
smoothing is also simpler in Fourier space, because a convolution is
a multiplication in Fourier space.

The density fluctuation field used in the previous equations is that
of the underlying matter density field. Because it is dominated by
DM, this cannot be measured empirically. Instead, an assumption
must be made as to how the observed galaxies trace the underlying
total matter. If one assumes linear biasing, the relation is

δg = bgδ, (5)

where bg is the linear bias and δg is the density fluctuation field of
the galaxies. Under this assumption, equation (2) can be written as

v(r) = H0f (�m)

4πbg

∫
δg(r ′)

(r ′ − r)

|r ′ − r|3 d3r ′. (6)

Note that if we express distances r in units of h−1 Mpc (or km s−1),
as are naturally obtained from redshift surveys, then one must set
H = 100 km s−1Mpc−1 (or 1, respectively) in the above expression.
Thus when applying this equation to density fields derived from
redshift surveys, the predictions are independent of the true value of
H. The other two values outside the integral can be compacted into
the parameter combination

βg ≡ f

bg

. (7)

If linear biasing holds, then σ 8,g = bgσ 8. Putting this into equa-
tion (7), we find that the product of the observables to be βgσ 8,g,
as in equation (1), and so we can set constraints on cosmological
parameters.

In reality, the assumptions of linearity, both in the context of
perturbation theory and in the context of biasing, will not hold exactly.
Fortunately, peculiar velocities are primarily generated by large-scale
waves, where linearity will be a good approximation. Nevertheless,
they also have a contribution from smaller, less linear scales. For
these reasons, simulations are needed to calibrate any biases arising
from non-linearities.

3 SI MULATI ON DATA

We use two publicly available simulations: Bolshoi and MultiDark
Planck 2 (MDPL2; Klypin, Trujillo-Gomez & Primack 2011; Klypin
et al. 2016), along with two simulated semi-analytical catalogues,
SAG (Cora et al. 2018) and SAGE (Croton et al. 2016) which populate
the DM haloes of MDPL2. We use the snapshots at z = 0. The halo
and galaxy catalogues were obtained from the COSMOSIM data
base.1

The high-resolution Bolshoi simulation (Klypin et al. 2011)
follows 20483 particles in a comoving, periodic cube of length 250
h−1 Mpc from z = 80 to today. It has a mass and force resolution
of 1.35 × 108 h−1 M� and 1 h−1 kpc, respectively, and the DM
haloes range from the masses of Milky Way satellites (1010 M�)
to the largest of clusters (1015 M�). It was run as a collisionless
DM simulation with the ADAPTIVE REFINEMENT TREE code (ART;
Kravtsov, Klypin & Khokhlov 1997) and assumes a flat, WMAP5
cosmology with parameters �m = 0.27, �� = 0.73, h = 0.7, (linear)
σ 8 = 0.82, and ns = 0.95. Haloes in Bolshoi were identified using
ROCKSTAR (Behroozi, Wechsler & Wu 2013a). The (non-linear) σ 8,m,
measured from the particles is 0.897.

The MultiDark project consists of a suite of cosmological hy-
drodynamical simulations (Klypin et al. 2016), all assume a flat
�CDM cosmology with cosmological parameters: �m = 0.307115,
�� = 0.692885, h = 0.6777, linear σ 8 = 0.8228, and ns = 0.96,
that is consistent with Planck results (Planck Collaboration 2018).
We focus on the MDPL2 simulation that has a periodic box of length
1000 h−1 Mpc evolved from a redshift of 120 to 0 with a varying
physical force resolution level from 13 to 5 h−1 kpc and various
implemented physics. The simulation uses 38403 DM particles of
mass 1.51 × 109 h−1 M�, and has identified more than 108 haloes
using ROCKSTAR (Behroozi et al. 2013a), with merger trees that were
generated using CONSISTENTTREES (Behroozi et al. 2013b). The (non-
linear) σ 8,m, measured from the particles is 0.95.

The SAG (Cora et al. 2018) and SAGE (Croton et al. 2016)
semi-analytical models include the most relevant physical processes
in galaxy formation and evolution, such as radiative cooling, star
formation, chemical enrichment, supernova feedback and winds,
disc instabilities, starbursts, and galaxy mergers. These models
were calibrated to generate galaxy catalogues using the MDPL2
simulation. A comprehensive review of the models can be found in
Knebe et al. (2017).

4 TESTI NG METHODS W I TH N- B O DY
SI MULATI ONS

Our goal is to test equation (6) using data from N-body simulations.
Specifically, we will calculate the predicted peculiar velocities by
integrating over a smoothed density tracer field, denoted by the

1www.cosmosim.org
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Testing the accuracy of peculiar velocity comparisons 3725

subscript ‘t’, used in place of δg(r) in the integral,

vpred(r) = H0

4π

∫
δt (r ′)

(r ′ − r)

|r ′ − r|3 d3r ′, (8)

and compare this to the ‘observed’ (unsmoothed) velocity tracers,
which are used in place of v(r) on the left-hand side of equation (6).
Note that equation (8) omits the β t term, which we fit to the N-body
data by performing a linear regression

vt = βtvpred, (9)

where vt is the measured N-body velocity of a tracer of the velocity
field which, in principle, need not be the tracer as used for the
density field. This is a cross-correlation between two samples, and
we will refer to it generically as a velocity–density cross-correlation,
although the actual comparison is made between observed and
predicted peculiar velocities.

The procedure used to obtain the density tracer field is the same
regardless of whether the tracer data are particles, DM haloes or
galaxies, as each simulation provides Cartesian positions and veloci-
ties for all tracers. The latter two also provide additional information
such as halo mass, stellar mass, and luminosity measurements in
different filter bands. In this paper, we will construct the density
fluctuation field using all of the aforementioned tracers. In the
following section, however, we will focus solely on using the particles
for the density field.

Likewise, one also has a choice of which velocity tracers to
use in the comparison. Using the particles as the velocity tracers
is the most straightforward, so we will begin with this case in
Section 5.1. Generally, however, observers usually combine the
peculiar velocities from multiple galaxies in the same group or
cluster to obtain the mean peculiar velocity of the group. The N-body
analogue for the group-averaged peculiar velocity is the peculiar
velocity of the host (or central) halo.

In order to calculate the density field, the density tracers are placed
on a 3D cubic grid at the nearest grid point and the contribution of
all tracers at the same grid point is summed.

In the case where grid spacing is non-negligible, the gridding acts
like smoothing, and it adds in quadrature with the applied to yield a
total effective smoothing (Boruah et al. 2020),

σ 2
total = σ 2

grid + σ 2
smooth, (10)

where σ 2
grid = 
2

grid

12 , where 
grid is the grid spacing in h−1 Mpc.
Using a fine grid allows us to preserve some of the detail and ignore

the effects of grid size smoothing. All comparisons in this paper are
done assuming a grid spacing of 0.36 and 0.98 h−1 Mpc for Bolshoi
and MDPL2, respectively, which produces a negligible effect on the
effective smoothing scales that will be used in this paper.

We choose to smooth the density fluctuation field using a Gaussian
smoothing kernel, which, in configuration and Fourier space, are
given by

W (r) = 1√
2πRG

exp

( −r2

2R2
G

)
(11)

W (k) = exp

(
−k2R2

G

2

)
, (12)

respectively. We then calculate the peculiar velocities on the 3D grid
using equation (4). To predict the peculiar velocity of a given velocity
tracer, we linearly interpolate from the velocity grid to the tracer’s
location.

As discussed above, we then regress the tracer velocity against its
predicted velocity, with the intercept fixed to zero, and where the

fitted slope gives an estimate for β t. The fits also yield the rms (1D)
velocity scatter, σ v , of the difference between the N-body velocities
and the linear theory predictions at the best fit β t.

5 TH E E F F E C T O F S M O OT H I N G L E N G T H O N
T H E ES T I M AT E D C O S M O L O G I C A L
PA R A M E T E R S

As discussed above, the density tracer field must be smoothed in
order to predict the peculiar velocities in linear perturbation theory.
In this section, we assess the impact of different Gaussian smoothing
lengths on the recovered value of β t, and the 1D σ v around the linear
theory predictions. We focus on smoothing scales between 1 and 6
h−1 Mpc.

Specifically, we aim to confirm at what smoothing length the slope
of linear regression is unbiased, which previous work has suggested
lies in the range 4–5 h−1 Mpc (Carrick et al. 2015). We first consider
particles as tracers of the density field, and then consider haloes.

5.1 Particle-weighted density fluctuation field

We now consider the case in which we predict the peculiar velocities
of particles using the particle density fluctuation field. The values of
the best-fitting slope divided by the value of f in the simulation,
i.e. β/f, as a function of smoothing scale, are shown in Fig. 1.
This quantity should be unity if the method is unbiased. We find
that predictions are unbiased for a Gaussian smoothing kernel RG

between 4 and 5 h−1 Mpc. Of the two simulations, MDPL2 should
be more accurate since its minimum wavenumber k is 2π × 10−3

h Mpc−1, and whereas that of Bolshoi is a factor 4 larger due to
its smaller box length. Thus Bolshoi fails to capture the long-
wavelength modes that generate a significant fraction of the rms
peculiar velocity. The 1D σ v around the best-fitting slope, however,
is minimized at a smoothing length that is 1–1.5 h−1 Mpc smaller.
The σ v of particle peculiar velocities is high: between 225 and
275 km s−1. This is because the particle’s peculiar velocity includes
its motion within the halo as well as the peculiar velocity of the
halo itself. Only the latter is well predicted by linear perturbation
theory.

If we predict the peculiar velocities of host (or central) haloes
(i.e. excluding subhaloes) using the particle density field, we find
similar results, with unbiased results and minimum σ v occurring
for Gaussian smoothing lengths that are ∼0.5 h−1 Mpc smaller than
when using particles as velocity tracers. The σ v as a function of
smoothing length is quite flat; it is not much higher at the fiducial
4 h−1 Mpc. However, the amplitude of σ v for host haloes is
significantly lower (∼150 km s−1) than for particles (∼250 km s−1),
as expected given that the velocities of the particles include their
motion with respect to the host halo.

Finally, it is interesting to explore the question of whether haloes of
different masses have different velocities relative to the predictions of
linear theory, one scenario of ‘velocity bias’. We find that imposing
a minimum mass threshold on the haloes used to sample the velocity
field of 1012 M� has little effect on the measured β/f for smoothing
lengths greater that 1.5 h−1 Mpc for MDPL2 and 3 h−1 Mpc for
Bolshoi, as shown in Fig. 2. This is also true for a minimum mass
of 1013 M�. A small velocity bias appears only when considering
cluster mass haloes (>1014 M�) as peculiar velocity tracers. For
clusters, there is also an increase in the 1D σ v with respect to the
linear theory predictions.

MNRAS 502, 3723–3732 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/3/3723/6119924 by guest on 24 April 2024



3726 A. M. Hollinger and M. J. Hudson

Figure 1. Top panel: Slope of linear regression for the predicted and N-body
particle and central halo velocities (excluding subhaloes) for MDPL2 and
Bolshoi simulations. Because we correct for the f parameter, a value of β/f of
unity indicates for the smoothing length for which the velocity–density cross-
correlation is unbiased. The predicted velocities were calculated assuming an
underlying particle density field and linear theory for the Gaussian smoothing
radius shown on the horizontal axis. Bottom panel: The scatter between the
measured N-body and predicted peculiar velocity associated with each of the
linear regression slopes. A circle has been placed at the smoothing length
where the standard deviation was minimized.

5.2 Halo mass weighted density field

We now consider a scenario that is closer to the observational one,
where the density field is provided by DM haloes, weighted by their
mass. Whereas the particle density field is unbiased, this field will
be biased. Therefore, we no longer expect βh/f = 1. As discussed
above, in the linear regime, this bias can be calculated by measuring
the rms density fluctuations of the halo-weighted density field in 8
h−1 Mpc spheres. The halo and particle σ 8 measurements are related
by

bh = σ8,h

σ8,m
(13)

which is the same b in the β term defined previously. We measure
β/f from the slope of linear regression as before, but multiplying this
by the correction factor bh. This should return a value of unity if the
method is unbiased. This parameter combination will be referred to
as β∗ = β

f

σ8,h
σ8,m

.

To measure σ 8, we place non-overlapping spheres of 8 h−1 Mpc
covering the entire density field, and measure the standard deviation
in the values. Doing this, we find values of σ 8,h = 1.45 ± 0.04 and
1.57 ± 0.02 for the halo masses for Bolshoi and MDPL2, respectively,

Figure 2. As in Fig. 1 where again the predicted peculiar velocities are
based on the particle density field, but here these are compared to the N-
body peculiar velocities of haloes (but excluding subhaloes). For clarity, the
solid line labelled ‘all haloes’ represents all simulation objects classified as
centrals, while the dashed lines represent centrals with masses greater than
various minimum masses as indicated in the legend.

much larger than σ 8,m, which is the measured (non-linear) σ 8 of the
particle density field.

The fitted values of βh/f, however, are lower than unity, as expected.
The results for β∗ are plotted in Fig. 3, showing that the mass-
weighted determination is nearly unbiased: at the fiducial RG =
4 h−1 Mpc, the MDPL2 field has β∗ = 1.05, whereas for Bolshoi β∗

= 1.02. This suggests that linear biasing correction works well, even
for fields with bh ∼ 1.7. The 1D σ v (∼160 km s−1) is only marginally
higher than when particles were used for the density field.

5.3 Discussion: cross-correlation and optimal smoothing

It is not obvious why a Gaussian smoothing, with RG ∼ 3 to 4 h−1

Mpc, should be the ‘correct’ smoothing length. We can gain some
insight by considering the problem in Fourier space, specifically
equation (4) that relates the velocity modes to the density modes in
linear perturbation theory. This should be exact on large scales, but
we expect it to break down at high k.

For simplicity, first assume that all Fourier modes are Gaussian
and independent and that at a given k the joint distribution of velocity
and density mode amplitudes is given by a bivariate Gaussian. We
expect the correlation coefficient, ρ, to approach 1 on large scales
and zero at high k. Generally if one has a bivariate normal distribution
of two variables x and y, and one regresses y on x, the slope of the
relation is ρ

σy

σx
, or since the covariance Cxy = ρσ xσ y, the slope can

also be written as Cxy/σ
2
x . Therefore, the predicted velocity mode

MNRAS 502, 3723–3732 (2021)
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Figure 3. Similar to Fig. 2, except here the mass-weighted halo density field
is used to predict peculiar velocities of haloes. The vertical axis in the top
panel is now β/f(σ 8,h/σ 8,m).

amplitude is given by the density mode amplitude times the slope
Cvδ/σ

2
δ .

The quantities Cvδ and σ 2
δ can be measured in N-body simulations

as a function of wavenumber k. The latter is just the power spectrum
of matter density fluctuations, Pδδ , but the covariance is less well
studied. Zheng et al. (2013) have measured the cross-spectrum of
the closely related quantity θ = ∇ · v with the density δ, and its
ratio with the density power spectrum. They define the normalized
window function

W̃k = 1

f

Pθδ

Pδδ

, (14)

which has the property that it asymptotes to 1 at low k and goes to
zero at higher k. This function is plotted in Fig. 4. Also overplotted for
comparison are two Gaussian smoothing filters with RG = 2.88 and
4.0 h−1 Mpc. The estimated β/f from the particle-weighted density
field smoothed using either W̃k as a k-space smoothing function or
with a Gaussian kernel of RG = 2.88 h−1 Mpc both produce values
of 0.88. There is also no significant difference in σ v .

The Gaussian smoothing with RG = 4.0 h−1 Mpc is a better match
to W̃k at low k.

In reality, particularly at high k, the assumption of bivariate
Gaussianity will no longer be correct, so the above simple argument
will break down. In principle, with detailed knowledge of the
correlations, it should be possible to design the optimal k-space filter.
For our purposes in this paper, we retain the simplicity of Gaussian
smoothing, and adopt a Gaussian smoothing filter with RG = 4 h−1

Mpc for consistency with previous work.

Figure 4. The normalized window function from Zheng et al. (2013),
calculated from the J1200 simulation, based on the correlation of the velocity
and density fields (see text for details) is shown, with Window functions
for Gaussian smoothing kernels with scales of 2.85 and 4.0 h−1 Mpc. Both
functions exhibit the expected characteristics of being unity as k → 0 and
zero as k → ∞. ˜Wk and the Gaussian kernel of RG = 2.88 h−1 Mpc cross
0.5 near k = 0.39 and 0.41 h Mpc−1, respectively.

6 TH E E F F E C T O F U N C E RTA I N T Y IN TH E
HALO MASSES

In the previous sections, the masses of the haloes were assumed to be
known exactly, with no uncertainty in the measurements. However,
in real survey data there is a some uncertainty in the true mass of
any given halo, depending on the method used to estimate it, and
this may be in the range 0.1–0.2 dex (see Section 7). In this section,
we explore how scattering the halo mass impacts the predictions
of β/f and σ 8,h. This is accomplished by varying the halo masses
by a lognormal Gaussian random variable with standard deviations
corresponding to 0.1 and 0.2 dex, and calculating σ 8 and β for each
realization. A total of 500 realizations were performed on both the
Bolshoi and MDPL2 halo catalogues.

We find that, from realization to realization, both the measured β

and σ 8 deviate from the no-scatter values, and these deviations are
anticorrelated. This can be understood as follows. In Section 5.3,
we discussed how the slope (β) could be expressed as the ratio
of the covariance between density and velocity, and the density
power spectrum, Cvδ/σ

2
δδ . If noise is added to the density field,

then the denominator increases, but the covariance is unaffected.
Consequently, the fitted β drops. On the other hand, σ 8 increases
because of the additional noise. This anticorrelation leads to some
cancellation of the additional noise from realization to realization in
the product β∗ = βhσ 8,h.

The net result of increasing the halo mass scatter and its impact
on β∗ are shown in the top panel of Fig. 5, with a scatter of zero
dex corresponding to the case where the halo masses are precisely
measured. We find that when introducing a lognormal scatter, the
value of β∗ increases only slightly with increasing scatter for both
Bolshoi and MDPL2. We note, however, that the standard deviation of
β∗ is higher for Bolshoi due to the smaller volume of the simulation,
which leads to greater variation from realization to realization in βh,
σ h and their product β∗. For MDPL2, the net effect of scatter in
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3728 A. M. Hollinger and M. J. Hudson

Figure 5. Effect of additional scatter to the mass of haloes as a function of
the logarithmic scatter (0, 0.1, and 0.2 dex). For 0 dex, this is the measured
value of the simulation, for 0.1 and 0.2 dex a random value corresponding
to a lognormal Gaussian with a σ of ∼0.23 and 0.5, respectively, has been
applied to each halo in the catalogue. Top panel: The mean (dark line) and
±1σ range (shaded band) of these measurements are shown for β/f(σ 8,h/σ 8,m)
at a smoothing radius of 4 h−1 Mpc. Bottom panel: scatter around the best
fit of σv for the same smoothing.

the N independent halo masses is reduced by a factor 1/
√

N due
to the larger volume containing a larger number (N) of haloes. This
highlights the importance of the volume of the sample, a topic we
shall discuss in greater detail in Section 8.

The bottom panel shows how the 1D σ v is impacted by introducing
stochasticity in the halo masses. We find that the 0.1 dex case
generates a negligible change in the measured σ v when compared
to the original value. For halo mass uncertainties of 0.2 dex, σ v

increases, but the effect is still small, corresponding to ∼8 km s−1.

7 G A L A X I E S A S T R AC E R S O F TH E D E N S I T Y
FIELD

Galaxies trace the underlying DM distribution on large scales, but
observable quantities, such as a galaxy’s luminosity and stellar mass,
do not necessarily have an exact relationship with the mass of the
halo in which a galaxy lies. To explore how using these quantities as a
proxy for mass density impact β/f and σ 8, we use two semi-analytical
galaxy formation models available for the MDPL2 simulations SAG
(Cora 2006) and SAGE (Croton et al. 2016).

Many DM haloes host more than one galaxy, which are typically
divided into centrals (the galaxy identified with the main or host DM
halo) and satellites (associated with DM subhaloes). When predicting

Figure 6. Top panel: The SHMR for the total stellar mass of a halo (including
stellar mass in subhaloes) as a function of total halo mass. The dark curves
show the means of the SHMR and the lighter bands indicate their measured
standard deviation. Both SAG and SAGE semi-analytical models are shown.
Bottom panel: the SHMR as a function of halo mass.

host halo mass, one can use only the stellar mass or luminosity of
the central galaxy, or one can use the total stellar mass (or total
luminosity) of all galaxies. We adopt the latter approach here when
calculating the density fields. As before, velocity comparisons will
be done solely on galaxies classified as centrals. For consistency with
the previous work done in this paper, any cuts imposed on the data
will be done using the mass of the host halo.

The SHMR is different for both the SAG and SAGE semi-
analytical models in MDPL2, see Fig. 6. SAG has a tighter SHMR
with less scatter in stellar mass at a given halo mass: for haloes with
masses between 1011 and 1013 h−1 M�, it has an average scatter
of 0.15 dex compared to 0.39 dex in SAGE. The average SHMR is
comparable for both SAG and SAGE for halo masses greater than
the characteristic pivot point at ∼1012 h−1 M�.

7.1 Predictions using stellar-to-halo mass relations

To construct a proxy mass density field, we can obtain proxy halo
masses using the SHMR. The K-band luminosity is a good proxy for
stellar mass, however, the galaxy luminosities in SAG are limited to
the u, g, r, i, z bands. So in this section, we use the stellar masses
provided for both SAG and SAGE. We fit the SHMR profiles of both
SAG and SAGE semi-analytical models with a broken power law,
and use these to convert the stellar masses into halo masses. Then
the same analysis described in a previous section is performed. This
procedure will remove the non-linearity of the SHMR relation, but
cannot remove the scatter in it, since the mean SHMR is used for
each halo.
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Figure 7. Similar to Fig. 3, except here a fitted SHMR is used to predict the
halo masses from stellar masses, and then constructing a mass-weighted halo
density field to predict the peculiar velocities of central galaxies.

From Fig. 7, we find for the SAGE galaxies, β∗ is unbiased for a
Gaussian smoothing of 4.1 h−1 Mpc but generates the lowest σ v at
RG = 2.6 h−1 Mpc. For SAG, these are at smoothing lengths of 3.6
and 3.5 h−1 Mpc, respectively. Comparing these results to Fig. 3,
we find that at RG = 4 h−1 Mpc, SAG produces results that are quite
similar (within a few per cent) to what was found using MDPL2’s
halo masses directly. SAGE, however, generates values of β∗ that
are 5 per cent smaller at the same smoothing length than the haloes.
We find that the generated SAG haloes produce similar estimates for
the 1D scatter in velocity predictions, contrarily the SAGE haloes
generate ∼20 km s−1 less scatter.

Comparing these results to those in the next section, we note
that while the halo mass does tend to be unbiased at smaller RG

the conversion of stellar to halo mass introduces 10–20 km s−1

of additional scatter than using galaxy observables to predicted
velocities.

We attribute the results to the differences in the models’ SHMR as
a function of halo mass. SAG has a flatter SHMR than SAGE, and
therefore it is close to the simple halo mass weighted case. SAGE has
a steeper ratio at high halo masses, hence SAGE puts less weight on
massive clusters leading to estimates of β∗ slightly less than unity.

7.2 Predictions using galaxy observables

A density field can also be constructed without approximating
the mass of individual haloes via the SHMR. In this section, we
investigate how weighing directly by the galaxy observables impacts

Figure 8. Similar to Fig. 7 except now the density field is constructed using
galaxy observables (i.e. weighed by stellar mass or luminosity) to predict and
measure centrals’ peculiar velocities.

the cosmological estimates. Such a procedure is closer to what was
done by Carrick et al. (2015), who used the K-band luminosity-
weighted density field from the 2M++ catalogue. Fig. 8 shows the
summary of results discussed below.

We find that, for the SAG model, weighing the density field by
stellar mass produces results that yield a higher β∗ than luminosity
weighting. We can weigh the density field using luminosities in any
of the five bands provided by SAG. In the remainder of this paper, we
focus on the r-band luminosity. We note, however, that the longest
wavelength z band produces the highest values of β/f , however,
after applying the correction factor (σ 8,g/σ 8,m) there is virtually no
difference between bands for β∗, provided a low minimum mass
threshold.

If the minimum mass threshold of the haloes is low, we find that
weighing using the stellar masses provided by SAG closely resembles
the case where the density field is halo mass weighted and is unbiased
at an RG ∼ 3.8 h−1 Mpc. The SAGE stellar mass and SAG r band
predict β∗ values that are comparable at RG > 3 h−1 Mpc, but only
produce unbiased estimated of β∗ for a Gaussian smoothing radius
of ∼5 h−1 Mpc.

In the case where a minimum mass threshold of 1012 h−1 M�
is applied to the data, we find that β∗ for the three cases are
comparable for 3 h−1Mpc � RG � 4 h−1Mpc. With all the cases
estimating unbiased β∗ values at 3.5–3.7 h−1 Mpc. The σ v is also
comparable for these cases with the SAGE stellar mass producing
only ∼10 km s−1 less scatter than the SAG r band.
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8 FI N I T E VO L U M E A N D C O S M I C VA R I A N C E
EFFECTS

In real data sets, both the data used to obtain the density field, based
on redshift surveys, and the peculiar velocity samples, cover limited
volumes. This has multiple consequences. Some of these are related
to sample variance: the local volume will have local values of the
mean density and of σ 8 that are different from the global values.
Moreover, the predicted peculiar velocities will be less accurate for
galaxies close to the edge of the density field than for those far from
the edges, say at the centre of the volume.

In this section, we investigate these finite volume and edge effects
by limiting the data, to spheres of radii with Rmax = 50, 100, 150,
200, and 300 h−1 Mpc, and its impact on cosmological estimates.
In particular, we are interested in simulations of data sets with
Rmax ∼ 150 h−1 Mpc, which is comparable to the survey size of
2M++, the depth of which varies from 125 to 200 h−1 Mpc,
with an effective spherically averaged radius of 175 h−1 Mpc.
Given the size of the MDPL2 simulation, it is possible to generate
multiple independent (non-overlapping) finite volume realizations.
For each sphere, we ignore any galaxy that exists outside of the
sphere, and assign δ = 0 for points outside the sphere. Hence each
sphere represents a local universe realization: it can be over- or
underdense, so we renormalize δ using the mean density within
the sphere instead of the simulation box average. For each sphere,
we then calculate β/f and σ 8, g using only that sphere’s galaxies,
although σ 8,m, which appears in the denominator of β∗, continues
to be calculated from the full simulation. As in real analyses, to
account for the missing contribution from structures beyond the
sphere’s edge, in addition to fitting the β/f, we also fit a residual bulk
flow term.

Fig. 9 demonstrates how β∗ and σ 8,g depend on Rmax for the case
with no mass cut on the galaxy catalogue. As expected, as the size
of the sphere increases, results converge to the values found for the
full simulation for Rmax ≥ 200 h−1 Mpc.

There is a significant amount of scatter in the measured σ 8 values
for small Rmax, varying by as much as 10 per cent of the mean value,
and with a mean value that tends to be between 4 and 8 per cent lower
than that of the full simulation. The bias in the mean may be due to
renormalizing th0e density fluctuation, δ = (ρ − ρ̄)/ρ̄ with the local
ρ̄ measured on the scale of the sphere, Rmax, thus effectively filtering
out the contribution to σ 8 from large-scale waves. The scatter arises
from sample variance effects, which is a combination of cosmic
variance in the underlying DM structures and stochasticity in the
SHMR. This decreases as Rmax increases.

Likewise, the locally measured value of β/f also varies from sphere
to sphere. Again, there are several reasons for this. First, the local
ρ̄ averaged over the sphere will differ from the true average. This is
important because, as noted above, it leads to a renormalization of δ.
Second, there is also stochasticity in the SHMR that may affect the
locally measured β/f. Of these two, the first effect is the dominant
one: we find that the total scatter in β/f for Rmax = 150 h−1 Mpc
at RG = 4 h−1 Mpc is typically 7.0 per cent and is mostly due to
cosmic variance in ρ̄. The scatter in β/f dominates the scatter in σ 8,g

(2.5 per cent) when they are combined in β∗.
Fig. 10 demonstrates how the cut samples (Rmax = 150 h−1 Mpc)

depend on the Gaussian smoothing radius RG. In particular, when
compared to Fig. 8 we find that the average β∗ for these volume-
limited realizations is unbiased between 3.75 and 4.75 h−1 Mpc.
The value of β∗ at RG = 4 h−1 Mpc ranges between 0.98 and 1.01.
More importantly, the standard deviation in β∗ from sphere to sphere
is 0.077 at Rmax = 150 h−1 Mpc, although this declines significantly
to 0.032 at 200 h−1 Mpc and 0.020 at 300 h−1 Mpc. This suggests

Figure 9. To demonstrate the dependence of our calculated parameters on
the survey volume, we restrict simulation data to (non-overlapping) spheres
of radius ranging from 50 to 300 h−1 Mpc. The components of β∗ are
calculated for each test sample assuming a Gaussian smoothing kernel of 4
h−1 Mpc. The upper panel and lower panel show the results for β∗ and in σ 8

measurements, respectively, as a function of sphere radius. In both panels,
the light and dark coloured bands represent the ±1σ standard deviation
from sphere to sphere and the standard error in the mean of the test cases
(respectively) for a given sample spherical radius, with the mean being
shown by the solid colour lines. The colour horizontal dashed lines show the
values from the full simulation box.

that sample variance effects are the dominant uncertainty in fσ 8 for
current data sets.

The 1D velocity scatter as a function of RG has a similar shape
as found previously, but is 40–50 km s−1 larger than for the full
simulation box. This increase in the scatter is primarily due to the
degradation of the predicted velocities as one approaches Rmax. When
we compare the 1D σ v for the subsample of galaxies located within
the inner half of the sphere’s volume with those in the outer half at
an RG = 4 h−1 Mpc, we find scatters of ∼165 and ∼210 km s−1,
respectively. This increase is attributed to the fact that the velocity
tracers near the outer edge have poorer predicted peculiar velocities
because of unaccounted-for structures outside of the survey limits.

9 SUMMARY AND DI SCUSSI ON

The key results of this paper are as follows:

(i) The velocities of DM haloes are well predicted by linear theory
from the true density field with a Gaussian smoothing RG = 4 h−1

Mpc with a velocity scatter of 154 km s−1. This is in agreement with
appendix A of Carrick et al. (2015).

(ii) This can be understood because, in Fourier space, a Gaussian
filter with RG = 3–4 h−1 Mpc is a good match to the cross-correlation
function of the density and velocity fields.
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Figure 10. Similar to Fig. 8 expect we now use non-overlapping sphere cuts
of radius 150 h−1 Mpc and the components of β∗ are calculated for a range
of Gaussian kernel lengths between 1 and 6 h−1 Mpc. The bands have the
same meaning as in Fig. 9.

Table 1. Summary of β∗ values taken for RG = 4 h−1 Mpc for the various
MDPL2 tracers that weigh the density field and from which the peculiar
velocities are compared.

Density tracer All Mt Mt > 1012 h−1 M�

Particles 0.97 – Fig. 1
Haloes 1.05 1.08 Fig. 3
SAGE: SHMR 1.00 1.02 Fig. 7
SAG: SHMR 1.04 1.06 Fig. 7
SAGE: stellar mass 0.98 1.01 Fig. 8
SAG: stellar mass 1.01 1.03 Fig. 8
SAG: r-band luminosity 0.97 1.02 Fig. 8

(iii) The accuracy and precision of the linear theory predictions
do not depend on the mass of the velocity tracer; there is no ‘velocity
bias’, except for clusters with Mh > 1014 h−1 M�.

(iv) If DM haloes are used as tracers of the density field, and one
calculates σ 8,h of the halo mass weighted density field, then βhσ 8,h

is a good estimator of fσ 8.
(v) If noise is added to the DM halo masses, then β∗ is biased high

by only a per cent, for a 0.1 dex noise level.
(vi) When galaxy luminosity or stellar mass are used for the

density field, the values of β∗ indicate that the method is unbiased to
within 5 per cent, depending on the semi-analytical galaxy formation
model.

(vii) When the density field is restricted to a finite volume, there is
additional uncertainty due to cosmic variance, at the level of 7 per cent
for a 150 h−1 Mpc sphere.

The results for β∗ calculated using the same tracers for the
velocity and density field, are summarized in Table 1. Overall we
find that the method has ∼5 per cent systematic uncertainties. This
can be improved with semi-analytical galaxy formation models that
more carefully match the real SHMR and its scatter. There is also
uncertainty due to finite volumes and cosmic variance.

Previous work has neglected the additional scatter due to the
coupled effects of stochasticity in the galaxy–mass relation and the
cosmic variance effect of finite volumes. For example, the 2M++
catalogue (Lavaux & Hudson 2011) has an effective volume of 175
h−1 Mpc. The SAGE model, weighed by stellar mass, shows that, for
150 h−1 Mpc spheres, the uncertainty on βgσ 8,g = fσ 8 is 7.7 per cent,
while the expected (interpolated) value for a survey of 2M++’s
size is 5.2 per cent. This is slightly higher than the uncertainty
estimated by Carrick et al. (2015), Boruah et al. (2020), and Said
et al. (2020) who adopted a 4 per cent sampling variance uncertainty,
plus observational errors in β due to uncertainties in peculiar velocity
measurements, which are subdominant. For precise quantification of
the biases and systematic uncertainties in fσ 8 derived from a specific
survey, e.g. 2M++, the best approach to minimizing the systematic
errors will be to create mock catalogues that mimic the geometry and
selection of that particular survey.

The cosmic variance uncertainty can be reduced in the future with
deeper, all-sky redshift surveys. For example, a survey extending to
a redshift of 0.2 (600 h−1 Mpc) would have an uncertainty of only
0.4 per cent in the mean mass density and hence 0.5–0.6 per cent
in the luminosity (or stellar mass) density. In the North, the DESI
Bright Galaxy Survey (DESI Collaboration 2016), will observe 10
million nearby galaxies. In the South, 4MOST (de Jong et al. 2019)
has the capability to survey large volumes in the nearby Universe.
The future looks bright.
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