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ABSTRACT
The information about the mass density of galaxy clusters provided by the gravitational
lens effect has inspired many inversion techniques. In this article, updates to the previously
introduced method in GRALE are described, and explored in a number of examples. The first
looks into a different way of incorporating time delay information, not requiring the unknown
source position. It is found that this avoids a possible bias that leads to ‘overfocusing’ the
images, i.e. providing source position estimates that lie in a considerably smaller region than
the true positions. The second is inspired by previous reconstructions of the cluster of galaxies
MACS J1149.6+2223, where a multiply imaged background galaxy contained a supernova,
SN Refsdal, of which four additional images were produced by the presence of a smaller
cluster galaxy. The inversion for the cluster as a whole was not able to recover sufficient detail
interior to this quad. We show how constraints on such different scales, from the entire cluster
to a single member galaxy, can now be used, allowing such small-scale substructures to be
resolved. Finally, the addition of weak lensing information to this method is investigated.
While this clearly helps recover the environment around the strong lensing region, the mass
sheet degeneracy may make a full strong and weak inversion difficult, depending on the quality
of the ellipticity information at hand. We encounter ring-like structure at the boundary of the
two regimes, argued to be the result of combining strong and weak lensing constraints, possibly
affected by degeneracies.

Key words: gravitational lensing: strong – gravitational lensing: weak – methods: data anal-
ysis – galaxies: clusters: general – dark matter.

1 IN T RO D U C T I O N

Due to their extended and particularly massive nature, gravitational
lensing by clusters of galaxies can provide various clues about
their matter distributions. In the so-called strong lensing regime
a massive central region can produce multiply imaged sources,
currently exceeding 100 images in some cases, as in the study
of Abell 1689 (Broadhurst et al. 2005), and many of the Hubble
Frontier Fields clusters (HFF; Lotz et al. 2017). As first recognized
by Tyson, Valdes & Wenk (1990) in the context of galaxy lensing,
further away from the centre there is still a systematic distortion
in the shape of background galaxies, an effect described as weak
lensing. Furthermore, the gravitational deflection of light also has
an effect on the distribution of these background objects on the sky.

� E-mail: jori.liesenborgs@uhasselt.be

While calculating the effect a known gravitational lens has on one
or more background objects is relatively straightforward, in practice
one has only very little information about both sources and lens.
The real-life situation is therefore such that one has only observed
the gravitational lensing effect, but wants to obtain information
about the lensing mass distribution as well as about the background
sources, information that lies encoded in the observation. The
effects above depend on the precise distribution of the matter,
both luminous and dark, and have in turn led to many so-called
lens inversion methods attempting to reconstruct this distribution,
varying in the kind of information they use as constraints, underlying
assumptions about the mass model, and optimization techniques.

The methods using information from the strong, weak, or both
lensing regimes can be classified as parametric or non-parametric.
The former, sometimes also referred to as simply parametrized
models, pre-suppose a particular shape of the mass distribution,
of which a relatively small number of parameters still needs to be
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optimized to match the observations; examples include LENSTOOL

(Jullo et al. 2007; Jullo & Kneib 2009), GLAFIC (Oguri 2010), GLEE

(Suyu & Halkola 2010; Grillo et al. 2015), and the light-traces-mass
technique by Zitrin & Broadhurst (2009). The other class, also called
free-form methods, attempts to avoid a bias towards a particular
shape of the mass density, typically needing a large number of
parameters to do so. These can describe the mass density directly,
like in PIXELENS (Saha & Williams 1997; Williams & Saha 2004),
WSLAP+ (Diego et al. 2005, 2007; Sendra et al. 2014), and the work
of Bridle et al. (1998), or alternatively indirectly using the so-called
lensing potential. The weak lensing only work of Bartelmann et al.
(1996) that parametrized this potential was extended to include
strong lensing information through available image systems in
in SWUNITED (Bradač et al. 2005, 2009), and through estimates
of the critical lines in SAWLENS (Cacciato et al. 2006; Merten
et al. 2009). Free-form inversion methods that model neither the
potential nor the mass density directly include the strong lensing
method LENSPERFECT (Coe et al. 2008), which considers models that
precisely reproduce the images by exploring curl-free interpolations
of the deflection field, and weak lensing methods based on Kaiser &
Squires (1993) that investigate how the mass distribution can be
obtained directly from the measured deformation field. Accurate
determination of the ellipticities of background galaxies forms the
cornerstone of weak lens inversions, stimulating comparisons of
different techniques in e.g. the Shear TEsting Programme (STEP;
Heymans et al. 2006) and GRavitational lEnsing Accuracy Testing
(GREAT) challenges (e.g. Mandelbaum et al. 2014).

In this article, we describe additions to the strong lensing, non-
parametric inversion algorithm that was first introduced in Liesen-
borgs, De Rijcke & Dejonghe (2006), and was later christened1

GRALE. The code2 includes not only the aforementioned inversion
algorithm to reconstruct the lensing mass density from observations,
but also a variety of tools to perform and analyse simulations, which
are helpful in evaluating the performance of the inversion procedure.

The inversion method uses a genetic algorithm (GA) as the
underlying optimization procedure, a technique from the wider class
of evolutionary algorithms (see e.g. Eiben & Smith 2015) that are all
inspired by the way natural evolution produces individuals that are
increasingly adapted to their environment. While more traditional
optimization techniques, like Markov chain Monte Carlo (MCMC),
explore the parameter space through a sequence of points that are by
some metric adjacent, GAs allow the parameter space to be searched
in a non-local way as well, by combining or exchanging parameters
from multiple trial solutions (in biology, this corresponds to new
chromosomes having properties based on both parents). The kinds
of problems a GA may handle are less restricted, allowing e.g.
combinatorial problems or problems with discrete parameter spaces
to be tackled as well, as long as one can identify which solution
is the better one from two or more trial solutions. An additional
advantage, which will also be revisited later, is the way multiple
objectives can be handled: classically, these are combined into
a single number that is then optimized, but this requires one
to carefully choose the weights for each objective as they are
combined. In a multi-objective GA, no such weights need to be
assigned, however. The major downside of this added flexibility is
the lack of mathematical and statistical rigour. Not only are analyses
of GAs only available in the simplest of cases, but also there is
no guarantee that the solutions produced by the technique will be

1The name ‘GRALE’ is merely a contraction of GRAvitational LEns.
2https://research.edm.uhasselt.be/jori/grale2

related to some desired probability distribution, as is the case with
MCMC.

After summarizing the relevant lensing formalism in Section 2,
we describe this inversion procedure in Section 3. Over the years,
several modifications and extensions have been described, and for
this reason the current state of the algorithm is first reviewed. Further
generalizations and additions are detailed, which are subsequently
explored in the article. The first of these, an improved time delay
criterion, is the subject of Section 4. In Section 5, the problem
with the presence of small-scale substructures, as well as possible
solutions, is investigated, and in Section 6 the inclusion of weak
lensing data is explored. The article concludes with a discussion
in Section 7. Unless otherwise stated, a flat �CDM cosmological
model is used throughout the text with H0 = 70 km s−1 Mpc−1 and
�m = 0.3.

2 G RAVI TATI ONA L LENSI NG FORMALIS M

Gravitational lensing is commonly modelled as a two-dimensional,
projected mass distribution in a single so-called lens plane, which
instantaneously deflects light rays over an angle α̂. This deflection
causes points β in the source plane to be transformed into image
plane points θ according to the lens equation or ray-trace equation
(see e.g. Schneider, Ehlers & Falco 1992)

β = θ − Dds

Ds
α̂(θ ). (1)

Here, Ds and Dds represent the angular diameter distances from
observer to source and lens to source, respectively. Often, with a
single reference source plane in mind, the scaled deflection angle
α = Dds/Dsα̂ is used instead; it is, however, important to keep in
mind that this implicitly refers to a specific source distance. The
deflection angle originates from the projected potential ψ :

α(θ ) = ∇ψ(θ ). (2)

It is of course the two-dimensional mass distribution �(θ ) that
determines the deflection angle, and it can be shown that

κ(θ ) ≡ �(θ )

�crit
= 1

2

(
∂αx

∂θx

+ ∂αy

∂θy

)
, (3)

in which

�crit = c2

4πGDd

Ds

Dds
. (4)

In the equation above, κ is called the convergence and �crit the
critical density, both with respect to the source distance under
consideration. Apart from the speed of light c and the gravitational
constant G, this last expression also contains Dd, the angular
diameter distance to the lens plane.

In the strong lensing regime, the lens equation above transforms
a single source into multiple images. If the source itself is variable,
these variations will appear at different times in different images.
The time delay between image points θ i and θ j of the same source
point β, is then given by �tij ≡ t(θ i, β) − t(θ j, β) where

t(θ , β) = 1 + zd

c

DdDs

Dds

(
1

2
(θ − β)2 − ψ(θ )

)
(5)

(Schneider 1985; Schneider et al. 1992). Here, the pre-factor also
includes the redshift zd of the gravitational lens.

From a first-order approximation of the lens equation, one
obtains

�β = A(θ)�θ , (6)
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in which A is called the magnification matrix with elements

Aij (θ ) = ∂βi

∂θj

. (7)

This matrix is also written as

A(θ ) = (1 − κ)

(
1 0

0 1

)
−

(
γ1 γ2

γ2 −γ1

)
, (8)

showing a uniform scaling as well as deformation by the shear
components γ 1 and γ 2, where

γ1 ≡ 1

2

(
∂αx

∂θx

− ∂αy

∂θy

)
, and γ2 ≡ ∂αx

∂θy

= ∂αy

∂θx

. (9)

In the weak lensing regime, one no longer has multiple images
of the same source, but the deformations of background galaxies
are still well described by these first-order approximations, thereby
providing information about convergence and shear. Unfortunately,
the information comes in the form of a combination, the so-called
reduced shear g1 and g2, where

gi = γi

1 − κ
. (10)

The effect of weak lensing on source shapes is investigated in e.g.
Schneider & Seitz (1995) and Seitz & Schneider (1997), and they
show that using a complex notation where g = g1 + ig2, a source
ellipticity ε(s) = ε

(s)
1 + iε

(s)
2 is transformed into an image ellipticity

ε according to

ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε(s) + g

1 + g∗ε(s)
if |g| ≤ 1,

1 + gε(s)∗

ε(s)∗ + g∗ if |g| > 1.

(11)

For an elliptical source with axes a and b, where b < a, rotated over
an angle ϕ, the source ellipticity would be

ε(s) = 1 − b/a

1 + b/a
ei2ϕ (12)

with an analogous expression for the image ellipticity ε. For a more
general expression in terms of the quadrupole moments of the shape,
the reader is referred to the aforementioned references. As is shown
there, assuming that the source ellipticities average out to zero, the
averaged image ellipticities then provide an estimate for the reduced
shear

〈ε〉 =

⎧⎪⎨
⎪⎩

g if |g| ≤ 1,

1

g∗ if |g| > 1.
(13)

A common approach is therefore to obtain observations of many
background galaxies, determine their ellipticity values ε, and
average these to obtain estimates of the reduced shear.

While both strong lensing information, i.e. the positions of mul-
tiple images of one or more sources, and weak lensing information,
i.e. measured ellipticities of background galaxies, encode aspects
of the mass distribution of the gravitational lens, unfortunately
in practice degeneracies remain: multiple mass distributions will
be equally acceptable reconstructions, but may differ in non-
trivial ways. The most well-known degeneracy is undoubtedly the
mass sheet degeneracy (MSD; Falco, Gorenstein & Shapiro 1985)
which in the context of strong lensing is also called the steepness
degeneracy (Saha & Williams 2006). It was soon found to be a
special case of several classes of invariance transformations that
leave the observables in multiple-image configurations invariant

(Gorenstein, Shapiro & Falco 1988; Schneider & Sluse 2014).
Making the lens reconstruction independent of specific (parametric)
lens models, it was found that these degeneracies that had been
treated as global transformations of the entire lens and source plane
properties, can be further generalized, such that they locally apply
to each system of multiple images individually (Liesenborgs et al.
2008a; Liesenborgs & De Rijcke 2012; Wagner 2018). It is clear
that these degeneracies cause difficulties in constraining the mass
density of a specific lensing object at a certain redshift from such
lensing observations, with the integration of mass along the line of
sight further confounding the issue (Wagner 2019).

The core insight to understand the MSD is that for a single source
distance, both a convergence κ0 as well as the derived

κ1(θ ) = λκ0(θ ) + (1 − λ) (14)

are compatible with the same image positions, and this for any
choice of λ. The scale of the source plane is different however,
where a larger mass sheet or less steep profile corresponds to a
smaller source, scaled by a factor λ in each dimension. A similar
relation for the lensing potentials causes the time delays between
images to be rescaled as well, providing an opportunity to break
this degeneracy if time delay measurements are available.

The convergence refers to a specific source distance, and the
simple construction above is therefore no longer available when
multiple sources at different distances are involved. The more local
variants of the degeneracy mentioned above however still allow
similar degeneracies, only causing a difference in densities at the
locations of the images, where a similar relation as equation (14)
still holds. Allowing minor deviations in the source to image
correspondences only make this degeneracy even more difficult
to break.

The MSD is of course not only a nuisance in strong lensing, but
also in weak lensing as first described by Schneider & Seitz (1995).
If a single input shear field is used, a similar degeneracy as in (14) is
present, where the constant depends on the redshift distribution of
the observed background ellipticities (Seitz & Schneider 1997).
When the individual redshift information of these background
sources is available however, Bradač, Lombardi & Schneider (2004)
argue that the degeneracy can be lifted, at least in principle.

The effect of such types of degeneracy is to rescale the source
planes involved, and to modify the densities in a similar way as
in (14). For this reason, we will simply refer to this entire class
of degeneracies as the MSD, even when it is not restricted to a
single source distance or corresponds to perfect rescalings. When
comparing different gravitational lens models, the two effects, on
source plane scales and densities, can be used to assess if the
difference in models is due to the MSD. The example model
from Fig. 1 that we shall encounter later illustrates this: the right-
hand panel of the reconstruction in the first row of Fig. 2 shows
a difference in source plane scale, where the corresponding top
left panel of Fig. 3 shows how steepness and density offset, here
sampled only at the positions of the images, differ accordingly.

3 LENS INVERSI ON W I TH GRALE

3.1 Genetic algorithm based inversion procedure

The inversion procedure that GRALE uses, has been designed with
strong lensing scenarios in mind. Being a non-parametric, or free-
form inversion method, there is no pre-supposed distribution of the
lens plane mass; instead, the weights of a number of basis functions
will be determined, thereby allowing a wide variety of projected
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Figure 1. For the time delay test, an existing model for Abell 1689 was used (Limousin et al. 2007), the mass distribution of which is depicted by contours in
the left-hand panel. The solid lines indicate κ = 1 (for a source redshift of z = 3); the spacing between contours is �κ = 0.2. The filled circles in the centre
panel show the 32 image positions generated by the eight point sources in the right-hand panel; the squares indicate the multiple-image system that is used in
the left-hand panel of Fig 4. The critical lines shown in the centre panel also refer to a redshift of z = 3.

Figure 2. Results for the time delay test, where the multiple images from Fig. 1 are used as constraints, augmented by time delay information for all image
locations, as well as null space information. The top half corresponds to the use of fitnessTD, 2009, the bottom half to fitnessTD, NoSrc. The recovered critical
lines are shown as thick solid lines, the ones of the input lens as thin lines for comparison. In the right-hand panels, which show the back-projected images
(i.e. the estimate of the sources), the true source positions are indicated as well, as filled grey circles with a diameter of 1 arcsec, but offset to have the same
centre as the recovered positions. This allows one to compare the relative sizes of input and reconstructed source planes, thereby visualizing a rescaling due
to the MSD. The estimated scale factor λest corresponds to this fraction of recovered to true source plane areas, and would quantify the relation between the
reconstructed and real mass densities according to equation (14) in case the exact MSD would apply. The older time delay fitness measure causes overfocusing
of the images, while the new fitness criterion allows the MSD scale factor be recovered accurately. This MSD difference is also hinted at by the difference in
number of density contours, indicating that one solution is steeper than the other.

mass densities to be modelled. The amount, type and location of
the basis functions still need to be fixed, and to keep a handle on
the complexities allowed in this regard, a strategy inspired by the
work of Diego et al. (2005) was used. This approach starts by laying

out basis functions on a uniform grid, and letting an optimization
procedure determine their weights. Based on the resulting mass
distribution a new grid is defined, in which regions with more mass
are subdivided into finer grid squares. The optimization again tries to
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Figure 3. In each of the three panels, the top figure corresponds to the solution obtained with fitnessTD, 2009 and the bottom figure to the one obtained with
fitnessTD, NoSrc. Left-hand panel: the larger plots show both input and recovered densities measured at the positions of the images, while the smaller ones show
the fraction of the recovered density κ to the real density κR. For visualization purposes, only the distance of a point to the coordinate centre is shown on the
horizontal axis. Whereas the newly proposed fitness measure yields densities that match the true ones well, the other one produces solutions that are less steep,
and that have a more prominent density offset, i.e. that differ by the MSD. Centre panel: these maps show the κ/κR fraction in the region under consideration.
The solid black line marks the 10 per cent boundaries. While the fitnessTD, 2009 solution has clear difference in both the central and outer regions, similar as
what can be seen in the left-hand panel, the solution obtained with the new fitness measure is well constrained over a large area. Right-hand panel: these plots
compare the magnification of the recovered lens model μ to the true magnification μR, both for a redshift of z = 9. The consistently larger magnification for
the older fitness measure is again a sign of the MSD. The new fitnessTD, NoSrc on the other hand produces a much more consistent map.

locate appropriate weights, and this entire procedure can be repeated
a number of times as desired; usually after a number of subdivision
steps the amount of weights becomes larger than the observations
can constrain, and the optimization procedure ceases to produce
improvements. Fig. 1 of Liesenborgs et al. (2006) illustrates this
dynamic subdivision grid. In our approach, the basis functions used
are projected Plummer spheres (Plummer 1911), of which the width
is set proportional to the width of a grid cell.

A single inversion run thus consists of a number of steps that
increase the resolution of the grid, where in each step an opti-
mization procedure determines the weights of the basis functions.
Inspired by the work of Brewer & Lewis (2005), a GA is used as
the optimization routine. As the name suggests, this optimization
method mimics natural evolution, and starts by initializing a first
set – called a population – of random trial mass maps (randomly
initialized weights of Plummer basis functions) – often referred to
as genomes or chromosomes. In a GA, each trial solution is assigned
some measure for how successful the solution is – called its fitness
– and a new population will be created by combining, cloning, and
mutating existing genomes. The key ingredient to evolve towards
increasingly better solutions is to ensure that better trial solutions
create more offspring, i.e. to apply selection pressure. By default,

the weights are all required to be positive, to ensure a positive mass
density everywhere, although negative weights can be allowed as
well, e.g. to provide corrections to a base model.

In the original GA, a single fitness measure was used to estimate
how compatible a trial mass distribution was with the observations,
in essence by measuring the fractional overlap of the back-projected
images. In a next step, it was found that the so-called null space could
provide valuable information as well: the reconstruction should
not only predict the observed images, but should also prevent the
prediction of extra, unobserved images (Liesenborgs et al. 2007).
To handle two (or more) fitness criteria simultaneously, a multi-
objective GA (e.g. Deb 2001) is employed, thereby looking for a
solution that optimizes several fitness criteria at the same time. In the
most general multi-objective optimization there will be a trade-off
between fitness measures. For example, if the first criterion would
be how well the images can be predicted and a second criterion
would encode how low the average density of the lens is, then a lens
with zero density would optimize the second but clearly not the first;
vice versa a mass distribution that is able to predict the images will
certainly not have the lowest density. In our applications however,
we employ fitness measures that are in this sense compatible with
each other, that are believed to have an optimum at the same time.

MNRAS 494, 3253–3274 (2020)
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In the null space example there should exist a solution that not only
predicts the observed images but also does not predict extra images
that would have been detected in the observations.

Within the GA, each trial solution or genome encodes the weights
of the Plummer basis functions. More precisely, the stored values do
not determine the Plummer weights directly, but only up to a certain
scale factor. The genome therefore only describes the relative shape
of the mass distribution. The scale factor to use for a genome is
the one that produces the best overlap fitness of the back-projected
images. In case a multi-objective GA is used and multiple fitness
criteria are present, the scale is still fixed based on the overlap of
back-projected images, and once this is obtained the other fitness
values are calculated as well. The rationale behind this approach is
that the other fitness criteria available, e.g. the null space, do not
make more sense if the source estimate is worse. In Liesenborgs
et al. (2009), an extra mass sheet basis function was introduced
to allow for a mass density offset in the strong lensing region.
Contrary to the Plummer weights, the weight of this basis function
is used directly and does not take part in the rescaling procedure
just described. The Plummer weights so describe the shape of the
mass density, on top of an offset described directly by the mass
sheet weight.

The procedure of different refinements of the grid will produce
one mass map that is considered the best one for this run. Because
much randomness is involved in the GA itself and random offsets
are introduced in the grid placements, performing this procedure
again will produce a somewhat different mass distribution. There-
fore, typically several tens of such individual inversion runs are
performed, where the average of these solutions will highlight
the common features while suppressing random fluctuations. The
variation between the results of each run can provide some insight
into the degree to which the mass density in different regions is
constrained.

The average as well as the individual models are built from
Plummer basis functions and are therefore always smooth and
continuous. Therefore, no post-processing needs to be done to
visualize the resulting mass distribution: the one that is shown
corresponds to the lens effect that is visible.

3.2 Generalizations

The dynamic grid that is used in the inversion strategy serves to
fix the positions and sizes of the Plummer basis functions, for
which the GA will subsequently determine the weights. For the GA
itself, it is however irrelevant that the positions and sizes originate
from a grid layout, and this has been made explicit: while the user
of the inversion code can still work with the existing and tried
subdivision procedure, there is now the option of using a different
way to determine this layout of basis functions. In Sections 5 and
6 this is used to facilitate handling of both small-scale substructure
and large-scale weak lensing measurements.

In a similar way, the choice of basis function is not relevant
to the GA, in the sense that once the necessary deflection angles
have been calculated, it does not matter from which type of basis
function they originate. The specific choice will certainly have
an effect on how well the GA will converge to a solution and
how well this solution will perform, but it does not change the
inner workings of the GA. Therefore, the inversion code can not
only be instructed where to place the basis functions in a more
flexible way, but also the type of basis function can be specified
as well. Any type that is supported by the GRALE simulation code
can be used here, ranging from simple models like a projected

Plummer sphere, a square pixel (Abdelsalam, Saha & Williams
1998) or a singular isothermal sphere (SIS) over rotated elliptical
models to even complex composite models. Moreover, different
basis functions need not originate from the same underlying models,
different ones can be used, e.g. Plummer basis functions augmented
by a few SIS models. The use of the mass sheet basis function can
be generalized as well: if desired, any other supported model can
be used instead. While this can be a model with a similar effect,
e.g. a mass disc instead of a mass sheet, this does not need to be
the case. Note that the GA still treats this type of basis function
slightly differently, as its weight is not included in the rescaling
step mentioned earlier.

3.3 Fitness criteria

Central to the optimization procedure are the fitness criteria: each
one provides a measure of how well a trial solution performs for
some specific aspect. In the GA that is used in GRALE, the precise
value of these fitness measures does not matter, they are only used
when comparing two genomes to determine which one is better. If
more than one fitness measure is used, roughly speaking, a genome
is said to dominate another one if it is better with respect to all these
fitness values. In a set of genomes one can then identify the subset
that is not dominated by any other genome: the non-dominated
set. After excluding this subset, a new non-dominated set can be
determined and so on. If only a single fitness measure is specified,
the trial solutions can be ranked accordingly; if more than one
fitness type is used, the population of genomes is subdivided into
these non-dominated sets. At the core however, one only needs to
be able to tell which solution is better regarding a single fitness
criterion, there is no need for differentiability or even continuity of
these fitness measures.

In a strong lensing scenario, the central requirement is that
different images originate from the same source. If extended images
are used as input to the inversion routine, this requirement is
translated into a fitness measure that projects the images on to
their source planes, and for these back-projected images measure
how well they overlap. This is done by measuring the distances
between the corners of rectangles surrounding the back-projected
images, and the distances between corresponding image points
when available. Such distances are not measured on an absolute
scale however, instead, the average size of the back-projected
images is used. As described in Liesenborgs et al. (2006), this helps
guard against solutions that overfocus the images. Note that in this
approach differently sized images are matched to a single source
size, thereby incorporating information about the magnification of
the images as a whole as well (the magnification of unresolved
points is not used). For the more complex situation of merging
images on a critical line, some care should be taken so that these
partial source shapes are not compared directly to the full source
shape from another, complete image. One could either use only part
of the full image, the part that is visible in the merging ones, or, if
the images are particularly extended and corresponding points can
be identified in all images, only use these to determine the overlap
and not the rectangles.3

The identification of extended images is not always straightfor-
ward however, and it is actually more common to have point image
information instead. If this type of input is used, the back-projected
image sizes are no longer available to base a distance scale on.

3Not all corresponding points need to be identified in each image.
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Instead, as described in Zitrin et al. (2010), the size of the area of all
back-projected image points is used. This places some control over
the GA in the hands of the outermost sources, as they determine
this scale, which in turn affects the calculated fitness value. If one
wants to guard against this, it is possible to base this scale on the
median absolute deviation (MAD) of the back-projected positions,
at the expense of some additional computations. In this point image
approach, using magnification information of the point images is
not available as a constraint in the optimization procedure.

These ‘overlap’ fitness measures work in the source plane, and
while the choice of the distance scale used for measuring overlap
avoids preferring trial solutions that merely overfocus the images, in
essence it remains a source plane optimization. The back-projected
images will not coincide perfectly, and because only a source plane
criterion is used, there is no guarantee that these differences will
stay small in the image plane (see also Kochanek 2006). The root-
mean-square (rms) value of the predicted versus provided image
positions can be used to measure this, and in practice this has
turned out to be very acceptable using the fitness measure above.
In case a relatively bad rms is obtained, or if one would like to
improve it even more, a fitness measure based on the differences
in the image plane instead of the source plane can be used. To do
so, these differences in the image plane �θ are approximated by
multiplying the corresponding difference in the source plane �β

with the inverse of the magnification matrix A (see equation 6),
similar to the approach in Oguri (2010), appendix 2. Specifically,
for a set of corresponding image points, each of the back-projected
points in turn is used as a possible source position,4 and differences
with other back-projected positions are translated into image plane
differences using the magnification matrix. The sum of these
squared differences is the basis for the fitness measure. To avoid
sources with more images having a disproportionally large influence
during the optimization, per source the average of this sum is used.
The complete fitness value, for all sources, then consists of the sum
of these single source contributions. By itself this fitness criterion
does not seem to yield source plane points that overlap as well as
the other overlap fitness measures, but using both fitness measures
together in the multi-objective GA usually provides solutions that
perform well on both accounts – at the expense of an extra fitness
criterion however.

Depending on the number of observed images that can be used for
the lens inversion, it may be possible for the GA to evolve towards
a solution that, while correctly predicting the input images, also
predicts unobserved extra images. To help the GA steer clear of such
suboptimal solutions, an additional null space fitness measure can be
specified. For a source with extended images, one typically creates a
grid of triangles encompassing a part of the image plane, where not
only regions containing the observed images are cut out, but also
regions where unobserved images are possible, e.g. behind bright
cluster galaxies. By projecting these triangles on to the source plane
and determining the amount of overlap with the estimated source,
a value is obtained that expresses if there are extra images and how
prominent they are (Liesenborgs et al. 2007). For point images, a
more straightforward approach is used: there, a simple uniform grid
of triangles is used, i.e. no regions are cut out, and the number
of back-projected triangles that overlap with the estimated source
are counted, thereby providing a rough estimate of the number of
images of the source (Zitrin et al. 2010). For both approaches, the

4This is the default behaviour, alternatively the average of the back-projected
image points can be used as well.

grids have typically been based on a uniform subdivision of an image
plane area ranging from 48 × 48 to 64 × 64 square grid cells, each
cell consisting of two triangles. Specific regions, e.g. the observed
images, can be removed from this uniform grid automatically. The
grid is taken to be larger than the area of the images themselves to
avoid failing to detect extra images that lie farther away from the
central region – which would not overlap with any of the triangles.

In Liesenborgs et al. (2009), a fitness measure was described in
case time delay information is available, to study the constraints
provided in the SDSS J1004+4112 lensing system. In Section 4,
we shall introduce an alternative formulation and investigate the
performance of the existing and new fitness measures.

While GRALE is designed for the inversion of strong lensing
systems, having information about the larger, weak lensing region
is becoming increasingly common. It would therefore be desirable
to be able to integrate the available weak lensing measurements
into the inversion procedure. Section 6 formulates a fitness measure
that can be added to the multi-objective GA, and investigates the
information that can be retrieved in this way, for various degrees of
correctness of the weak lensing shear estimates.

4 TI ME D ELAYS

When available, time delay measurements between images of the
same source provide especially valuable information. As shown
in equation (5), they directly probe (non-local) differences of the
projected potential. The image positions themselves only provide
information about its gradient (equation 2), and local image defor-
mations even only sample the curvature of the projected potential.
As explicitly demonstrated in Liesenborgs & De Rijcke (2012), time
delay information is therefore very useful in breaking the MSD.

The original fitness measure for including time delay information
is based directly on (5). That equation mentions a single source
position however, which is not known at optimization time, and for
this reason each of the back-projected image points βk = β(θ k) is
used as a possible source position. Calling

�tij,kl ≡ t(θ i , βk) − t(θ j , β l), (15)

the time delay fitness contribution for a single source was given by

fitnessTD,2009 =
∑
i∈T

∑
j∈T
j 	=i

N∑
k=1

N∑
l=1

(
�tij,kl − �tobs,ij

Sij

)2

, (16)

where the subscript 2009 refers to Liesenborgs et al. (2009), where
this equation was introduced. The set T is the subset of image
positions for which a time delay measurement exists, N is the
number of images of the source under consideration, and in case
multiple sources with time delays are available these contributions
are simply added. The comparison scale Sij is by default set to
�tobs, ij, administering all time delays the same relative importance.
As this may be impractical in case a time delay is close to zero for
example, a different scale value may be set instead.5

Remembering that this fitness measure will be used in conjunc-
tion with the default positional fitness, the effort to compensate for
the unknown source position in the expression above actually ap-
pears to incorporate this overlap requirement as well. Interestingly
it has been shown in e.g. Borgeest & Refsdal (1984) and Gorenstein,
Falco & Shapiro (1988) that the source position can be eliminated

5Currently only a single value for all time delays for a source can be set.
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from the time delay expression: expanding the expression for �tij

and noting that β = θ i − αi = θ j − αj, one finds

�tij ∝ 1

2
(θ i − θ j ) · (αi + αj ) − ψ(θ i) + ψ(θ j ), (17)

where αi ≡ α(θ i) and the proportionality factor is the same as in
(5). Comparable to the fitness measure above, we can now base the
time delay fitness on

fitnessTD,NoSrc =
∑
i∈T

∑
j∈T
j 	=i

(
�tij − �tobs,ij

Sij

)2

. (18)

Below we shall explore the relative performance of these two
fitness measures, where the inversions were performed using the
default grid-based approach to lay out the Plummer basis functions,
and with a mass sheet basis function enabled. Apart from the
positional and time delay fitness measures, the null space criterion
was used as well. The lens model used is the LENSTOOL one for
Abell 16896 (Limousin et al. 2007), which is merely used as an
example of an underlying true mass density, i.e. the simulated
images have no relation with the images observed in that cluster.
Instead, eight source positions were chosen, generating 32 images.
To assess the effect of adding the time delay fitness measures, in
these tests all of the multiple image systems were equipped with
time delay information.

Neither in this test, nor in the ones in the next sections, the
true lens model originates from an N-body simulation. The non-
parametric inversion method uses a multitude of basis functions to
be able to model mass distributions with rather arbitrary shapes,
implying that the origin of the observed images should not matter.
The images can be based on simulations using an analytical model,
as in this example, using more complex N-body simulations, e.g. as
in Meneghetti et al. (2017), or, of course, real world observations.
To assess properties of the reconstruction procedure in general, one
would not want to be restricted by the kinds of models that N-body
simulations produce, but allow more flexible mass distributions, e.g.
differing by an MSD-like scale factor, as well.

The true lens as well as the generated images and corresponding
sources can be seen in Fig. 1. The reconstructions for this system,
for both fitness measures, are depicted in Fig. 2. In the top half,
where fitnessTD, 2009 was used, the contours of the recovered density
indicate a distribution that is less steep, and has a larger density
offset than in the bottom half, for fitnessTD, NoSrc. A similar effect
can be seen when comparing both reconstructions in the left-hand
panel of Fig. 3, where the densities at the locations of the images are
shown, and is highly suggestive of the presence of the MSD. The
centre panel of the same figure shows the fraction of the recovered
density κ to the real density κR, in the part of the lens plane under
consideration. Whereas the recovered density using fitnessTD, 2009

only lies within 10 per cent of κR in a relatively small region,
the correspondence for the newly proposed fitness measure clearly
covers a much larger region, with main differences where the mass
peaks in the true model are located.

This MSD effect can also be seen in the right-hand panel, where
the magnification is shown for a source at a redshift of z = 9,
similar to figs 21 and 22 of Meneghetti et al. (2017). Note that this
redshift dependence causes the actual magnification of the images,
which correspond to other redshifts, to differ. As the magnification

6Available from the LENSTOOL web site: https://projets.lam.fr/projects/lens
tool/wiki

can change over orders of magnitude, we have chosen to plot
the logarithm. The consistently different magnification for the old
fitness measure is again a manifestation of the MSD, which is far
less problematic with the new fitness measure. Still, being dependent
on second derivatives of the projected potential, the magnification
can be rather sensitive to small differences in models. For the new
fitness measure, differences can therefore also be seen, although far
less consistently, and most pronounced where there are no image
constraints.

In the right-hand panels of Fig. 2, the recovered sources are
compared to the input source positions, where the latter are offset
to have the same centre location. In a gravitational lensing scenario,
the overall offset of the source positions cannot be constrained, as
is explained in more detail in Appendix A. By using this offset in
the plots, the scales of the recovered versus input source planes
can however easily be compared visually. The exact MSD from
equation (14) as well as the generalized versions cause differently
scaled source planes to correspond to the same observed images,
and the estimated λest from these recovered and real source plane
scales can therefore be used to indicate the degree to which the
correct solution has been retrieved. Note that the relation between
source sizes and image sizes is precisely what the magnification
corresponds to, so the consistently larger magnification in the top
right part of Fig. 3 is to be expected based on this difference in
source plane scales.

Based on these results, using the newly proposed fitness measure
appears to be advantageous, as both densities at the image positions
and scale of the source planes are recovered more accurately.
To further assess the performance of the two time delay fitness
measures, the time delays that were provided as input will be
compared to the predicted time delays, which are calculated as
follows. First, the image points for the same source are projected
back on to their source plane and their average – the straightforward
average, not using weights based on the magnification – is used as
the source position β. The image positions θ that correspond to this
β are recalculated, yielding image position predictions that differ
somewhat from the input positions. This β and these θ positions
are subsequently used to calculate time delay differences using
equation (5), and finally compared to the input time delays. In
this experiment, 40 individual solutions were generated to estimate
accuracy and precision.

The left-hand panel of Fig. 4 shows the averages and standard
deviations, based on the 40 individual solutions, of the time delay
predictions for this test, for the images of a single source. The
dotted black line shows these quantities for the existing fitness
measure, whereas the solid blue line shows those for the newly
proposed one. Plots for the other sources show the same trends,
which can in fact be more clearly seen in the other parts of the
figure, where for each source, and each image pair, the time delay
fraction �tij/�tij, obs is shown. The quite consistently smaller time
delay sizes for fitnessTD, 2009 can again be seen as an MSD effect,
rescaling the projected potential as well as the density. For this test,
the effect is quite clear: the new fitness measure that eliminates the
unknown source position produces predictions that match the input
time delays to a much better degree.

5 SUBSTRUCTURE

The default procedure that uses the subdivision grid to arrange basis
functions can have problems recovering small-scale substructure:
for basis functions with the required resolution to be present, one
would need the mass threshold responsible for splitting a grid
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Extended lens reconstructions with GRALE 3261

Figure 4. Left-hand panel: this figure compares the predicted time delays to the input ones (diamond symbol) for all image pairs of one particular source,
indicated by squares in the centre panel of Fig. 1; the time delays are shown as a number of days. The dotted black line shows the average and standard deviation
when the existing fitnessTD, 2009 is used, whereas the solid blue lines correspond to the new fitnessTD, NoSrc. For this system, as well as the ones that are not
shown in the figure, the latter fitness measure produces time delay predictions that correspond better to the input time delays. Right-hand panels: instead of
showing the time delays themselves for all image pairs, these figures show the fraction of predicted time delay to true time delay for all sources, and for all
image pairs per source. The error bars again indicate averages and standard deviations. Clearly, the new fitness measure provides much better correspondence
with the true time delays. The fact that fitnessTD, 2009 produces time delays that are consistently shorter can be largely attributed to the MSD, which would
scale time delays by a certain factor. A colour version of this figure is available online.

cell into four new cells to be relatively low, as such small-scale
substructure would not enclose a particularly massive region. This
in turn causes other regions to be subdivided quite finely as well,
leading to a very large number of basis functions. Without an
adequate number of available constraints, the GA would easily
evolve to a suboptimal solution, essentially getting lost in the
parameter space.

As mentioned in Williams & Liesenborgs (2019), this insufficient
resolution was the case in the inversion of MACS J1149.6+2223. In
that cluster, a well-resolved background galaxy can be seen as three
separate large images, and a supernova, SN Refsdal (Kelly et al.
2015), in one of the spiral arms was actually visible four times in one
of these three images. This quad, with a relatively small separation,
is generated by a cluster galaxy that overlaps with one of the larger
images. The increased flexibility for placing basis functions that
was described earlier, allows one to handle such cases with small-
scale substructure, where one has a strong indication that extra mass
needs to be present at a particular location, for example because of
the presence of a cluster galaxy as in MACS J1149, combined with
a lack of accuracy in the initial reconstruction. While it has now
become easy to add small-scale substructure throughout the lensing
region, in our opinion one should only make use of this when the
default inversion procedure fails to recover something fundamental,
e.g. the multiplicity of a lensed source.

To study a similar situation, the simulated gravitational lens
shown in the left-hand panel of Fig. 5 was used: the overall elliptical
mass distribution at z = 0.4 causes 81 images of 20 point sources,

where four of the images are created by the presence of a carefully
placed small mass clump at (− 4.8 arcsec, −18.1 arcsec), also
shown in the inset. For both the main component and the small
perturbation, a non-singular isothermal ellipse (NSIE) model was
used. The true source positions can be seen in the left-hand panel
of Fig. 6.

The centre panel of Fig. 5 shows the recovered mass distribution,
an average of 20 individual solutions, when the default procedure
using the dynamic subdivision grid is used. While the solution does
hint at the presence of extra mass in between the quad images, a
comparison of the input image positions (crosses) to the predicted
image positions (circles) shows that the reconstruction does not
have the required resolution to predict all images of the quad – in
fact, only a single image position is recovered. The back-projected
image positions, i.e. the estimated source positions, are shown in
the centre panel of Fig. 6. While the overall scale of the situation is
very similar to the one for the input sources, as can be seen from
the λest value that expresses the fraction of these scales, and that
indicates that the MSD scale factor and offset are recovered well,
the back-projected images of the system containing the quad clearly
overlap less well than the other ones.

To allow this source and the quad images to be recovered more
accurately, in a small region in between these images other basis
functions were added. Overall, the same subdivision steps were
used as in the default inversions, but at each subdivision step basis
functions based on a small, uniform 15 × 15 grid were added as
well. Given the paucity of constraints for the quad region, these
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Figure 5. Left-hand panel: the mass distribution used to study the situation where small-scale substructure causes an extra quad to appear. Both large-scale
distribution and small perturbation are modelled using NSIE lenses, placed at z = 0.4. The contours indicate lines of equal convergence κ , calculated for a
redshift of z = 1.5, which is the redshift of the multiple image system containing the quad (filled circles); the inset shows this region in more detail. The thick
solid line indicates κ = 1, the spacing between contours corresponds to �κ = 0.25. Small points indicate the other point images. Centre panel: the default
subdivision procedure leads to this reconstruction, an average of 20 individual reconstructions. The input point images are shown as crosses, the corresponding
images predicted by the model as open circles. As shown in the inset, the quad images cannot be reproduced, as the required density perturbation is not
recovered. Right-hand panel: similar to the centre panel, but this time extra basis functions were used to allow for a smaller resolution in between the quad
images (see text). This time, the quad can indeed be reproduced.

Figure 6. Left-hand panel: the 20 true source positions that generate the multiple image systems shown in the left-hand panel of Fig. 5. Here too, the source
responsible for the quad is shown as a filled circle. Centre panel: the back-projected images using the reconstruction in the centre panel of the same figure,
compared to the true source positions; the diameter of the grey circles is 1 arcsec. Similar to a previous example, the true source positions are shown with an
offset, to be able to compare true and recovered source plane scales. While the overall scale is recovered well, as are most sources, especially the images of the
quad system do not coincide satisfactorily. Right-hand panel: same, but using the reconstruction of the right-hand panel of Fig. 5. The agreement of the source
plane scales is even more similar, but especially noticeable is the fact that the points of the quad system now overlap to a much better degree.

extra basis functions should provide more than adequate flexibility.
The result of this slightly modified procedure can be seen in the
right-hand panel of Fig. 5. Due to the extra basis functions available
in between the quad images, mass could be placed there allowing
the reconstructed lens to predict the existence of these images as
well.

In the right-hand panel of Fig. 6 the back-projected images are
shown for this reconstruction, showing that the images of the system
with the quad now overlap to a much better degree. The overall scale
of the recovered sources still corresponds very well to that of the true
sources, indicating that the MSD scale factor is found accurately.
This is further supported by the left-hand panel of Fig. 7 that
compares the mass densities of the input lens to this reconstruction.
While there certainly are differences, mostly near the main mass
peak, the overall steepness appears very similar, as does the density
offset. In fact, the similarity is within 10 per cent of the true mass
density for a considerable part of the lens plane area, as can be seen
in the centre panel of the figure. The right-hand panel compares

the magnifications of the recovered and true densities, indicating a
correspondence that could be expected from the matching source
plane scales.

When comparing all back-projected images to the true sources,
it does appear that the reconstruction in the right-hand panel of
Fig. 6 performs in general better than the one without the small-
scale basis functions in the centre panel. The true source positions
are never an observable however, and as described in Appendix A
cannot be fixed. The only true criteria one can use to ascertain
how well a reconstructed model fits the observations are how well
the back-projected images correspond to a single source, and more
importantly how well the re-traced images from the estimated source
positions correspond to the observed images. For all multiple image
systems except for the quad, both solutions, with and without
the small-scale substructure, perform similarly. This can be seen
explicitly in Table 1, where the rms for each system has been
calculated in the following way: the average of the back-projected
images is used as the source position, and starting from the observed
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Figure 7. Left-hand panel: using the recovered mass map shown in the right-hand panel of Fig. 5, the densities κ at the positions of the images are compared
to the densities of the real lens, κR; the positions of the quad images are indicated by vertical lines, more clearly discernible in the inset. While there are
certainly differences, the overall steepness as well as the density offset appear to be recovered correctly. Centre panel: the relative density, κ/κR, of recovered
and true lens models, over the lens plane region; the black line again indicates a change of 10 per cent. This boundary covers a large part of the region, with a
notable exception at the position of the quad, indicating that further, more local degeneracies can play a role. Right-hand panel: comparison of the recovered
magnification μ to the one of the real lens model, μR. The correspondence shows much less variation as compared to the example in Fig. 3, undoubtedly due
to a less complex mass model needing to be recovered.

Table 1. For each of the sources used in the substructure test, the rms comparing the true image locations to the predicted ones is specified in arcsec. The first
line, ‘Default rms’ shows the rms that results from the default procedure, corresponding to the reconstruction in the centre panel of Fig. 5. The second line,
‘Substructure rms’, are the values for the model in the right-hand panel of the same figure. Only source 20, the one containing the small-scale quad, shows a
clear difference.

Source 1 2 3 4 5 6 7 8 9 10

Default rms 0.17 0.22 0.16 0.25 0.27 0.12 0.11 0.14 0.17 0.067
Substructure rms 0.24 0.19 0.15 0.26 0.20 0.15 0.092 0.14 0.15 0.078

Source 11 12 13 14 15 16 17 18 19 20

Default rms 0.32 0.41 0.23 0.14 0.19 0.11 0.25 0.10 0.076 2.8
Substructure rms 0.32 0.42 0.18 0.17 0.14 0.081 0.15 0.17 0.061 0.22

image positions, these are modified to correspond to that source
position. The table shows a clear difference for source 20, the one
containing the quad, while the images of the other sources all have
a very similar rms in the two reconstructions.

For each set of basis functions, the GA will look for appropriate
weights. The initial weights, e.g. the initial masses of the Plummer
basis functions, as well as their relative contributions will of course
affect this search. For the overall mass distribution, the total mass
required is automatically estimated from the separations in the
multiple image systems, and the initial weights are chosen to
correspond to this total mass. For the extra basis functions, which are
needed to reproduce the quad images, no such automated procedure
is provided however, and an extra mass scale for this region needs to
be provided manually. In the reconstruction shown in the left-hand
panel of Fig. 5, this mass scale was set to 1010 M�.

Fortunately, the procedure does not appear to be very sensitive
to the choice of this initial mass scale, as can be seen in Fig. 8.
There, similar reconstructions are shown, only differing in this
mass scale for the small region, changing over four orders of
magnitude, from 108 to 1012 M�. The details are different, as there
are only very few constraints for the small region, but in each
case a reconstruction could be found. The addition of a small null
space constraint, only for the region around the quad, was helpful
in preventing the optimization from placing too much mass there,
mainly for the larger mass scales. The right-most panel compares
the recovered critical lines to the ones of the true lens. While there

are some differences, which can be expected due to the lack of
constraints in the region of the small mass density peak, the overall
correspondence is good.

Instead of using a grid of Plummer basis functions to be able
to account for a wide variety of mass distributions in between the
quad images, one could imagine using a single, more simple density
profile. To illustrate that the extensions to GRALE now make it
possible to combine the default, Plummer basis functions with a
different one, here we use a single SIS basis function inside the
quad. While the previous approach certainly aligns better with the
non-parametric philosophy of this inversion procedure, there may
be cases where a lack of constraints suggests such an approach. The
result of this, again an average of 20 individual reconstructions, is
shown in Fig. 9. In this case, the null space in the quad region was no
longer enabled, but unfortunately only using the overlap fitness did
not consistently predict the quad with acceptable accuracy. Enabling
the rms fitness measure in conjunction with the standard overlap
fitness improved the results considerably, and, as the image shows,
the resulting model can successfully reproduce the quad.

6 W EAK LENSI NG

The positions of the multiply imaged sources that can be used to
constrain the mass density in the strong lensing region, are often
available with very good accuracy. The region in which multiple
images are produced is limited however, but beyond this, the
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Figure 8. The first two panels show results similar to the right-hand panel of Fig. 5, but for different settings of the mass scale in the region of the small
density peak (see text). The right-hand panel shows the critical lines at the redshift z = 1.5 of the source, for both the reconstruction from the right-hand panel
of Fig. 5, and the true lens.

Figure 9. Instead of using a grid of Plummer basis functions to account for
the small-scale substructure, one can imagine that based on the visible light
a single basis function is used. In this example, a SIS lens was placed at the
centre of the mass peak inside the quad, and its weight was subsequently
optimized during the inversion procedure. As shown, the resulting model is
also capable of explaining the observed images, including the quad. For this
inversion to succeed consistently, the extra rms fitness measure needed to
be enabled.

deformations of background galaxies may still provide additional
information about the gravitational lens. As the intrinsic orientation
of the background galaxies cannot be known, this weak lensing
signal is statistical in nature.

To work with such information within the inversion framework
of GRALE, it is assumed that in a pre-processing step, the ellipticity
information of the available background galaxies has led to esti-
mates of the average ellipticity 〈ε〉measured

i at a number of positions
θ i. By calculating the reduced shear at these positions, equation (13)
allows one to compare these measured values to the ones predicted
by the model, 〈ε〉model

i . This suggests the use of the fitness measure

fitnessWL =
N∑

i=1

wi

∣∣〈ε〉measured
i − 〈ε〉model

i

∣∣2
, (19)

where there are assumed to be N such measurements, and weights wi

allow control over their relative importances if desired. Alternatively
one could imagine using all ellipticity measurements directly,
preventing overfitting the noise by an appropriate choice of a

low number of basis functions. While the same fitness measure
could still be used, this approach will not be explored in this
article.

As the reduced shear is calculated by dividing the regular shear
values γ by the factor (1 − κ), these values can become large in
regions where κ is near its critical value, possibly even triggering a
division by zero error during the optimization. To avoid such regions
having a large effect during the course of the optimization, when
the GA is still in the process of determining the very κ map and
a near-critical part of an otherwise good trial solution could cause
it to be discarded, a threshold can be set for |1 − κ|. Only points
where |1 − κ| exceeds this threshold are included in the summation.
In the reconstructions below, this threshold was set to 0.1.

6.1 Simulated lens and reconstructions

To study the use of weak lensing data in GRALE, the simulated
gravitational lens shown in Fig. 10 was used. The shape in the
strong lensing region (centre panel) is based on a lens model used in
Liesenborgs et al. (2009), but embedded in the large-scale structure
shown in the left-hand panel. Due to the use of this existing lens
model, contrary to the other simulations this one used a matter
density �m = 0.27. The centre panel shows the 75 point images
generated by the sources in the right-hand panel. Three scenarios
for the weak lensing input will be used, each time providing sets of
48 × 48 values for 〈ε〉measured

i , arranged on a uniform grid, covering
the 30 arcmin × 30 arcmin region.

In scenario (A), the ideal yet unrealistic case, these ellipticity
values are in fact the exact values calculated from the model using
equation (13). Furthermore, as weak lensing data at a single redshift
do not provide enough constraints to fix the MSD scale, not even in
the case of the exact MSD, let alone a generalization, three different
redshifts, z = 1, 2, and 4, were used to calculate the ellipticities
for all grid points. The first panel of Fig. 11 shows the orientations
(see equation 12)) and sizes of these data points, where the length
of |ε| = 1 is shown in the inset. For scenario (B), a first degree of
randomness was introduced: for each grid point, 25 random source
ellipticities were transformed using equation (11), and these were
subsequently averaged. As in the previous scenario, this was in fact
done for the three redshifts of z = 1, 2, and 4. This leads to a more
noisy version of the true ellipticity field, as can be seen in the second
panel of the figure.
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Extended lens reconstructions with GRALE 3265

Figure 10. The simulated gravitational lens, at z = 0.4, used in the weak lensing tests. Left-hand panel: the large-scale mass structure that will be probed by
ellipticity measurements with varying degrees of accuracy. The thick line corresponds to κ = 1 for a redshift z = 3. To make the large-scale structure more
clearly visible, the contours are separated by a small �κ = 0.025. Centre panel: the strong lensing region of the same mass distribution. The thick line again
corresponds to κ = 1, while the contour spacing is now �κ = 0.2. The dots indicate the positions of the 75 point images that are included as constraints.
Right-hand panel: the 25 point sources that cause the images from the centre panel.

Figure 11. Illustrations of the input ellipticity data used in the three scenarios for the weak lensing tests. First (left most) panel: in scenario (A), the input is
the exact ellipticity information calculated from the true model, on a 48 × 48 grid. Here, the orientation and sizes for z = 1 are shown; the inset shows the size
of |ε| = 1. Second panel: similar, but for scenario (B), where 25 random source ellipticities were transformed at the grid points, and averaged. The result is a
more noisy version of the previous ellipticities. Third panel: for scenario (C), 12 000 source ellipticities at different redshifts were transformed. These were
binned according to redshift, and on a 48 × 48 grid the weighted averages were calculated. The last panel shows the result for the bin corresponding to z =
1.5, one of the inputs in scenario (C). To avoid the less correct weak lensing data affecting the more accurate strong lensing constraints, the central 2 arcmin
region was excluded.

In the third scenario, (C), a situation like one that could be
encountered in practice is considered: similar to the weak lensing
information that was made available for the mock clusters Ares and
Hera (Meneghetti et al. 2017), 12 000 random source ellipticities at
random redshifts were transformed by the real gravitational lens
model, the result of which is shown in the third panel of the
figure. These ellipticities were then distributed over a number of
redshift bins, chosen to contain the same interval 0.1 in Dds/Ds

space. For each bin, for each of the grid points, the ellipticities were
averaged using a Gaussian weight function of size 1 arcmin; the
right-hand panel of the figure shows the result for one of the resulting
redshift bins. The use of a Gaussian weight function was also
mentioned in Lombardi & Bertin (1998), to assign more importance
to measurements close to the grid point under consideration. Other
averaging methods exist as well, e.g. based on the points that lie
inside a grid rectangle as in Cacciato et al. (2006), or even circular
regions that are different in size, so as to contain a certain number
of ellipticity measurements (Merten et al. 2009). To illustrate the
issues that may arise from combining strong and weak lensing
measurements, the chosen method suffices. To avoid the lower
accuracy weak lensing signal inside the strong lensing region
interfering with the more accurate strong lensing data, a central

circular region with a 2 arcmin radius was excluded in this case.
As the central region tends to contain bright cluster galaxies, it is
furthermore not unlikely that only little ellipticity information of
background galaxies would be gathered there.

Note that in all scenarios, the ellipticity measurements themselves
are still assumed to be entirely correct. The only sources of error
are the number of measurements available to obtain an estimate of
the average value (scenario B), as well as the spatial distribution
of the measured ellipticities (scenario C). In settings (A) and (B),
no different weights were provided; in (C) the number of ellipticity
measurements in the redshift bin was used as weight wi.

To be able to assess the added information provided by the
ellipticity data, not only in the wider weak lensing region but in
the central, strong lensing region as well, for reference Fig. 12
shows the results when using only the information from the multiple
images, as well as the null space. As is usual in these kinds of
reconstructions with GRALE, the aforementioned mass sheet basis
function was included. For these results, and in the other inversions
that follow as well, the average solution of 20 runs is shown. As the
left-hand panel shows, the general features of the central region are
recovered, and as the relative densities κ/κR are centred on 1, based
on the densities at the image positions no clear MSD scale factor
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3266 J. Liesenborgs et al.

Figure 12. Using only the strong lensing constraints for the simulated lens of Fig. 10, these results are obtained. Left-hand panel: the average mass map of 20
individual runs, where the mass sheet basis function was included. The general features of the true mass distribution could be recovered. Centre panel: comparing
the true source positions to the back-projected images shows that overall, the scales correspond well, although there is slight overfocusing. The diameter of the
filled grey circles is 2 arcsec. Right-hand panel: a comparison of the true and recovered densities at the image positions, of which the x-coordinate is used on
the horizontal axis, shows no obvious differences in density offset or steepness.

can be detected. As can be expected from this correspondence, the
scale of the recovered source planes is only slightly different from
the true one, as the central panel shows, the estimated scale factor
λest differing by only a few per cent.

For the next inversions that we shall consider, apart from the
strong lensing fitness measure for point images, fitnessWL is enabled
in the multi-objective GA as well. The null space fitness measure
was not needed to avoid spurious structures in the recovered mass
maps. To provide the Plummer basis functions of which the weights
need to be optimized, an approach similar to the one used in the
example from Section 5 is used, but this time for the wide area
instead of a very small one: as in other inversions, the different
steps with the subdivision grid is used for the strong lensing region,
and to be able to model the weak lensing region as well, in every
step extra basis functions are added that cover the weak lensing
region, laid out according to a uniform 48 × 48 grid. Originally, a
mass sheet basis function was introduced because the strong lensing
region could contain a non-negligible density offset that may be
difficult to model using several separate Plummer basis functions.
Now that the inversion area is much wider, and assuming that the
density near the border of the region will be low, it makes sense to
expect the weak lensing signal to recover the overall structure, and
thereby provide the required density offset inside the strong lensing
region. The results shown in Figs 13 and 14 are therefore the ones
obtained without enabling a mass sheet basis function.

The three rows in Fig. 13 correspond to the three different
scenarios that were described earlier. The top row, in which the
true average ellipticities were used as constraints – scenario (A)
– recovers the wide area structure very well. The centre panel,
showing the strong lensing area displays a good agreement as well,
while the back-projected images in the right-hand panel do indicate
slightly larger source plane scales, although the effect is limited to
11 per cent. While the input ellipticity data are overly optimistic,
this scenario does illustrate that GRALE is able to combine weak and
strong lensing constraints and the code works as expected. The next
row, where the results of scenario (B) are shown, is actually quite
similar, but the reconstruction in the weak lensing region is clearly
more noisy. The third row, showing the results for the more realistic
scenario (C) is certainly the more interesting one. While the overall
structure in the weak lensing area is still visible, the result does not
provide the same accurate representation of the shape of the mass

as before. This could be expected, as the input ellipticity map is
diluted by the Gaussian smoothing. Looking at the contours in the
outer regions, it becomes clear that less mass is recovered there.
The strong lensing mass does contain the expected features, but the
back-projected images show that not only the reconstruction was
not successful in producing well overlapping points, but that the
scale set by these points differs by over 50 per cent from the one set
by the true sources.

This difference suggests the presence of the MSD, which can
clearly be seen in the left-hand panel of Fig. 14, where this last
solution is steeper and has a lower mass offset than the true lens, as
well as the other two reconstructions. Interestingly, the centre panel
indicates that beyond ∼200 arcsec the profiles of the reconstructions
do resemble the true profile, although the relative density κ/κR

of recovered to real models shows that it is consistently and
increasingly underestimated. This can also be seen in the right-hand
panel, showing the total enclosed mass versus radius, indicating that
not all mass has been captured by the reconstructions. This is not
only the case for the reconstruction using input (C), but even for
(B), as well as for the very correct looking solution for (A).

Fig. 15 shows relative densities and magnifications of recovered
and real lens models, in both strong and weak lensing regions.
In scenarios (A) and (B) the main difference is the density in the
wider, weak lensing area, but for (C), the strong lensing region as
well shows considerable differences. The difference in source plane
scale can be seen as a consistently lower magnification. While the
difference in steepness and mass offset in the strong lensing region,
as well as the different magnification can all be attributed to the
MSD, the fact that the magnification deviates with a different factor
in strong and weak lensing regions suggests a different MSD-like
effect in both regimes.

Disabling the mass sheet basis function was prompted by the idea
that the reconstruction in the weak lensing area would provide any
mass sheet like effect that might otherwise be difficult to account
for. But as the previous reconstruction for input (C) still seems
to suffer from the MSD, and this was not the case for the strong
lensing only reconstruction, it is interesting to see the effect of
the inclusion of such a basis function. Similar to the previous
figures, Figs 16, 17, and 18 show the results for these inversions,
this time with a mass sheet basis function enabled. The left-hand
panels of Fig. 16 show that in all three cases the shape of the
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Extended lens reconstructions with GRALE 3267

Figure 13. The three rows correspond to inputs (A), (B), and (C), obtained when the mass sheet basis function is not used. The left-hand panels show the wide
area reconstruction, mainly due to the weak lensing data, where the background shows the shape of the true mass density for comparison. To make the small
features better visible, a logarithmic grey-scale was used. The centre panels show the reconstructions of the strong lensing regions, all having quite similar
features. While the overall shapes are similar, the contour spacing in scenario (C) shows a steeper mass map. The right-hand panels show the back-projected
images in each case. While consistent source positions as well as the source plane scales could be recovered for scenarios (A) and (B), the scales differing by
11 and 13 per cent, respectively, for scenario (C) neither do the back-projected images overlap well, nor is the scale of the back-projected images consistent
with the true source plane scale. The size of the filled grey circles is again 2 arcsec.

wide area mass distribution does seem to be recovered, albeit
with different mass offsets, slopes and level of detail. The centre
panels show strong lensing masses that are very similar to the
true mass distribution there, and the right-hand panels indicate that
the recovered source plane scales correspond very well to the true
ones.

That the MSD scale factor is obtained correctly, at least in the
strong lensing region, can also be seen in the left-hand panel of
Fig. 17, where all profiles now have similar steepness and offset,

and in the left part of Fig. 18. In the right part of that figure, showing
the wider area, as well as in the centre panel of Fig. 17, the presence
of the mass sheet basis function becomes very obvious however.
The integrated mass, in the right-hand panel, is therefore clearly
larger than the correct one in all three cases. Whether or not there
is non-negligible density in the outer regions, and using a mass
sheet component may be warranted, will depend on the situation.
As this example illustrates, it may however not be straightforward to
determine this automatically. While the correctly estimated source
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3268 J. Liesenborgs et al.

Figure 14. When no mass sheet basis function is used, these profiles are recovered in the weak lensing test. Left-hand panel: the circularly averaged densities
in the strong lensing region show a good correspondence for inputs (A) and (B), as can also be seen from looking at the relative density κ/κR, however, the
steepness and density offset are quite different when the input from scenario (C) is used. Centre panel: the circularly averaged densities over the entire weak
lensing area. Interestingly, even though the strong lensing region is recovered incorrectly for scenario (C), beyond ∼200 arcsec the profile matches the other
ones quite well visually, yet upon inspection of the κ/κR ratio it becomes clear that actually all reconstructions underestimate the real density. Right-hand
panel: the integrated mass profiles as well show that in each one of the reconstructions the total mass is underestimated.

Figure 15. The three rows again correspond to scenarios (A), (B), and (C), and, for the inversions without enabling the mass sheet basis function, show the
fractions of recovered densities and magnifications compared to the true ones. The left-hand panels show these fractions for the strong lensing region, the right
ones for the weak lensing region. Similar to the circularly averaged profiles, scenarios (A) and (B) show that in the strong lensing region the density traces
the true one within 10 per cent (black solid lines) in the central part, while the weak lensing maps reveal a consistently lower reconstructed density. Not only
is this underdensity present in (C) as well, but the different steepness in the strong lensing region manifests itself as only a very small part in the 10 per cent
range. The strong lensing magnifications confirm what could be seen in the plots of the source plane scales (right-hand panels of Fig. 13: matching scales, and
therefore magnifications, for (A) and (B), while the larger source plane scale for (C) corresponds to a lower magnification. For the wider weak lensing regions,
the magnifications are more similar, in case (C) suggestive of different MSD scale factors for both strong and weak lensing regions.
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Extended lens reconstructions with GRALE 3269

Figure 16. Similar to Fig. 13, but with the mass sheet basis function enabled. In all cases the structure shape in the weak lensing region is recovered (left-hand
panels), albeit with different levels of accuracy and somewhat different density offsets. The recovered strong lensing mass (centre panels) is very similar in
each case, and the back-projected images overlap well (right-hand panels). The recovered source plane scales match the true ones in all three cases, as can be
seen from their λest estimates, indicating that the MSD scale factor is recovered well in the strong lensing region.

plane scales in the strong lensing region can be seen as matching
magnification ratios in the left part of Fig. 18, the situation is
clearly different in the weak lensing region. The fact that there
the magnification is consistently larger than the true one is again
suggestive of different MSD-like scale factors in strong and weak
lensing areas.

6.2 Mass-sheet-like degeneracy

The fact that with this mass sheet basis function enabled, the shape
of the mass density in the weak lensing area is still recovered well,
is of course in itself a manifestation of the MSD. Whereas the last
images show that in the strong lensing region the MSD scale factor
is obtained correctly, in the weak lensing region a different one is
obtained.

To better understand why the weak lensing data, containing
information about different redshifts in each scenario, is not able to
constrain this contribution better, a simple experiment is performed:
starting from the true lens model κ0 from Fig. 10, a new one is
constructed in the following way. First, a mass sheet with a specific
fixed density κ s is chosen. Next, a scaled version of the true lens is
added where the scale is determined numerically to be the one that
minimizes fitnessWL, leading to the lens with the mass density

κ1(θ ) = λoptκ0(θ ) + κs. (20)

The results are shown in Fig. 19, where columns refer to the different
input scenarios (A), (B), and (C), the top row shows the scale factor
λopt for each mass sheet density κ s, and the bottom row shows
the effect on the fitness measure. Note that these tests calculate
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3270 J. Liesenborgs et al.

Figure 17. Similar to Fig. 14, but with the mass sheet basis function enabled. The circularly averaged profiles in the strong lensing region (left-hand panel)
show a very good correspondence to the true profile in all cases, as can also be seen from the plot of the relative density κ/κR. The profiles for the entire area
(centre panel) not only show a considerable mass sheet for scenario (C), where the back-projected images show an improved reconstruction, but also for (A)
and (B). The presence of a considerable mass sheet basis function in each case, does not only cause a large ratio of recovered versus true density in the outer
regions, but also causes the integrated mass profiles to overestimate the correct enclosed masses in all scenarios (right-hand panel).

Figure 18. Similar to Fig. 15 but for the inversions where the mass sheet basis function was enabled. The strong lensing figures indicate a very good
correspondence of reconstructed and real mass densities over most of the strong lensing region; the matching source plane scales can also be seen as matching
magnifications. As can be expected from the circularly averaged density profiles, the situation is different when considering the weak lensing region. Not only
is there a considerable relative overdensity in all three scenarios, the magnification is also larger than the true one in all three cases, different from the one in
the strong lensing region.

fitnessWL for various lens models, constructed in the way described
here, but do not use the GA-based inversion procedure.

Similar to Seitz & Schneider (1997), where a distribution of
redshifts is shown to still allow an MSD, the top row also shows

a nearly linear relation for the best scale factor with respect to the
density of the mass sheet. For scenarios (A) and (B), the lowest
fitness value is for the true density map, or κ s = 0, indicating that
in those cases the different redshifts successfully break the MSD.
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Figure 19. Based on the lens model with density κ0 from Fig. 10, a new model is constructed: starting from a mass sheet with specific density κs, a factor
λopt is determined numerically so that the new model κ1 = λoptκ0 + κs yields the lowest weak lensing fitness value. The columns indicate the different input
scenarios for which this test was performed, the top row shows how, similar to the exact MSD (equation 14), there is a nearly linear relationship between κs

and λopt, while the bottom row indicates that depending on the precise scenario, the relative fitness values do not change much.

Note however that in scenario (C), while the lowest fitness value in
the experiment is still for κ s = 0, the value for λopt actually differs
from unity, i.e. a scaled mass map has a better fitness value than the
true κ0. Note that scenario (C) was obtained by using a Gaussian
weight function; in Lombardi & Bertin (1998) it is shown that the
smoothed shear field then actually corresponds to a density map that
is convolved with the same weight function, which can explain this
observation. As the noise increases, the relative effect on the fitness
becomes increasingly less prominent, and furthermore, the effect
studied here is when the exact lens κ0 is used, but in practice this
is not the density that is available during the optimization. Instead,
multiple basis functions are used to optimize the fitness measure,
which may make the sensitivity to κ s even worse.

As also noted by Bradač et al. (2004), this experiment indicates
that while in principle weak lensing data for multiple redshifts can
break the MSD, in practice it is much less evident. It is therefore
not surprising that when combining this information with the strong
lensing data, and allowing for a mass sheet basis function, it is in
fact the strong lensing data that dictate its value, causing a scaled
mass density in the larger, weak lensing region.

For another way to look at this, let us assume that the strong
lensing constraints and weak lensing constraints do not overlap.
Based on the available data, one could perform a reconstruction
for the strong lensing region, corresponding to a projected potential
ψSL. Similarly, one could perform a reconstruction based solely on
the weak lensing measurements, leading to ψWL. The former need
not be valid in the weak lensing region, and the latter will only
provide a very rough estimate in the strong lensing region. Let us
next consider only the relevant parts of these potentials, ψSL, central

for the strong lensing region, and ψWL, nocentral for the weak lensing
region, both covering their respective constraints. As any value
can be added to the potentials without affecting observables, one
can imagine creating a ψSL + WL which is in essence ψSL, central

in the central region, and ψWL, nocentral further out, using some
interpolation in between. The combined potential will perform as
well as both separate potentials in their respective regions, but the
way the interpolation has occurred, obviously has an effect on the

resulting mass density in between these regions, possibly allowing
multiple equivalent lenses. Additionally, one can imagine that, if
the MSD is not fully broken in neither strong nor weak lensing
regions, both lensing potential parts can be first modified to create
equivalent ones, and only then combined. The MSD scale factor
would not even need to be the same for both parts, leading to even
more equivalent lens models.

It is also interesting to note that the weak lensing constraints
on the lensing potential are purely local ones, relating to only its
curvature. One could therefore imagine different MSD contributions
for different regions, for example a different mass sheet contribution
as one moves further from the centre. As different regions may be
differently sensitive to the MSD, this may be an additional effect to
take into account, also easily affecting the total mass estimate.

6.3 Ring-like structure

The circularly averaged density plots from Figs 14 and 17 are not
centred on one of the three mass peaks, but on the centre of the
coordinate system. This highlights a feature which might otherwise
be lost in the averaging procedure: in Fig. 14, the reconstruction for
input (C) clearly shows a relative overdensity around 200 arcsec.
For scenarios (A) and (B), the effect is much less pronounced, but
the reconstructed profile still deviates from the true one on the
boundary between strong and weak lensing regions. In Fig. 17, a
similar effect can in fact be seen in all scenarios.

Such effects have been encountered in other works where strong
and weak lensing measurements were combined. In Diego et al.
(2007), these ring-like structures were also perceived, followed
by the argument in Ponente & Diego (2011) that such effects
can be caused by overfitting. Interestingly, the work of Jee et al.
(2007) identified a dark matter ring in Cl 0024+17 based on a
combination of strong and weak lensing data. While the authors
make a plausible argument for the possible origin of such a structure,
further observations to confirm the existence are still awaited.

The discussion above about combining weak and strong lensing
regions, each possibly having its own MSD, provides a possible
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3272 J. Liesenborgs et al.

explanation for such ring-like features, perhaps not surprisingly
located on the border between the two regimes. More importantly,
this has no intrinsic relation to the amount of overfitting, although
depending on the precise method used, the degree of overfitting
may affect the MSD in both regions, possibly separately, and can
therefore be seemingly related to the introduction of such a feature.

7 D ISCUSSION AND CONCLUSION

In this article we have reiterated the current capabilities of the
inversion procedure in GRALE, a GA-based method, and investigated
a number of upgrades that are now available. In this method,
a number of criteria can be optimized concurrently, a common
combination being the overlap of back-projected images, as well
as the absence of unobserved, extra images, i.e. the null space.
While the combined optimization of multiple aspects is certainly
reminiscent of a regularization procedure, the criteria are not
optimized together in the typical fashion of regularization, i.e. by
combining multiple goodness-of-fit measures into a single number,
with suitably chosen scale factors for the different aspects. Instead,
a multi-objective GA looks for a common optimum of the different
so-called fitness measures.

Which of the available fitness measures should be used will
depend on the specific gravitational lensing system that is being
studied. The basic requirement is having multiply imaged sources,
but the addition of null space information may or may not cause
improvements, depending on the amount of images, their spatial
distribution and their redshifts. Because the inclusion of null
space information causes the computational complexity to increase
considerably, it is certainly worth exploring whether disabling the
null space fitness already yields acceptable solutions, as more and
more multiple image systems tend to become the norm: typically the
null space will be most useful for the systems with fewest sources.
Similarly, the fitness values describing a critical line penalty from
Liesenborgs et al. (2008b, 2009) were so far only needed in these
works, where only very few sources were available.

Because of the flexibility of the basis functions used, in prin-
ciple this now allows an approach that resembles the working of
simply parametrized inversion methods: place basis functions such
as a pseudo-isothermal elliptical mass distribution (PIEMD; e.g.
Elı́asdóttir et al. 2007) based on the observed cluster members
and optimize their contributions using the GA. Note however that,
while this approach is certainly feasible, the GA can only change
the weights of these basis functions, and not other parameters, such
as ellipticity or orientation. How useful this feature turns out to
be, for example to combine models of visible galaxies with a more
non-parametric contribution, still needs to be investigated.

Time delays can provide very useful information about the overall
lensing potential, and the time delay fitness measure proposed in
Liesenborgs et al. (2009) was evaluated more thoroughly. The test
was similar to the one used in Liesenborgs & De Rijcke (2012),
and Wagner, Liesenborgs & Eichler (2019), where a lens with
an elliptical version of a Navarro–Frenk–White (NFW; Navarro,
Frenk & White 1996) mass distribution was used to gauge the effect
of the addition of time delay information to the images of only a
single source. Here, it was found that when adding time delay
information to the images of all sources, the old fitness measure can
overfocus the images whereas a newly proposed expression appears
to avoid this. The same effect, although to different degrees, was
seen in other tests as well, both with point images and extended
images: the new time delay fitness measure yielded time delay
predictions that were more compatible with the input time delays,

and the resulting mass distributions suffered less from MSD effects.
It is interesting to note that if the images of only one source were
equipped with time delays, the overfocusing effect did not appear
for the A1689-based test.

Especially in the application to MACS J1149.6+2223
(Williams & Liesenborgs 2019) it was clear that the subdivision
grid based procedure cannot always provide adequate resolution to
account for all observed features. The updates to the inversion code
include more flexibility regarding the basis functions used, thereby
allowing small-scale structures to be introduced when studying a
gravitational lens simulation with similar features as MACS J1149,
in turn causing the observed images to be predicted more accurately.
In this approach, one can again use a number of basis functions to
be able to describe a more general small-scale mass distribution,
or use a single profile, e.g. an SIS, guided by the observed light.
As such small-scale substructures may not have many constraints,
it will depend on the specific case at hand which approach may be
more appropriate. Note that in both cases, a manual intervention to
account for small-scale features is required, making the method less
automatic, and perhaps somewhat less free-form. Investigating ways
to automate this – e.g. adding substructure due to an underestimate
of image multiplicity – will be the topic of further research.

While it appeared relatively straightforward to add weak lensing
constraints as an extra fitness measure, the experiment shown
revealed some interesting aspects. In Fig. 13, the first two scenarios
show that if the quality of the ellipticity measurements supplied to
the inversion is good, even allowing for some noise, the weak and
strong lensing data can be combined quite successfully. However,
even in the case where the ellipticity measurements are exact, the
border between both regimes is visible in Fig. 14. An incompletely
recovered total mass further indicates that the MSD scale factor was
not fully retrieved: while the true model has a lowest convergence
value of κ = 0.027, the reconstructions have a minimum that is an
order of magnitude smaller. As the weak lensing signal is further
diluted in scenario (C), these measurements no longer provide a
strong enough constraint in the strong lensing region to obtain
an accurate MSD scale there. The result for the strong lensing
region is then what is typically seen if the mass sheet basis function
is not included: the algorithm does not succeed well in finding a
model that creates overlapping back-projected images, as it is not
straightforward to create an overall mass sheet like effect using
several different Plummer basis functions. In scenarios (A) and
(B), the weak lensing constraints on the other hand were effective
in creating the right environment for the strong lensing data. In
this sense, enabling the use of the mass sheet basis function can
help in providing the right strong lensing environment, in all three
scenarios. In that case, one can still learn about the general shape
in the weak lensing region, but the precise mass density is clearly
overestimated. If one is only interested in the strong lensing region,
the inclusion of weak lensing data can be seen as having a sort of
stabilizing effect, not unlike what was mentioned in Diego et al.
(2007).

Breaking the MSD is not straightforward, not necessarily in the
strong lensing region, not in the weak lensing region, and not
in the combination of the two. Ultimately, the precise inversion
method used, and in particular what kind of prior information it
uses about the mass density that is expected, can make an important
mark on the way the degeneracy is affected. This is what was
visible in the examples shown, in various ways. In scenario (C)
without the mass sheet basis function, the MSD scale factor was not
obtained correctly in the strong lensing region, but was nevertheless
combined with a more correct looking weak lensing reconstruction
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– although still a small effect leading to a mass deficit remained.
In scenarios (A) and (B), with the inclusion of the mass sheet basis
function, the strong lensing constraints favoured the algorithm to
proceed towards a solution where a considerable mass sheet was
present, even though a good solution was shown to be available
without this basis function. The presence of such a mass sheet then
obviously affected the weak lensing mass density as well.

Regarding the addition of weak lensing data to the strong lensing
oriented GRALE, the results are somewhat mixed at this point. If
the quality of the ellipticity information is good, a reasonable
weak and strong inversion at least seems possible, even though
possible artefacts at the boundary between strong and weak lensing
regions should always be kept in mind, as well as the difficulty in
breaking the MSD globally. If one is only interested in the strong
lensing region, weak lensing data, even of less quality, can help
constrain the environment, leading to good results in said strong
lensing region. Furthermore, while the inclusion of weak lensing
data incurs additional computational complexity, it does appear that
they help constrain the mass density in such a way that including
the null space, and its associated computations, can be avoided.
To obtain an inversion result that appears more plausible over the
entire region, in the absence of better quality weak lensing data,
some further experimentation is needed. Interesting avenues include
using the weak lensing only reconstruction as a base lens, and let
the inversion procedure look for corrections to this model, either
with all positive Plummer basis functions, or allowing negative
ones as well. Related to this method, but allowing the contribution
of this base model to vary, said model in its entirety could be
added as one of the basis functions in the optimization. A different
approach would be to tweak the GA itself, influencing the way the
parameter space is explored; possibly by laying emphasis on the
weak lensing reconstruction early on, and later shift to the strong
lensing constraints to capture the details in the central region. The
updates to the framework have introduced much flexibility, but
thereby also multiple approaches to handle these, and other, issues.
Exploring these further is the topic of future investigations.
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Bradač M., Lombardi M., Schneider P., 2004, A&A, 424, 13
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APPENDIX A : SOURCE POSITION O FFSET S

In case a source plane is rescaled by means of the MSD, see equation
(14), the source position in general will change as well, so to
compare scales one would have to take this change in position
into account. Using a mass sheet, the rescaling will be centred on
the origin of the coordinate system, but in case a mass disc is used,
which has a similar effect as long as all images are covered, the
centre of the disc determines the centre of the rescaling operation.
This way, for a lens that differs by the MSD, many different source
positions can be seen to correspond to the same image positions.

To understand that the source position can also change when
there is no apparent MSD involved, one merely has to use two such
MSD constructions: one that uses a scale factor λ, followed by one
with a scale factor λ−1. Using a mass disc for each, but with a
different centre, allows one to obtain a different source position that
corresponds to the same images. The net effect of the procedure is a

mass density that is exactly the same in a central region, which can
be made arbitrarily large, surrounded by a ring-like structure. While
the source position has changed, none of the observables have.

That the source plane offset has no direct meaning can also be
seen by noticing that both a given lensing potential ψ0(θ ) and

ψ1(θ) = ψ0(θ) + a · θ (A1)

correspond to the same images and mass density, but with a shift
in source plane (Seitz, Schneider & Bartelmann 1998). This can
be seen to be a special case of the more general equation (21) in
Wagner (2018) that shows the change in potential that corresponds
to a shift in source plane position.
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