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ABSTRACT
Weakly collisional, magnetized plasmas characterized by anisotropic viscosity and conduction
are ubiquitous in galaxies, haloes, and the intracluster medium (ICM). Cosmic rays (CRs) play
an important role in these environments as well, by providing additional pressure and heating
to the thermal plasma. We carry out a linear stability analysis of weakly collisional plasmas
with CRs using Braginskii MHD for the thermal gas. We assume that the CRs stream at the
Alfvén speed, which in a weakly collisional plasma depends on the pressure anisotropy (�p)
of the thermal plasma. We find that this �p dependence introduces a phase shift between the
CR-pressure and gas-density fluctuations. This drives a fast-growing acoustic instability: CRs
offset the damping of acoustic waves by anisotropic viscosity and give rise to wave growth
when the ratio of CR pressure to gas pressure is �αβ−1/2, where β is the ratio of thermal to
magnetic pressure, and α, typically �1, depends on other dimensionless parameters. In high-β
environments like the ICM, this condition is satisfied for small CR pressures. We speculate
that the instability studied here may contribute to the scattering of high-energy CRs and to
the excitation of sound waves in galaxy-halo, group and cluster plasmas, including the long-
wavelength X-ray fluctuations in Chandra observations of the Perseus cluster. It may also be
important in the vicinity of shocks in dilute plasmas (e.g. cluster virial shocks or galactic wind
termination shocks), where the CR pressure is locally enhanced.

Key words: instabilities – plasmas – cosmic rays – galaxies: clusters: intracluster medium –
galaxies: evolution.

1 IN T RO D U C T I O N

The interstellar medium (ISM), the intracluster medium (ICM), and
the haloes of galaxy groups and Milky Way-like galaxies are filled
with hot and dilute gas, in which the electron/ion mean free paths
along the magnetic field greatly exceed the particle gyroradii. Under
such conditions, transport of heat and momentum is anisotropic and
happens preferentially in the direction of the local magnetic field.
The particle mean free path in these tenuous plasma environments
can be large (i.e. the plasma is weakly collisional). As a result,
anisotropic transport is efficient and can significantly affect the
thermal and dynamical evolution of the gas.

The importance of anisotropic conduction and viscosity in cluster
environments has been underpinned by a variety of analytic theory
and simulations. Anisotropic transport is an efficient driver of buoy-
ancy instabilities (Balbus 2000; Quataert 2008; Kunz et al. 2012)
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and significantly affects the gas dynamics in cluster simulations
(e.g. Ruszkowski & Oh 2010; Parrish et al. 2012; Yang & Reynolds
2016; Barnes et al. 2019; Kingsland et al. 2019).

The ISM, galaxy haloes, groups, and the ICM are also permeated
by a non-thermal population of relativistic particles known as
cosmic rays (CRs). Even though they essentially propagate at the
speed of light, their lifetime in galactic discs and haloes can be quite
long due to scattering off electromagnetic fluctuations. The waves
responsible for the scattering can be Alfvén waves generated by the
CRs themselves through the streaming instability (Kulsrud & Pearce
1969). Pitch-angle scattering by the excited waves isotropises the
CRs in the frame of the Alfvén waves. In this so-called self-
confinement picture, CRs are scattered towards isotropy in the
Alfvén frame and collectively drift down their pressure gradient
at the Alfvén speed, provided that the pitch-angle scattering is
sufficiently rapid. For slower pitch-angle scattering rates, the CR
transport deviates from pure streaming at the Alfvén speed, but its
exact nature remains uncertain (CRs are believed to either diffuse
or stream at super-Alfvénic speeds, or both; Skilling 1971, Wiener,
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Oh & Guo 2013; Amato & Blasi 2018). The self-confinement
picture is in contrast to the extrinsic turbulence picture, where CRs
are scattered primarily by extrinsic fluctuations that are not excited
by the particles themselves. In this case, CRs generally do not stream
at Alfvénic speeds, even in the limit of fast scattering. In this work,
we focus on self-confined CRs.

The additional pressure force (−∇pc) and gas heating
(−vA · ∇pc; Wentzel 1971) provided by the CRs can be impor-
tant for the dynamics and thermal evolution of gas in galaxies,
haloes, and clusters (e.g. Breitschwerdt, McKenzie & Voelk 1991;
Loewenstein, Zweibel & Begelman 1991; Everett et al. 2008; Guo &
Oh 2008; Socrates, Davis & Ramirez-Ruiz 2008; Zweibel 2013;
Ruszkowski, Yang & Zweibel 2017; Zweibel 2017; Jacob & Pfrom-
mer 2017a, b; Ehlert et al. 2018; Farber et al. 2018; Kempski &
Quataert 2020). CRs can also directly affect MHD waves. For
example, Begelman & Zweibel (1994), hereafter BZ94, showed
that CR heating can drive an acoustic instability in low-β plasmas
(β � 1).

The purpose of this work is to study sound waves in the presence
of CRs in magnetized, weakly collisional plasmas, i.e. plasmas with
large anisotropic viscosity and conduction. We use the Braginskii
MHD closure for weakly collisional plasmas (Braginskii 1965) with
anisotropic conduction and anisotropic pressure (the latter acts as
an anisotropic viscosity), coupled to a 1-moment fluid equation for
the CR pressure. The cosmic rays are assumed to stream at the
Alfvén speed vA, �p, which in a weakly collisional plasma depends
on the pressure anisotropy of the thermal plasma, �p. We find that
this dependence of vA, �p on �p, which is not present in standard
high-collisionality MHD, gives rise to a rapidly growing acoustic
instability (i.e. instability of the fast magnetosonic mode). The
instability is driven by a phase shift between the CR pressure and
gas density. Unlike the acoustic instability in BZ94, the Cosmic
Ray Acoustic Braginskii (CRAB) instability that we find here is not
driven by CR heating and does not require low β. In fact, the CRAB
instability exists even at small CR pressures and has faster growth
rates in high-β systems. It is thus likely important in the ICM, in
galactic haloes and in the hot ISM.

The remainder of this work is organized as follows. We present the
CR–gas equations, examine the validity of our model and introduce
characteristic time-scales in Section 2. We describe the CR-driven
acoustic instability in Section 3 and consider possible astrophysical
implications in Section 4. In Section 4.1, we speculate on the
potential connection between the acoustic instability and the X-ray
surface-brightness fluctuations observed in galaxy clusters such as
Perseus (Fabian et al. 2003). In Section 4.2, we hypothesize that the
instability is likely important close to shocks, including the vicinity
of the virial radius. We discuss the potential contribution of the long-
wavelength waves generated by the instability to the scattering of
high-energy cosmic rays in Section 4.3. We summarize our results
in Section 5.

2 EQUAT I O N S

We model the dilute, weakly collisional plasmas filled with CRs
by using the Braginskii MHD equations coupled to a cosmic ray
pressure,

∂ρ

∂t
+ ∇·(ρv) = 0 (1)

ρ
dv
dt

= −∇
(

p⊥ + pc + B2

8π

)
+ B · ∇B

4π
+ ∇·

(
b̂b̂�p

)
(2)

∂ B
∂t

= ∇×(v × B) (3)

ρT
ds

dt
= −vA,� p · ∇pc + H − C − ∇· (� · v) − ∇ · Q (4)

dpc

dt
= −4

3
pc∇·(v + vA,� p) − vA,� p · ∇pc + ∇·

(
κ b̂b̂ · ∇pc

)
,

(5)

where v is the gas velocity, ρ is the gas density, pg and pc are the gas
and CR pressures, respectively, B is the magnetic field (with unit
vector b̂), and s = kBln (pg/ργ )/(γ − 1)mH is the gas entropy per
unit mass. d/dt ≡ ∂/∂t + v · ∇ denotes a total (Lagrangian) time
derivative. H and C are arbitrary volumetric heating and cooling
rates. The Braginskii MHD pressure anisotropy (with viscosity νB)
is

�p = p⊥ − p‖ = 3ρνB

(
b̂b̂ : ∇v − 1

3
∇ · v

)
= 3ρνB

d

dt
ln

B

ρ2/3
,

(6)

where ⊥ and � denote the directions perpendicular and parallel to
the magnetic field (Braginskii 1965). p⊥ and p� are related to the
total thermal pressure by

p⊥ = pg + 1

3
�p. (7)

The viscous stress tensor in the gas–entropy equation depends on
the pressure anisotropy and is given by

� = −�p

(
b̂b̂ − I

3

)
. (8)

Note that in the absence of background flow, the perturbed ∇·(� · v)
in the gas–entropy equation is second order and does not contribute
in our linear analysis. Q in equation (4) is the anisotropic thermal
heat flux

Q = −κB b̂b̂ · ∇T , (9)

where κB is the thermal conductivity.1 vA, �p in equations (4) and
(5) is the Alfvén speed in the presence of pressure anisotropy

vA,� p = B√
4πρ

(
1 + 4π�p

B2

)
. (10)

We assume that CRs stream down their pressure gradient at the
Alfvén velocity vA,� p and we also include CR diffusion along
the magnetic field, for which we assume a constant diffusion
coefficient κ . We note that formally CRs stream with velocity
vst = −sgn(b̂ · ∇pc)vA,� p. This ensures that CRs stream along the
magnetic field down their pressure gradient and makes the CR
heating term −vst · ∇pc positive definite. In our linear stability
analysis CRs stream at vA,� p, as we consider background equilibria
which satisfy −vA,� p · ∇pc > 0.2

1While in this work, we assume that the heat transport is diffusive, we note
that recent particle-in-cell simulations suggest that the transport may also
occur down the temperature gradient at the whistler phase speed (Roberg-
Clark et al. 2018).
2We do not explicitly include background gradients in our linear stability
calculation, and so we treat the background as effectively uniform. However,
for ∇pc to have a well-defined sign in the linear stability calculation, so
that −vA,� p · ∇pc is positive definite, pc cannot be exactly uniform. A
background CR pressure gradient is necessary. However, we can neglect
terms associated with background gradients as long as the additional time-

MNRAS 493, 5323–5335 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/4/5323/5752162 by guest on 25 April 2024



CR acoustic instabilities in dilute plasmas 5325

2.1 MHD waves in weakly collisional plasmas

In this section, we ignore CRs and review how standard MHD waves
are modified at low collisionality. The pressure anisotropy changes
the Alfvén speed (equation 10) because it modifies the effective
magnetic tension, as can be seen by rewriting equation (2):

ρ
dv
dt

= −∇(p⊥ + pc + B2

8π
) + ∇·

(
B B
4π

(
1 + 4π�p

B2

))
. (11)

Note that the factor (1 + 4π�p/B2) enters the effective magnetic ten-
sion term (which is responsible for Alfvén waves). The dispersion
relation for Alfvén waves can then be easily derived by assuming
wave perturbations ∝ exp (ik · r − iωt), crossing the momentum
equation twice with k and noting that δ�p = 0 for Alfvénic
perturbations (which are incompressible and do not change the
B-field strength, see equation 6). From this, equation (10) follows.

The pressure anisotropy has a different effect on the slow and
fast modes, which are viscously damped in Braginskii MHD (still
ignoring cosmic rays). By inserting equation (6) into equation (2)
(and noting equation 7), we obtain:

ρ
dv
dt

= ... + ∇·
(

3ρνB

(
b̂b̂ − I

3

)(
b̂b̂ : ∇v − 1

3
∇ · v

))
. (12)

This diffusion operator associated with the Braginskii viscosity
damps the fast and slow magnetosonic waves, because they involve
perturbations that linearly generate δ�p, unlike the linearly un-
damped Alfvén waves for which δ�p = 0. In the weak damping
limit, the fast and slow modes are damped at a rate (Braginskii 1965;
Parrish et al. 2012):

ων = νBk2

6

(
(k̂ · v̂) − 3(b̂ · k̂)(b̂ · v̂)

)2
, (13)

where v̂ is the unit vector in the direction of the mode’s perturbed
velocity. We will show that in the presence of CRs this is strongly
modified, and sound waves can instead be linearly unstable.

2.2 Validity of the model

Our CR–Braginskii MHD fluid model requires that the CR scat-
tering rate is fast, so that equation (5) appropriately describes the
CR pressure evolution. It also requires that the collision time of
the thermal ions is short compared to the macroscopic time-scales
of interest (so that a weakly collisional, rather than collisionless,
treatment is appropriate for the thermal plasma). In what follows,
we check the validity of the CR–Braginskii MHD fluid model,
focusing on the ICM and the hot phase of the ISM.

For the CR pressure equation (equation 5) to be a good model
of the CRs, the GeV CR collision frequency must be large. It is
the GeV CRs that are important, as they dominate the bulk CR
energy. The CR collision frequency is the rate at which the pitch
angle changes by order unity, due to scattering by EM fluctuations

scale introduced by a spatially varying background is much longer than
the time-scale associated with the acoustic instability considered here. This
is well-motivated given the fast growth rates of the instability, which can
be comparable to the sound oscillation frequency. We can, for example,
consider an equilibrium with −vA,� p · ∇pc = C, where C is a cooling rate
with an associated cooling frequency ωc. Our linear stability calculation
can neglect background gradients provided that ωs, Im(ω) 	 ωc. If this is
satisfied, the equilibrium ρ, pg, and pc can be treated as uniform without
significantly changing the results.

of magnitude δB⊥ at the resonant wavelength:

νCR ∼ �

(
δB⊥
B

)2

∼ 10−8 s−1
(γc

1

)−1 B

1 μG

(
δB⊥/B

10−3

)2

, (14)

where γ c is the CR Lorentz factor and δB⊥ is evaluated for
fluctuations whose wavelength parallel to the mean B field is of
order the Larmor radius of the GeV particles. Models of CR
observations in the Milky Way based on pure diffusion infer
a CR diffusion coefficient κ ∼ 1028–1029 cm2 s−1 depending on
assumptions about the CR halo size (e.g. Linden, Profumo &
Anderson 2010). This motivates the choice of δB⊥/B ∼ 10−3 used
in (14), as δB⊥/B ∼ 10−3 corresponds to a GeV CR diffusion
coefficient κ ∼ c2/νCR ∼ 1029 cm2 s−1 in a 1μG field. However, this
observationally inferred CR diffusion coefficient is not necessarily
appropriate if CR streaming is the dominant transport process, as
is theoretically favoured for the low-energy CRs that dominate the
total energy density (these low-energy cosmic rays are the most
likely to be adequately described by the fluid model used in this
paper; Blasi, Amato & Serpico 2012). In the case of streaming
transport the diffusion coefficient may be �1028–1029 cm2 s−1. In
particular, in the hot ISM and ICM damping processes are weaker
than in the cold/neutral ISM and so the streaming instability can
grow too large amplitudes (e.g. fig. 1 in Amato & Blasi 2018). For
example, if δB⊥/B ∼ 10−2 then νCR ∼ 10−6 s−1 and the CR diffusion
coefficient is significantly smaller, κ ∼ 1027 cm2 s−1.

The weakly collisional fluid model used in this paper requires
that the ion–ion collision frequency is larger than the rate of change
of all fields, ω � ν ii. We note that ω � ν ii is formally required in
deriving the equations of Braginskii MHD. We will consider ωs � ν ii

in our calculations (where ωs is the adiabatic sound frequency
and typically the largest frequency in the problem), but our main
conclusions do not change if we choose a smaller upper limit on
ωs. We now separately estimate the ion collision rates in the ICM
and the hot ISM. We will show that the CR scattering rate is much
higher than the ion–ion collision frequency in both the ICM and hot
ISM.

2.2.1 ICM

Under typical ICM conditions, the plasma is magnetized and the
collisionality is low. For representative ICM temperatures and
densities, the ion–ion collision frequency is

νii ∼ nie
4π ln �

m
1/2
i (kBT )3/2

∼ 8 × 10−14 s−1

×
(

T

5 × 107 K

)−3/2
ni

0.01 cm−3
, (15)

for a Coulomb logarithm ln � ≈ 38. This corresponds to a collision
time of approximately 0.4 Myr. We note that νCR 	 ν ii (see
equation 14) and so the CR–Braginskii MHD fluid model is a good
description for the ICM if we consider fields that vary at a frequency
ω � ν ii (see Section 2.3 for how this translates into constraints on
the characteristic frequencies in our problem).

2.2.2 Hot ISM

The plasma filling the hot ISM is cooler, so that the ion–ion collision
frequency is larger than in the ICM:

νii ∼ 3 × 10−11 s−1

(
T

106 K

)−3/2
ni

0.01 cm−3
(16)
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(for ln � ≈ 32). This ion–ion collision frequency is still, however,
significantly smaller than the CR collision frequency (order unity
pitch angle change; see equation 14). Just like in the ICM, the CR–
Braginskii MHD formulation is therefore well motivated in the hot
ISM as long as we consider ω � ν ii.

2.3 Dimensionless parameters and characteristic time-scales

We define the ratio of CR pressure to gas pressure,

η ≡ pc

pg
, (17)

and the ratio of thermal to magnetic pressure,

β ≡ 8πpg

B2
. (18)

The key frequencies in this problem are the gas sound frequency
(with cs being the adiabatic gas sound speed)

ωs ≡ kcs; (19)

the Alfvén and CR-heating frequency,

ωa ≡ k · vA; (20)

the CR diffusion frequency,

ωd ≡ κ (b̂ · k)2; (21)

the Braginskii viscous frequency,

ωB ≡ νB(b̂ · k)2 ≈ pg

3ρνii
(b̂ · k)2; (22)

and the conductive frequency

ωcond ≡ χB(b̂ · k)2, (23)

where χB = κB/nkB is the thermal diffusion coefficient. We define
the Braginskii viscous scale,

lνB ≡ νB

cs
∼ lmfp, (24)

where lmfp in the last step is the ion mean free path. We can relate
the diffusive time-scales by defining the thermal Prandtl number,

Pr ≡ νB

χB
, (25)

and the ratio of the CR diffusion coefficient to the Braginskii
viscosity,

� ≡ κ

νB
. (26)

It is commonly assumed that the heat flow is dominated by electrons,
such that for a typical plasma Pr ∼ 10−2 (set by the ion-to-electron
mass ratio). This assumption is, however, not well motivated
when the time-scales of interest are shorter than the ion–electron
temperature equilibration time (which is longer than the ion–ion
collision time by a square root of the ion to electron mass ratio).
This is the case in this work, where we consider sound waves at
low collisionalities. A more accurate calculation should therefore
consist of two entropy equations and two heat fluxes, one for each
species. We avoid this complication in the main text of this paper
by considering a single heat flux with varying conductivity: ωcond =
ωB (Pr = 1, ∼heat flux carried by ions) and ωcond = 100ωB (Pr =
0.01, ∼heat flux carried by electrons). We show in Appendix A
and Fig. A1 that our conclusions do not change when a two-fluid
electron–ion system is considered instead, and that Pr ∼ 1 is a

somewhat better approximation to the two-fluid results (a similar
two-fluid electron–ion system was used in the context of cluster
sound waves by Zweibel et al. 2018).

� in equation (26) relates the Braginskii viscous frequency to the
CR diffusion frequency,

� = ωd

ωB
∼ c2

c2
s

νii

�(δB⊥/B)2
, (27)

where c is the speed of light. For typical ICM parameters

� ∼ 2

(
T

5 × 107 K

)−5/2
ni

0.01 cm−3

(
B

1 μG

)−1 (
δB⊥/B

10−3

)−2

.

(28)

This suggests that � ∼ 1 in the ICM (or � � 1, if δB⊥/B 	 10−3).
� 	 1 for typical temperatures in the hot ISM, unless δB⊥/B 	
10−3 (which is plausible, see discussion in Section 2.2). Motivated
by these results, we will focus primarily on � = 0 (ωd = 0), � =
1 (ωd = ωB) and � = 10 (ωd = 10ωB).

ωs is the largest characteristic frequency in the β > 1 plasmas that
we focus on. We require that ωs � ν ii so that the weakly collisional
description is appropriate (see Section 2.2), which translates into

ωs

νii
∼ ωB

ωs
� 1. (29)

The ICM is of primary interest in this work and so we will focus
mainly on the high-β limit (β ∼ 100 unless specified otherwise).

2.4 Linearized equations

We consider a uniform and static background equilibrium with
H = C, i.e. all background fluid variables are assumed to be
spatially constant. Thus, there are no background gradients in the
linear stability analysis (see the comment regarding the CR pressure
gradient in Footnote 2). Without loss of generality, we consider a
vertical magnetic field, B = B ẑ.

We carry out a linear stability calculation of the CR–gas equations
(see Section 2). All perturbed quantities are assumed to vary
as δX(r, t) ∝ exp (ik · r − iωt). Without loss of generality, we
take k in the xz-plane, k = k sin θ x̂ + k cos θ ẑ. Alfvén waves can
be isolated as described in Section 2.1, which remains valid in
the presence of CRs. The remaining modes can be found by
considering all linearized equations excluding the y-component of
the momentum and induction equations:

ω
δρ

ρ
= k · v, (30)

ωvx = kx

c2
s

γ

δpg

pg
− ωavA

δBx

B
+ kxv2

A

δBz

B
+ 2

3
i
kx

kz

ωBvz

− 1

3
i
k2

x

k2
z

ωBvx + ηkx

c2
s

γ

δpc

pc
, (31)

ωvz = kz

c2
s

γ

δpg

pg
− ωavA

δBz

B
+ kzv

2
A

δBz

B
− 4

3
iωBvz

+ 2

3
i
kx

kz

ωBvx + ηkz

c2
s

γ

δpc

pc
, (32)

ω
δBx

B
= −kzvx, (33)

ω
δBz

B
= kxvx, (34)
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ω
δpg

pg
= γ k · v − i(γ − 1)ωcond

(
δpg

pg
− δρ

ρ

)
+ η(γ − 1)ωa

δpc

pc
,

(35)

ω
δpc

pc
= 4

3
k · v − 2

3
ωa

δρ

ρ
+ 8

3
i
ωB

ωa
kzvz − 4

3
i
ωB

ωa
kxvx

+ (ωa − iωd)
δpc

pc
, (36)

where γ = 5/3 is the gas adiabatic index. We find the exact
eigenmodes by solving the full matrix eigenvalue problem using
MATLAB.

3 THE COSMIC RAY ACOUSTIC INSTABI LI TY
IN BRAG INSKII MHD

Before we show growth rates and simplified dispersion relations,
we discuss the physical mechanism that drives the sound-wave
instability.

3.1 Driving mechanism and negative effective viscosity from
CRs

The instability is driven by a phase shift between the CR-pressure
and the gas-density perturbations, which comes from the depen-
dence of the Alfvén speed on �p (see equation 39 in Section 3.2).
Such phase shifts generally occur in the presence of diffusion
operators (e.g. CR diffusion also leads to a phase shift between
δpc and δρ). However, these tend to damp the perturbations instead
of driving instabilities. The phase shift introduced by vA, �p gives
rise to an instability because it introduces an additional diffusion
operator in the momentum equation (equation 2) which can have
a negative diffusivity (negative viscosity) and thus generate wave
growth.3

For standard, collisional MHD sound waves, the CR pressure
responds essentially adiabatically to density fluctuations in the limit
ωa, ωd � ωs (otherwise the CR response is generally non-adiabatic,
see equation 36 with ωB = 0). In weakly collisional plasmas the
CR pressure also responds to changes in the pressure anisotropy,
which in turn depends on the rate of change of δρ. This phase shift
(in addition to the adiabatic response) provides a driving force to
the wave, which can win over the damping by anisotropic viscosity
and give rise to instability.

The key term for driving the instability is the compression work
done on the CRs by the pressure anisotropy,

dδpc

dt
= − 4pc

3ρv2
A

vA · ∇δ�p + ... , (37)

which comes from the ∇ · vA,� p term in equation (5). To see what
this term does to the sound wave, it is useful to consider the frame
comoving with the wave in the B-direction. In this frame, moving
at a phase speed vph, the wave profile is stationary to leading order
(i.e. ignoring the growth or damping of the wave) and is shown in
Fig. 1. δ�p ∼ νBvphdδρ/dz (equation 6 in the moving frame) has a
90◦ phase shift relative to δρ/ρ, δpc/pc, and δpg/pg, and without CRs
this phase shift leads to wave damping. However, the work done by
�p on the CRs (equation 37) is positive in regions where δpc > 0, as

3A negative diffusion coefficient can be thought of as standard diffusion
reversed in time.

Figure 1. Schematic of the mechanism driving the acoustic instability. The
solid waveforms show the leading-order adiabatic gas-density, gas-pressure,
and CR-pressure perturbations in the frame comoving with the sound wave at
the phase speed vph in the B-direction. The pressure-anisotropy perturbation
δ�p ∼ νBvphdδρ/dz (equation 6 in the moving frame; dashed magenta line)
has a 90◦ phase shift relative to δρ/ρ, δpc/pc and δpg/pg. Without CRs
this phase shift leads to the well-known damping of acoustic waves by
anisotropic viscosity. In the presence of cosmic rays, the work done by δ�p
on the CRs (dashed blue line and equation 37) is positive in regions where
δpc > 0: it therefore amplifies δpc in the regions where δpc > 0 and reduces
δpc where δpc < 0. This drives the perturbations and leads to wave growth.

shown in Fig. 1. This process amplifies δpc in the regions where δpc

> 0 and reduces δpc where δpc < 0. This drives the perturbations
and leads to wave growth.

This driving manifests itself mathematically as a negative ef-
fective diffusion coefficient (i.e. negative viscosity) introduced by
the CRs in the momentum equation. This can be demonstrated
by inserting equation (5) into equation (2) and assuming wave
perturbations proportional to f (k · r − ωt) propagating at the sound
speed. Ignoring all other non-diffusive terms in the momentum
equation, this gives:

ρ
dv
dt

= ... + ∇·
(

3ρνB

(
b̂b̂ − I

3

)(
b̂b̂ : ∇v − 1

3
∇ · v

))

− 4η
√

β

3
√

2γ
(b̂ · k̂)∇

(
3ρνB

(
b̂b̂ : ∇v − 1

3
∇ · v

))
. (38)

The first term is the damping by Braginskii viscosity, the second
term is the additional diffusive term that comes from δpc. Longi-
tudinal acoustic waves approximately satisfy v ‖ k. If b̂ · k̂ > 0,
the last term acts as a diffusion operator with negative viscosity if
b̂b̂ : ∇v − 1

3 ∇ · v � 0, i.e. cos 2θ � 1/3 (θ � 55◦), where θ is the
angle between k and B. For cos 2θ � 1/3 (θ � 55◦), it acts as a
diffusion operator with negative viscosity for longitudinal acoustic
modes propagating in the opposite direction, b̂ · k̂ < 0.4

The transition at θ ≈ 55◦ is clearly present in Fig. 2, where we
show growth rates of the sound-wave instability in the (η, θ ) plane,
for νBk2 = 0.2ωs (klνB = 0.2) and β = 10, 100, and 400. Even
for η well above the instability threshold (shown by the contour
line), there is a ridge of stability around θ = 55◦. For θ � 55◦,
the mode with Re(ω) ≈ ωs is unstable, while for θ � 55◦, the
counterpropagating mode with Re(ω) ≈ −ωs is unstable.

4Note that the magnetic-field direction in b̂ · k̂ in equation (38) comes from
the direction of CR streaming (which occurs in the b̂-direction due to our
assumption that the background CR pressure decreases in the direction of
the magnetic field).
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5328 P. Kempski, E. Quataert and J. Squire

Figure 2. Growth rates of the CR-driven acoustic instability in the (η = pc/pg, θ ) plane for β = 8πpg/B2 = 10, 100, and 400, Pr = 1, � = 0, and νBk2 =
0.2ωs (klνB = 0.2 ∼ klmfp, where lmfp is the ion mean free path; see equation 24). Im(ω) > 0 corresponds to wave growth and the contour lines show the
boundary between damping by anisotropic viscosity and the growth driven by the CRs. Marginal stability occurs first for oblique modes, but otherwise parallel
propagating modes are fastest growing. The dotted vertical lines show η = β−1/2, which is the approximate instability-threshold scaling at high β (e.g.
equation 43). Even for η well above the instability threshold (shown by the contour line), there is a ridge of stability around θ = 55◦. For θ � 55◦, the mode
with Re(ω) ≈ ωs is unstable, while for θ � 55◦, the counter propagating mode with Re(ω) ≈ −ωs is unstable (see Section 3.1). All colourmaps in this work
have log-linear scales that are linear between −0.1 and 0.1.

3.2 1D dispersion relation

Because sound waves are primarily longitudinal, it is instructive
and also physically well motivated to look at the instability in the
one-dimensional case. This also turns out to be sufficient to predict
the approximate growth rate of the fastest growing mode in most
cases, as fastest growth typically occurs for propagation parallel
to B. As we will show, this is not true for η just above marginal
stability, where fastest growth can occur at finite θ , and when the
CR diffusion coefficient is large.

For simplicity, we consider sound waves in the high-β limit, such
that ω ∼ ωs 	 ωa. Equation (36) then simplifies to

δpc

pc
= δρ

ρ

(
4

3
+ 8

3
i
ωB

ωa

)(
1 + i

ωd

ω

)−1
. (39)

The phase shift between the CR pressure and gas density introduced
by �p (the first bracket multiplying δρ/ρ) is what destabilizes the
wave. In contrast, the phase shift introduced by CR diffusion (second
term in the second bracket) acts as a damping.

In the high-β limit (ωs 	 ωa), the 1D dispersion relation for
sound waves is given by

0 = ω2 − ω2
s

γ

γω + i(γ − 1)ωcond

ω + i(γ − 1)ωcond
+ 4

3
iωBω

− η
ω2

s

γ

(
4

3
+ 8

3
i
ωB

ωa

)(
1 + i

ωd

ω

)−1
. (40)

The second term represents the standard sound-wave frequency in
the presence of anisotropic conduction (adiabatic without conduc-
tion, isothermal in the limit of rapid conduction), the third term
is the damping by anisotropic viscosity and the fourth term is the
additional pressure response that comes from the CRs, which can
be destabilizing.

We first consider equation (40) without CR diffusion, i.e. ωd =
0. We then look at the impact of CR diffusion in Section 3.2.3.

3.2.1 Nearly isothermal sound waves

In the limit of rapid conduction, ωcond 	 ωs (heat conduction
carried by electrons and equilibrated with the ions, i.e. Pr � 1),
the dispersion relation is (in the absence of CR diffusion)

ω2 − ω2
s

γ
+ 4

3
iωBω − η

ω2
s

γ

(
4

3
+ 8

3
i
ωB

ωa

)
= 0. (41)

Driving by δpc (Section 3.1) wins over damping by anisotropic
viscosity when

η
8ω2

s ωB

3γωa

� 4

3
ωBω ≈ 4ωBωs

3
√

γ
, (42)

where we ignored O(η) corrections to the sound speed due to the
CRs. The condition for instability can be written in terms of η and
β as (in 1D):

η � 0.7β−1/2 (nearly isothermal). (43)

Note that the instability threshold is independent of ωB, as ωB is the
characteristic frequency of both anisotropic viscous damping and
the driving by δpc. We will show that the instability threshold is
generally at slightly lower η if oblique propagation is included.

3.2.2 Nearly adiabatic sound waves

If the thermal Prandtl number is not set by electron conduction and
we instead have Pr ∼ 1, the appropriate limit to consider is ωs 	
ωB ∼ ωcond. The dispersion relation is then approximately given by

ω3 − ω2
s ω + iω2

s

(γ − 1)2

γ
ωcond + 4

3
iωBω2

− η
ω2

s ω

γ

(
4

3
+ 8

3
i
ωB

ωa

)
≈ 0. (44)

Now the driving from the δpc response has to compete against
damping by both anisotropic conduction and viscosity (third and
fourth terms, respectively). For ωcond ∼ ωB (Pr ∼ 1), however,
the correction to the instability threshold is at most order unity, and
η� β−1/2 (equation 43) is still the approximate instability condition.
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Figure 3. Wavenumber dependence of growth rates of the acoustic instability as a function of η = pc/pg (β = 100 and Pr = 1 in all panels). On the y-axis,
lνB ≡ νB/cs ∼ lmfp, where lmfp is the ion mean free path (i.e. the y-axis can be written as klνB = νBk2/ωs). We consider different CR diffusion coefficients
(see equation 26 for the definition of �). The solid line corresponds to Im(ω) = 0, the dashed line is Im(ω) = 0.1ωs. At each k, we plot the fastest growth rate
(i.e. fastest growing mode across all directions of propagation, θ ). See Sections 3.2.1, 3.2.2, and 3.2.3 for more discussion of how � affects the growth rates.

Fig. 2 shows that this η � β−1/2 scaling for instability works well
for a wide range of β (η = β−1/2 is shown by the dotted vertical
lines). The plots are for νBk2 = 0.2ωs and Pr = 1, i.e. ωs 	 ωB,
ωcond. The contours show the transition from damping by Braginskii
viscosity to growth driven by the cosmic rays. Marginal stability
occurs first for oblique modes, but otherwise parallel propagating
modes are fastest growing.

Fig. 3(a) shows how growth rates depend on wavenumber k, for
Pr = 1, β = 100, and � = 0 (no CR diffusion). The solid line
corresponds to Im(ω) = 0, the dashed line is Im(ω) = 0.1ωs. At
each k, we plot the fastest growth rate (i.e. fastest growing mode
across all directions of propagation, θ ). The instability threshold is
nearly independent of k, as the damping rates by conduction and
viscosity are comparable at all k, so that η � β−1/2 is sufficient for
instability across the entire range in k (equation 43 and discussion
in the paragraph following equation 44). However, the growth rates
generally increase with increasing k.

3.2.3 Effect of CR diffusion

In the limit where CR diffusion is slow compared to the sound
frequency, ωd �ωs (this corresponds to �� (klmfp)−1), the CR term
driving the instability in equation (40) is mildly reduced (compared
to the ωd = 0 case):

η
ω2

s

γ

8

3
i
ωB

ωa
→ η

ω2
s

γ

(
8

3
i
ωB

ωa
− 4

3
i
ωd

ω

)
. (45)

CR diffusion acts to oppose the �p perturbations in the CR pressure
equation that drive the instability, and as a result shifts the instability
threshold to larger η (compared to, e.g. equation 43). This shift is
small, however, if ωd/ωs � 2ωB/ωa, i.e. � � 2

√
β (as well as �

� (klmfp)−1, i.e. the weak diffusion limit).
In the limit ωd 	 ω ∼ ωs, the CR term in equation (40) is:

η
ω2

s

γ

(
4

3
+ 8

3
i
ωB

ωa

)(
1 + i

ωd

ω

)−1
≈ η

ω2
s

γ

(
−4

3
i

ω

ωd
+ 8

3

ωB

ωa

ω

ωd

)
.

(46)

The driving by CR pressure is completely shut off as δpc is
suppressed by diffusion. In the 1D case considered here, for ωd

	 ωs instability can only occur if ω 	 ωs, i.e. the sound speed is

much larger than the thermal adiabatic sound speed. This occurs at
η 	 1, when the CRs set the sound speed (the CR sound speed is√

4pc/3ρ).
Note, however, that even if ωd 	 ωs for parallel propagation,

ωd will be less than ωs at the same k for θ close to 90 deg. As a
result, for η � 1 and large CR diffusion coefficients, � 	 1, the
short-wavelength perturbations with κk2 	 kcs can still be unstable
for oblique propagation (this can, e.g. be seen in Fig. 4c).

The effects of CR diffusion as a function of wavenumber k
and CR pressure fraction η are shown in Figs 3(b) and (c). As
before, the solid line corresponds to Im(ω) = 0, the dashed line
is Im(ω) = 0.1ωs. At each k, we plot the fastest growth rate
across all propagation angles. All parameters are the same as in
Fig. 3(a), except for �, which now is � = 1 in 3(b) and � = 10
in 3(c). The � = 1 growth rates are quite similar to � = 0 (no
diffusion). Noticeable differences occur primarily at high k, so that
the overall instability threshold is not significantly changed. When
CR diffusion is strong (� = 10), significantly larger η is required
for instability. Note that there are then two regions of instability.
The high-k region occurs at oblique propagation, while the low-k
region occurs at parallel propagation.

3.3 Stability versus instability and maximum growth rate

We show the fastest growing mode as a function of η, restricting
to modes with klνB ≤ 1, in Fig. 4. We select the mode with the
maximum Im(ω), but in the plots we normalize its growth rate
using the ωs at the k at which the maximum growth occurs. At each
η, we also show the θ and k at which the fastest growth occurs.
The top panel is for � = 0 (no CR diffusion), the middle panel is
for � = 1 (ωd = ωB), and the bottom panel is for � = 10 (ωd =
10ωB). We see that the minimum CR pressure fraction (η) required
for instability is lowest for small thermal Prandtl numbers and no
CR diffusion (see also Fig. 3). While the instability threshold is not
significantly modified when � = 1, it occurs at significantly larger
η in the limit of strong CR diffusion, � = 10.

In the absence of CR diffusion (Fig. 4a), fastest growth occurs
at the highest k and θ = 0, except when η is just above marginal
stability. CR diffusion often shifts the fastest growing mode to lower
k (middle and bottom panels). However, even in the presence of CR
diffusion, when η is sufficiently above threshold, fastest growth
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Figure 4. Fastest growing mode of the acoustic instability as a function of
η. We consider wavelengths that satisfy klνB ≤ 1, i.e. νBk2 ≤ ωs (klmfp � 1).
We select the mode with the maximum Im(ω), but in the plots we normalize
its growth rate using the adiabatic sound frequency at the k where the
maximum growth occurs. Panel (a) is for � = 0 (no CR diffusion), panel
(b) is for � = 1 (ωd = ωB), and Panel (c) is for � = 10 (ωd = 10ωB). In
each of the three panels, we also show the wavenumber k and direction of
propagation θ of the fastest growing mode (at klνB = 1 the lines are slightly
displaced for visualization purposes). Instability occurs for smaller η when
the thermal Prandtl number Pr is small and when there is no CR diffusion.
When CR diffusion is strong (� = 10) significantly larger η are required for
instability. See Section 3.3 for more discussion.

again occurs at the highest k and θ = 0. In the bottom panel (� =
10), the apparent jumps in Im(ω)/ωs, k, and θ are related to the
existence of the two distinct regions of growth shown in Fig. 3(c):
the low-k region corresponds to θ = 0, while the high-k region has
the large θ (the angle of this fastest growing, θ �= 0, mode depends
primarily on �, and for � = 10 is ≈75◦, as can be seen in Fig. 4c).

We conclude by stressing that for the wide range of parameters
(Pr, �, β) considered here, the instability and fast growth rates ∼
O(ωs) occur even for small η in high-β environments like the ICM.
We also note that while we have focused on the simple case of a
background equilibrium with �p = 0, the acoustic instability will
not be significantly affected by a finite background �p as long
as the time-scale over which the background �p changes is slow
compared to the growth rate of the instability.5

3.4 Short wavelengths and the collisionless limit

For the acoustic instability considered in this work, the Braginskii
MHD model of the thermal plasma is only valid for time-scales
longer than the ion–ion collision time, i.e. wavelengths longer than
the ion mean free path. To examine the acoustic instability below
the mean-free-path scale (but at scales sufficiently large for the
CRs to be coupled to the gas), a collisionless description of the
thermal plasma is necessary. Preliminary calculations using the
CGL and Landau-fluid closures of the kinetic MHD equations
(Chew, Goldberger & Low 1956; Snyder, Hammett & Dorland
1997) suggest that the instability still exists below mean-free-path
scales and has growth rates that are faster than in the weakly
collisional limit. The mechanism driving the instability is somewhat
different from the weakly collisional regime illustrated in Fig. 1:
the predominant driver in the collisionless limit is that at high β,
the pressure anisotropy can turn CRs into a fluid with ∼negative
effective adiabatic index, thus rendering sound waves unstable.6

We note, however, that the collisionless description of the thermal
plasma coupled to a CR-pressure equation (equation 5) is itself valid
only at sufficiently large scales. It breaks down on small scales below
the CR mean free path, where the CRs are no longer coupled to the
thermal plasma (i.e. the CR scattering rate is no longer the fastest
time-scale in the problem). We defer a more detailed treatment of
the collisionless limit to future work.

5When the background �p is spatially varying, there will be an extra
time-scale, τ , in our problem. However, as long as Im(ω)τ 	 1, which
is reasonable for short-wavelength sound waves, the instability will not
be significantly affected by the background �p. The effect of a spatially
constant �p is to modify the effective magnetic-tension and CR-heating
terms, i.e. terms that are O(ωa) and negligible for our acoustic instability at
high β.
6We consider the 1D case in which δB = 0 and for simplicity ignore the
effect of heat fluxes on the pressure anisotropy (i.e. CGL closure). In the
collisionless limit �p approximately satisfies

1

pg

d�p

dt
∼ − 1

ρ

dρ

dt
, (47)

so that δ�p/pg ∼ −δρ/ρ. In contrast to the weakly collisional case,
the relative phase shift between δ�p and δρ is π instead of π /2 (Fig. 1).
Assuming ω ≈ ωs ≈ √

βωa and β 	 1, δpc and δρ then roughly satisfy:

δpc/pc ∼ −
√

βδρ/ρ. (48)

CRs thus behave like a fluid with large negative (∼ −√
β) adiabatic index.

This can destabilise the sound wave.
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3.5 Relation to BZ94 acoustic instability

The CRAB instability is very different from the low-β acoustic
instability driven by CR heating found in BZ94. BZ94 considered
high-collisionality MHD, not the Braginskii MHD limit we have
focused on. Moreover, the CRAB instability is not driven by CR
heating, but by the work done on the cosmic rays by the pressure
anisotropy of the thermal plasma (and is more unstable at high β).

Nevertheless, at low β (β < 1) we do also find the BZ94
acoustic instability, albeit diminished by the damping by anisotropic
viscosity and conduction (most strongly at short wavelengths). In
addition to the BZ94 acoustic instability, at β < 1 there are still
unstable modes driven by the pressure anisotropy. The �p-driven
instabilities at low β require a more detailed discussion of the slow-
mode instability discussed in Section 3.7, and so we defer the β < 1
regime to future work.

3.6 Role of plasma microinstabilities

Future simulations will shed light on the long-term evolution of
the CRAB instability. Nevertheless, we can already anticipate that
plasma microinstabilities growing at the ion gyroscale, such as
the mirror and firehose instabilities, may significantly affect the
instability at large amplitudes.

Both the mirror (Barnes 1966; Hasegawa 1969) and firehose
(Rosenbluth 1956; Chandrasekhar, Kaufman & Watson 1958;
Parker 1958) instabilities are excited when the pressure anisotropy
becomes comparable to the magnetic pressure: the mirror instability
is excited when �p � B2/8π , while the firehose instability is
excited when �p � −B2/4π . Kinetic simulations have shown
that these instabilities tend to pin the pressure anisotropy near the
instability thresholds via increased scattering of particles through
wave–particle interactions (Kunz, Schekochihin & Stone 2014).

When the acoustic waves grow to large amplitudes and the
microinstabilities become important (δ�p ∼ B2/8π ), �p will no
longer be set just by the fluid flow (i.e. the sound wave). Instead,
it will be set by the plasma microinstabilities, which will act to pin
�p near marginal stability. Recall that the work done by �p on the
CRs is the driver of the acoustic instability. It thus seems plausible
that the role of the gyroscale microinstabilities will be to slow down
(and/or perhaps ultimately suppress) the acoustic instability.

At what sound-wave amplitudes do the plasma microinstabilities
become important? For simplicity, consider an acoustic wave with
δρ/ρ 	 δB/B (as is the case for the rapidly growing mode
propagating parallel to B). The pressure anisotropy is given by

δ�p = 3ρνB
d

dt
ln

B

ρ2/3
∼ ρνBωs

δρ

ρ
. (49)

δ�p ∼ B2/8π when

δpg

pg
∼ ωs

ωB
β−1 ∼ 1

klmfp
β−1. (50)

In high-β systems, it is therefore the long-wavelength modes that
can grow to large amplitudes without exciting kinetic microinstabili-
ties. Short-wavelength perturbations (klmfp ∼ 1), which tend to be the
fastest growing modes, are affected by pressure-anisotropy-driven
microinstabilities at smaller amplitudes than the long-wavelength
modes.

3.7 Instability of the slow-magnetosonic/CR-entropy mode

In addition to the acoustic instability (instability of the fast-
magnetosonic wave), there is also a second unstable mode in our

problem, associated with the slow-magnetosonic and CR-entropy
modes. The instability is driven by a fluid resonance between the
CR-entropy mode and the MHD slow-magnetosonic mode, which
both share a characteristic eigenfrequency ωa at high β. At high β,
the growth rates of the slow-mode (or, CR-entropy mode) instability
are significantly smaller than the growth rates of the acoustic
instability that is the focus of this work. For this reason, we defer
a more detailed analysis of these additional instabilities to a future
paper. We do point out, however, that in the absence of CR diffusion
the instability of the CR-entropy mode exists for any CR pressure,
η �= 0.

4 A PPLI CATI ONS

In this section, we speculate on example astrophysical applications
of the CR-driven acoustic instability. We first consider the impact of
the CRAB instability on sound waves propagating through galaxy
clusters (Section 4.1). This is motivated by large-amplitude surface-
brightness fluctuations observed in the Perseus cluster (Fabian et al.
2003), often interpreted to be long-wavelength sound waves. In
Section 4.2, we speculate that CRs may efficiently excite sound
waves in the vicinity of shocks and in the outskirts of galaxy and
cluster haloes close to the virial radius. We also argue that the sound
waves excited by the low-energy GeV cosmic rays may be important
for the scattering of higher energy CRs (Section 4.3).

4.1 X-ray ripples in Perseus

Chandra X-ray observations have revealed long wavelength,
O(10 kpc), surface-brightness ripples in the Perseus cluster (Fabian
et al. 2003; Fabian et al. 2006). The inferred O(10 per cent) density
fluctuations are believed to be sound waves propagating through
the cluster. More generally, it is believed that sound waves excited
by time-variable AGN activity are important for heating cluster
plasmas (e.g. Li et al. 2015; Bambic & Reynolds 2019). The gas in
Perseus and other clusters is weakly collisional and is likely also
filled with CRs. Thus, it is plausible that these sound waves are
affected by the CRAB instability described in this paper.

The CR pressure fraction in Perseus and other cluster environ-
ments is constrained to be of order a few per cent to a few tens
of per cent.7 For a gas temperature of 5 × 107 K and number density
0.03 cm−3 appropriate for Perseus (Fabian et al. 2006), the ion mean
free path is of order 0.1 kpc. This translates into ωB/ωs ∼ klmfp ∼ 0.1
for an ∼10 kpc wavelength. By how much can this wave be amplified
through the CRAB instability?

We show growth rates of a klνB = 0.1 (a wavelength of order
λ ∼ 10 kpc) acoustic wave in Myr−1 in the (η, β) plane in Fig. 5(a).
We use Pr = 1 and assume no CR diffusion, � = 0. To clearly
show where the instability becomes important, we explicitly show
contours where the growth rates are 0, 0.02, and 0.1 Myr−1.

The sound speed in Perseus is of order ∼108 cm s−1, so that
waves propagate a distance 50 kpc (say) in ∼50 Myr. For the
wave to undergo at least one e-folding in that time, the required
growth rate is Im(ω) � 0.02 Myr−1. This is satisfied if η and
β are sufficiently large, see Fig. 5(a). Whether rapid growth of
long-wavelength waves does indeed occur in Perseus is somewhat

7A few per cent according to Aleksić et al. (2010, 2012), but their study
uses primarily high-energy CRs. The upper limit on the total CR pressure
in Perseus – dominated by the low-energy CRs that are the most important
for this work – is significantly larger in Huber et al. (2013).
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Figure 5. Growth rate of the acoustic instability as a function of η and β for
Perseus-like parameters: T ∼ 5 × 107 K and ni ∼ 0.03 cm−3 (Fabian et al.
2006), so that the ion mean free path lmfp is of the order of 0.1 kpc. Here, we
assume β = 100, Pr = 1, and no CR diffusion. Panel (a) shows the maximum
growth rate of a klνB = 0.1 sound wave (λ ∼ 10 kpc; 10 kpc corresponds to
the approximate wavelength of the X-ray surface-brightness fluctuations in
Perseus as observed by Chandra). Note that these growth rates are larger at
larger distances from the cluster centre, where the density is lower and the
mean free path is larger. Panel (b) shows the maximum growth rate when
we consider all wavelengths that satisfy klmfp ≤ 1. Significant amplification
over time-scales of order 10 Myr (time-scale for sound waves to propagate
tens of kpc) is plausible for realistic values of η and β.

unclear, due to the lack of sufficiently good constraints on the
cluster magnetic-field strength and CR pressure (there are also
uncertainties in the particle mean free path due to the role of plasma
microinstabilities). However, it seems possible at least in localized
regions with sufficiently large η and β (see also Section 4.2). We also
note that for β ∼ 100, a klmfp = 0.1 (∼10 kpc) wave can grow to fairly
large amplitudes, δpg/pg ∼ δρ/ρ ∼ 10 per cent, before pressure-
anisotropy microinstabilities become important which likely slow
down and/or ultimately suppress the instability (see Section 3.6).
This is consistent with the O(10 per cent) density fluctuations
inferred in Perseus (Fabian et al. 2003, 2006). Finally, we note that
at larger distances from the cluster core the density is lower and the
mean free path is larger. As a result, long-wavelength (λ ∼ 10 kpc)
modes will have faster growth rates at large distances from the
cluster centre.

In Fig. 5(b), we do not restrict our attention to λ ∼ 10 kpc
wavelengths, and instead show the overall maximum growth rates in
the (η, β) plane. We use the same Perseus temperatures and densities
as before, such that lmfp ∼ 0.1 kpc, and we consider wavelengths
satisfying klmfp ≤ 1 (klνB ≤ 1). The CRAB instability occurs and has
fast growth rates for a wide range of realistic cluster values of η and

β. We therefore conclude that CRs likely lead to large amplifications
of kpc-scale sound waves propagating in dilute cluster plasmas.

4.2 Sound-wave excitation in the vicinity of (virial) shocks

The CRAB instability is particularly important at high CR pressures,
i.e. large η. This suggests that the instability is easily excited in the
vicinity of shocks that are responsible for CR acceleration, i.e. where
η is typically much higher than its average value in the ambient
medium. This may be relevant for shocks in supernova remnants
and shocks driven by galactic winds or AGN jets in galaxy haloes
and clusters.

In addition, cluster simulations that include the production of
CRs in structure-formation shocks find that the CR pressure fraction
is higher close to the virial radius (virial shock) than in the central
regions of the cluster (Pfrommer, Enßlin & Springel 2008). It seems
possible that sound waves excited close to the virial radius through
the CRAB instability discussed in this work can then propagate in
towards the cluster core. Modes with longer wavelengths, ∼10 s of
kpc, will grow much faster at large radii near the viral radius than
in the cluster core because of the much lower density and larger ion
mean free path at these radii.

4.3 Scattering of high-energy cosmic rays

The overstable sound waves found in this paper have long wave-
lengths (�1 kpc in the ICM and �1 pc in the hot ISM) and can
have growth rates that are significant compared to the oscillation
frequency. The purpose of this section is to point out that the growth
rates of the sound-wave instability are significantly larger than
the growth rates of the Alfvén waves excited by high-energy CRs
through the streaming instability. The streaming-instability growth
rate is given by (Kulsrud & Pearce 1969; Zweibel 2013)

�k ∼ �0
nCR(p > pmin)

ni

vD − vA

vA
, (51)

where vD is the CR drift speed, �0 is the non-relativistic gy-
rofrequency, and ni is the thermal ion number density. nCR(p >

pmin) is the number density of CRs that can resonate with a wave
with wavenumber k, and pmin = m�0/k. Because the CR spectrum
is steep, the number of high-energy CRs resonating with long-
wavelength modes is very small. This leads to very small �k for
modes with wavelengths that can scatter and confine the high-energy
CRs: f(p) ∝ p−α with α ≈ 4.5, so nCR(p > pmin) ∝ p3−α

min ∝ kα−3,
which decays rapidly with CR energy. As a result, high-energy CRs
are not able to confine themselves. Here, we inspect the possibility
that the acoustic instability excited by the GeV cosmic ray fluid can
scatter and at least partially confine higher energy CRs.

Fig. 6 shows a schematic growth-rate comparison of the gy-
roresonant streaming instability of Alfvén waves and the CRAB
instability considered in this work. The growth rate is plotted against
CR energy (bottom horizontal axis) as well as wavelength (top
horizontal axis). The wavelength and CR energy are related by the
resonance condition εCR ∼ λeB. We assume a CR spectral slope α =
4.5 and (vD − vA)/vA = 1. For the acoustic instability, we consider
wavelengths larger than the ion mean free path, lmfp/λ ≤ 1. For the
hot ISM, we assume an ion mean free path lmfp = 1 pc and for the
ICM we assume an ion mean free path lmfp = 1 kpc. The Braginskii
MHD description of the thermal plasma is appropriate above the
ion mean-free-path scale. However, preliminary calculations using
collisionless fluid closures suggest that the instability also exists
below the mean-free-path scale (see Section 3.4). We show this
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Figure 6. Schematic growth-rate comparison of the gyroresonant streaming
instability of Alfvén waves and the long-wavelength acoustic instability
excited by the GeV CR fluid coupled to the thermal plasma. The growth
rate is plotted against CR energy (bottom horizontal axis) as well as
wavelength (top horizontal axis; the two are related by the resonance
condition rL/λ ∼ εCR/λeB ∼ 1, where rL is the CR gyroradius). For
the streaming-instability growth rates, we use a single CR spectral slope,
α = 4.5, a 1 μG magnetic field, nCR/ni = 10−7 and (vD − vA)/vA = 1
(equation 51). The acoustic instability is plotted for Pr = 1 and � = 0
(no CR diffusion), and wavelengths larger than the ion mean free path,
lmfp/λ ≤ 1 (we assume lmfp = 1 pc in the hot ISM and lmfp = 1 kpc
in the ICM). We use η = 1, β = 10 in the hot ISM and η = 0.1, β =
100 in the ICM (these values of η correspond to nCR/ni ∼ O(10−7) for
typical hot ISM and ICM temperatures). At long wavelengths, the growth
rates of the acoustic instability are orders of magnitude larger than the
streaming-instability growth rates. In principle, the sound-wave instability
grows sufficiently fast to contribute to the scattering of higher energy (∼PeV
and ∼EeV) CRs. The dashed blue and red lines represent sub-mean-free-
path scales, where the thermal plasma is collisionless. We defer a detailed
treatment of this regime to future work, but preliminary calculations suggest
that the instability is still present in the collisionless limit.

using the dashed blue and red lines. We stress again that the
collisionless description of the thermal plasma coupled to a CR-
pressure equation breaks down at small scales where the CRs are
no longer coupled to the thermal plasma. The growth rates are not
plotted below this scale in Fig. 6 (the CR mean free path is somewhat
uncertain and for this reason we extend growth rates only one order
of magnitude below the ion mean-free-path scale; however, this
range might be significantly larger, e.g. in the ICM where the ion
mean free path is large).

Fig. 6 shows that the growth rates of the CRAB instability are
orders of magnitude faster than the growth rates of the streaming
instability excited by the high-energy CRs. The growth rate is
relatively independent of propagation angle for θ � 55◦ (Fig. 2),
so modes with appreciable δB⊥/B can be excited. Sound waves
may, in principle, grow sufficiently fast to reach large amplitudes
and efficiently scatter high-energy CRs. The CR scattering rate is
proportional to �(δB⊥/B)2. If the acoustic waves destabilized by the
GeV CRs saturate at sufficiently large δB⊥/B, the acoustic instability
identified here may significantly affect CR confinement. While large
δB⊥/B seem possible given the fast growth rates, future simulations
will be necessary to study the saturation of the instability and address
the efficiency of scattering high-energy CRs. Finally, we note that
turbulence will likely be produced in the gas as a result of the CRAB
instability. This may significantly affect the scattering and transport

properties of intermediate-energy (�PeV) CRs, whose gyroradii are
too small to directly resonate with linearly unstable acoustic waves.

5 C O N C L U S I O N S

The interstellar, circumgalactic, and intracluster media are filled
with dilute, weakly collisional plasmas characterized by anisotropic
viscosity and conduction. Without CRs, these anisotropic transport
properties lead to the well-known damping of sound waves (the slow
and fast magnetosonic modes). In this paper, we have shown that
when CRs are present, sound waves can instead grow exponentially
in time, even for small CR pressures. We have termed this the CRAB
instability.

We model the dilute plasmas filled with CRs by using the
Braginskii MHD closure for weakly collisional plasmas (Braginskii
1965) coupled to a pressure equation for the CRs (Section 2). The
CRs are assumed to stream at the Alfvén speed vA, �p, which in a
weakly collisional plasma depends on the pressure anisotropy �p
(equation 10). We also include CR diffusion along the magnetic-
field direction.

The key frequencies and dimensionless parameters in our prob-
lem are summarized in Section 2.3. We focus on high-β (β =
8πpg/B2 ∼ 100) plasmas, as is appropriate for the ICM. The
Braginskii MHD model is valid provided that the time-scales of
interest are longer than the ion–ion collision time. We impose this
by constraining the anisotropic-viscous (Braginskii) frequency, ωB,
to be smaller than the sound frequency, ωs (see Section 2.3).

The CRAB instability is driven by a phase shift between the CR-
pressure and gas-density perturbations. This phase shift is intro-
duced by the dependence of the Alfvén speed on �p (equation 10).
The physical mechanism driving the instability is sketched out in
Fig. 1: work done by the pressure anisotropy on the CRs enhances
regions of larger than average CR pressure, leading to a positive
feedback loop. Sound waves are unstable if η = pc/pg � αβ−1/2,
where α depends on the thermal Prandtl number and the CR
diffusion coefficient. We find that α is typically slightly less than 1
(unless the CR diffusion coefficient is much larger than the thermal-
plasma anisotropic viscosity, in which case α > 1; see bottom panel
of Fig. 4). Thus, even small CR pressures are sufficient for instability
in high-β plasmas such as the ICM. We find that the acoustic
instability is characterized by large growth rates, comparable to
the sound-wave oscillation frequency (Fig. 4).

The growth rates absent CR diffusion are not a strong function
of propagation angle relative to B for θ � 55◦ (Fig. 2). However,
the fastest growing mode is typically propagating parallel to the
magnetic-field direction (except for η just above marginal stability
or when CR diffusion is strong, see Figs 2 and 4). This result
motivated a simplified 1D derivation of the dispersion relation,
which we show in equation (40). Growth rates are typically largest
at the highest k, except at small η just above the instability threshold
or when CR diffusion is significant (Figs 3 and 4).

We considered astrophysical implications of the CRAB instabil-
ity in Section 4. In Section 4.1, we argue that the instability is likely
important for amplifying sound waves propagating through galaxy
cluster and group environments. This includes the Perseus cluster,
where long-wavelength, large-amplitude X-ray surface-brightness
fluctuations observed by Chandra are often interpreted as sound
waves. We show instability growth rates as a function of η and β for
Perseus-like parameters in Fig. 5. In Section 4.2, we hypothesize
that the acoustic instability is likely important near shocks, where
the CR pressure is large. This includes the outskirts of galactic and
cluster haloes, i.e. regions close to the virial shock, as well as shocks
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associated with supernovae, galactic winds, or AGN winds/jets
propagating into the hot ISM or halo environments. In Section 4.3,
we speculate that the long-wavelength acoustic modes excited by
the GeV CR fluid can contribute to the scattering of higher energy
CRs. In Fig. 6, we show that the long-wavelength acoustic modes
grow orders of magnitude faster than the Alfvén waves excited by
the high-energy CRs through the gyroresonant streaming instability.
It remains to be seen, however, whether the sound waves grow to
large enough amplitudes and/or generate smaller scale fluctuations
through turbulence to efficiently scatter TeV to EeV CRs.

Future simulations will address the saturation of the CRAB
instability. They will show whether the excited sound waves can
grow to large enough amplitudes to efficiently scatter high-energy
CRs. Global simulations that include both Braginskii MHD and
CRs will shed light on the importance of the acoustic instability
for the evolution of gas and the propagation of sound waves in the
ISM, galactic haloes, and the ICM. Future work will also explore in
more detail the pressure-anisotropy-driven instabilities of the slow-
magnetosonic and CR-entropy modes (Section 3.7). We also plan to
extend the CR–Braginskii MHD fluid model to collisionless models
of the thermal plasma.

Finally, we note the caveat that the dominant transport process of
CRs through galaxies and clusters remains uncertain (e.g. Amato &
Blasi 2018). For example, even CRs that are not strongly coupled to
the thermal plasma (i.e. not locked to the Alfvén frame, as a result
of a low pitch-angle scattering rate, e.g. due to wave damping)
may actually not be diffusing under certain conditions, but instead
streaming at super-Alfvénic speeds (Skilling 1971; Wiener et al.
2013). The development of more accurate fluid models of CRs is
therefore a high priority.
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Aleksić J. et al., 2012, A&A, 541, A99
Amato E., Blasi P., 2018, Adv. Space Res., 62, 2731
Balbus S. A., 2000, ApJ, 534, 420
Bambic C. J., Reynolds C. S., 2019, ApJ, 886, 78
Barnes A., 1966, Phys. Fluids, 9, 1483
Barnes D. J. et al., 2019, MNRAS, 488, 3003
Begelman M. C., Zweibel E. G., 1994, ApJ, 431, 689( BZ94)
Blasi P., Amato E., Serpico P. D., 2012, Phys. Rev. Lett., 109, 061101
Braginskii S. I., 1965, Rev. Plasma Phys., 1, 205
Breitschwerdt D., McKenzie J. F., Voelk H. J., 1991, A&A, 245, 79
Chandrasekhar S., Kaufman A. N., Watson K. M., 1958, Proc. R. Soc.

London A, 245, 435
Chew C. F., Goldberger M. L., Low F. E., 1956, Proc. R. Soc. London A,

236, 112

Ehlert K., Weinberger R., Pfrommer C., Pakmor R., Springel V., 2018,
MNRAS, 481, 2878

Everett J. E., Zweibel E. G., Benjamin R. A., McCammon D., Rocks L.,
Gallagher John S. I., 2008, ApJ, 674, 258

Fabian A. C., Sanders J. S., Allen S. W., Crawford C. S., Iwasawa K.,
Johnstone R. M., Schmidt R. W., Taylor G. B., 2003, MNRAS, 344,
L43

Fabian A. C., Sanders J. S., Taylor G. B., Allen S. W., Crawford C. S.,
Johnstone R. M., Iwasawa K., 2006, MNRAS, 366, 417

Farber R., Ruszkowski M., Yang H. Y. K., Zweibel E. G., 2018, ApJ, 856,
112

Guo F., Oh S. P., 2008, MNRAS, 384, 251
Hasegawa A., 1969, Phys. Fluids, 12, 2642
Huber B., Tchernin C., Eckert D., Farnier C., Manalaysay A., Straumann

U., Walter R., 2013, A&A, 560, A64
Jacob S., Pfrommer C., 2017a, MNRAS, 467, 1449
Jacob S., Pfrommer C., 2017b, MNRAS, 467, 1478
Kempski P., Quataert E., 2020, MNRAS, 493, 1801
Kingsland M., Yang H. Y. K., Reynolds C. S., Zuhone J. Z., 2019, ApjL,

883, L23
Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445
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APPENDIX A : ACOUSTIC INSTA BILITY IN
TWO-FLUID PLASMA

In Section 2.3, we pointed out that the ion–electron temperature
equilibration time-scale is longer in the regime of interest than the
relevant sound time-scale. Using a single-fluid approach with heat
flow carried by the electrons is then not correct. Instead, separate
entropy equations and heat fluxes should be used for each species. In
the main text, we only considered a single thermal fluid and a single
heat flux for simplicity (with varying thermal Prandtl number), and
we demonstrated that our results do not depend strongly on the
value of the chosen thermal diffusivity. Here, we show that our
conclusions do not change in a more accurate two-fluid model,
when separate electron and ion pressure equations are included.

In the two-fluid model we consider, the continuity, induction, and
CR pressure equations (1, 3, and 5) remain unchanged (we assume
quasi-neutrality, ni = ne). The remaining equations that we need to
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solve are the momentum equation, and the ion and electron entropy
equations:

ρ
dv
dt

= −∇(pi + pe + pc + B2

8π
) + B · ∇B

4π

+∇·
(

b̂b̂�p
)

− 1

3
∇�p, (A1)

1

γ − 1

dpi

dt
= − γ

γ − 1
pi∇ · v − α1vA,� p · ∇pc − α2∇· (� · v)

−∇ · Qi − pi − pe

τeq
, (A2)

1

γ − 1

dpe

dt
= − γ

γ − 1
pe∇ · v − (1 − α1)vA,� p · ∇pc

− (1 − α2)∇· (� · v) − ∇ · Qe + pi − pe

τeq
. (A3)

pi and pe are the ion and electron pressures, respectively. τ eq is the
time-scale over which the electrons and ions come into thermal equi-
librium. This time-scale is long compared to the electron–electron
and ion–ion collision times, τee ∼ √

me/miτii ∼ (me/mi)τeq. The
smallness of the equilibration term in a weakly collisional plasma
is what motivates the two-fluid model and so we will drop the terms
∝ τ−1

eq in equations (A2) and (A3) in this section. α1 and α2 are
parameters which set how much of the CR and viscous heating
goes into the ions versus electrons. Viscous heating does not enter
in our analysis to linear order, and so α2 can be ignored. We choose
α1 = 0.5, but our results do not depend on it, as the instability is
ultimately not driven by CR heating at high β. In (A2) and (A3),
Qi = −nikBχi b̂b̂ · ∇Ti is the ion heat flux (χ i is the ion thermal
diffusivity) and Qe = −nekBχe b̂b̂ · ∇Te is the electron heat flux
(χ e is the electron thermal diffusivity).

The linearized versions of (A2) and (A3) are:

ω
δpi

pi
= γ k · v + 2α1(γ − 1)ωaη

δpc

pc

− i(γ − 1)ωcond,i

(
δpi

pi
− δρ

ρ

)
, (A4)

ω
δpe

pe
= γ k · v + 2(1 − α1)(γ − 1)ωaη

δpc

pc

− i(γ − 1)ωcond,e

(
δpe

pe
− δρ

ρ

)
, (A5)

where we defined the ion and electron thermal diffusion frequencies,
ωcond,i/e = χi/e(b̂ · k)2.

We assume an equilibrium with pi = pe. As in Section 3.2, we can
derive a 1D dispersion relation for the two-fluid acoustic instability

Figure A1. Comparison of the maximum sound-wave growth rates for the
single-fluid (1F) and two-fluid (2F) ion–electron plasma as a function of η,
for β = 100 and ωd = 0 (no CR diffusion). This figure is analogous to Fig. 4.
We find that our results are not significantly affected by the extension to two
entropy equations and heat fluxes. The two-fluid growth rate for νB/χ i =
1 and νB/χ e = 0.01 (black line) is essentially in between the one-fluid
prediction with Pr = 1 and Pr = 0.01 (red lines).

(again assuming high β, ωs 	 ωa):

0 = ω2 − ω2
s

2γ

(
γω + i(γ − 1)ωcond,i

ω + i(γ − 1)ωcond,i
+ γω + i(γ − 1)ωcond,e

ω + i(γ − 1)ωcond,e

)

+ 4

3
iωωB − η

ω2
s

γ

(
4

3
+ 8

3
i
ωB

ωa

)(
1 + i

ωd

ω

)−1
. (A6)

Since electron conduction is rapid, we can consider the regime
ωcond, e 	 ωs, such that the electrons are essentially isothermal. The
above then simplifies to:

0 = ω2 − ω2
s

2γ

(
γω + i(γ − 1)ωcond,i

ω + i(γ − 1)ωcond,i
+ 1

)
+ 4

3
iωωB

− η
ω2

s

γ

(
4

3
+ 8

3
i
ωB

ωa

)(
1 + i

ωd

ω

)−1
(A7)

Note that (A6) and (A7) are very similar to the dispersion relation
in (40). As a result, we find that our results are not significantly
affected by the extension to two entropy equations and heat fluxes.
This is confirmed in Fig. A1, where we see that the two-fluid
fast magnetosonic growth rate for νB/χ i = 1 and νB/χ e = 0.01
is essentially in between the single-fluid prediction with Pr = 1 and
Pr = 0.01.
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