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ABSTRACT
The first paper in this series showed that quantum chromodynamic axion dark matter, as a
highly correlated Bose fluid, contains extra-classical physics on cosmological scales. The
source of the derived extra-classical physics is exchange–correlation interactions induced
by the constraints of symmetric particle exchange and interaxion correlations from self-
gravitation. The paper also showed that the impact of extra-classical physics on early structure
formation is marginal, as the exchange–correlation interaction is inherently non-linear. This
paper continues the study of axion structure formation into the non-linear regime, considering
the case of full collapse and virialization. The N-body method is chosen to study the collapse,
and its algorithms are derived for a condensed Bose fluid. Simulations of isolated gravitational
collapse are performed for both Bose and cold dark matter fluids using a prototype N-body
code. Unique Bose structures are found to survive even the most violent collapses. Bose
post-collapse features include dynamical changes to global structures, creation of new broad
sub-structures, violations of classical binding energy conditions, and new fine structures.
Effective models of the novel structures are constructed and possibilities for their observation
are discussed.

Key words: methods: numerical – galaxies: formation – galaxies: haloes – galaxies: struc-
ture – dark matter.

1 IN T RO D U C T I O N

The first paper of this series (Lentz, Quinn & Rosenberg 2019;
ASF1) presents a new model of structure formation for relic
quantum chromodynamic (QCD) axions, which more fully details
the correlated nature of condensed self-gravitating Bose fluids
in a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) cosmology
(Misner, Thorne & Wheeler 1973). Such a model did not exist in
the literature previously as there is contention over the appropriate
scope of condensation for a gravitationally interacting medium.
The various perspectives in this debate lead to drastically different
conclusions as to the existence of axion structures distinct from
collision-less cold dark matter (CDM), with many supporting the
position that unique structures do not exist beyond the de Broglie
scale (for instance, see Berges & Jaeckel 2015; Davidson 2015;
Guth, Hertzberg & Prescod-Weinstein 2015), while others promote
the existence of super-de Broglie effects (Sikivie & Yang 2009;
Erken et al. 2012; Banik & Sikivie 2016). This axion structure
formation series of papers aims to resolve the extent to which
degeneracy, correlation, and quantum mechanics beyond the mean
field can create structure in self-gravitating bosonic dark matter
(DM) that is distinct from CDM.

� E-mail: erik.lentz@uni-goettingen.de

ASF1 and Lentz, Quinn & Rosenberg (2020) (LQR) begin the
process by developing a realistic model of weak-gravity non-
relativistic condensate dynamics, mapping the covariant quantum
theory of the axion field on to many-body quantum mechanics
after the radiation-dominated era. By constructing a Hamiltonian
of the co-moving non-relativistic many-body axion system, explicit
solutions of the many-body state are found in ASF1 in the Compton–
Newtonian limit. A more precise definition of condensation can also
be formed in this context, which differs subtly but significantly from
standard mean field theory (MFT). The resulting motion of such a
maximally condensed fluid is found to be different from a pressure-
less fluid, MFT, or classical field, even on super-de Broglie length-
scales, owing to its conformal two-body correlation function. Also,
it is worth noting that self-gravitating axion MFTs and classical
fields in the literature produce pressure-less fluids in the super-
de Broglie limit (Berges & Jaeckel 2015; Davidson 2015; Guth
et al. 2015; Mocz et al. 2018; Veltmaat, Niemeyer & Schwabe
2018). Sample behaviour of the correlation function from ASF1,
for simple Bose condensates and Fermi fluids near the condensed
limit, can be viewed in Fig. 1. As there are no intrinsic scales for
this purely self-gravitating system, the departure from unity of the
dimensionless correlation function is measured by global deviations
from single-particle separability.

The model laid out in ASF1 contains new physics and the
potential for new DM structures inherited from a highly correlated
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Figure 1. Correlation functions over fractional density for several near-
degenerate systems, both bosonic and fermionic. The lines that lie below
unity at the maximum of the distribution function (DF) f+/f+, max = 1 (red to
green; dash–dotted to dashed) are from non-interacting Fermi distributions.
The lines at and above unity (green to violet; dashed to near-solid) are from
condensed scalar Bose distributions. f+ is formally defined in equation (2).
From fig. C1 of Lentz et al. (2019). A colour version is available online.

axion condensate, on conceivably any scale so long as the New-
tonian and super-de Broglie conditions hold. The self-gravitating
exchange–correlation interactions are inherently non-linear, making
them invisible in linear analyses of an early universe close to the
homogeneous and separable limits. This null result is demonstrated
in ASF1 using linear perturbation theory on an otherwise standard
depiction of structure near the era of recombination. Additional
allowances are required to be given to the extra-classical forces in
order to separate the correlation effects formally from zero.

This paper addresses whether or not the unique physics in
Bose condensate dynamics can impact the more violent phases of
structure formation. Namely, we ask whether unique Bose structures
form during non-linear gravitational collapse, through shell cross-
ing, and survive into virialization. It is difficult to apply analytic
techniques to such computations, but an appropriate numerical
method can accurately and stably perform these calculations. The
N-body method, and more generally the method of characteristics
(MOC), will be the numerical technique for this paper due to its
success in solving for classical infall (Courant & Hilbert 1953;
Dehnen & Read 2011). N-body methods have proven useful
in calculating all phases of DM structure formation (Diemand,
Moore & Stadel 2005; Angulo et al. 2012; Pillepich et al. 2018).
N-body methods are particularly well-suited for modelling CDM, as
they can capture the non-equilibrium dynamics and reliably model
force fields of collision-less fluids in phase space over many orders
of magnitude. Further, many sophisticated and highly scalable
platforms already exist to simulate such systems. It is expected
to be straight forward to incorporate Bose infall dynamics into such
a platform.

It is prudent to first test the Bose model in a simple implementa-
tion prior to the full development, testing, and detailed simulation
using a large and complex platform. This second paper of the axion
structure formation series derives an N-body method for Bose infall
and tests it in a simple implementation on a range of collapses
using a prototype code. The results of these simulations give a
preliminary indication of whether or not structures unique to Bose
fluids can survive gravitational collapse. The remainder of this paper
is structured as follows: Section 2 reviews the continuum model of
Bose structure formation; Section 3 demonstrates the Bose model

on rotating spherical shells, building intuition for the role played by
exchange-correlation on infall; Section 4 converts the continuum
description into an N-body algorithm, and introduces the small-
scale N-body code and its gravity solver; Section 6 introduces the
series of preliminary simulations performed for both classical and
Bose gravitational collapse and their initial conditions; Section 7
presents the results from the simulations, showing that unique
structures not only exist in, but also in some cases thrive on,
violent collapse; Section 8 discusses the simulations and begins to
build some intuition for the novel resolved Bose structures found,
exploring several observables for search; and Section 9 presents
prospects for further investigation, including the incorporation of
these algorithms into one of the large-scale N-body codes.

2 C O N D E N S ATE ST RU C T U R E FO R M AT I O N

The many-body quantum state of N relic axions after the matter-
radiation transition is governed by a co-moving Schrödinger equa-
tion of dimension 3N + 1. ASF1 and LQR found solutions of this
equation to be more compactly described by interaxion correlators
than the standard single product Fock space representation used
by many MFTs. Even with this insight, a general galactic halo
contains far too many axions to simulate without a reduction in
the degrees of freedom. ASF1 and LQR also found it possible via
the Runge–Gross theorem (Runge & Gross 1984) to reduce the
dynamics of the full system to tracking the motions of a single-
body mass density. This reduction is performed in ASF1 and LQR
using a Wigner transformation (Wigner 1932), converting the wave-
function representation to a pseudo-distribution function (pseudo-
DF) over the many-body phase space, then integrating over N −
1 single-particle phase spaces. The impact of position-momentum
complementarity is trivialized by the super-de Broglie limit in which
the halo is evaluated, effectively converting the Wigner function
to a true DF. Fortunately, modern cosmological simulations are
smoothed over spatial scales of the order of many parsecs, far
longer than the expected QCD axion wavelengths, removing the
influence of de Broglie-level dynamics. The only component of
the correlated self-gravitating many-body state to survive super-de
Broglie smoothing and integration over all but a single phase space
is the conformal two-body correlation function

g̃ = C + λ1f+
1 + λ2f+

, (1)

where C is, for this study, a measure of the axion’s correlation at
zero density and an a priori unknown initial condition, λ1 and λ2

are Lagrange multipliers introduced in ASF1 and LQR, and f+ is
a two-body function composed of the symmetric combination of
single-body DFs

f+ = 1

2

(
f (1)(w1, t) + f (1)(w2, t)

)
, (2)

where w = (x, v), and f(1) is the single-body DF. Such a long-
range correlation function is expected as the interaxion correlator
wavelength far exceeds the single particle de Broglie wavelength
(λcorr ∼ NλdB).

The dynamics of a completely condensed axion DF is governed
by an equation of motion of Boltzmann-like form, and a Poisson
equation for the mean field gravitational potential. The Boltzmann-
like equation of motion in ASF1 is derived in a background FLRW
cosmology. Here, we present the governing equations in non-
moving Euclidean coordinates for simplicity. The step is simple
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to reverse and there are no extrinsic changes to the Bose-specific
physics. The large N limit are then

0 = ∂tf
(1) + v · ∇f (1) − ∇�′ · ∇vf

(1) − ∇�̄ · ∇vf
(1)

−ma∇v ·
(∫

d6w2f
(1)(w2, t)∇�12

×
(

C − 1 − (λ1 + λ2) f+
1 + λ2f+

)
f (1)(w2, t)

)
, (3)

∇2�̄ = 4πGM

∫
d3vf (1), (4)

where G is the Newtonian gravitational constant, ma is the axion
mass, M is the total system mass, and we have dropped the
gravitational potential from non-axion or non-condensed species.
The non-axion species have been added to the Boltzmann-like
equation in the canonical way. The gravitational potential of the non-
axion species in general is governed by their own Poisson equation.
�̄ is the single-body averaged Newtonian gravitational potential
from axions, and �12 is the interaxion gravitational kernel

�12 = φ(x1, x2) = − G

|x1 − x2| . (5)

The Lagrange multipliers λ1 and λ2 of the interaxion correlation
function are set by the normalization constraints on the single-body
DF and the correlation function. The constraints are encapsulated
by the single expression

1 =
∫

d6w1f
(1)(w1, t)

C − λ1f+
1 + λ2f+

, (6)

which is a function over phase space w2 through f+. Lastly, it
is convenient in the equation of motion to replace the multiplier
λ1 with λ+ = λ1 + λ2. The (λ+, λ2) pair will be the normal
convention for the remaining sections. We refer to the Bose-specific
dynamical contribution as exchange-correlation (XC) dynamics
since they exist due to the enforcement of the exact Bose particle
exchange symmetry and interaxion correlation from self-gravity.
The collection of equations (3), (4), and (6) is the starting point for
constructing the axion N-body algorithm. Recall that one regains the
usual uncorrelated MFT case, meaning that the correlation function
becomes unity, for C = 1.

3 G A I N I N G I N T U I T I O N FO R A X I O N
COLLAPSE W ITH SPHERICAL SHELLS

Reducing the dimension of the full phase-space problem of equa-
tions (3), (4), and (6) to one may help to build an intuitive
understanding of the physics involved. This subsection explores
the collapse of angularly rigid spherical shells in both the static and
rotational cases.

3.1 Spherical shell

This example is largely similar to the demonstration of Lentz
et al. (2020). A thin and cold spherical shell of axions may
collapse under its own gravity. For simplicity, we have additionally
assumed no tangential axion motion about the centre that the
radial velocity dispersion is sufficiently small so as to leave the
shell thickness unchanged over the collapse. These assumptions
reduce the dimensionality of the problem from 7 to 1. We also use
constraints of C = 1, and |λ2f+| � 1 to simplify the contribution
of exchange–correlation interactions. Finally, λ+ is taken as a free

Figure 2. Collapse time to radius of spherical collapse from rest. The
colour hue is logarithmic in λ+, running from λ+ = −10−10 (red) at the top
to λ+ = −10−5 (violet) at the bottom. The region where post-Newtonian
physics dominates over classical gravity is shaded in grey. Adapted from
Lentz et al. (2020). A colour version is available online.

tunable parameter for the purpose of demonstrating the range of
effects from XC interactions. The governing equation of the Bose
collapse may then be written to leading order in dispersion as

r̈ = −GM

r2
soft

+ λ+

(
3GMN (rsoft)

4r2
soft

− GMN ′(rsoft)

4rsoft

)
, (7)

where M is the effective gravitating mass, N(rsoft) is defined by

N (rsoft) = 1

8π2r2
softσrσv

, (8)

where r2
soft = (r2 + σ 2

r ), σ r is the thickness of the shell, σ v is the
velocity dispersion of the shell and is held sufficiently small as to
leave the shell thickness unchanged over the collapse. Note that the
effective repulsion from the second two terms in the post-Newtonian
contribution will never dominate over the first. Solutions of this
system show that infall is amplified for non-trivial post-Newtonian
contributions, Fig. 2. The new physics leads to a characteristically
more violent infall due to the sharper form of the ∼1/r4

soft central
XC force. Parameters chosen for spherical collapse are r(t = 0) =
1, σ r = 10−3, and σ v = 10−4 in dynamical units.

The enhancement of Bose infall from XC falls in line with the
general viewpoints on Bose enhancement: that identical bosons
are increasingly attracted to regions of high boson density. Halo
formation of Bose DM may be intuited to occur more quickly than
CDM. New density profiles may also be expected from a more
violent collapse.

3.2 Rotating spherical shell

Spinning the spherical shell about a central axis introduces the
angular momentum pseudo-potential barrier into the system. The
equation of motion for the shell is then

r̈ = −GM

r2
soft

+ 4L2

3πr3
soft

+ λ+

(
3GMN (rsoft)

4r2
soft

− GMN ′(rsoft)

4rsoft

)
,

(9)

where L = MωR2 is the angular momentum of the respective
cylinder of radius R. Normalization and other factors are kept the
same as in the non-rotating case.

The presence of three singular forces allows for several pos-
sibilities in dynamics (Fig. 3). The angular momentum pseudo-
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Figure 3. Pseudo-potential of rotating spherical shell versus radius. Solid
lines correspond to classical infall, dashed lines to Bose infall at λ+ =
−10−7. Angular momentum L of the shell is in units of R2ωM1/2/G1/2. Kinks
seen in lines are artefacts of the symmetrical log scaling of the vertical axis
and are not features of the potentials.

Figure 4. Trajectories of rotating spherical shell collapse versus time.
Solid lines correspond to classical physics, dashed lines to Bose physics
at λ+ = −10−7. Angular momentum L of shell is in units of R2ωM1/2/G1/2.
Bose trajectories without rebound are physical as the Bose attractor has
sufficiently degraded the angular momentum singularity.

potential is singular, repulsive and of scaling ∼1/r2
soft, compared

to the attractive ∼1/rsoft classical gravitational attraction, and the
∼1/r3

soft Bose attraction, producing an island between the classical-
dominated and Bose-dominated regions. The rotational island
produces a region of relatively slowed motion, but for small L
the angular momentum barrier is overcome and the collapse to
singularity continues (Fig. 4). An unstable stationary point exists
when the barrier equals the shell’s initial energy. Higher rotation
re-establishes the classical turn-around. As expected, there are
accelerations in the rate, and increases in the depth, of Bose
collapse.

The degradation of the angular momentum barrier provides
further evidence that the accretion of a single condensate on to
a Bose halo occurs more quickly than CDM, and may alter the
haloes’ shape and density profiles. The accretion of substructure
and the process of major mergers may also be significantly altered
by the sharply scaling extra-classical force. All that said, however,
these heavily simplified one-dimensional models are no substitute
for a full phase space numerical simulation.

4 N- B O DY A X I O N S

An efficient numerical algorithm reduces all continuum features
of the axion model into discrete, well-ordered algebraic steps. The
algorithm chosen for this paper is a combination of the MOC and
leapfrog integration. MOC is a technique of discretizing over the
space-like dimensions of the hyperbolic Boltzmann-like equation
orthogonal to the time direction, here represented by phase space,
by which we parametrize the characteristic curves of the solving DF
(Courant & Hilbert 1953). The leapfrog method is used to integrate
over the remaining time-like direction in a way that is stable to
integrals of the motion (Ruth 1983). Derivations are restricted to
purely condensed axion DM, free from state diffusion. A detailed
derivation of the algorithm may be found in Appendix A. We assume
here no interactions outside of self-gravity.

The algorithm first breaks down the spatial dimensions into a set
of dynamic Lagrangian sample points, evolving through time via
Hamilton-like equations, each of the form

ḟ1 = 0, (10)

ẋ = v, (11)

v̇ = −∇�̄ − ma

∂

∂∇vf1

∫
d6w2∇�12

·∇v

(
f1

C − 1 − λ+f+
1 + λ2f+

f2

)
, (12)

where f1 and f2 are the single-body DFs over phase spaces w1

and w2, respectively, and ∂/(∂∇vf1) is a functional derivative.
Each sample can naturally be represented by the mass fraction
m enclosed within its volume in phase space. The action of the
functional derivative evaluates to

∂

∂∇vf1

∫
d6w2∇�12 · ∇v

(
f1

C − 1 − λ+f+
1 + λ2f+

f2

)

=
∫

d6w2∇�12

(
C − 1 − λ+f+

1 + λ2f+
f2

)

+
∫

d6w2∇�12

(
f1

−λ+/2

1 + λ2f+
f2

)

−
∫

d6w2∇�12

(
f1

λ2/2(C − 1 − λ+f+)

(1 + λ2f+)2
f2

)
. (13)

The resemblance of the equations on sample points to classical
particle motion is striking, with the extra-classical terms appearing
as additional forces acting upon the Bose ‘particles’. Sample
particles’ equations of motion are accurate to the precision that
the forces are known.

The second step of the algorithm integrates the sample points
over time by discretizing the continuous time progression into an
algebraic sequence. Over a single period of time T = [0, t], the
leapfrog method has three operations, often referred to as ‘drift-
kick-drift’, to calculate a sample’s next phase space configuration

x(t/2) = x(0) + v(0)
t

2
, (14)

v(t) = v(0) + t

(
−∇�̄ − ma

∂

∂∇vf

∫
d6w2∇�12

· ∇v

(
f1

C − 1 − λ+f+
1 + λ2f+

f2

)) ∣∣∣∣
x(t/2)

, (15)

x(t) = x(t/2) + v(t)
t

2
, (16)
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where the compact functional derivative form is kept for conve-
nience. It is fortunate that the canonical form of leapfrog can be
used despite the general velocity dependence of the XC force. The
integration scheme is second order in time accuracy; however, the
algorithm’s symplectic nature does improve the long-term accuracy
and stability of quantities such as energy and angular momentum,
even relative to many higher order methods.

Calculation of the self-gravity can be performed in several ways.
Once an optimal sampling choice has been made, which as well
defines the sources of forces, an interpolation scheme of those forces
can be constructed. Many efficient cosmology codes reduce the
computational cost of gravity by differentiating between direct and
long-range calculations of the classical gravitational potential, and
simplifying the long-range calculations. This decomposition is often
implemented on either a background mesh or a tree decomposition
of particles. These interpolating techniques are capable of reducing
the O(n2) scaling of direct two-body force calculation to a far
more manageable O(nlog n), or possibly in some cases even to
O(n) (Dehnen 2014), where n is the number of DF samples.
Exchange–correlation interactions can be incorporated in the force
calculation for Bose fluids. Fortunately, the XC interactions can be
interpolated similarly to Newtonian gravity with several common
techniques, for instance a tree decomposition, and preserve the
scaling with particle number. Additional computational costs of
the XC calculations are initially estimated at ∼50 per cent of
the Newtonian gravity calculations. Other methods for gravity
calculation exist, some of which may be better able to resolve
the fine structure of DM haloes (Hahn & Angulo 2016; Sous-
bie & Colombi 2016; Colombi & Alard 2017). It remains to
be seen whether XC forces can be integrated into these other
methods.

5 C ONDENSATE IN EXTERNA L POTENTIAL
C O D E

Developing a small-scale simulation code is important for testing
the infall model. Fast turn-around allows for a quick development
cycle. Further, a small platform is better able to keep pace with
the developing theoretical work, discussed further in Section 9.
Prior to implementing the above algorithms in one of the existing
high-performance codes, we test them on a prototype platform,
Condensate in eXternal Potential (CXP), to simulate isolated 3 + 1D
systems of interacting degenerate bosons in isolation, over a static
cosmological background. The resultant algorithms for XC force
integration are designed such that they, in principle, hold for a
more complex implementation when calculated in parallel with
the Newtonian gravity counterpart. Here, CXP is used to simulate
the gravitational infall of near-spherical axion distributions through
collapse and into virialization. The algorithms relevant to CXP are
discussed below.

CXP utilizes the N-body and time-integration algorithms of
Section 4 to simulate the phase-space evolution of self-gravitating
bosons. The code is supplied with an initial distribution of
sample points and the initial correlation C parameter. Sample
points are quasi-randomly generated using a glass seed distribution
(Baertschiger & Sylos Labini 2002), which is mirrored, randomly
sampled, and re-scaled to fit the simulation parameters of particle
number and distribution shape. Masses of each sample point and
the initial correlation are propagated as integrals of the motion.
Leapfrog evolution iterates over the Cauchy data, evolving it in
time for a specified period.

The value of the XC Lagrange multiplier parameters need only
be calculated at the initial distribution as the λs are also integrals
of the motion. The constraint condition of equation (6) can be
approximated via a mean-point integration

0 =
n∑
i

wi

C − 1 − λ+(fi + f2)/2

1 + λ2(fi + f2)/2
, (17)

where we have cancelled out the single DF integral to make the
constraint condition null, and the wi are partitions of the phase-
space measure, or weights associated with each sample point. The
weights play a similar role to the sample mass. Sample weights are
taken to be equal across the distribution wi = w, as are the masses
of each sample point. One can find the unique solution to both
multipliers by evaluating equation (17) at two unique points of the
single body distribution, f2. CXP uses f2’s maximum and minimum
values as the two unique points.

Regarding the CXP implementation: the primary advantage of the
highly parallelized routines, such as a tree decomposition, appear
when used on large communications-limited networks, and are not
of the same advantage for small n systems. CXP uses the direct O(n2)
approach to interaction calculation, which provides developmental
efficiency and agility.

For the interaction evaluation, using the Coulomb kernel for a
particle’s gravitational potential is not appropriate, as each ‘particle’
represents many axion quanta. Instead, a softened potential using
the K1 profile of Dehnen (2001) is applied to each sample. K1 has
the potential

�K1(ŕ)

=
{ −G

32ŕ

(
64 − 105ŕ + 175ŕ3 − 147ŕ5 + 45ŕ7

)
0 ≤ r ′ ≤ 1,

−G/ŕ r ′ ≥ 1,

(18)

where ŕ = r/d , d is the characteristic softening length, and the
kernel mass is set to unity. Note that for Bose systems simulated for
lengths beyond the de Broglie scale, this softening length should
match the expected level of smoothing to yield minimal force error
and not simply some intrinsic particle scale (Dehnen 2001). The
K1 kernel is chosen for its computational efficiency and spatially
compact support. The K1 kernel does have the unusual characteristic
of containing a spherically symmetric region of negative Poisson
mass density. This does not imply that the DF becomes negative
in an annulus about the sample, it is merely an alteration to the
force profile. The softening length commensurate with the particle
density is

d = ε

(
4/3πR3

n

)1/3

, (19)

where R is the characteristic radial length scale of the initial
configuration, and ε is a numerical factor that fixes the softening
length. The K1 profile is not ubiquitous among pure N-body codes,
with some instead favouring a spline mass profile (Merritt 1996;
Dehnen 2001), which we will study in future simulations.

The XC force is straightforward to calculate once the integral
over phase space is performed (see Appendix A). Furthermore, the
XC forces between two particles are central, and only dependent
on the particles’ positions, masses, and with sample DF values,
so that both angular momentum and energy are conserved in
a collisionless Bose system. The total force felt by an N-body
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particle is

F1 = −
n∑
i

∇�1i −
n∑
i

∇�1i

[
C − 1 − λ+(f1 + fi)/2

1 + λ2(f1 + fi)/2

]

−
n∑
i

∇�1i

[ −λ+f1/2

1 + λ2(f1 + fi)/2

]

+
n∑
i

∇�1i

[
f1

λ2/2 (C − 1 − λ+(f1 + fi)/2))

(1 + λ2(f1 + fi)/2)2

]
, (20)

where �1i is the softened potential between samples at positions
x1 and xi . CXP uses the same softening for XC as the mean
Newtonian interaction. The first sum of equation (20) gives the
mean Newtonian force, and the last three sums are XC terms. Recall
that the sample DF value is integral along the characteristic curve
through phase space, making the bracketed terms easily calculable
when the initial DF value is propagated with the sample. This
ease in computation obfuscates a subtle point, however, that for
beyond-CXP computations the XC force can be velocity dependent.
The terms in square brackets will be constant for a given particle
pair because the phase space density is an integral of the motion
in a purely condensed collisionless system. However, collisions
or a change in the system’s density of states would change the
particles’ phase space densities over time. In particular, collisions
that change the velocity distribution will change the phase space
density and hence introduce an implicit velocity dependence into
the XC force on each particle. Mean Newtonian gravity would not
respond to such changes. Our algorithm does not currently handle a
dynamical density of states or collisional effects. Further discussion
of the phase-space dependence of the XC force can be found in
Appendix A.

Time-stepping is performed uniformly over the system. The
leapfrog time-step size is chosen such that the fastest orbits contain
multiple dozen steps per orbit so as to be well resolved at first shell
crossing, even in the most violent of collapses. This requirement
lowers the time-step to δt � 10−2tdyn for many of the presented
simulations, where tdyn = 1/

√
GM/R3 is the dynamical crossing

time for a typical orbit of the uncorrelated system. The short
time-step ensures adequate resolution of the fastest orbits in the
system, but over-resolves the slower orbits. The code is currently
parallelized over the interaction calculation at the single time-step
level for both single-node CPU and GPU resources.

We choose the duration of the simulations to be long enough
such that virialization is well established for much of the bound
portions of the halo, but short compared to the two-body relaxation
time-scale. The two-body relaxation time-scale is

trelax ≈ 0.1n

ln(n)
tcross, (21)

as derived in Binney & Tremaine (2008), where tcross is the system
crossing time, closely related to the dynamical time. The crossing
time, in our case, is altered by the presence of additional forces, as is
the form of the total force. We find the time to two-body relaxation,
using an adjusted relaxation time to account for XC, to be of the
order of many dozens to thousands of crossing times for systems
of n = 103–105. Among the calculated outcomes, classical infall is
naturally found to take the longest for fixed n as the XC force on
average amplifies the experienced gravitational force, shortening
the crossing time by an estimated 0.5 at C = 0.5. Only several
dynamical times are required for a system to virialize, so a period
of 10 dynamical times is chosen to preserve the details of infall.

6 TH E S I M U L AT I O N S

The collapse of spherical or near-spherical distributions is a produc-
tive first step in classifying the effects of self-gravity. Several con-
figurations are tested here, including the cold homogeneous sphere,
the Gaussian cold sphere, and configurations imparted with small
solid-body spin. Simulations consist of 50 000 particles. The con-
figurations sampled for the suite of simulations presented here take
on the outer product of parameters of shape, correlation, and spin:

(i) Shape ∈ {Top-hat, Gaussian}.
(ii) C ∈ {0.5, 0.75, 0.9, 1.0}.
(iii) λ ∈ {0.0, 0.05, 0.10}.

Individual simulations of this type will be referred to as S (shape,
C, λ). CDM and Bose simulations share initial DFs.

6.1 Top-hat sphere

The most basic and most violent collapses available to pressure-less
self-gravitating fluids occur with sphere initial conditions of homo-
geneous density and zero velocity (Gunn & Gott 1972). Density of
the sphere is given by the normalized Top-hat distribution

ρTH = 3M

4πR3
H (R − r), (22)

where R is the radius of the sphere surface, M is the total mass,
and H is the Heaviside function. Giving the sphere a perfectly cold
momentum distribution is tempting, but it leads to divergent values
of the Lagrange multipliers and also leads to numerical artefacts. A
normally distributed smoothing in velocity is therefore applied, with
velocity dispersion being a small fraction of the crossing time σ vtdyn

< 0.01R. In the pressure-less fluid case, the cold homogeneous
sphere ideally collapses, approaching a single point, before the
drastic non-linearity of the singularity and spherical symmetry
breaking inherent of the sampling scatters the distribution into
a gentler configuration. Observing such severe collapses should
provide a near-optimal probe of the XC contributions to the 1/R3σ 3

v

or 1/d3v3
sng scales in phase space, where vsng is the speed at shell

crossing. The time-step size is set at δt = 0.5 × 10−2tdyn so as
to adequately resolve the softened singularity. A softening length
factor of ε = 2 is used for stability of the resulting halo. These
simulations, while interesting probes of the XC physics, do not
map well to cosmological haloes and are therefore their results are
deferred to Appendix B.

6.2 Gaussian sphere

A less violent and more cosmologically sensible example is the
Gaussian sphere. Its density is given by an isotropic normal
distribution

ρG = MR3

(2π )3
e−r2/(R2/2), (23)

where R/2 is the dispersion radius of the sphere. The Gaus-
sian sphere shares its other qualities such as primordial velocity
dispersion with the homogeneous sphere. A time-step of δt =
0.5 × 10−2tdyn and a softening length factor of ε = 1 are used
for stability.

6.3 Spinning spheres

Angular momentum plays a significant role in the formation of
structure in cosmology, and understanding the reaction of the XC
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physics to angular momentum is important for building an intuitive
picture of Bose infall. The Bose halo structure is not expected to
be influenced by vortices, which are standard structures in rotating
superfluids, as the physics of the vortex scale is suppressed with the
de Broglie scale. Angular momentum, instead, is to be imparted to
the particles as a solid-body spin about the centre of the sphere

vrot = ω ẑ × r, (24)

where ω is the angular speed, ẑ is a constant unit vector, and the
multiplication operator is the three-dimensional cross product. The
self-gravitating spin parameter of Peebles (1969) is used to calculate
the angular velocity ω by evaluating the relative size of angular
momentum to the overall energy contribution via

λ = J |E|1/2

GM5/2
, (25)

where J is the magnitude of the total angular momentum, E is the
total binding energy, and M is the total mass of the distribution. The
parameters of simulation are shape, correlation, and spin are then
varied to study potential unique Bose structures.

7 R ESULTS

The key result of this study is that the collection of spherical collapse
simulations display a broad set of structural differences between
Bose and classical infall. The observed Bose features fall into sev-
eral categories, including alteration of formation history, creation of
new broad substructures, violations of classical binding conditions,
and new fine structure. This section focuses on a single thread of
unique Bose structures from Gaussian simulations, stringing from
initial collapse and virialization to observables crucial to operating
axion DM direct detection searches. The reader interested in more
detail concerning the following Bose structures for Gaussian and
Top-hat simulations is encouraged to read Appendix B. Further
signatures of Bose DM found in these simulations can be found in
Appendix C. Convergence tests for the simulations can be found in
Appendix D.

The first unique signatures of Bose infall can be seen during initial
collapse and virialization. As the spherical shell demonstration
implies, XC quickens the rate of first infall. Following the central
distribution of mass over infall and virialization shows an increase in
the rate of collapse to shell crossing by up to ∼20 per cent at C = 0.5,
Fig. 5. The quickened rate of collapse also impacts the halo’s violent
relaxation phase, with the chaotic phase of Bose simulations being
subdued and passing more quickly than their classical counterparts.
The characteristic relaxation times are reduced by more than one
dynamical time for Bose infall, from Trel ≈ 3tdyn for classical infall
to Trel � 2tdyn for Bose infall at C = 0.5. Halo spin seems to have
only a weak effect on the features of collapse time, length of the
chaotic phase, and resulting central mass.

Such an alteration in the formation history of the Bose halo
may be expected to produce a significantly different equilibrium
structure. The radial density profile, the standard global measure
of halo structure, however displays little sensitivity to XC. Radial
density profiles of Gaussian infall show a universal broken power
law suggestive of the cosmologically universal shape of NFW
(Navarro–Frenk–White) (Navarro, Eke & Frenk 1996a; Navarro,
Frenk & White 1996b), Fig. 6. The haloes with static cosmological
scale factor show a stee per central cusp of α ≈ −1.7, breaking
slowly at rscale ∼ 0.4R into an outer power law of β ∼ −2.8. Some
small changes in the density profiles that scale with correlation are
seen at and beyond the virial radius, around ∼2–3R. The virial

Figure 5. Mass within central r = 0.05R of halo over time of Gaussian
isolated collapse simulations of Section 6. Profile coloration indicates degree
of correlation ranging from classical C = 1.0 to highly correlated C = 0.5.
Line style indicates level of Peeble’s spin λ of the halo. The time to collapse
is seen to be shorter for correlated haloes, as is the time between first infall
and virialization.

Figure 6. Mass density radial profiles of the Gaussian isolated collapse
simulations of Section 6 after 10tdyn. (Top) Raw measurements and (Bottom)
fractional differences from the classical spin-less halo. Profile coloration
indicates degree of correlation ranging from classical C = 1.0 to highly
correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the
halo. Comparison power laws are given for the inner (α) and outer (β) halo
structure. The softening profile’s maximum force radius is represented by
the black dashed line in each simulation set, below which our confidence in
the results is diminished.

radius is defined here to be the radius beyond which less than five
crossing times have elapsed. The dependence of the breaking radius
with spin is weak, much like in cosmological CDM. No significant
new structure in the form of a central core or other features is seen
for Bose Gaussian collapse, even reproducing the emergent scale
radius of the classical haloes. This insensitivity to correlation is
surprising, as XC forces would be expected to be significant for
highly correlated condensates.

The XC physics is found to make an impact on the phase-space
density. The mean phase-space density profiles show consolidated
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Figure 7. Phase-space mass density radial profiles of the Gaussian isolated
collapse simulations of Section 6. (Top) Raw measurements, (Bottom) frac-
tional differences from the classical spin-less halo. Haloes were measured
after evolving for 10tdyn. Profile coloration indicates degree of correlation
ranging from classical C = 1.0 to highly correlated C = 0.5. Line style
indicates level of Peeble’s spin λ of the halo. Volume in velocity space is
measured in the local spherical velocity dispersion. The softening profile’s
maximum force radius is shown by the black dashed line in each simulation
set, below which our confidence in the results is diminished.

Figure 8. Spherical velocity dispersion radial profiles of the Gaussian
isolated collapse simulations of Section 6 after 10tdyn. (Top) Raw mea-
surements, (Bottom) fractional differences from the classical spin-less halo.
Profile coloration indicates degree of correlation ranging from classical C =
1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin
λ of the halo. The softening profile’s maximum force radius is shown by the
black dashed line in each simulation set, below which our confidence in the
results is diminished.

Figure 9. Circular orbit speed radial profiles of the Gaussian isolated
collapse simulations of Section 6 after 10tdyn. (Top) Raw measurements
and (Bottom) fractional differences from the classical spin-less halo. Profile
coloration indicates degree of correlation ranging from classical C = 1.0
to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ

of the halo. The softening profile’s maximum force radius is shown by the
black dashed line in each simulation set, below which our confidence in the
results are diminished.

shifts with correlation ranging from the inner halo to the outer-
most back-splash shells (Fig. 7). The relative invariance of the
spatial density profiles attributes this change wholly to the large
differences in velocity dispersion (Fig. 8). The intersection radius
between the Bose and classical haloes in both the phase-space and
velocity dispersion profiles is the same as the density profile scale
radius. The increased velocity dispersion also increases the classical
virialization ratio.

The XC force is responsible for containing Bose DM in a halo of
the same shape as CDM despite its enhanced speed. Circular orbit
speed profiles show how the experienced force-per-particle differs in
the virialized haloes (Fig. 9). Circular velocities of classical haloes
build quickly in the inner halo, where densities are large, and recede
in the outer halo where mass is depleted. This characterization is
amplified for Bose haloes, where the high-density regions are also
a source of large XC force, which is aligned with classical gravity,
and low-density regions that produce anti-aligned XC forces. The
XC is seen to cause an amplification of circular speed by almost
50 per cent at halo centre, corresponding to a doubling of force, and
20 per cent at peak force, or 40 per cent increase in force, relative
to classical. Somewhat lower reductions in net force are seen in the
outer halo. Note that the transition point between amplification and
reduction is again the density profile’s scaling radius.

The explicit structure of the velocity distribution reveals further
signatures of Bose physics. The distribution of speed as a fraction
of classical binding limit vmax =

√
2�̄ shows new macroscopic

structure at high speeds, Fig. 10. The classical haloes’ speed
distributions show a single thermal-like peak at v/vmax ≈ 0.25
followed by a tail that becomes truncated at v/vmax ≈ 0.8. Bose
haloes show a more columnated distribution with a second peak
appearing at the high-speed end of the distribution. The double-
lobed plateau of the Bose distributions is a major departure from
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Figure 10. DFs of speed fraction over classical gravitational potential
v/vmax = v/

√
2|�̄| of Gaussian isolated collapse simulations of Section 6.

Gaussian profiles on L, Top-hat profiles on R. Haloes were measured after
evolving for 10tdyn. Distributions are taken from within the scale radius r =
0.4R for Gaussian simulations and r = 1.0R for Top-hat. Profile coloration
indicates degree of correlation ranging from classical C = 1.0 to highly
correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo.
Sample points lying outside of the classical limit occur only with haloes of
correlation C = 0.75 or stronger, and amount to about one tenth of a per cent
of the sampled mass.

the classical halo and imply a marked change in the energy macro-
structure of Bose haloes. Distribution centres of mass are weakly
dependent on correlation, staying close to 〈v/vmax〉 ≈ 0.4.

Bose infall also impacts the fine structure of the DM halo. The
radial orbital action, namely the Fourier transform of a particle’s

displacement from the halo centre, carries with it several of the
halo’s fine phase-space structures and other non-thermal features. A
probability distribution constructed from the particles’ radial actions
over mean orbit radius shows multiple phase-space structures
with XC dependence (Fig. 11). For instance, from the prominent
branch peaking at r̄ ∼ 1R, one counts 10 distinct branches in the
provided classical halo. The other Gaussian haloes are provided
in Appendix C. Noise and force softening obscure these structures
below r̄ = 0.04R. The correlated Bose haloes present many more
branches over the same range, reaching 16 for the provided halo at
C = 0.5, becoming crowded to the point of large overlap with mean
orbit radius.

Bose structures both fine and gross may be visible to current
and future axion DM searches. For instance, direct detection axion
DM experiments such as ADMX, HAYSTAC, and others (Brun
et al. 2017; Du et al. 2018; Jeong et al. 2018; Zhong et al.
2018), are capable resolving fine details of the local axion energy
distribution, down to a part in 1012 of the rest-mass energy. Unique
Bose structures are visible in energy distribution measures for an
estimated direct detection experiment at the solar radius (Fig. 12).
The primary visible Bose feature is the high speed excess seen in
Fig. 10. The thermal peak of the classical halo is seen to be depleted
relative to the width of the distribution in favour of a second high-
energy peak at K.E. = 4GM/R. In the halo centred frame, the two
peaks come close to inverting in prominence for C = 0.5 and may be
observed to do so for the extreme correlation case of C = 0.0. The
circularly orbiting frame measurement disperses the high-energy
peak, though the thermal depletion is still quite visible. The local
measurement is not well resolved enough to pick up the altered
branching phase space structure or other fine structures.

8 D ISCUSSION

We now seek to further classify the differences in structure observed
between Bose and classical haloes. Determining the sources of new
structure will be a continuing process going forward as simulations
and techniques become more sophisticated.

Figure 11. Radial orbital action and mean orbit radius distributions of Gaussian isolated collapse simulations. (Left) The Bose halo from simulation S
(Gaussian, 0.5, 0.05). (Right) The classical halo from simulation S (Gaussian, 1.0, 0.05). Samples are taken from 100 equally spaced frames during 10–12tdyn.
Sample points are taken such that each particle is given one mean radius and the radial autocorrelation power spectrum. Locations of fine structural peaks are
indicated by black dots. See also Fig. B8.
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Axion structure formation II 5953

Figure 12. Kinetic energy spectra of Gaussian isolated collapse simulations. Samples are taken from stacked time-slices of simulations of post-virialized
haloes, explained in Section C3. Samples are taken from a toroid of extent 0.04R ≤ s ≤ 0.06R and −0.01R ≤ z ≤ 0.01R in cylindrical coordinates. The origin
of the coordinate system is placed at the halo centre, and the orientation has ẑ is parallel with jφ . Kinetic energies are measured (Left) from a halo-centred
frame of reference, or (Right) a frame on circular orbit at radius s = 0.05R that is co-moving with the halo’s net spin. The co-moving frame is an analogue to
the Sun’s motion in the Milky Way halo. Note the distinct Bose-related structure at (Left) about energy K.E. = 4GM/R.

Figure 13. Illustration of the force experienced by a test DM particle in
a spherically symmetric Bose halo with density profile similar to that in
the Top-hat simulations. The angle is the one canonical to the radial action.
The forces extend radially from the orbit point towards the plot centre. The
classical Newtonian force (yellow) is periodic with maximum at the point
of closest approach. The XC force (purple) varies more widely with radius,
as the average phase-space density increases towards the centre of the halo.
Note that this orbit would not be closed, in general. A colour version is
available online.

The initial infall of halo progenitors produces the expected result
of lessening the time to, and increasing the speed of first shell
crossing, as predicted by the example of in-falling spherical shells
in LQR and Section 3. Gaussian haloes show a quickening of infall
of the order of O(30

√
1 − C) per cent. Top-hat haloes widen that

quickening. An earlier infall would shift slightly the formation of
early galaxies and other large structures to earlier cosmological
times. Observational evidence and numerical models of early halo
formation, through the epoch of reionization for example, currently
do not favour such an outcome (Mesinger 2016). The shift is only
slight, fortunately, and not likely to have much of an effect on the

redshift of re-ionization. Faster crossing times and other properties
of the XC force also leads to shorter times to virialization. Rate
of equilibration among Gaussian Bose haloes is seen to increase
relative to classical haloes by ∼70(1 − C) per cent. The briefer time
to form a stable halo may notably change the formation history of
the first stars as the neutral gas cooling rate is highly sensitive to
the halo’s potential well.

Fluid elements of Bose DM are subject to forces larger than
that of Newtonian gravity at the halo centre and weaker than
at the halo’s edge. Variance in force in Gaussian haloes orders
well with velocity dispersion variation of those same haloes. In
the presence of near-identical spatial distributions, we consider the
change of force variation throughout a halo as evidence of effective
velocity dependence in the XC interaction. Further, there may be
an opportunity to observe this force variation via the sub-structure
of major haloes. If it is found that the matter in haloes and their
sub-structure remain correlated to one another, it is possible that the
forces experienced by the Bose DM sub-structure, such as satellite
galaxies, are also altered relative to the classical case. The gravity
felt by baryons within a satellite galaxy would be dominated by
the Newtonian potential and, being bound to the sub-halo, would
be pulled along the modified orbit. The possible implications for
sub-structure orbits and their organization will be actively pursued
in future cosmological simulations.

The similarity of virialized density and anisotropy profiles among
Bose and classical haloes is unexpected. The shown difference
in force and dependence of XC on the full phase-space density
provide multiple opportunities for a halo to settle into a differently
shaped state. Put another way, there appear to be mechanisms
that one would expect to force the halo into a new configuration.
For example, the XC force experienced by particles on highly
radial trajectories is significantly different than the Newtonian
force, Fig. 13, implying that each halo would have very different
orbital structures. The orbital analysis of the previous section did
show a sizable change in both the number and size of orbital fine
structures within the virial volume. Though, again, the influence
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of these structures appears to be limited to the overall kinematics
as there are no observed large-scale deviations of halo spatial
structure from the universal profile. A more precise investigation
of a Bose halo’s orbital properties, and how these properties play
into reproducing the emergent scales of classical haloes, will be
left for future work. It is also worth noting that constraint forces
perform no work, making a part of the XC’s ability to transport
energy through the distribution limited. Appendix 3 provides some
further insight on the altered force profile for spherical shell
collapse.

The role of the breaking radius rscale = 0.4R in the Gaussian
density profile is itself an interesting topic. The breaking radius
is found to be insensitive to both spin and correlation, see Fig. 6.
Many kinematical and dynamical transitions between classical and
Bose haloes also occur at this radius, such as the behaviour of
mean phase-space density, spherical velocity dispersion, circular
velocity curve, and others, see Figs 7, 8, 9, and Appendix C. This
consistency of emergent scales may be indicative of significant un-
derlying physical phenomena important to both classical and Bose
haloes.

Changes to structure, even at the present level of coarse graining,
presents windows to detection of the axion. The observed kine-
matical signatures of Bose physics such as variations of circular
orbit speeds, enhanced velocity dispersion, and migration of the
fractional speed distribution are all potentially visible in direct
and indirect axion detection efforts (Lentz et al. 2017; Bull et al.
2018; Foster, Rodd & Safdi 2018; Knirck et al. 2018; more
on this).

9 SU M M A RY

This paper extends the analysis of the highly correlated QCD axion
DM of Lentz et al. (2019) into the non-linear regime of structure
formation. The Boltzmann-like equation derived in Lentz et al.
(2019) governing the dynamics of a degenerate correlated Bose
fluid is first re-introduced, and the significance of XC interactions
is reviewed. The numerical algorithms for an N-body simulation are
obtained from the continuum equation of motion by using the MOC,
discretizing the continuum DF into sample points whose individual
equations of motion are seen to be different from that of standard
Newtonian gravity.

Simulations of spherical and rotating collapse are examined in
a static cosmology using the small-scale N-body solver ‘Conden-
sate in eXternal Potential’. Comparisons between Bose physics
and the standard pressure-less cold DM model show unique
Bose structures during initial infall, chaotic relaxation, and per-
sisting into virialization. Novel Bose structures are found to
include:

(i) Significantly augmented forces on DM fluid elements.
(ii) Quickening of first infall by �30

√
1 − C per cent and faster

rates of equilibration by �60(1 − C) per cent.
(iii) Altered orbital characteristics of DM, including increases

and decreases in circular orbit speed by �130(1 − C) per cent.
(iv) New macroscopic populations at moderate to high energy or

speed relative to classical limits.
(v) New and increasingly self-similar orbital phase space struc-

tures and other fine structures.
(vi) Convergence of the universal emergent scale in the halo

mass-density profile with Bose kinematical and dynamical transi-
tion scales from greater-than-classical to less-than-classical.

(vii) Notable lack of effects on the halo density and anisotropy
profiles.

The above novel structures already suggest several observables for
searches among direct and indirect axion DM experiments, and in
the observation of DM effects on baryonic processes.

The presence of surviving Bose-specific structures in simulations
is a significant development in the search for DM. The presented
small-scale simulations are far from sufficient to identify all possible
Bose structures, however. Higher resolution, the incorporation of
baryons, and the use of cosmologically motivated initial conditions
are needed to better understand the structural differences of a
Bose fluid in a realistic and cosmological environment. A natural
development is to build on the small-scale tests of the generalized
Bose condensate dynamics, incorporating them into the highly
sophisticated N-body + Smoothed-Particle-Hydrodynamics code,
such as CHANGA (Menon et al. 2015). Increasing resolution and
incorporating in well-modelled non-DM species in a cosmological
setting will provide further insight into the fuller extent of unique
axion DM structures.

Lastly, there are two fundamental challenges to address in order
to create a realistic physically motivated model of axion structure
formation. First, adding baryonic species to a system of highly
degenerate bosons influences not only the classical gravitational
potential of that system, but may also alter the fraction of bosons
in the condensate. The derivations of ASF1 are made in the
environment of minimal baryonic gravity. This condition may not
necessarily be satisfied near the centres of galaxies, where baryonic
densities greatly exceed those of DM. Specifically, the addition of a
significant non-Bose gravitating species disrupts the symmetry used
to solve the many-body Schrödinger equation of Lentz et al. (2019),
a symmetry which permitted condensate solutions as products of
two-body correlators. External potentials can therefore introduce
a migration of states in the highly degenerate fluid, meaning
the complete-condensate formalism may not hold in a realistic
cosmological context. The effective size of those influences on the
correlation is a topic of ongoing research.

Secondly, it is not obvious how much correlation exists within
these systems of axions at the start of the collapse, that is, the
value of C. Initial correlation has so far been a tune-able integral
parameter treated as not specified by the physics. A great deal of
physics and different dynamical regimes occur between the epoch of
the parent pseudo-scalar field appearance and post-recombination
structure formation. A complete description of state dynamics
within and outside of the degenerate state of DM axions, from
the well-motivated conditions of the pre-inflation era to the matter
era, is also a topic of current study. A dynamical description
of state tracking will help resolve the extent to which the Bose
physics of mixed condensed and non-condensed states can create
structure unique from that of standard CDM, and is a topic of future
work.
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A P P E N D I X A : ME T H O D O F
C H A R AC T E R I S T I C S A N D L E A P F RO G
I N T E G R AT I O N

The Boltzmann-like system of axion infall in an Euclidean cosmol-
ogy

0 = ∂tf
(1) + v · ∇f (1) − ∇�′ · ∇vf

(1) − ∇�̄ · ∇vf
(1)

−ma∇v ·
(∫

d6w2f
(1)(w2, t)∇�12

×
(

C − 1 − (λ1 + λ2) f+
1 + λ2f+

)
f (1)(w2, t)

)
, (A1)

falls into the hyperbolic class of partial differential equations
(PDEs). This class, which includes conservation laws and wave
equations, is amenable to many elegant numerical solvers including
the MOC. A Lagrangian method, the MOC propagates integrals
of motion to a system of differential equations through param-
eter space, forming an accurate sample of the solution. For an
extensive review of the technique, see Courant & Hilbert (1953).
Conveniently, the Bose system equation of motion is of first order
in derivatives, requiring only a less involved implementation of
MOC. Time integration using the leapfrog integration method is
also presented.

A1 Method of characteristics

A1.1 Theory

Using the notation of Courant & Hilbert (1953), the Boltzmann-like
equation of motion of the correlated Bose fluid falls into the class
of PDEs of the form

F ({xi}, u, {pi}) = 0 (A2)

where {xi} are the n coordinates, u is the function to be solved
for, dependent on the xi, {pi} are fluxes given by partial derivatives
pi = ∂xi

u, and the form of function F is first-order smooth in its
arguments. F is seen to be an integral of motion. If u is any solution
to the defining equation (F = 0), let us construct a curve in R2n + 1

of ({xi(s)}, u(s), {pi(s)}) such that u(s) = u(xi(s)). Differentiating
equation (A2) along the curve gives∑

i

(∂xi
F + ∂uFpi)ẋi +

∑
i

∂pi
F ṗi = 0. (A3)

A constraint equation can also be found in u from the curve speed

u̇ −
∑

i

pi ẋi = 0 (A4)

More generally, the implicitly differentiated form du − ∑
ipidxi =

0 also holds. A second constraint may be found from using the
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exterior derivative language.

0 = d

(
du −

∑
i

pidxi

)

=
∑

i

(dpi ẋi − ṗidxi) . (A5)

Altogether, these relations may be organized to provide equations
of motion for the solution along the path

u̇ =
∑

i

piFpi
, (A6)

ẋi = Fpi
, (A7)

ṗi = −Fxi
− Fupi. (A8)

A1.2 Application

For our application to the first-order axion Boltzmann-like equation,
we map u → f, {xi} → (x, v), {pi} → (∇f , ∇vf ), and F is the
right-hand side of equation (A1). We see again that f is an integral
of characteristic motion. Further, the equation form appears to
be much like that from a Hamilton’s principle with Hamiltonian
F. We choose time to be the suitable parametrization of the
characteristic. The characteristic equations are specifically found
to be

ḟ1 = 0 (A9)

ẋ = v (A10)

v̇ = −∇�̄ − ma

∂

∂∇vf1

∫
d6w2∇�12

·∇v

(
f1

C − 1 − λ+f+
1 + λ2f+

f2

)
, (A11)

where the dot derivatives are now with respect to time, and w1 =
(x, v). For completeness, the functional derivative evaluates to

∂

∂∇vf1

∫
d6w2∇�12 · ∇v

(
f1

C − 1 − λ+f+
1 + λ2f+

f2

)

=
∫

d6w2∇�12

(
C − 1 − λ+f+

1 + λ2f+
f2

)

+
∫

d6w2∇�12

(
f1

−λ+/2

1 + λ2f+
f2

)

−
∫

d6w2∇�12

(
f1

λ2/2(C − 1 − λ+f+)

(1 + λ2f+)2
f2

)
. (A12)

We can clearly see from this how the physics of individual sample
points differs from the standard Newton’s second law of classical
CDM literature, sourced by the non-trivial correlation function.
It is worth noting that the solution to these samples is exact
to the order of accuracy of the Boltzmann equation, so long
as the potentials and forces are known. The parabolic Poisson
PDE for the gravitational potential must also be solved at each
distribution sample, in order to calculate the gravitational force
contribution. Techniques for solving the gravitational potential of
an N-body sample often implement some artificial smoothing length
to represent the contribution from a representative volume of phase
space about a sample point; this is where exactness of modern

gravitational MOC N-body implementations breaks down, though
it is still for our purposes very useful.

In practice, MOC is used to track many sample characteristics
from some initial Cauchy surface to a prescribed end time. As
the DF is constant along these characteristic curves, choosing
sample points according to distribution weight creates an effective
distribution sampling from which equal-time observables may be
calculated. These sample points are often referred to as particles
or bodies, though they do not map directly to individual axions.
Sampling of the DF often looks like an optimization between
accurately reproducing the interactions and providing a clear means
of interpreting the output configuration. In terms of the chosen
gravitational sampling kernel of Section 5, the total force felt by an
N-body particle amounts to

F1 = −
n∑
i

∇�1i −
n∑
i

∇�1i

(
C − 1 − λ+(f1 + fi)/2

1 + λ2(f1 + fi)/2

)

−
n∑
i

∇�1i

( −λ+f1/2

1 + λ2(f1 + fi)/2

)

+
n∑
i

∇�1i

(
f1

λ2/2(C − 1 − λ+(f1 + fi)/2)

(1 + λ2(f1 + fi)/2)2

)
,

(A13)

where �ij is the intersample K1 Newtonian potential kernel.

A2 Leapfrog symplectic integration with
exchange–correlation force

After the MOC, there is still one dimension left to partition before
the axion fluid can be translated to a machine algorithm. Both the
continuum and phase space discretized sample points derived above
preserve the structure of phase space via ḟ = 0 and integral masses.
We choose the leapfrog symplectic integrator to map the distribution
over successive time-steps as it is designed to preserve volumes in
phase space.

From the MOC derivations above, we can see that the particle
equations of motion allow for a first-order operator equation
interpretation

ẇ = Ôw, (A14)

where w = (x, v) and Ô is the system’s evolution operator. The
evolution operator of the sample can be written as

Ô = T̂ + V̂�̄ + V̂XC, (A15)

where T̂ is the standard non-relativistic kinetic operator, V̂�̄ is
the mean field gravity operator, and V̂XC is the XC operator. The
leapfrog algorithm requires that the evolution operator is separable
over its position and momentum dependence. Fortunately, each
sample’s DF value is invariant along characteristic curves, removing
explicit velocity dependence in the XC force, at least of the order
of accuracy of the integration scheme. It is therefore possible
to separate the operator equation of motion into components
exclusively dependent on the velocity or position sub-spaces of
phase space. Leapfrog integration can therefore be implemented in
the usual way. Applied to our axion system, the equations of motion
for a sample particle become

x(t/2) = x(0) + v(0)
t

2
, (A16)

MNRAS 493, 5944–5971 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/4/5944/5801026 by guest on 20 April 2024



Axion structure formation II 5957

v(t) = v(0) − t

(
−

n∑
i

∇�K1
1i −

n∑
i

∇�K1
1i

×
(

C − 1 − λ+(f1 + fi)/2

1 + λ2(f1 + fi)/2

)

−
n∑
i

∇�K1
1i

( −λ+f1/2

1 + λ2(f1 + fi)/2

)

+
n∑
i

∇�K1
1i

(
f−

λ2/2(C − 1 − λ+(f1 + fi)/2)

(1 + λ2(f1 + fi)/2)2

))∣∣∣∣
x(t/2)

,

(A17)

x(t) = x(t/2) + v(t)

m

t

2
. (A18)

where again the subscript ‘1’ indicates evaluation at (x, v).

APPENDIX B: C OMPLETED PLOTS AND
RE SULTS FRO M MAIN D ISCUSSION

Here, we present in more detail the results of Section 7. This includes
the figures from the Top-hat simulations and several complementary
figures. Further observations of unique Bose structure can be seen
in Appendix C.

Following the central distribution of matter as it evolves through
infall and virialization displays several elements of Unique Bose
structure, Fig. B1. An increase in the rate of collapse to shell crossing
is seen, up to ∼20 per cent among Gaussian initial conditions
at C = 0.5 and ∼30 per cent faster infall for Top-hat. Faster
collapse is first demonstrated in LQR and expanded on in Section 3.
Chaotic dynamics and violent relaxation of the halo’s most extreme
phase characterize the evolution immediately following first shell
crossing. We find violent relaxation damps after many local crossing
times, or several system dynamical times, into a more settled
quiescent phase of evolution by T ∼ 4tdyn. The chaotic phase of
Bose simulations passes more quickly, with the most correlated

systems entering quiescent phase more than one dynamical time
earlier than the classical systems. Halo spin seems to have only a
weak effect on the features of collapse time, length of the chaotic
phase, and resulting central mass.

The radial density profile, the standard global measure of halo
structure, displays little sensitivity to XC. Radial density profiles of
Gaussian infall show a universal broken power law suggestive of
the cosmologically universal shape of NFW (Navarro et al. 1996a,
b), Fig. B2. The haloes with static cosmological scale factor show
a stee per central cusp of α ≈ −1.7, breaking slowly at rscale ∼
0.4R into an outer power law of β ∼ −2.8. Some small changes
in the density profiles that scale with correlation are seen at and
beyond the virial radius, around ∼2–3R. The virial radius is defined
here to be the radius beyond which less than five crossing times
have elapsed. The dependence of the breaking radius with spin is
weak, much like in cosmological CDM. No significant new structure
in the form of a central core or other features are seen for Bose
Gaussian collapse. This insensitivity to correlation is surprising, as
XC forces would be expected to be significant for highly correlated
condensates. The scale radius of NFW is an emergent length
in the otherwise scale-free system of CDM collapse. A similar
phenomenon appears to occur with the Gaussian haloes. Further,
the Gaussian halo’s breaking scale is also insensitive across the
full range of sampled correlations. Such robustness is unexpected.
Further, as the underlying physics of the XC self-gravity contains
no new scales, Bose haloes provide an independent measure of
emergent scales among self-gravitating systems. However, Top-hat
halo densities display some XC-induced effects, sub-dominant to
the response to halo spin, especially at the highest tested spin. We
find Top-hat density profiles are characterized by an outer power law
of power β ∼ −4.0 breaking into milder behaviour centred around
α ≈ −1.0 among spinning haloes and α ≈ −2.0 for spin-less ones.
The breaking scales are primarily dependent on spin.

In general, a halo’s high-resolution phase-space density profile is
expected to contain a superposition of falling and rising radial cold
sheets of fluid and their turn-around caustics. Though only the first
and perhaps second caustics can be resolved at the outermost radii

Figure B1. Mass within central r = 0.05R of halo over time of all isolated collapse simulations of Section 6. (Left) Gaussian profiles, (Right) Top-hat profiles.
Profile coloration indicates degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the
halo. The time to collapse is seen to be shorter for correlated haloes, as is the time between first infall and virialization. Note that the vertical scale is different
for each plot.
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Figure B2. Mass density radial profiles of the isolated collapse simulations of Section 6 after 10tdyn. (Left) Gaussian profiles, (Right) Top-hat profiles. (Top)
Raw measurements, (Bottom) fractional differences from the classical spin-less halo. Profile coloration indicates degree of correlation ranging from classical
C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. Comparison power laws are given for the inner (α) and outer (β)
halo structure. The softening profile’s maximum force radius is represented by the black dashed line in each simulation set, below which our confidence in the
results is diminished.

Figure B3. Phase space mass density radial profiles of the isolated collapse simulations of Section 6. (Left) Gaussian profiles, (Right) Top-hat profiles. (Top)
Raw measurements and (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile coloration
indicates degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. Volume in
velocity space is measured in the local spherical velocity dispersion. The softening profile’s maximum force radius is shown by the black dashed line in each
simulation set, below which our confidence in the results is diminished.

of these modestly resolved haloes, more substantial changes can be
seen in the mean phase space density, Fig. B3. Gaussian phase space
densities show well-consolidated correlation-dependent shifts, with
virtually all of the spread at inner radii being attributed to the
large differences in velocity dispersion, Fig. B4, which shows

significant effects induced by XC interactions. Note that in the
figure, where the profiles of Bose and uncorrelated haloes intersect
in density and velocity dispersion, is the same as the density
profile scale radius. Top-hat haloes show differences that depend on
correlation for large radii and on spin for small radii. The increased
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Figure B4. Spherical velocity dispersion radial profiles of the isolated collapse simulations of Section 6 after 10tdyn. (Left) Gaussian profiles and (Right)
Top-hat profiles. (Top) Raw measurements and (Bottom) fractional differences from the classical spin-less halo. Profile coloration indicates degree of correlation
ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The softening profile’s maximum force
radius is shown by the black dashed line in each simulation set, below which our confidence in the results is diminished.

Figure B5. Mean magnitude angular momentum radial profiles of the isolated collapse simulations of Section 6. (Left) Gaussian profiles, (Right) Top-hat
profiles. (Top) Raw measurements, (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile
coloration indicates degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo.
The softening profile’s maximum force radius is shown by the black dashed line in each simulation set, below which our confidence in the results is diminished.

velocity dispersion also also increases the classical virialization
ratio.

Radial profiles of angular momentum and velocity dispersion
show stronger effects than for density, Figs B4 and B5. Gaussian
haloes, as mentioned above, show clear augmentation of velocity
dispersion with correlation, with transitions from amplification to
compression occurring at the breaking radius. Velocity dispersion is

fairly insensitive to spin. Top-hat haloes also show clear amplifica-
tion of dispersion, but no transition into compression. Shapes of the
Top-hat velocity dispersion profiles change notably with spin. Spin-
less haloes show a low-radius dispersion peak near the softening
length. Spun haloes flatten this peak and shift their maxima to
higher radii, where the dispersions of the spun haloes converge
with the spin-less haloes. Sample angular momentum differences
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Figure B6. Circular orbit speed radial profiles of the isolated collapse simulations of Section 6 after 10tdyn. (Left) Gaussian profiles and (Right) Top-hat
profiles. (Top) Raw measurements and (Bottom) fractional differences from the classical spin-less halo. Profile coloration indicates degree of correlation
ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The softening profile’s maximum force
radius is shown by the black dashed line in each simulation set, below which our confidence in the results is diminished.

Figure B7. DFs of speed fraction over classical gravitational potential v/vmax = v/
√

2|�̄| of isolated collapse simulations of Section 6. (Left) Gaussian
profiles and (Right) Top-hat profiles. (Top) Raw measurements and (Bottom) fractional differences from the classical spin-less halo. Haloes were measured
after evolving for 10tdyn. Distributions are taken from within r = 0.4R for Gaussian simulations and r = 1.0R for Top-hat. Profile coloration indicates degree
of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. Sample points lying outside
of the classical limit occur only with haloes of correlation C = 0.75 or stronger, and amount to about one tenth of a per cent of the sampled mass. Note that the
vertical scale is different for each plot.

with respect to correlation are less pronounced, possibly due to the
relatively conserved status of angular momentum in a system with
spontaneously broken rotational symmetry. Most particle angular
momentum evolution is induced by the radial orbit instability (ROI)
symmetry-breaking feature. Correlations consistently produce a

first higher, and then lower mean angular momentum as the radius
increases for Gaussian haloes, with the curves again intersecting
at the breaking radius. Top-hat collapses behave similarly at small
radii, eventually separation according to spin. Each spin exhibits its
own structure.
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Figure B8. Radial orbital action and mean orbit radius distributions of Gaussian isolated collapse simulations. Panels are organized by correlation (column
wise: C = 0.5, 0.75, 0.9, 1.0 left to right) and spin (row wise: λ = 0.0, 0.05, 0.1 top to bottom). Samples are taken from 100 equally spaced frames during
10–12tdyn. Sample points are taken such that each particle is given a single mean radius and the radial autocorrelation power spectrum.

Circular-orbit speed profiles are a proxy for experienced force-
per-particle, and quantify much of the virialized halo dynamics
(Fig. B6). Each profile follows an expected curve as the density
steepens with rapidly increasing enclosed mass, before levelling
out and dropping at large radii where new mass is absent. The
differences in force between the correlated curves are large. The
most highly correlated C = 0.5 experience up to a 70 per cent
higher-than-classical at peak force, more than twice classical at
the centre, and lower than classical force in the outer reaches
in the Gaussian haloes. The force augmentation translates into
differences in the circular speed curves of up to 45 per cent at any
given radius, and a 20 per cent increase in maximum speed. Bose
Top-hat haloes also have an increase in force of up to 70 per cent
and an increase of rotational speed by over 30 per cent. Again,
it is surprising that higher acceleration of sample points does
not much change the spatial structure of the halo. The crossing
between stronger-than-classical and weaker-than-classical force
occurs near the breaking radius among Gaussian haloes, coinciding
with similar transitions in the velocity dispersion and classi-
cal energy. Bose Top-hat haloes have higher-than-classical force
throughout.

Classical haloes, evolving well into quasi-equilibrium, obey a
simple classical energy constraint: bodies with kinetic energy above
the asymptotic potential binding are unbounded and will separate
themselves from the system of the order of the crossing time. As
our haloes are several crossing times into their virialized states,
there should be few unbounded bodies remaining in the classical
haloes. Bose fluids do not necessarily obey this condition as they are

subject to an additional interaction not captured in the gravitational
potential. Regular violation of the classical energy condition is
another possible marker of unique Bose structure.

Bose haloes show a definite shift of their velocity distribution
with respect to the classical binding limit vmax =

√
2�̄, Fig. B7.

Angular momenta, speeds, and other kinetic quantities have their
own form of the classical energy constraint. Speed is shown here,
since it is expected to produce a larger effect than, say, angular
momentum, which is subject to equipartition of velocity in-so-
far as a virialized structure allows. Sampling of haloes is taken
on the sub-set of the halo where the fractional and overall XC
forces are highest, within the scale radius rG = rscale = 0.4R for
Gaussian haloes and Top-hat haloes inside of rTH = 1.0R. Classical
structures obey the binding energy limit in both sets of collapses.
The classical shape among Gaussian haloes is a single low-speed
peak at v/vmax ≈ 0.25, with a smooth tail that turns steeply at
v/vmax ≈ 0.8. Gaussian Bose haloes have slower tails at both the
high-speed and low-speed ends, with the high-speed tail extending
slightly beyond the classical cut-off, and with the bulk of the
distribution shifting slowly to the double-lobed plateau seen in
C = 0.5 haloes. Distribution centres of mass are weakly dependent
on correlation, staying close to 〈v/vmax〉 ≈ 0.4. Top-hat haloes are
closer to a thermal distribution in shape, with long high-speed tails.
Each spin group has its own class of shapes. Distributions within
each spin change with correlation, becoming depleted at low speed
and elongating the high-speed tail beyond the the classical limit.
Double peaks are also observed for Top-hat haloes of high spin and
correlation.
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The binding-condition-violating sub-population among Top-hat
simulations is a small but predictable group from our studies. Spin
of the halo does not play a significant role in the size of this sub-
population. Condition-violating samples are present throughout the
halo volume, save for the edge of the outermost orbiting phase-space
sheets. The lack of binding-condition-violating bodies in Gaussian
haloes is perhaps due to the generally softer infall of the normal
profile, resulting in less work done on individual particles. This
implies there are no unbound bodies at any value of correlation
among Guassian haloes.

Measuring speed distribution changes in the DM of an isolated
halo is difficult to accomplish by measuring baryons. Stellar
populations are not directly subject to the Bose modified gravity
from XC, only the total Newtonian gravitational potential. Axion
searches sensitive to a halo’s local energy distribution may be
capable of resolving differences in the kinetic makeup of a Bose
halo. Another means to observe the explicit DM motion may come
from the velocities and organization of satellite galaxies and other
halo sub-structures.

The moderate resolution of a single time-slice in a simulation
prevents more from being easily said regarding the nature of halo
structure. The next sub-section introduces a method of stacking time
slices in order to explore the orbital motions and improve resolution
of measurements.

The particle distribution in a self-gravitating virialized halo is
known to be non-thermal, producing resonances and other structures
as a byproduct. Halo forces point primarily in the radial direction,
and these strong forces are capable of setting the radial action into
particular modes of motion. These resonances may appear as local
fine structure in a halo’s energy distribution or other features such
as a turn-around caustic. Fine phase space structures are visible at
all radii in all simulations, Fig. B8. New structure is visible in these
fine branching features. For example, counting in from the most
prominent branch in Fig. B8, which peaks at r̄ ∼ 1R, one sees 10–

12 distinct branches in CDM haloes down to the radius r̄ = 0.04R.
Noise, and force softening subdues structures much below r̄ =
0.04R. The number of branch structures increases with correlation,
reaching 18 for C = 0.5, becoming crowded to the point of large
overlaps in mean radius. The more crowded Bose spectra also look
more self-similar in shape than their CDM counterparts. The inner
orbital structures are unfortunately at the resolution limit at the
current levels of softening and time resolution, though a number
of other coherent features can be seen at larger radii beyond the
virial radius. More resolved Bose fine structure requires improved
simulations.

A P P E N D I X C : FU RT H E R M A R K E R S O F BO S E
STRUCTURES

Several more signatures of Bose physics were uncovered during the
study of the virialized haloes, including

(i) Shifts in the classical binding energy radial profile of the order
of �400(1 − C)2 per cent.

(ii) New sub-structures in classical energy and angular momen-
tum distributions.

(iii) Small sub-populations of halo particles violating the classi-
cal binding condition of virialized systems.

(iv) Compactification of orbital actions in all three independent
dimensions.

(v) Evidence of correlation-induced mixing across the virial
radius.

(vi) Notable lack of effects on the halo density and anisotropy
profiles.

This appendix covers these results, which have been organized
according to their extent, and a short discussion of those results.

Figure C1. Enclosed mass angular momentum profiles of the isolated collapse simulations of Section 6 after 10tdyn. (Left) Gaussian profiles, (Right) Top-hat
profiles. (Top) Raw measurements, (Bottom) fractional differences from the classical spin-less halo. Profile coloration indicates degree of correlation ranging
from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The lower limit in mass is given by 50 sample
points.
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Axion structure formation II 5963

Figure C2. Classical binding energy radial profiles of the isolated collapse simulations of Section 6. (Left) Gaussian profiles, (Right) Top-hat profiles. (Top)
Raw measurements, (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile coloration
indicates degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The
softening profile’s maximum force radius is shown by the black dashed line in each simulation set, below which our confidence in the results is diminished.

C1 Global features

Another standard measure of classical infall after the radial density
profile is provided by the enclosed mass as a function of angular
momentum M<(j) (Bullock et al. 2001), Fig. C1, and shows weak
but increasing differences with correlation. Gaussian profiles show
a relative depletion of mass over the first decades of observed
angular momentum, with little sensitivity to spin. The Gaussian
simulations classically maintain a universal concave upwards shape,
characterized by a breaking angular momentum roughly at jscale ≈
10−2R2/tdyn between two power laws, as opposed to the single power
law of cosmological haloes found by Bullock et al. (2001). The
profiles shown are ordered by correlation and become insensitive to
spin over the high angular momentum region, but begin to diverge
at lower angular momentum. More highly correlated haloes are
also seen to reach total mass at lower angular momenta than the
classical haloes. The Top-hat simulations show different profiles,
primarily separated by spin, but with additional stratification with
XC. The shape of Top-hat profiles vary with spin. Spin-less haloes
are dominated by a single power law of α ≈ −1.25. Rotating
haloes are relatively depleted of low angular momentum material
and demonstrate downwards concavity throughout.

Classical binding energy per-particle is another near integral of
motion of the classical virialized halo (Fig. C2). Classical energy
density is an integral of the motion when quasi-equilibrium is
satisfied, and then only for classical samples with an effective
Hamiltonian with canonical kinetic and potential terms. Bose halo
fluid elements are not expected to have the integral of motion energy,
though the system’s total energy can be shown to be integral.
The energy-per-particle radial profile does not have much spin
dependence, but it is dependent on correlation. Bose haloes show
a difference in per-particle energy over classical haloes of up to
25 per cent between r = 0.1–0.2R. Correlated haloes show deeper
binding energy at these large radii. Bose Gaussian haloes are also
smoother in profile. The more consistent and weaker dependence

of energy among Bose haloes at large radii leads to a transition to
shallower energies within the breaking radius. Top-hat halo energy
profiles are also seen to be ordered by, and, for spin, can show a
much higher separation in energy than Gaussian profiles. This is a
result of the effect of spin to reduce the density at low radii, resulting
in a shallower potential well than for classical haloes.

There exist instabilities for any simulations of cold near-spherical
distributions occurring in three spatial dimensions. The well-studied
ROI (Barnes, Hut & Goodman 1986; Valluri & Merritt 2000;
Bellovary et al. 2008; Lentz, Quinn & Rosenberg 2016) is known to
produce a prolate bar feature at the halo centre. Bose physics may
leave a signature in this bar, in either the Top-hat or Gaussian haloes.
The shape of the halo beyond the gross spherical or cylindrical
symmetry is important to understand the tangential dynamical
mechanisms, Fig. C3. Among Gaussian haloes, triaxalities generally
range from moderately oblate to spherical-like at inner radii,
increasing in prolate-ness until slightly outside the softening length
r ∼ 0.05R and then relaxing to a modest prolate state for the
remainder of the virialized volume. Bose haloes show a slightly
greater tendency for prolate shape than classical haloes at large
radii. While there are other differences in shape observed between
the classical and Bose haloes, their behaviour with respect to
amount of correlation and spin is not completely clear. Top-hat
triaxalities show a steady trend among spin-less haloes from a
spherical shape at inner radii to a more prolate shape of T = 0.7–
0.8 farther out. Spun haloes are far more varied, with oblate or
spherical shape at inner radii, just as for the Gaussian haloes, rising
to near total prolate-ness before falling to a spherical or oblate
shape at large radii. Again the role of correlation for these haloes is
unclear.

The velocity anisotropy profile is nearly as robust to XC inter-
actions as the mass density profile, Fig. C4. Weakly spun haloes
generally show a velocity anisotropy in favour of motion in the
radial direction as a consequence of their initial near-radial infall,
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5964 E. W. Lentz, T. R. Quinn and L. J. Rosenberg

Figure C3. Triaxality radial profiles of the isolated collapse simulations of Section 6. (Left) Gaussian profiles and (Right) Top-hat profiles. (Top) Raw
measurements and (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile coloration indicates
degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The softening
profile’s maximum force radius is shown by the black dashed line in each simulation set, below which our confidence in the results are diminished.

Figure C4. Velocity anisotropy radial profiles of the isolated collapse simulations of Section 6. (Left) Gaussian profiles, (Right) Top-hat profiles. (Top) Raw
measurements, (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile coloration indicates
degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The softening
profile’s maximum force radius is shown by the black dashed line in each simulation set, below which our confidence in the results is diminished.

though the collection of orbits tend towards velocity isotropy (β
→ 0) at inner radii. Much of the virial volume among Gaussian
haloes shows little discernible Bose structure. Only at the outer
edge of the virial volume do haloes show features that depend on
correlation, with more correlated haloes softening the hard break in

anisotropy as one crosses the virial radius. A small shift in the radius
of the virial break is also observed for the most highly correlated
spinning haloes. All Top-hat haloes do not reach complete velocity
isotropy. Each spin curve has its own profile shape. Correlation
dependence is difficult to distinguish among the lower spin curves,
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Figure C5. Magnitude angular momentum DF of the isolated collapse simulations of Section 6 after 10tdyn. (Left) Gaussian profiles and (Right) Top-hat
profiles. (Top) Raw measurements and (Bottom) fractional differences from the classical spin-less halo. Profile coloration indicates degree of correlation
ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The plots are a rephrasing of the data
presented in Fig. C1, with the emphasis placed on the local distribution.

though some coherent shifts are seen between the most highly spun
haloes.

C2 Global distributions and dynamical law-breaking features

More direct projections of the final phase-space distribution re-
veal other novel Bose structures. Magnitude angular momentum
among Gaussian simulations shows organization with correlation
for their entire angular momentum domain, ending with an angular
momentum cut-off depending only on correlation (Fig. C5). The
angular momentum cut-off arises at lower angular momentum
with increasing correlation, and may be an indication of the XC
interaction suppressing the evolution of angular momentum. Top-
hat halo curves expectantly divide first along spin, but secondly also
show some correlation organization, most notably at λ = 0.10.

Classical binding energy distributions are also well organized,
showing obvious changes in sub-structure (Fig. C6). Gaussian
haloes, all with approximately the same minimum potential, show
uniform growth for the most tightly bound objects, according to,
for example, the radial density profile. The distributions at higher
energy begin to diverge in shape according to correlation. Classical
haloes are seen to have several highly populated regions above E =
−3GM/R, with a central peak at E ≈ −GM/R. The highest energy
of these peaks and the adjacent low-energy trough become depleted
with increasing XC forces through C = 0.75, after which the peak
begins to shift to lower energies and somewhat re-establishes itself
among C = 0.5 haloes. Correlated distributions also shift their
lower energy distribution into a central consolidated feature, still
centred at E = −GM/R. Top-hat energy structure is dominated by
spin, but also displays obvious effects of correlation. Much of the
observable correlated structure is in the form of more prominent
high-energy bands, less prominent middle energy structures, and
lower potential minima. Classically unbounded objects are not
displayed in these distributions.

Classical haloes, evolving well into quasi-equilibrium, obey a
simple classical energy constraint: bodies with kinetic energy above
the asymptotic potential binding are unbounded and will separate
themselves from the system of the order of the crossing time. As
our haloes are several crossing times into their virialized states,
there should be few unbounded bodies remaining in the classical
haloes. Bose fluids do not necessarily obey this condition as they are
subject to an additional interaction not captured in the gravitational
potential. Regular violation of the classical energy condition is
another possible marker of unique Bose structure.

The moderate resolution of a single time-slice in a simulation
prevents more from being easily said regarding the nature of halo
structure. The next sub-section introduces a method of stacking time
slices in order to explore the orbital motions and improve resolution
of measurements.

C3 Fine structure and orbital actions

Each halo is well settled into quasi-equilibrium after 10 dynamical
times. A sub-sampling of single time-slice halo configurations, or
‘snapshots’, after virialization and prior to relaxation can be orga-
nized into a ‘stack’ of phase-mixed quasi-independent snapshots of
the halo. The elements of such a stack can be co-added, effectively
increasing the number of samples in the simulations. Extending
several of the S simulations by another multiple dynamical times
past the initial period of 10 dynamical times can also provide
samples of particle orbits within the virial radius, allowing for
an orbital analysis of the haloes. Stacking and orbit integration
together create the most resolved observables of this analysis. The
simulations chosen for extension are of Gaussian shape, with all
sampled spins, with correlations {0.5, 0.75, 0.9, 1.0}, and are
prolonged by two dynamics times.

True integral actions in a triaxial problem are difficult to con-
struct, despite the limited number of actions needed to span a
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5966 E. W. Lentz, T. R. Quinn and L. J. Rosenberg

Figure C6. Classical binding energy DF of the isolated collapse simulations of Section 6. (Left) Gaussian profiles and (Right) Top-hat profiles. (Top) Raw
measurements and (Bottom) fractional differences from the classical spin-less halo. Haloes were measured after evolving for 10tdyn. Profile coloration indicates
degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5. Line style indicates level of Peeble’s spin λ of the halo. The energy is
restricted to classically bound states.

Figure C7. Radial and polar orbital action distributions of Gaussian isolated collapse simulations. Panels are organized by correlation (column wise: C = 0.5,
0.75, 0.9, 1.0 left to right) and spin (row wise: λ = 0.0, 0.05, 0.1 top to bottom). Samples are taken from 100 equally spaced frames during 10–12tdyn. Sample
points are taken such that a particle’s weights are given by the outer product of jθ and the radial autocorrelation power spectrum.
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Axion structure formation II 5967

Figure C8. Classical binding energy and polar orbital action distributions of Gaussian isolated collapse simulations. Panels are organized by correlation
(column wise: C = 0.5, 0.75, 0.9, 1.0 left to right) and spin (row wise: λ = 0.0, 0.05, 0.1 top to bottom). Samples are taken from 100 equally spaced frames
during 10–12tdyn. Sample points are taken such that a particle is given a jθ and an independent classical energy at each frame. Note that the projection along
energy gives a higher resolution version of Fig. C6.

equilibrated DF (Binney & Tremaine 2008). The three desired
integrals are approximated here with three accessible actions. Two
of the actions are tangential

jφ = j · ẑ (C1)

jθ = | j − jφ ẑ| (C2)

and are expected to be approximately integrals of the motion. The
third independent action is taken to be the conjugate to radius from
its Fourier transform into frequency space, jr, providing harmonic
weights over the two extended dynamical times of sampling. Note
that the ẑ vector used in jφ aligns with the direction of net spin for
haloes with λ > 0.0. For spin-less haloes, ẑ is chosen as the direction
of greatest angular momentum dispersion, consistent with the spun
halo orientation in the presence of an ROI. Classical energy will
also be used as an approximate substitute for the radial action.

Probability DFs in higher dimensions provide a more detailed
understanding of the DFs, and are used to good effect here due to
the higher count statistics. Action distributions show some obvious
changes in global structure (Fig. C7). Both transverse and radial
actions show more compact support, much like the one-dimensional
angular momentum action of Section C1. Some finer-structure
changes are also visible in the transverse actions, perhaps due to their
relation to the ROI. The compactification of the radial action with
correlation implies fewer high-frequency radial modes are excited.
The consistent reduction in width support along all three actions in
Gaussian Bose haloes is similar to the compactification of motion

that has been seen in other degrees of freedom presented earlier. The
action supports vary with solid-body spin for classical collapse, but
dependence of support with respect to spin is somewhat reduced
when the XC interaction become sizable.

The energy spectra of halo samples over transverse actions show
bands of relative overpopulation and underpopulation, features
present in a single snapshot, and becoming visibly enhanced in
stacking (Fig. C8). Some of these features may be related to ‘back-
splash shells’ from first shell crossings (Mansfield, Kravtsov &
Diemer 2017) or other processes, especially deeper in the potential
well. The narrower bands show a great deal of variablilty with
correlation, such that it is difficult to see how one set of bands
in one halo may continuously deform into another, though they
remain relatively consistent across spins. A small but pronounced
sub-set of energy bands are visible at each correlation, like the main
features of the one-dimensional energy distribution of Fig. C6. Little
deformation of the bands occur with different transverse action.

How the actions change throughout the halo, which are rep-
resented here by the particle’s mean orbital radius, we also hold
signatures of Bose physics. Tangential actions show a distinct
transition between the virialized and unvirialized regions (Fig.
C9). Classical haloes show quasi-uniform spectra within the virial
radius, then transitioning discontinuously to a sparser population.
The transition across the virial boundary becomes weaker for
more highly correlated haloes, producing a smoother and more
homogeneous distribution. Fine structure is not well resolved along
this action due to the minimal force in the transverse directions.
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Figure C9. Azimuthal orbital action and mean orbit radius distributions of Gaussian isolated collapse simulations. Panels are organized by correlation (column
wise: C = 0.5, 0.75, 0.9, 1.0 left to right) and spin (row wise: λ = 0.0, 0.05, 0.1 top to bottom). Samples are taken from 100 equally spaced frames during
10–12tdyn. Sample points are taken such that each particle is given one mean radius and an independent jφ at each frame.

C4 Further discussion

Fluid elements of Bose DM are subject to forces larger than that
of Newtonian gravity at the halo centre and weaker than at the
halo’s edge. Variance in force in Gaussian haloes orders well
with velocity dispersion variation of those same haloes. In the
presence of near-identical spatial distributions, we consider the
change of force variation throughout a halo as evidence of effective
velocity dependence in the XC interaction. Further, there may be
an opportunity to observe this force variation via the sub-structure
of major haloes. If it is found that the matter in haloes and their
sub-structure remain correlated to one another, it is possible that the
forces experienced by the Bose DM sub-structure, such as satellite
galaxies, are also altered relative to the classical case. The gravity
felt by baryons within a satellite galaxy would be dominated by
the Newtonian potential and, being bound to the sub-halo, would
be pulled along the modified orbit. The possible implications for
sub-structure orbits and their organization will be actively pursued
in future cosmological simulations.

Changes to the classical energy profile can accumulate dif-
ferences to the order of O(400(1 − C)2) per cent in Gaussian
collapse, and larger differences are observed in Top-hat haloes.
Unfortunately, current baryonic tracers measuring a halo’s energy
density are not developed enough to differentiate ab initio between
Bose and classical structures. A more direct measure of the local
DM energy distribution is needed in order to distinguish between
bulk correlated and uncorrelated motion. Remote detection efforts
searching for axion decay may have promise of detecting such
differences (Kelley & Quinn 2017; Bull et al. 2018).

Changes to structure, even at the present level of coarse-graining,
present windows to detection of the axion. The observed kinematical
signatures of Bose physics such as variations of circular orbit speeds,
enhanced velocity dispersion, and migration of the fractional speed
distribution are all potentially visible in direct and indirect axion
detection efforts (Lentz et al. 2017; Bull et al. 2018; Foster et al.
2018; Knirck et al. 2018). Further, violation of the classical binding
energy condition in halo bodies is one of the more unique structures
of Bose physics. Though the sub-population is small, of the order of
a tenth of a per cent for C = 0.5, it would be a distinctive signature of
XC physics. The absence of such a sub-population is not necessarily
evidence of vanishing XC physics, though, as the sub-population’s
size also depends strongly on the form of the initial distribution.

The compactness of orbital actions among Gaussian haloes
leads in the direction of interpreting XC as a force that maintains
coherence, though the robust observables that have yet to be
identified. The mechanism leading to coherence also appears to
extend to the smoothing of classical boundaries such as the virial
radius. Mixing across the virial barrier is very weak in classical
infall. The XC force of Bose infall is known from Fig. B6 to point
mostly radially outward at the virial radius. This outward-pointing
force is suspected to have the effect of displacing virialized orbits
from their classical trajectories into the classically un-virialized
space, smoothing the transition between classical virialized and
non-virialized regions. The mixing across the virial radius can
also be viewed in a more traditional condensed-matter framework.
Standard Fermi systems near condensation have an analogous
barrier, the Fermi surface. Modification of chemical potentials,
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including through XC interactions, often smear the Fermi surface,
seen in a theory of quasi-particles on the barrier (Nozières 1964).
Bose systems at zero temperature are also capable of forming quasi-
particles (Leggett 2006). The non-local XC force of self-gravitating
axions is akin to a chemical potential, being largely set by Lagrange
multipliers of particle-number conservation. It is suspected that the
XC’s degradation of the virial barrier may be understood as the mix-
ing of quasi-particle excitations. The effect this mixing has on the
intergalactic media and the medium between halo and substructure
remains to be seen. It may be that distinguishing between different
virial volumes becomes ambiguous, which may impact the shape,
mass, and motions of cosmological haloes and their substructure.

These impacts of Bose physics on a halo’s angular momentum
and speed distributions have a profound effect on the particles’ local
energy distribution. Axion DM searches using the decay of halo
axions into photons are sensitive to these changes. We construct
samples of energy spectra at the approximate solar radius r =
0.05R, one fiftieth the haloes’ virial radius, to estimate the signal
shapes that may be seen by DM searches (Fig. 12). The set of
these signals in the halo centre frame, as may be observed in a
radio telescope survey of a nearby galaxy (Kelley & Quinn 2017;
Bull et al. 2018), show Bose structures that significantly depart
from CDM and standard near-isothermal shapes. Depletion of the
lone thermal-like peak in Bose spectra is accompanied by a large
secondary peak at K.E. = 4GM/R. Either of these features may be
a signature of Bose physics. Also, like the angular momentum and
speed distributions of Figs C5 and B7, the overall width of the Bose
energy spectra is somewhat narrower than their CDM counterparts.
The circularly orbiting signals match what a terrestrial direct axion
DM search may see (Brun et al. 2017; Du et al. 2018; Jeong et al.
2018; Zhong et al. 2018). The differences in shape seen in the halo-
frame signals are somewhat reduced by boosting to a co-rotating
circular orbit, though the new high-energy structure remains visible.
Fine structure within the new high-energy peak, or elsewhere in the
spectra, cannot be resolved with current simulations. More resolved
and complete simulations will be needed to provide realistic signal
shapes including this fine structure.

A P P E N D I X D : ST RU C T U R E C O N V E R G E N C E

This study makes several simplifying numerical approximations,
such as finite time-steps, force softening, and sample number. We
perform several tests on the simulation output to quantify and
minimize the impacts of these approximation parameters in the
main analysis. The highlights of those analyses are provided here.
We also look into the behaviour of finer structures with change of
particle number as a text of convergence.

We will show that the finite integration of forces and kinetics
over time produce minor errors in the evolution of the degrees of
freedom, and in the continuum integral actions of motion. These
errors may accumulate over successive integrations, altering the
resulting state, especially in regions of fast evolution. Leapfrog
integration is chosen for its stability with respect to quantities of
phase-space integrals. Total classical energy is an example of one
such quantity (Fig. D1). This shows energy conservation is well
converged in Gaussian infall for time-steps of 0.5 × 10−2tdyn or
smaller. Bose Gaussian haloes do show an accumulated bias on
the 1 per cent level relative to the δt = 0.25 × 10−2tdyn classical
halo. The bias may be a consequence of XC and softening length
interactions. Top-hat haloes behave similarly, though they require
an increased softening length to control noise errors at the near-
singular first crossing, yet still produce slightly higher error around
first crossing as compared to a Gaussian halo. Force evaluation and

Figure D1. Relative total classical energy of halo over time for Gaussian
isolated collapse simulations with different correlations and time-step
size. Energy is relative to classical collapse with time-step resolution
0.25 × 10−2tdyn. The period displayed is the 10tdyn of initial simulation.
Profile coloration indicates degree of correlation ranging from classical C =
1.0 to highly correlated C = 0.5. The haloes have no spin. Line style is given
by step size in units of dynamical time.

kinetic evaluation are performed at double precision to minimize
floating-point contributions to these errors.

Force softening limits the degree to which one can distinguish
dynamical structure at some fraction of the softening length. The
general rule for the simulations presented in the main text is to treat
as spurious features much less than the softening scale. Softening
kernel shape or extent can impact the halo’s global structure via
shot-noise fluctuations in the force from too large interparticle
separations, or forcing biases from too complete overlap. There is an
optimum length between these. One may find an optimal solution
for the softening length with direct statistical techniques such as
in Dehnen (2001), though we use the more heuristic approach of
considering robust profiles such as density (Fig. D2). For 50 000
particle Gaussian haloes, smoothing much above or below ε = 1, the
sample-free softening length parameter of equation (19), produce
an artificial depletion of mass at small radii, or other displacement
of interior mass. Classical haloes appear to be somewhat more
susceptible to mass migration than Bose. Top-hat collapses show
an optimal softening length-scale at ε = 2, much below which and
the force noise disrupts the violent relaxation process. We find this
sends the classical simulations nearer to a single power-law halo. In
addition, Bose collapses appear especially susceptible to softening
length change, and scattering of many of the particles at the singular-
ity occurs if the softening is insufficient, resulting in a diffuse halo.
Other aspects of XC sensitivity to softening are discussed below.

Total sample number provides the simplest subdivision of phase
space as occupied by the presented haloes. Sample number impacts
the simulations’ degree of resolution in multiple observables. An
adjusted softening length reduces the force errors some, but then
introduces an enlarged intrinsic scale. The reduction in phase-space
resolution leads to errors in observables. We show these errors with
respect to particle number for several figures-of-interest of the main
text. The softening length changes with particle number according
to equation (19).

The radial density profile is approximately constant for nearly
an order of magnitude in particle number, producing marginal
depletion at inner radii (Fig. D3). Lowering particle number does
eventually produce a shift of the outer power law and produces a
complete depletion of the inner halo at N = 1000 for both classical
and Bose haloes when using a softening length of ε = 1. Increasing
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Figure D2. Radial density profiles of the isolated collapse simulations with different softening length. (Left) Gaussian profiles and (Right) Top-hat profiles.
Haloes were measure after evolving for 10tdyn. Profile coloration indicates degree of correlation ranging from classical C = 1.0 to highly correlated C = 0.5.
Haloes have no spin. Line style indicates size of K1 softening length. ε refers to the softening size relative to the shape-dependent central value defined in the
text.

Figure D3. Radial density profiles of the Gaussian isolated collapse
simulations with different particle number. Haloes were measured after
evolving for 10tdyn. Haloes are without spin. Profile coloration indicates
degree of correlation ranging from classical C = 1.0 to highly correlated
C = 0.5. Line style indicates number of particles. Simulations with greater
than 10 000 samples use softening parameter ε = 1, while 1000 particle
simulations use ε = 2 for the classical case and ε = 3 for Bose.

the softening length for the lowest sampled simulations to ε = 2
puts the classical halo close to the universal profile, though the Bose
halo requires ε = 3 to prevent the severe depletion mentioned above.

Distribution of the magnitude angular momentum is also consis-
tent in the mean for haloes of sampling above 10 000 (Fig. D4).
Binning noise above the mean signal is of Poisson type for these
higher resolution haloes, scaling with 1/

√
N samples per bin.

Haloes below 10 000 particles are also seen to change the width.
Both N = 1000 simulations shown become narrower as force
softening, which are set to ε = 2 for classical and ε = 3 for Bose,

Figure D4. Magnitude angular momentum DF of the Gaussian isolated
collapse simulations with different particle count. Haloes were measured
after evolving for 10tdyn. Haloes are without spin. Profile coloration indicates
degree of correlation ranging from classical C = 1.0 to highly correlated
C = 0.5. Line style indicates number of particles. Simulations with greater
than 10 000 samples use softening parameter ε = 1, while 1000 particle
simulations use ε = 2 for the classical case and ε = 3 for Bose.

reduces the strength of the symmetry-breaking ROI, which sets the
spread in angular momentum.

Lastly, we observe the resonance structure observed in the radial
orbital action (Fig. D5). Much of the structure discussed in the
text at 50 000 samples remains visible at 30 000. Fine structure is
more difficult to resolve for simulations with 10 000 samples. The
smallest simulations have either no or too few particles with orbital
radii much below the initial condition length-scale r = R to see
virial resonances. Some of the resonant orbits not yet virialized can
be seen even at N = 1000.
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Figure D5. Radial orbital action and mean orbit radius of Gaussian isolated collapse simulations. panels are organized by correlation (column wise: 0.5, 0.75,
0.9, 1.0 left to right) and spin (row wise: 0.0, 0.05, 0.1 top to bottom). Samples are taken from 100 equally spaced frames during 10–12tdyn. Sample points are
taken such that each particle is given a single mean radius and the radial autocorrelation power spectrum. Haloes are without spin. Simulations above 10 000
samples use softening parameter ε = 1, while 1000 particle simulations use ε = 2 for the classical case and ε = 3 for Bose.
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