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ABSTRACT
We assess the performance of the multipole expansion formalism in the case of single-dish H I intensity mapping, including
instrumental and foreground removal effects. This formalism is used to provide Markov chain Monte Carlo forecasts for a range
of H I and cosmological parameters, including redshift space distortions and the Alcock–Paczynski effect. We first determine the
range of validity of our power spectrum modelling by fitting to simulation data, concentrating on the monopole, quadrupole, and
hexadecapole contributions. We then show that foreground subtraction effects can lead to severe biases in the determination of
cosmological parameters, in particular the parameters relating to the transverse Baryon Acoustic Oscillations (BAO) rescaling,
the growth rate, and the H I bias (α⊥, T H If σ8, and T H IbH Iσ8, respectively). We attempt to account for these biases by constructing
a two-parameter foreground modelling prescription, and find that our prescription leads to unbiased parameter estimation at the
expense of increasing the estimated uncertainties on cosmological parameters. In addition, we confirm that instrumental and
foreground removal effects significantly impact the theoretical covariance matrix, and cause the covariance between different
multipoles to become non-negligible. Finally, we show the effect of including higher order multipoles in our analysis, and how
these can be used to investigate the presence of instrumental and systematic effects in H I intensity mapping data.
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1 IN T RO D U C T I O N

The standard cosmological model, Lambda cold dark matter
(�CDM), describes a universe with zero spatial curvature, containing
CDM and dark energy in the form of a cosmological constant (�)
which drives late time cosmic acceleration. It has six parameters,
five of which have been measured to within 1 per cent precision
through observations of the cosmic microwave background (Planck
Collaboration 2018). Large Scale Structure (LSS) surveys have also
provided observations that are in very good agreement with �CDM
(Anderson et al. 2014; Beutler et al. 2016; Song et al. 2016; Alam
et al. 2017; Tröster et al. 2020; eBOSS Collaboration 2020). LSS
surveys in particular are able to probe whether general relativity is the
correct description of gravity on cosmological scales by measuring
the logarithmic growth rate of structure (f) (Guzzo et al. 2008). This
parameter can be measured through the redshift space distortion
(RSD) signature on the two-point statistics of galaxy clustering
(Blake et al. 2011; Reid et al. 2012; Macaulay, Wehus & Eriksen
2013; Beutler et al. 2014; Gil-Marı́n et al. 2016; Simpson et al. 2016;
Icaza-Lizaola et al. 2019).

Neutral hydrogen (H I) intensity mapping (IM) is a novel technique
that is able to efficiently and rapidly observe a very wide redshift
range, including high redshifts, z > 3, that are inaccessible by
current and forthcoming optical galaxy surveys (see Kovetz et al.
2017 for a review). In particular, H I IM treats the 21cm sky as a

� E-mail: p.s.soares@qmul.ac.uk

diffuse background and measures its intensity in large voxels, as
opposed to detecting individual galaxies (Battye, Davies & Weller
2004; Chang et al. 2008; Wyithe & Loeb 2009; Mao et al. 2008;
Peterson et al. 2009; Seo et al. 2010; Ansari et al. 2012). In the post-
reionization Universe, neutral hydrogen resides inside galaxies where
it is self-shielded from ionization; it can thus be used as a tracer of
the underlying matter distribution. Using H I IM, it is possible to map
the 3D LSS of the Universe, and probe the underlying cosmology
through the H I power spectrum.

Current H I IM detections come from cross-correlating H I IM
maps from the Green Bank Telescope (GBT) or the Parkes radio
telescope with optical galaxy surveys, probing the clustering of
neutral hydrogen at z < 1 (Chang et al. 2010; Masui et al. 2013;
Switzer et al. 2013; Wolz et al. 2016; Anderson et al. 2018; Li,
Staveley-Smith & Rhee 2020a). More specifically, the GBT has
constrained the combination of the H I abundance (�H I) and linear
H I bias (bH I) at z = 0.8, �H IbH Ir = [4.3 ± 1.1] × 10−4, using
cross-correlation with the WiggleZ optical galaxy survey, where r
is the galaxy-hydrogen correlation coefficient (Masui et al. 2013). A
detection through auto-correlation is yet to be made due to residual
systematic effects. However, since most of these systematic effects
do not correlate with optical galaxy surveys, they are mitigated in
cross-correlation.

The Square Kilometre Array (SKA)1 will be a radio observatory
able to reach unprecedented statistical precision on H I IM measure-

1www.skatelescope.org
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ments (see e.g. Santos et al. 2015; SKA Cosmology SWG et al. 2020),
assuming that systematic effects are controlled or mitigated. In the
case of H I IM, large galactic and extragalactic foregrounds dominate
over the signal by several orders ot magnitude. However, in principle
we can differentiate these dominant foregrounds from the signal since
they are expected to be smooth in frequency (Chang et al. 2010; Liu
& Tegmark 2011; Alonso et al. 2014; Wolz et al. 2014; Bigot-Sazy
et al. 2015; Olivari, Remazeilles & Dickinson 2015; Switzer et al.
2015; Wolz et al. 2015; Cunnington et al. 2020a).

In addition, it is not yet fully understood how the systematic effects
present in an H I IM survey affect its noise properties, in particular
the covariance matrix. The effect of foreground removal has been
shown to mostly affect power on large scales. The telescope beam
significantly damps power on scales smaller than its resolution, but it
also affects larger scales (Villaescusa-Navarro, Alonso & Viel 2016;
Cunnington et al. 2020b). Analytically, both of these effects carry
over to the theoretical covariance matrix in the case of the H I IM
power spectrum (Bernal et al. 2019).

In this paper, we build upon the work of Cunnington et al. (2020b)
(hereafter C20) and Blake (2019). Blake (2019) studied the modelling
of the H I IM power spectrum including observational effects, and
C20 extended this into a comprehensive simulations and data analysis
pipeline2 for analysing the H I IM power spectrum multipoles taking
into account instrumental and foreground removal effects. Here
we extend on C20 to perform cosmological parameter estimation
with the H I IM power spectrum, using simulations that include the
relevant instrumental and foreground removal effects. In particular,
we use Markov chain Monte Carlo (MCMC) analyses to forecast
uncertainties for a range of H I and cosmological parameters. We
aim to realistically assess what a future SKA-like H I IM survey
will be able to constrain, and in particular how foreground removal
affects cosmological parameter estimation. We are interested in
both precision and accuracy i.e. we pay particular attention to the
requirement of unbiased parameter estimation.

The paper is structured as follows: In Section 2, we describe the
observed H I IM power spectrum, including modelling of the tele-
scope beam and foreground removal, decomposed into multipoles.
In Section 3, we describe our IM simulations. In Section 4, we test
the range of validity of our model using the simulations, report our
MCMC analysis results, look into how instrumental and systematic
effects affect the noise covariance matrix, and investigate whether
higher order multipoles can add useful information. We conclude in
Section 5.

Throughout this paper, we assume a flat �CDM cosmology
consistent with the PLANCK15 analysis (Planck Collaboration 2016),
with �M = 0.307, �b = 0.048, �� = 0.693, σ 8 = 0.823, ns = 0.96,
and Hubble parameter h = 0.678.

2 MO D EL

2.1 Redshift space distortions

RSD introduce anisotropies in the observed H I power spectrum.
In order to account for this, we consider the power spectrum as a
function of the directional wave vector �k, which can be decomposed
into its module k and the cosine of the angle θ between the wave
vector and the line-of-sight (LoS) component μ = �k · k‖ ≡ cos θ . We
model RSD by considering the Kaiser effect (Kaiser 1987), which is a

2github.com/IntensityTools/MultipoleExpansion

large-scale effect dependent on the growth rate f, and the Fingers-of-
God (FoG) effect (Jackson 1972), which is a small-scale non-linear
effect that depends on the velocity dispersion of the tracer objects
(σ v). The anisotropic H I power spectrum can be written as

PH I(k, μ) =
(
T H IbH I + T H If μ2

)2
PM(k)

1 + (kμσv/H0)2 + PSN , (1)

where PSN = T
2
H I(1/n) is the shot noise, n is the number density

of objects, PM(k) is the underlying matter power spectrum, and T H I

is the mean H I brightness temperature, modelled as (Battye et al.
2013)

TH I(z) = 180�HI(z)h
(1 + z)2

H (z)/H0
mK . (2)

2.2 Alcock–Paczynski effect

When we measure the H I power spectrum using intensity mapping,
we first measure redshifts and then transform these into distances.
In order to do this transformation, we must assume a cosmology. If
the assumed cosmology does not match the real one, we get further
anisotropies in the power spectrum measurements. This is known
as the Alcock–Paczynski (AP) effect (Alcock & Paczyński 1979).
In the transverse and radial directions respectively, we model these
anisotropies as (see e.g. Bernal et al. 2019; Euclid Collaboration
2020)

α⊥ = DA(z)

DA(z)f
,

α‖ = H (z)f

H (z)
,

(3)

where throughout the paper the superscript or subscript ‘f’ refers
to the fiducial value, in this case our fiducial, assumed cosmology.
Here we note that we follow the notation and method of Euclid
Collaboration (2020) and do not include the degeneracy with the
sound horizon at radiation drag (rs) in these factors, as is done when
performing a BAO-only analysis. This is because we are performing
a full shape analysis. These factors distort the perpendicular and
parallel to the LoS wave vectors as

k⊥ = kf
⊥/α⊥ ,

k‖ = kf
‖/α‖ .

(4)

It is useful to define the factor FAP = α�/α⊥, which helps describe
how k and μ become distorted, and how to recover the true underlying
value from the fiducial value:

k = kf

α⊥

[
1 + (μf )2(F−2

AP − 1)
]1/2

,

μ = μf

FAP

[
1 + (μf )2(F−2

AP − 1)
]−1/2

.

(5)

The H I power spectrum can then be described in terms of this effect
as

PH I(k
f, μf ) = α−1

‖ α−2
⊥

[(
T H IbH I + T H If μ2

)2
PM(k)

1 + (kμσv/H0)2 + PSN

]
.

(6)

2.3 Telescope beam smoothing effect

The telescope beam introduces one of the main instrumental effects in
the case of single-dish intensity mapping experiments. We can model
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this effect using a damping term dependent on the physical smoothing
scale of the beam (see e.g. Battye et al. 2013; Villaescusa-Navarro
et al. 2016; Cunnington et al. 2020b). Assuming the telescope beam
can be modelled as a Gaussian, this is defined as Rbeam = σ θ r(z),
where σθ = θFWHM/(2

√
2 ln(2)), θFWHM is the full width at half-

maximum (FWHM) of the beam in radians, and r(z) is the comoving
distance to a redshift z. The Fourier transform of the telescope beam
damping term is

B̃⊥(k, μ) = exp

(−k2R2
beam(1 − μ2)

2

)
, (7)

and the power spectrum becomes

PH I(k
f, μf ) = B̃2

⊥(k, μ)

α‖ α2
⊥

×
[(

T H IbH I + T H If μ2
)2

PM(k)

1 + (kμσv/H0)2 + PSN

]
.

(8)

We should also note that for surveys that are limited in frequency
resolution, a similar effect will occur on the small radial scales. In
our case, and in general for single dish experiments, the frequency
resolution is very good (much better than the angular resolution
and radial non-linear dispersion effects) and does not cause any
discernible effects in our power spectrum measurements, so we do not
include it in our modelling. In cases where this might be relevant, a
way to account for this smoothing effect is described in Blake (2019).
Given the resolution in the radial direction is set by the frequency
channel bandwidth δν , the smoothing effect can be modelled as

B̃‖(k, μ) = sin (kμs‖/2)

kμs‖/2
,

where s� = [c/H(z)](1 + z)2(δν /ν21), with ν21 being the rest H I

emission frequency.

2.4 Re-normalizing by σ 8

In this work, we calculate the underlying non-linear matter power
spectrum given a fiducial, assumed cosmology using the PYTHON

package NBODYKIT (Hand et al. 2018), which uses the CLASS
Boltzmann solver (Lesgourgues 2011; Blas, Lesgourgues & Tram
2011), and we choose the Halofit prescription (Takahashi et al.
2012). It is useful to parametrise this template calculated matterpower
spectrum PM(k) by σ 8, which is the RMS of the density fluctuations
within a sphere of radius 8 h−1Mpc (see e.g. Euclid Collaboration et
al. (2020) for a more detailed description):

PM,8(k) = PM(k)

σ 2
8

. (9)

Including this, our final power spectrum model becomes

PH I(k
f, μf ) = B̃2

⊥(k, μ)

α‖ α2
⊥

×
[(

T H IbH Iσ8 + T H If σ8μ
2
)2

PM,8(k)

1 + (kμσv/H0)2 + PSN

]
. (10)

The set of parameter combinations that can be measured using this
model is:

�θ = {α‖, α⊥, T H If σ8, T H IbH Iσ8, σv, PSN} . (11)

We note that, in comparison to optical galaxy surveys, we have an
additional degeneracy coming from the mean brightness temperature
T H I, which is proportional to �H I. Previous works using Fisher

matrix forecasts (see e.g. Bull et al. 2015; Pourtsidou, Bacon &
Crittenden 2017) assume this is a known quantity and keep it fixed,
but here we choose to include it since �HI is quite poorly constrained
(Crighton et al. 2015). We also note that, as suggested in Castorina
& White (2019), this degeneracy can be broken by using information
from the non-linear regime of structure formation and perturbation
theory modelling, but this would require precise and well-calibrated
interferometric observations. In this work, we are assuming a survey
in single-dish mode (Battye et al. 2013; SKA Cosmology SWG et al.
2020) and we are focusing on the beam and foreground removal
effects (with the latter being a major issue for both single dishes and
interferometers).

2.5 Multipole expansion

We can expand the anisotropic power spectrum PH I(k, μ) in terms
of Legendre polynomials as

PH I(k, μ) =
∑




P
(k)L
(μ) , (12)

where L
(μ) is the 
th Legendre polynomial:

L0 = 1 , L2 = 3μ2 − 1

2
, L4 = 35μ4 − 30μ2 + 3

8
,

L6 = 231μ6 − 315μ4 + 105μ2 − 5

16
.

(13)

Our full model, expanded into power spectrum multipoles, is then
given by

P
(kf ) = 2
 + 1

2
(α−1

‖ α−2
⊥ )

∫ 1

−1
dμf L
(μf ) B̃2

⊥(k, μ)

×
[(

T H IbH Iσ8 + T H If σ8μ
2
)2

PM,8(k)

1 + (kμσv/H0)2 + PSN

]
.

(14)

We consider the monopole (P0), quadrupole (P2), hexadecapole (P4),
and 64-pole (P6) in our analysis.

2.6 Modelling the effect of foreground removal

In order to model the effect of foreground removal on the H I power
spectrum, we introduce a damping term inspired by the survey
volume damping function (see e.g. Bernal et al. 2019). This is given
in Fourier space by

B̃vol(k, μ) =
(

1 − exp

{
−
(

k⊥
kmin

⊥

)2
})

×
⎛⎝1 − exp

⎧⎨⎩−
(

k‖
kmin

‖

)2
⎫⎬⎭
⎞⎠ ,

(15)

which describes how we are not able to access modes smaller than
kmin

⊥ or kmin
‖ in the perpendicular and parallel to the LoS directions.

If we assume a survey box to have comoving distance dimensions
given by [Lx, Ly, Lz], we have that the smallest (largest) modes
(physical scales) accessible in the perpendicular and parallel to the

LoS directions are: kmin
⊥ = 2π/

√
L2

x + L2
y and kmin

‖ = 2π/Lz.

We assume that the process of foreground removal similarly
removes power from modes along the parallel and perpendicular
to the LoS directions based on the foreground properties and survey
geometry. In this case, we are particularly considering the effects of
an independent component analysis foreground removal technique
(see e.g. Alonso et al. 2014). This component separation technique
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does not try to assume a specific form for the foreground contami-
nation, but relies on the fact that the sources of the foregrounds are
statistically independent and can be isolated from the cosmological
signal. The foregrounds are mostly smooth in frequency (except
in the presence of effects such as polarization leakage), while the
cosmological signal is not smooth in frequency, since it traces the
structure of matter in the Universe. This allows component separation
techniques to separate the foregrounds from the desired underlying
cosmological signal, and remove them. However, these techniques
can confuse the signal with the foreground, usually in the largest
scale limits of the particular box, where the signal looks smooth.
This leads to a loss of signal, which we try to model using a damping
function across radial and transverse modes.

In this work, we introduce a two-parameter damping prescription
to model the effects of foreground removal. The two parameters,
N⊥ and N�, vary the scale of modes being damped by foreground
removal. If N⊥ and N� equal zero, this corresponds to no damping.
We expect the combined damping factors N‖kmin

‖ to be greater than
N⊥kmin

⊥ since foreground removal mainly removes signal along the
radial (LoS) direction.

Although we could have quoted the N‖kmin
‖ and N⊥kmin

⊥ values
together as just two parameters, e.g. kFG

‖ and kFG
⊥ , we choose instead

to keep this form where we have the N⊥ and N� parameters present.
The main reason for this is that N⊥ and N� are independent of the
box dimensions (universal for similar conditions), while N‖kmin

‖ and
N⊥kmin

⊥ depend on kmin
‖ and kmin

⊥ (specific to our case, will vary
depending on the particular geometry of different simulations or
surveys). We expect a user to retrieve similar N⊥ and N� to us if
using a similar foreground removal method [e.g. Fast Independent
Component Analysis(FASTICA) with NIC = 4; Hyvärinen 1999]
regardless of the box dimensions, and thus find this the most relevant
parameter to quote.

However, we note that we would expect N⊥ and N� to be larger
for more aggressive foreground removal methods (with higher NIC),
which are employed in real data to deal with more complicated
foregrounds, noise and systematics (see e.g. Wolz et al. 2016). In
particular, real foregrounds might experience polarization leakage,
an effect which hinders their spectral smoothness, and would require
a more aggressive NIC choice to fully remove (see e.g. Moore et al.
2013 for more insight on the effect of polarized foregrounds). In
addition, the model is only valid for cases where the survey geometry
is constant (i.e. Lx, Ly, Lz are not changing with redshift). Further
consideration would be needed in order to successfully apply this
model to a lightcone with realistic survey geometry.

The damping term for modelling the effects of foreground removal
is given in Fourier space by

B̃FG(k, μ) =
(

1 − exp

{
−
(

k

N⊥kmin
⊥

)2 (
1 − μ2

)})

×
⎛⎝1 − exp

⎧⎨⎩−
(

k

N‖kmin
‖

)2

μ2

⎫⎬⎭
⎞⎠ ,

(16)

and the power spectrum model in the presence of foreground removal
effects is

PH I(k
f, μf ) = B̃2

⊥(k, μ)B̃FG(k, μ)

α‖ α2
⊥

×
[(

T H IbH Iσ8 + T H If σ8μ
2
)2

PM,8(k)

1 + (kμσv/H0)2 + PSN

]
. (17)

When applying the multipole expansion formalism to this model, we
obtain

P
(kf ) = 2
 + 1

2
(α−1

‖ α−2
⊥ )

∫ 1

−1
dμf L
(μf )B̃2

⊥(k, μ)B̃FG(k, μ)

×
[(

T H IbH Iσ8 + T H If σ8μ
2
)2

PM,8(k)

1 + (kμσv/H0)2 + PSN

]
. (18)

3 SI M U L AT I O N S

The simulated data we use in this investigation are the same as in
C20 and we refer the reader there for a more in depth introduction.
For completeness, we provide a summary here of the cosmological
H I signal simulations (Section 3.1) and the foreground simulations
(Section 3.2).

3.1 Cosmological signal

The source of our simulated cosmological data is from the
MULTIDARK-GALAXIES data (Knebe et al. 2018) and the cat-
alogue produced from the SAGE (Croton et al. 2016) semi-
analytical model application. These galaxies were produced from
the dark matter cosmological simulation MULTIDARK-PLANCK

(Klypin et al. 2016), which follows the evolution of 38403 par-
ticles in a cubical volume of 1 Gpc3 h−1 with mass resolution of
1.51 × 109 h−1 M� per dark matter particle. The cosmology adopted
for this simulation is based on PLANCK15 cosmological parame-
ters (Planck Collaboration 2016), with {�M, �b, ��, σ8, ns, h} =
{0.307, 0.048, 0.693, 0.823, 0.96, 0.678}.

As in our previous work (C20), we use the data from the z =
0.82 redshift snapshot. At this redshift the box size with comoving
distance dimensions Lx = Ly = Lz = 1000 Mpc h−1 approximately
corresponds to a sky area of 29 × 29 deg2 with a redshift depth of
�z = 0.5. Using nearest grid point assignment, we bin the catalogue
of galaxies on to a grid with voxel dimensions Nx = Ny = Nz =
225. We checked that using a higher resolution grid with Nx = Ny =
Nz = 512 made no discernible difference in our analysis. From the
survey volume, we have that kmin = 2π/V 1/3 = 0.006 h Mpc−1, and
use bins of width �k = 0.013 h Mpc−1 to avoid correlations between
bins.

The SAGE catalogue we use has cold gas mass outputs for each
galaxy from which we can compute a H I brightness temperature in
each pixel of our map. However, since the simulation has a finite
mass resolution, the lowest mass haloes (� 1010 h−1 M�) which
also contain H I will not be properly sampled (see C20 for further
discussion). This is an important limitation to consider, since it affects
the observed brightness, bias, and probability distribution of H I in
our simulation. But the lowest mass haloes, albeit more abundant,
contribute the least to the total brightness, and their exclusion has
little effect on the bias (Villaescusa-Navarro et al. 2018; Spinelli et al.
2020). To ensure a realistic global H I signal is present in the data
we rescale the mean H I temperature such that the H I abundance is
consistent with a value obtained in real data analyses at this redshift,
�H I ∼ 4.3 × 10−4 (Masui et al. 2013). This provides our simulated
data with a realistically distributed H I signal with a mean value of
T H I = 0.13 mK.

We aim to emulate an upcoming SKA1-MID-like experiment
(SKA Cosmology; SWG et al. 2020) and we therefore include
simulated instrumental effects from the radio telescope beam. Using
the diameter of an SKA dish (Dmax = 15 m) we can calculate the
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beam size of such an experiment from

θFWHM = 1.22 λ21

Dmax
(1 + z) , (19)

which for our case yields a beam of θFWHM = 1.78 deg, equivalent to
Rbeam = σθ r(z) = 26.16 Mpc h−1 (see Section 2.3). After combining
our simulated H I temperature fluctuation field and foregrounds, we
convolve the final simulation cube with the telescope beam described
above.

Using the MULTIDARK simulation without RSD or systematic
effects, we measure the linear bias of the simulation to be bH I(k) =√

PH I(k)/PM,linear(k), and by averaging this quantity over the large,
linear k-scales we obtain bH I = 1.16 ± 0.04. We roughly measure
the upper limit on the shot noise to be PSN = 2.5 mK2 Mpc3 h−3.
This is done by looking at our measurement of PH I(k) in a high
resolution grid simulation of Nside = 512, and seeing where the
power spectrum ‘plateaus’ at high k. At these scales the shot noise
should be dominating over the faint cosmological signal, and this
gives us an idea of what the upper limit of the shot noise is.

3.2 Simulating the effect of foregrounds

In order to generate realistic foregrounds we utilize the Global Sky
Model (GSM; de Oliveira-Costa et al. 2008; Zheng et al. 2017),
which extrapolates maps from real data at the desired frequency. For
the redshift depth of our simulated data we can assume a frequency
range of 673 < ν < 903 MHz and we therefore generate Nz = 225
maps spanning this range. Therefore, the simulated foregrounds have
a realistic evolving spectral index which is still smooth relative to
the cosmological signal and will allow for successful component
separation in the foreground clean.

In reality, foreground signals are likely to be more complex and
include contributions from free–free emission, extragalactic point
sources, and suffer effects from polarization leakage. This often
requires a more aggressive foreground clean than what is typically
required on a simulation from the GSM alone. In order to add
additional complexity to the simulated foregrounds, we also generate
realizations of diffuse emission from a model power spectrum
which aims to describe different foreground sources. We follow the
details outlined in table 1 of C20 to produce these contributions,
which include models of extragalactic point sources and free–free
emission. We then combine these realizations with the GSM outputs
to complete the full sky foreground data.

We then need to transform these full-sky maps into flat-sky data
with the same dimensions as our cosmological H I simulation. To do
this, we define an angular coordinate for each pixel on the flat-sky
map, which we match to a pixel in the HEALPIX3 (Górski et al. 2005;
Zonca et al. 2019) map with the closest angular coordinate. While this
approach is an approximation and may affect some angular coherence
in the foreground maps, it will have no impact on the foreground as
a contaminant to our data. We add these flattened foreground maps
on to the H I cosmological maps to contaminate them and create the
requirement for a foreground clean.

For the foreground cleaning, we use the blind foreground removal
method FASTICA (Hyvärinen 1999), and refer the reader to Wolz et al.
(2014), Cunnington et al. (2019) for a more detailed description. As
discussed when introducing the foreground modelling in Section 2.6
and in C20, this method removes the foregrounds by assuming that
the raw, uncleaned data can be written as a linear equation, where the

3https://healpix.sourceforge.io/

Table 1. Specifications for an SKA1-MID-like experiment, following SKA
Cosmology; SWG et al. (2020).

Parameter Description Value

Ndish Number of dishes 133
Ddish (m) Dish diameter 15
tobs (hr) Total observing time 20 000
θFWHM (deg) Beam FWHM 1.78
�beam (rad) Beam solid angle

1.33θ2
FWHM

0.001

fsky Sky area coverage 0.3
Tsys (K) System temperature 25
zeff Effective (central) redshift 0.82
�z Redshift bin width 0.5
δν (MHz) Frequency resolution 1
PN (mK2Mpc3h−3) Noise power spectrum 4

signal can be broken up into statistically independent components

x = As + ε =
NIC=m∑

i=1

ai si + ε , (20)

where m describes the number of independent components, x is the
raw, uncleaned data, A is the mixing matrix which describes the
amplitude of the independent components, s are the m independent
components, and ε is the residual which includes noise and the
cosmological signal. As an input, we choose NIC = 4 in accordance
with previous studies (Chapman et al. 2012; Wolz et al. 2014;
Cunnington et al. 2019, 2020b). The independent components in
this case are the foregrounds, and by appropriately identifying and
removing these we are left with ε, which contains our cosmological
H I signal.

This process of foreground removal is imperfect, and tends to
confuse the signal with the foreground at large scales, especially in
small k� modes where the cosmological signal also appears smooth in
frequency. This leads to cosmological signal being removed, which
affects the amplitude of the power spectrum (see e.g. Alonso et al.
2014 for further discussion). We show in our analysis that it is
possible to account for this effect using a model with free parameters
that we let vary.

3.3 Instrumental noise

Instrumental noise is determined by the telescope configuration. For
an SKA-like single-dish experiment, we assume the pixel noise is
well represented by a Gaussian random field with spread given by

σpix = Tsys

√
4π fsky

�beam Ndish tobs δν
, (21)

from which the noise power spectrum is then given by PN = σ 2
pixVpix,

where Vpix is the voxel volume given by

Vpix = �beam

∫ z+�z/2

z−�z/2
dz

dV

dzd�
, (22)

where �beam is defined on Table 1, and

dV

dzd�
= cr(z)2

H (z)
. (23)

We assume SKA1-MID-like parameters for the noise (see SKA
Cosmology SWG et al. 2020), shown in Table 1. The calculated noise
power spectrum from these specifications is PN = 4 mK2Mpc3h−3.
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Figure 1. HI cosmological signal for the MULTIDARK simulation at z = 0.82
with SKA1-MID-like specifications (black solid line), foreground cleaned HI

cosmological signal (red dashed line), the assumed instrumental noise power
spectrum for such an experiment (blue dotted line), and the estimated shot
noise of the simulation (orange dash–dotted line).

We plot a comparison between our MULTIDARK z = 0.82 cosmo-
logical signal in the absence of foregrounds, the foreground cleaned
signal, the estimated shot noise and the instrumental noise, as seen in
Fig. 1. We see that the instrumental noise dominates over the signal
for k > 0.25 h Mpc−1. We also note that pathfinder surveys for the
SKA will have higher noise levels, but in this work we focus on the
prospects of using H I IM for precision cosmology, hence why we
choose to use SKA1-MID-like specifications.

Combining our model, the MULTIDARK simulation power spec-
trum results, and the noise specifications, we can see how well our
model agrees with the MULTIDARK data in Fig. 2. We also plot our
foreground cleaned data (NIC = 4) against the foreground model in
Fig. 3, using guesses for the parameters N⊥ and N� found by eye (N⊥
= 2, N� = 2). For the fiducial model, we choose to use the estimated
bH I = 1.16 and PSN = 2.5 mK2Mpc3h−3, and we guess by eye the
velocity dispersion parameter to be σv = 200 km/s. Note that when
performing an MCMC analysis and checking for biased parameter
results, we will not try to recover the ‘fiducial’ values of the shot
noise or velocity dispersion (since these are only rough estimates),
but we will try to recover the estimated H I bias (bH I) as discussed
at the end of Section 3.1, which is degenerate with T H I and σ 8. The
full set of fiducial cosmological parameters is outlined on Table 2.
These are used in the fiducial model and also in the covariance matrix
calculations.

3.4 Covariance matrix

There are three main sources of error arising from the considered HI

IM experiment: sample variance, instrumental noise and shot noise.
The covariance per k and μ bin (neglecting mode coupling), is

σ 2(k, μ) = (PH I(k, μ) + PN )2

Nmodes(k, μ)
, (24)

where Nmodes(k, μ) is the number of modes in each k and μ bin with
widths �k and �μ, respectively:

Nmodes(k, μ) = k2�k�μ

8π2
Vsur , (25)

where Vsur is the volume of the survey. For a survey scanning a sky
area of �tot this is given by

Vsur = �tot

∫ zmax

zmin

dz
dV

dzd�
. (26)

By neglecting mode coupling, we are assuming that the different k-
bins are uncorrelated. We have assessed this assumption by compar-
ing the multipole power spectrum errors obtained using a jackknife
test to those obtained theoretically, assuming a diagonal covariance
matrix, and found them to be consistent, meaning the diagonal
covariance matrix is sufficient for our purposes (this assumption was
also tested in C20 in the same way, and also found to be sufficient).
We also note that we do not have a window function introducing
correlations between different modes.

The covariance matrix of the power spectrum multipoles is
comprised of the sub-covariance matrices of each multipole, and
those between different multipoles (i.e. the matrix is not diagonal, as
it is essential to model the non-zero covariance between multipoles,
see Section 4.2). The sub-covariance matrix for H I power spectrum
multipoles 
 and 
’ is (Bernal et al. 2019)

C

′ (k) = (2
 + 1)(2
′ + 1)

2

∫ 1

−1
dμ σ 2(k, μ)L
(μ)L
′ (μ) . (27)

It follows from this that the total error on each multipole is given
by (Feldman, Kaiser & Peacock 1994; Seo et al. 2010; Battye et al.
2013; Grieb et al. 2016; Blake 2019)

σP

(k) =

√
(2
 + 1)2

2

∫ 1

−1
dμ σ 2(k, μ)L2


(μ)

= (2
 + 1)

√∫ 1

0
dμ

(PH I(k, μ) + PN )2 L2

(μ)

Nmodes(k, μ)
.

(28)

We can compute [S/N](k), the total signal-to-noise ratio per k-bin,
as

[S/N] (k)2 = ��T (k)C−1(k) ��(k) , (29)

where ��(k) is a vector describing the power spectrum per k-bin:

��(k) = [P0(k), P2(k), P4(k)] (30)

Similarly, the log-likelihood is proportional to the χ2 statistic:

logL ∝ −1

2
χ2 ,

χ2 = � ��T C−1� �� ,

(31)

where � �� is the difference between our model prediction and the
measurement from our simulation for all multipoles and k-bins. For
example, if we were considering N
 = 3 multipoles and Nk = 20 k-
bins in each multipole, our covariance matrix would have dimensions
N
Nk × N
Nk = 60 × 60 and the vector � �� would have length
N
Nk = 60.

We calculate the theoretical [S/N](k) using our model (equation
14) and the fiducial parameter values from the simulation (Table 2),
as well as the assumed instrumental noise PN = 4 mK2Mpc3h−3.
We plot the result for each combination of multipoles in Fig. 4.
As expected, including higher order multipoles yields the best
[S/N](k) results, with the quadrupole adding most of the additional
information at both low and high k compared to the case where only
the monopole is considered. We can see that the hexadecapole and
64-pole also add information, especially around k ∼ 0.15 h Mpc−1.
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Figure 2. Model (equation 14, black solid line) plotted against the HI power spectrum multipoles calculated from our z = 0.82 MULTIDARK H I IM simulation
(black circles), with error bars calculated using equation (28). The vertical dotted line represents the limit kmax = 0.24 h Mpc−1 for the monopole and quadrupole,
while the vertical dashed line represents the restricted kmax = 0.09 h Mpc−1 limit for the hexadecapole. The blue dashed line shows the best-fitting model obtained
with the MCMC using the monopole and quadrupole, and the red dash–dotted line shows the best-fitting model when also adding the restricted hexadecapole.

Figure 3. Foreground model [equation 18 (N⊥ = 2, N� = 2), black solid line] plotted against the HI power spectrum multipoles calculated from our simulation
(black circles) in the foreground subtracted case, using NIC = 4, with error bars calculated using equation (28). We plot the foreground-free model (equation 14,
orange dotted line) for comparison. The vertical dotted line represents the limit kmax = 0.24 h Mpc−1 for the monopole and quadrupole, while the vertical dashed
line represents the restricted kmax = 0.09 h Mpc−1 limit for the hexadecapole. The blue dashed line shows the best-fitting model obtained with the MCMC using
the monopole and quadrupole, and the red dash–dotted line shows the best-fitting model when also adding the restricted hexadecapole.

4 R ESULTS

4.1 Model validation

In this section, we first aim to test our model’s range of validity
i.e. for which k range can we trust our model to return unbiased
results for the fiducial cosmological parameters of our simulation?
The parameters we vary are {α‖, α⊥, T H If σ8, T H IbH Iσ8, σv, PSN}.

We know the fiducial values of the following parameters:
{α‖, α⊥, T H If σ8, T H IbHIσ8}, these are outlined in Table 2. For all
of our MCMC analyses, we keep cosmological parameters in the
covariance matrix fixed to the fiducial values. We impose an upper
limit of PSN = 6 mK2 Mpc3 h−3 and σv = 600 km s−1 on the shot
noise and velocity dispersion parameter priors. All other priors
are flat positivity priors. The MCMC analysis is performed using
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Table 2. Fiducial model parameter values for the H I intensity mapping
MULTIDARK simulation at z = 0.82.

Parameter Fiducial value

α� 1
α⊥ 1
T H If σ8 0.09 mK Mpc3h−3

T H IbH Iσ8 0.12 mK Mpc3h−3

PSN 2.5 mK2 Mpc3 h−3

σv 200 km s−1

N⊥ 2
N� 2

Figure 4. [S/N] per k-bin for each combination of multipoles, for the
foreground-free model (equation 14).

the publicly available PYTHON package EMCEE4 (Foreman-Mackey
et al. 2013). We vary our model (equation 14) in the log-likelihood
(equation 31) using 500 walkers and 2000 samples.

In order to validate our model, we run an MCMC analysis for
different kmax limits, stopping when we see that our MCMC results
are biased outside of 2σ . This test is meant to check that we are not
going to k values that are too large, where our theory modelling breaks
down and yields biased parameter estimates. We do this only up to
k = 0.24 h Mpc−1, as beyond this we find that the signal to noise per
k-bin drops to below 15 (see Fig. 4). In addition, we know that our
beam starts to dominate at kbeam = π/Rbeam = 0.12 h Mpc−1, so we
only consider the range up to 2kbeam = 0.24 h Mpc−1, beyond which
we assume the beam entirely dominates over the cosmological signal.
We tested going beyond this kmax limit, but found no improvement
on parameter uncertainties as expected.

For the case of the galaxy power spectrum, it has been shown
that the monopole and quadrupole contain most of the cosmological
information (Taruya, Saito & Nishimichi 2011). The hexadecapole
contains additional information, but spectroscopic galaxy surveys
have found that it needs to be considered to a smaller kmax than
the monopole and quadrupole due to non-linear effects (see e.g.
Beutler et al. 2016; Markovic, Pourtsidou & Bose 2019). Following
these studies, we test whether this is also the case in H I IM. First,
we determine at which point the parameter estimation results from
the MCMC become biased outside of 2σ for the monopole and
quadrupole only and find that parameter estimates are unbiased

4https://emcee.readthedocs.io

Table 3. Marginalized 1σ per cent error for the parameters in our model,
as found by the MCMC with and without the restricted hexadecapole in
the foreground-free case. Including the hexadecapole in a restricted range
improves the errors. The last column shows results when we assume the
covariance matrix is diagonal.

Marginalized 1σ per cent errors from MCMC
Parameter P0 + P2 P0 + P2 + P4|r P0 + P2 (diag)

α⊥ 1.0% 0.8% 2.9%
α� 7.6% 5.3% 6.1%
T H If σ8 13.3% 8.8% 14.3%
T H IbH Iσ8 8.1% 5.7% 9.7%

Figure 5. MCMC results for the foreground-free case, with and without
the restricted hexadecaple. The dotted lines show the fiducial value for each
parameter.

up to kmax = 0.24 h Mpc−1. Then, using the kmax determined for
the monopole and quadrupole, we start adding the hexadecapole
with different kmax limits and check when results become biased,
finding that we can only include it up to a restricted range of
kmax = 0.09 h Mpc−1.

We summarize our MCMC analysis results within the model’s
determined range of validity in Table 3, where we quote the parameter
uncertainties (1σ ) with and without the restricted hexadecapole. We
show the MCMC results in Fig. 5. It is clear from these results
that adding the hexadecapole in a restricted range decreases the
error margins on the parameters. We plot our power spectrum model
calculated with the best-fitting values from the MCMC analyses in
Fig. 2.

Our findings are consistent with the literature. Bernal et al. (2019)
studied the precision of a generic line intensity mapping experiment,
using a nearly identical model with the one here and synthetic data,
and found that including the hexadecapole improves the precision
of BAO scale measurements by 10–60 per cent in a Fisher matrix
analysis. In the case of spectroscopic optical galaxy clustering,
including the hexadecapole in an MCMC analysis has proved
beneficial in decreasing uncertainties, also requiring a restricted k-
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range for the hexadecapole in order to obtain unbiased results (see
e.g. Beutler et al. 2016; Markovic et al. 2019).

With regard to the BAO scale parameters, our findings are
qualitatively similar to what has been found in Villaescusa-Navarro
et al. (2016). This study shows that while the large SKA telescope
beam smears out the isotropic BAO peak signature at z > 1, it is
possible to use the radial 21cm power spectrum to measure H(z)
from the BAO peak at per cent level precision for redshifts z <

2.5. Our measurement of the radial AP effect parameter, which is a
function of H(z), instead relies on the overall shape of the 21cm power
spectrum, which is susceptible to systematic effects. None the less,
we considered systematic effects due to the beam and foreground
removal in our analysis, and found similar, unbiased sub-10 per cent
level constraints on the radial AP parameter related to the expansion
rate. In addition, even in the presence of a large beam, we also
find sub-1 per cent level constraints on the transverse AP parameter
related to the angular distance.

4.2 Covariance matrix

Here we discuss our choice of using a non-diagonal covariance
matrix (equation 27), meaning we consider covariance between
different multipoles. We first describe the details of this non-diagonal
covariance matrix.

The full covariance matrix is symmetric, and is composed of each
diagonal sub-covariance matrix (diagonal since we neglect mode
coupling, and since we do not have a survey window function in-
troducing further correlations between modes). Each sub-covariance
matrix has dimensions Nk × Nk where Nk is the number of k-bins
considered per multipole, so overall the full covariance matrix has
dimensions N
Nk × N
Nk (where N
 is the number of multipoles
being considered). That is

C =
⎡⎣C00 C02 C04

C22 C24

C44

⎤⎦, (32)

where each sub-covariance matrix is

C

′ =

⎡⎢⎣C

′ (k0) 0 0
0 C

′ (k1) 0

0 0
. . .

⎤⎥⎦. (33)

The full diagonal covariance matrix, in the case where we do
not consider the covariance between different multipoles, also has
dimensions N
Nk × N
Nk and is given by

Cdiag =
⎡⎣C00 0 0

0 C22 0
0 0 C44

⎤⎦, (34)

where each sub-covariance matrix is also given by equation (33), but
only for the case of 
 = 


′
.

For more detailed discussion of the covariance of galaxy power
spectrum multipoles under the Gaussian assumption, and in partic-
ular the significance of the covariance between different multipoles,
see e.g. Grieb et al. (2016) and Blake (2019).

4.2.1 Effect of the telescope beam

In order to compare the diagonal and non-diagonal cases, we
calculate the [S/N] per k-bin for each case with and without a
telescope beam damping term. Results for 
 = 0, 2 are given in
Fig. 6. For the case where the telescope beam damping term is

Figure 6. [S/N] per k-bin for multipoles 
 = 0, 2. Orange colours represent
the case of no telescope beam, dark blue represents our case of a telescope
beam with Rbeam = 26.2 Mpc h−1. Dashed lines are the diagonal covariance
matrix cases, while the solid lines include the covariance between different
multipoles.

present, we can see that using a non-diagonal covariance matrix
makes a difference at both low and high k. At low k, including
covariance between multipoles seems to increase the [S/N], while
for higher k it decreases it. For the case where we do not include
the telescope beam, we can see that the [S/N] per k-bin does
not differ significantly between including or excluding off-diagonal
terms.

It is interesting to also compare how the telescope beam changes
correlations between different multipoles. We can calculate the
correlation matrix from the covariance matrix as

Corr

′ (k) = C

′ (k)√
C

(k)C
′
′ (k)

. (35)

We plot the correlation matrix in the case of no telescope beam
and compare it to the case of including a telescope beam with
Rbeam = 26.2 Mpc h−1 (the same beam used in our simulation) in
Fig. 7 (top-row). We can clearly see that the presence of the telescope
beam increases the correlations in the off-diagonal terms i.e. the
beam makes the different multipoles more correlated. This is because
the telescope beam damping term breaks the orthogonality of the
multipoles. See Appendix A for a more detailed discussion and
derivation.

We demonstrate that these differences due to the telescope beam
in the correlation matrix and in the [S/N] per k carry over to an
MCMC analysis in the foreground-free case. We perform the MCMC
analysis for the monopole and quadrupole at the determined kmax =
0.24 h Mpc−1 for the non-diagonal and diagonal covariance matrix
cases, and quote results for both cases on Table 3. From these results
we can determine that the errors on our model parameters, as seen
on Table 3, increase when ignoring the covariance between different
multipoles (with the exception of the α� parameter, where the error
slightly decreases). In both cases, we obtain unbiased parameter
estimates.

In the case of considering only a diagonal covariance matrix, the
percentage uncertainties on the α⊥ parameter (Table 3) are approxi-
mately two times smaller than those on α�, which is consistent with
results from optical galaxy surveys (see e.g. Gil-Marı́n et al. 2020).
When considering the covariance between different multipoles, the
fractional uncertainties on α⊥ become approximately five times
smaller than on α�. We attribute this to the telescope beam having
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Figure 7. The correlation matrix for multipoles 
 = 0, 2, 4 up to k = 0.3 h Mpc−1, excluding (left) and including (right) the effects of a telescope beam with
Rbeam = 26.2 Mpc h−1. Top: Foreground-free. Bottom: Including the effects of foreground removal with N⊥ = 2, N� = 2.

a significant effect on the correlation between different multipoles,
but leave further investigation of the effect of the telescope beam
and non-diagonal covariance matrix on the AP parameters for future
work.

We conclude that, when in the presence of a telescope beam,
using a non-diagonal covariance matrix is important for the following
reasons:

(i) It makes a difference in the [S/N] per k-bin result, increasing
[S/N] in the low k limit but decreasing it in the higher k limit.

(ii) The different multipoles are non-negligibly correlated due to
the telescope beam.

(iii) It decreases the uncertainties in most cosmological parameter
estimates obtained using MCMC.

4.3 Effect of foreground removal

Here we aim to assess the validity of our foreground model.
For our simulation, we have kmin

⊥ = 0.004 h Mpc−1 and kmin
‖ =

0.006 h Mpc−1, making the foreground damping scales N⊥kmin
⊥ =

0.009 h Mpc−1 and N‖kmin
‖ = 0.013 h Mpc−1 respectively. We note

that, although we find N⊥ = 2, N� = 2 to fit our data well by
eye, this does not mean that the same amount of power is being
damped on both the perpendicular and parallel to the LoS directions.

Indeed, when looking at the damping scales, we can see that
N‖kmin

‖ > N⊥kmin
⊥ , meaning that more power is being damped in

the parallel to the LoS direction.
To motivate our foreground model further, we attempt to compare

it to a measurement of the power spectrum decomposed into
perpendicular and parallel modes, P(k⊥, k�). We compare P(k⊥, k�)
in the foreground-free case to P(k⊥, k�) in the foreground removed
case by plotting the ratio of these, and compare it to our foreground
model B̃FG(k, μ) (equation 16) with N⊥ = 2, N� = 2 (Fig. 8). We also
plot the difference between these, finding that they are in agreement
and that differences are below 10 per cent on all scales. As seen in
Fig. 8, both our model and the data show more power being damped
on small k� modes, as expected. This comparison was also carried out
in Cunnington, Camera & Pourtsidou (2020c), which found similar
agreement with a similar model.

We perform an MCMC analysis with the foreground subtracted
data in four different cases, first only considering the monopole and
quadrupole only up to kmax = 0.24 h Mpc−1 and later considering the
inclusion of the hexadecapole up to the limit found in the foreground-
free case kmax = 0.09 h Mpc−1. We check that up to these limits,
results are unbiased as in the foreground-free case (except for case
1, where results are biased). For most cases, we are varying the
parameters {α‖, α⊥, T H If σ8, T H IbH Iσ8, σv, PSN} and use the same
priors limits as in the foreground-free MCMC analysis case. In one
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Figure 8. Left: Foreground damping model ˜BFG(k, μ) (equation 16), with N⊥ = 2, N� = 2. Center: Ratio of foreground removed to foreground-free P(k⊥, k�).
Right: Difference between the left and middle panels, as a proxy for how accurate our foreground damping model describes our data.

of the cases (case 3), we vary two additional parameters from our
foreground model, namely N⊥, N�, bringing the full list of parameters
we vary to {α‖, α⊥, T H If σ8, T H IbH Iσ8, σv, PSN, N⊥, N‖}. For N⊥,
N�, we impose flat positivity priors.

Case 1: The foreground-free model. First, we consider the
foreground-free model (equation 14) to demonstrate how it yields
biased parameter estimates (specifically, the parameters α⊥, T H If σ8,
and T H IbH Iσ8 become biased outside of the 2σ limit). In this case,
we do not include the foreground model in the covariance matrix.

Case 2: The fixed foreground model. Next, we consider our
foreground model (equation 18) and keep the N⊥, N� parameters
fixed to the best-fitting guesses found by eye (N⊥ = 2, N� = 2). In
this case, we include the foreground model in the covariance matrix.

Case 3: The varied foreground model. Here we consider the
foreground model (equation 18) but let N⊥ and N� be nuisance
parameters that we vary. Here we also include the foreground model
in the covariance matrix. We also compare with the case of not
including the foreground model in the covariance matrix, which
causes the covariance matrix values to be larger and consequently
we find that this increases errors in the parameters but does not cause
them to become biased. This is relevant to the case of a real data
analysis, where we would not know the fiducial N⊥ and N� values
in advance to fix in the covariance matrix, and would probably need
to adopt this more conservative case. If end-to-end simulations were
available that allowed for N⊥ and N� to be accurately determined
for real data, the less conservative case could be adopted instead.
Alternatively, an iterative process could also be employed with real
data. We would start by assuming N⊥ and N� in the covariance matrix,
run a parameter estimation, re-generate the covariance based on the
best-fitting values, and re-run the parameter estimation until there is
convergence.

Case 4: The kmin-cut model. Finally, we investigate what happens
when we exclude the largest scales where foreground subtraction
has the most impact. We impose a kmin limit on the foreground
subtracted data and try to recover cosmological parameters using
the foreground-free model (equation 14), which we have seen
would yield biased parameter results if considering the full k-
range (case 1). Here we do not include the foreground model in
the covariance matrix. We find that the limit kmin = 0.05 h Mpc−1

is sufficient to then recover unbiased parameter estimates, and we
quote the uncertainties on these on Table 4. Note that including

the hexadecapole with this cut, or a more restricted cut, yields biased
results due to the considerable impact that foreground removal has on
the hexadecapole. For all parameters, the uncertainty obtained with
the kmin-cut method is larger than the uncertainty obtained using any
other method. Furthermore, the varied N⊥, N� method yields smaller
uncertainties, and does not require a prior selection of a kmin limit.

Results from the MCMC analyses for cases 1–3 be found in Fig. 9.
We quote the different uncertainties on the parameters for all cases
on Table 4.

We now consider our varied foreground model in more depth for
case 3. Still letting N⊥ and N� be nuisance parameters and including
the foreground model in the covariance matrix, we compare the
MCMC analysis results when excluding or including the hexade-
capole at a restricted range of kmax = 0.09 h Mpc−1. Results can
be found in Fig. 10, and 1σ uncertainties on Table 4. We can see
that as in the foreground-free case, adding the hexadecapole at a
restricted range still allows us to retrieve unbiased cosmological
parameters with smaller uncertainties than without it. Including the
hexadecapole also seems to make the posteriors more Gaussian-like,
in particular for N⊥ and N�. This motivates further the inclusion of
the hexadecapole in parameter estimation analyses, particularly in
foreground removed data. We plot our foreground model with best-
fitting parameters from the case 3 MCMC analyses (with and without
the hexadecapole) in Fig. 3.

4.3.1 Covariance matrix

We find that the effect of foreground removal significantly impacts
the covariance matrix, and discuss this effect further keeping in mind
that this is specific to our choice of modelling, simulations and survey
specifications (which determine the instrumental noise level). For
real data, one would need realistic end-to-end simulations specific
to a given experiment in order to robustly include the effects of
foregrounds in the covariance matrix.

We compare the theoretical covariance matrix with and without
foreground removal effects included. As seen in Fig. 7, where we
include the foreground removal model with N⊥ = 2, N� = 2 in
the covariance matrix, this makes a significant difference in the
correlation between the different multipoles’ large scale modes.

When performing the different MCMC analyses with the
monopole and quadrupole for the foreground subtracted case, we
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Table 4. Marginalized 1σ per cent error for the parameters in our model for the foreground removed case, as found by
the MCMC with and without different foreground removal effects considerations.

Marginalized 1σ per cent errors from MCMC, foreground subtracted case
Parameter P0 + P2 P0 + P2 + P4|r

No FG Fixed N⊥, N� Varied N⊥, N�

Varied N⊥, N� (no
FG covariance) kmin-cut Varied N⊥, N�

α⊥ 1.1% 1.2% 1.5% 2.1% 2.6% 1.1%
α� 7.4% 5.9% 10.3% 11.0% 29.0% 5.9%
T HIf σ8 13.0% 14.0% 28.9% 34.1% 44.4% 13.3%
T HIbHIσ8 17.4% 11.5% 20.3% 21.1% 38.2% 7.8%
N⊥ N/A N/A 29.0% 43.4% N/A 9.4%
N� N/A N/A 22.7% 30.7% N/A 12.6%

Figure 9. MCMC results for foreground subtracted data and three different
model considerations (cases 1–3), using the monopole and quadrupole up
to kmax = 0.24 h Mpc−1. The dotted lines show the fiducial value for each
parameter.

showed in case 3 that including the foreground model in the
covariance matrix decreases errors in the cosmological parameters
of interest. However, it requires knowing the best-fitting N⊥, N�

beforehand, which might be unlikely with real data. Nonetheless,
this test shows that we are able to retrieve unbiased parameter
estimates using our foreground model in either case of including or
not including foreground removal effects in the covariance matrix,
but with different resulting parameter uncertainties.

As an additional indicator of how well our models fit the simulation
measurements, we have also looked at the reduced χ2 of our best-
fitting: χ2

red = χ2/dof, where dof is the degrees of freedom found by
subtracting the model parameters from the number of data points.
It is useful to look at χ2

red because if it is much larger than 1,
that usually indicates an incorrect model or underestimated errors,
and if it is much smaller than 1 then we could be overestimating
the errors/overfitting. We calculate the χ2

red for the monopole,
quadrupole (up to k = 0.24 h Mpc−1) and for the hexadecapole
(up to k = 0.09 h Mpc−1). For the foreground-free case, we find
χ2

red � 0.6. For the foreground removed case, we find χ2
red � 1 when

including the foreground removal effects in the covariance matrix. As
expected, when trying to fit the foreground-free model to foreground
removed data, we obtain a best-fitting χ2

red � 2.6 (and heavily biased
cosmological parameter estimates, see Fig. 9), confirming the need
for an appropriate foreground model.

Although the reduced χ2 is a useful check and indicator that
our model is appropriate for fitting our measurements, our main
findings and model validation come from the MCMC analyses, which
recovers the cosmological parameters within 2σ errors of the fiducial
values.

4.4 Higher order multipoles

Here we investigate the effect of including higher order multipoles
in our analysis (see e.g. Chuang & Wang (2013) and Uhlemann,
Kopp & Haugg (2015) for examples of higher order multipoles
being considered in galaxy and halo two-point correlation functions,
respectively). The P6 64-pole (or hexacontatetrapole) encompasses
non-linear velocity information, vanishing in the case of considering
only the linear Kaiser RSD effect (Kaiser 1987). In the case of
our simulations (ignoring beam and foreground effects), where non-
linear velocity effects are present (such as the FoG effect), the 64-
pole is non-zero but still expected to be very small. However, we
show in Fig. 11 that the 64-pole is significantly affected by the
telescope beam and foreground removal effects similarly to the other
multipoles, meaning its signal is boosted due to these systematic and
instrumental effects. Regarding the correlation matrix, we again find
that the beam and foreground removal effects significantly affect the
correlations between the 64-pole and other multipoles, as seen in
Fig. 12.

We test the effect of adding the 64-pole to our parameter estimation
pipeline, first in the foreground-free case. We find that we can add the
64-pole up to the same restricted range as the hexadecapole (kmax =
0.09 h Mpc−1), and that it does improve results by decreasing the
errors on our parameters while maintaining the estimates unbiased
within 2σ (see Table 5).

We also tested whether including the 64-pole in the foreground
removed case would make a difference, and indeed it did. When we
added the 64-pole in the restricted range in our analysis (case 3, varied
foreground model with foreground effects included in the covariance
matrix), we obtained unbiased results for all cosmological parameters
up to kmax = 0.08 h Mpc−1, a slightly more restricted range than we
find for the hexadecapole. This is likely due to how the foreground
removal effect suppresses our cosmological signal in the covariance
matrix, thus decreasing the error budget, combined with the 64-pole
being highly non-linear.
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Figure 10. MCMC results for the foreground subtracted data and our varied foreground model (case 3), with and without the restricted hexadecapole. The
dotted lines show the fiducial value for each parameter.

Removing the foreground effect from the covariance matrix yields
a much larger error budget, and we tried including the 64-pole in
this case. We found that indeed we obtain unbiased results up to
kmax = 0.09 h Mpc−1 in this case but with very large uncertainties on
our parameters, as seen in Table 5.

Our results show that in the absence of foregrounds, the 64-pole
can improve constraints without biasing parameter estimates. In the
foreground removed case, the 64-pole does not improve constraints,
but the 64-pole could still be useful in analysing foreground cleaned
IM data. This is because its underlying cosmological signal is quite
weak, but it is highly sensitive to the effects of the beam and
foreground removal, or other unidentified systematics. It could thus
be used as a further check for any residual systematic effects that
might be present in the data.

5 C O N C L U S I O N S

The aim of this work was to perform a comprehensive cosmological
parameter estimation with the H I IM power spectrum multipoles, and
investigate the level of uncertainties future surveys like the SKA can
realistically obtain, requiring unbiased estimates. We used modelling
and simulations of H I IM that account for effects of the telescope
beam and foreground removal, and performed MCMC analyses
on these. We also showed how the beam and foreground removal
effects impact the covariance matrix and higher order multipoles.
We summarize our main findings and conclusions below:

(i) In the absence of foregrounds, we are able to retrieve unbiased
estimates for cosmological parameters using our model, with below
10 per cent level uncertainties (and for the transverse AP parameter,
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Figure 11. The 64-pole model plotted against the measurements from our
simulation without any beam or foreground removal effects (blue crosses),
with the telescope beam effect included (black circles), and with the telescope
beam and foreground removal effects (N⊥ = 2, N� = 2) included (red
triangles).

Figure 12. The 64-pole off-diagonal components of the correlation matrices,
with and without telescope beam and foreground removal effects (N⊥ = 2,
N� = 2).

below 1 per cent level uncertainty). Including the hexadecapole in
our analysis does not bias parameter estimates if we only consider
it at a restricted range. Even at a restricted range, including the
hexadecapole significantly decreases parameter uncertainties for
all cases considered. In particular, when including the restricted

Table 5. Marginalized 1σ per cent error for the parameters in our model, as
found by the MCMC analysis with the restricted 64-pole in the foreground-
free and foreground removed cases.

Marginalized 1σ per cent errors, P0 + P2 + P4|r + P6|r
Parameter No FG Sub FG (FG cov) Sub FG (no FG cov)

α⊥ 0.8% 1.2% 1.9%
α� 4.1% 5.3% 10.6%
T H If σ8 8.4% 25.1% 35.0%
T H IbH Iσ8 4.9% 13.0% 16.6%
N⊥ N/A 21.9 24.8%
N� N/A 22.7 14.5%

hexadecapole, we are able to retrieve the growth rate parameter
(T H If σ8) with 8.8 per cent uncertainty.

(ii) In the presence of a telescope beam and foreground removal
effects, it is crucial to include the modelling of these in the covariance
matrix as it makes a significant difference. In particular, the covari-
ance matrices between different multipoles become non-negligible
as these effects change the correlations between multipoles.

(iii) If we do not account for the effects of foreground removal
in the modelling, we obtain significantly biased parameter estimates
(see also the very recent study by Cunnington et al. (2020c) for the
case of primordial non-gaussianity measurements).

(iv) We therefore develop a two-parameter foreground model to
account for the removal of modes that occurs due to foreground
cleaning. With no assumptions about the foreground removal process
(i.e. by letting these parameters vary), we use this model to try and
recover unbiased cosmological parameter estimates and succeed,
finding that the two extra free parameters are enough to model the
effects of foreground removal in our case.

(v) We find that we are able to model the effects of foreground
removal, and recover the growth rate parameter (T H If σ8) uncertainty
to be 13.3 per cent, slightly larger than in the foreground-free case.
The other cosmological parameters also experience a slight increase
in uncertainties, but they are not as significant.

(vi) We investigate the effect of including the 64-pole in our anal-
ysis. We find that for the foreground-free case, it improves parameter
uncertainties without biasing them, but worsens constraints in the
foreground removed case. However, we propose that the 64-pole
could be a useful tool to investigate systematic effects in foreground
cleaned intensity mapping data, since it is highly sensitive to these.

The results in this paper are dependent on our choice of simulation
and noise modelling. It would be interesting in future work to test
the robustness of our modelling against more complex foreground
simulations, for example including polarization leakage. Considering
additional noise and systematic effects, such as (1/f) noise and RFI
flagging in our simulations would also be worthwhile.

Although we looked specifically at the single dish H I intensity
mapping case in this paper, our findings could also be relevant
for the interferometer case. The interferometer case would have
much better angular resolution, but additional complications due
to different instrumental systematic effects. However, foreground
removal effects are analogous and equally important for both cases,
and FASTICA in particular has been applied to interferometric data
already (see e.g. Chapman et al. 2012; Hothi et al. 2021).

To further investigate our results for the covariance matrix, future
plans include calculating the covariance matrix using a suite of
simulations, and obtaining a more robust estimate of how systematic
effects impact the H I IM covariance matrix.
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We hope our findings can be useful for analysing H I intensity
mapping data from the MeerKAT single-dish survey (Santos et al.
2017; Pourtsidou 2018; Li et al. 2020b; Wang et al. 2020), in partic-
ular by using multipole expansion and our modelling prescriptions
for understanding systematic effects. Our formalism can also help
the preparation of forthcoming observations by providing realistic
forecasts.
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APPENDIX A : C OVARIANCE MATRIX IN T HE
PRESENCE OF A TELESCOPE BEAM

In order to better understand why the telescope beam is increasing
correlations between different multipoles, we consider a toy power
spectrum model with and without the telescope beam effect.

We begin with the case of no telescope beam. First, assume we
have a simple, isotropic matter power spectrum (no RSD): PH I(k) =
T

2
H I b

2
H IPm(k). Let us also set PN = 0, bH I = 1 and T H I = 1 to obtain

PH I(k) = Pm(k). This yields σ 2(k, μ) = σ 2(k) = P 2
m(k)/Nmodes(k).

The sub-covariance matrices become:

C

′ (k) = (2
 + 1)(2
′ + 1)

2

P 2
m(k)

Nmodes(k)

∫ 1

−1
dμL
(μ)L
′ (μ) . (A1)

In the absence of RSD and any other anisotropic effect in the power
spectrum, the quadrupole and hexadecapole are null. Using equation
(A1), we can confirm that the off-diagonal covariance matrix terms
that include these multipoles are also null, as expected: C02(k) =
C04(k) = C24(k) = 0.

Next we consider the same power spectrum (PN = 0, bH I = 1
and T H I = 1) but with a telescope beam damping term, such that
PH I(k, μ) = Pm(k)B̃2

⊥(k, μ) = Pm(k) exp
(−k2R2

beam(1 − μ2)
)
. We

assume Rbeam = 1 Mpc h−1 for simplicity. This yields a covariance
per k and μ bin of

σ 2(k, μ) = P 2
m(k) exp

(−2k2(1 − μ2)
)

Nmodes(k)
, (A2)

and sub-covariance matrices given by

C

′ (k) = (2
 + 1)(2
′ + 1)

2

P 2
m(k)

Nmodes(k)

×
∫ 1

−1
dμe−2k2(1−μ2)L
(μ)L
′ (μ) ,

(A3)

yielding the following off-diagonal covariance matrices:

C02(k) = 5

2

P 2
m(k)

Nmodes(k)

∫ 1

−1
dμL0(μ)L2(μ)e−2k2(1−μ2)

= P 2
m(k)

Nmodes(k)
· 60k − 5

√
2πe−2k2

(4k2 + 3)erfi(
√

2k)

32k3
,

(A4)

C04(k) = 9

2

P 2
m(k)

Nmodes(k)

∫ 1

−1
dμL0(μ)L4(μ)e−2k2(1−μ2)

= P 2
m(k)

Nmodes(k)
· 9

512k5
[3

√
2πe−2k2

(16k4 + 40k2 + 35)

× erfi(
√

2k) + 20(4k3 − 21k)] ,

(A5)

C24(k) = 45

2

P 2
m(k)

Nmodes(k)

∫ 1

−1
dμL2(μ)L4(μ)e−2k2(1−μ2)

= P 2
m(k)

Nmodes(k)
· 45

4096k7
[4(304k5 − 600k3 + 1575k)

− 3
√

2πe−2k2
(64k6 + 208k4 + 500k2 + 525)erfi(

√
2k)] ,

(A6)

where erfi(x) is the imaginary error function. From the results above,
we can see that even in the absence of RSD, when we include the
effect of a telescope beam, the power spectrum does not have a
vanishing covariance between the different multipoles.
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