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ABSTRACT
Brown dwarfs, planetary-mass objects and directly imaged giant planets exhibit significant observational evidence for active
atmospheric circulation, raising critical questions about mechanisms driving the circulation, its fundamental nature and time
variability. Our previous work has demonstrated the crucial role of cloud radiative feedback on driving a vigorous atmospheric
circulation using local models that assume a Cartesian geometry and constant Coriolis parameters. In this study, we extend the
models to a global geometry and explore properties of the global dynamics. We show that, under relatively strong dissipation
in the bottom layers of the model, horizontally isotropic vortices are prevalent at mid-to-high latitudes while large-scale zonally
propagating waves are dominant at low latitudes near the observable layers. The equatorial waves have both eastward and
westward phase speeds, and the eastward components with typical velocities of a few hundred m s−1 usually dominate the
equatorial time variability. Lightcurves of the global simulations show variability with amplitudes from 0.5 per cent to a few
percent depending on the rotation period and viewing angle. The time evolution of simulated lightcurves is critically affected by
the equatorial waves, showing wave beating effects and differences in the lightcurve periodicity to the intrinsic rotation period.
The vertical extent of clouds is the largest at the equator and decreases poleward due to the increasing influence of rotation
with increasing latitude. Under weaker dissipation in the bottom layers, strong and broad zonal jets develop and modify wave
propagation and lightcurve variability. Our modelling results help to qualitatively explain several features of observations of
brown dwarfs and directly imaged giant planets, including puzzling time evolution of lightcurves, a slightly shorter period of
variability in IR than in radio wavelengths, and the viewing angle dependence of variability amplitude and IR colors.

Key words: hydrodynamics – methods: numerical – planets and satellites: atmospheres – planets and satellites: gaseous planets –
brown dwarfs.

1 IN T RO D U C T I O N

Brown dwarfs (BDs) are objects with masses intermediate between
stars and giant planets, but are analogous to giant planets in
temperature, composition, and size (Burrows et al. 2001). Isolated
BDs are easier to observe than exoplanets orbiting bright stars,
making them ideal targets to investigate physical, chemical, and
dynamical processes in the context of planetary atmospheres (Apai
et al. 2017). Growing observations of BDs in the past decade have
revealed that active atmospheric circulation is common among BDs.
Here we summarize several key types of observations that set direct
constraints on the large-scale circulation:

(i) Broadband lightcurve time variability at infrared (IR) wave-
lengths is commonly observed for field BDs (e.g. Gelino et al.
2002; Clarke et al. 2008; Artigau et al. 2009; Gillon et al. 2013;
Buenzli et al. 2014; Wilson, Rajan & Patience 2014; Metchev et al.
2015; Leggett et al. 2016; Miles-Páez, Pallé & Zapatero Osorio
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2017; Apai et al. 2017; Manjavacas et al. 2017; Eriksson, Janson
& Calissendorff 2019; Vos et al. 2019, 2020; Bowler et al. 2020;
Hitchcock et al. 2020, see also recent reviews by Biller 2017 and
Artigau 2018). Most of them are likely caused by the rotation of large-
scale surface inhomogeneities related to different cloud opacities
and/or temperatures that move in and out of view as the objects
rotate. The shapes of some lightcurves are irregular and change
over time-scales comparable to or slightly longer than rotational
time-scales, indicating rapid evolution of the large-scale spatial
patchiness in some cases. Apai et al. (2017) summarized a few types
of irregularities of the lightcurve variability and suggested a possible
solution by invoking differential zonal propagation of waves.

(ii) Multi-wavelength near-IR lightcurve variability provides ad-
ditional information on the vertical structure of the surface patchiness
because different wavelengths probe different atmospheric pressures
(Buenzli et al. 2012; Radigan et al. 2012; Apai et al. 2013; Biller
et al. 2013; Yang et al. 2015, 2016; Lew et al. 2016; Zhou et al. 2018;
Lew et al. 2020; Zhou et al. 2020). The amplitude of the variability
changes with wavelength, showing smaller amplitude near the water
absorption bands and larger amplitude near spectral windows. These
are typically consistent with the scenario that the surface patchiness
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results from a combination of different cloud thicknesses rather than
a combination of a single cloud type and a completely clear-sky
region (Buenzli et al. 2012; Apai et al. 2013; Yang et al. 2015;
Lew et al. 2016, 2020). Alternative scenarios invoking variation
of temperature in clear-sky atmospheres have also been proposed
(Robinson & Marley 2014; Morley et al. 2014; Tremblin et al. 2020).
The phases of lightcurve rotational variations can be different at
different wavelengths, and the extent of this difference varies with
spectral types (Yang et al. 2016).

(iii) Viewing-angle dependence of variability and near-IR colour
of field BDs has been suggested by Vos, Allers & Biller (2017), Vos
et al. (2018) and Vos et al. (2020), who showed that BDs viewed more
equator-on tend to have higher variability amplitudes and redder near-
IR colors than those viewed more pole-on. These results indicate the
possible presence of systematic equator-to-pole differences of cloud
properties, temperature, and/or chemical composition.

(iv) Doppler imaging could provide perhaps the most direct
constraints on the presence of large-scale surface patchiness and their
morphology. This has been done for Luhman 16B (the spectral type
T1 component in the BD binary system Lhuman 16AB) and yielded
surface flux differences between the patchiness of a few hundred K
in terms of effective temperature (Crossfield et al. 2014).

(v) Simultaneous tracking of near-IR and radio variability, in
which the former measures the period at which atmospheric features
rotate in and out of the view and the latter likely reflects the rotation
period of the interior, could track possible differential rotation
between the atmosphere and the interior. Recently, Allers et al. (2020)
applied this technique to a nearby T6 brown dwarf and showed that
the period of the near-IR variability is slightly shorter than that of the
radio emission, suggesting that the dominant atmospheric features
travel eastward relative to the interior with a zonal speed of a few
hundred m s−1.

(vi) Net near-IR polarization could be due to scattering by cloud
particles together with either the presence of oblateness due to fast
rotation or cloud inhomogeneity (e.g. Sengupta & Marley 2009;
Marley & Sengupta 2011). Recently, Millar-Blanchaer et al. (2020)
unambiguously detected net near-IR polarization as well as its time
variability on Luhman 16B. The time-mean polarization indicates
a latitudinally dependent cloud structure, and its time variation
indicates longitudinal cloud patchiness on top of the zonal cloud
structure.

Directly imaged extrasolar giant planets (EGPs) are mostly young,
hot, and relatively distant from their host stars such that they receive
negligible external stellar irradiation compared to their interior heat
flux. Their spectrum and near-IR colors show similarities to the dusty
field BDs (e.g. Barman et al. 2011; Currie et al. 2011; Marley et al.
2012; Rajan et al. 2015; Chauvin et al. 2017; Stolker et al. 2020).
Near-IR lightcurve variability has been observed on directly imaged
EGPs and planetary-mass, free-floating objects (Biller et al. 2015;
Zhou et al. 2016; Biller et al. 2018; Schneider et al. 2018; Vos
et al. 2018; Manjavacas et al. 2019; Miles-Páez et al. 2019). From a
meteorological point of view, directly imaged EGPs resemble low-
gravity versions of BDs and fall into the same category as field BDs
in terms of atmospheric dynamical regime.

These observations motivate the investigation of global atmo-
spheric dynamics of BDs and directly imaged EGPs, their funda-
mental properties and effects on cloud formation and chemistry.
There have been several studies investigating atmospheric dynamics
appropriate for these objects (Freytag et al. 2010; Zhang & Showman
2014; Tan & Showman 2017; Showman, Tan & Zhang 2019; Tan
& Showman 2021, and see recent reviews by Showman, Tan &

Parmentier 2020 and Zhang 2020). Cloud radiative feedback has
been proposed as a robust and novel mechanism to drive spontaneous
atmospheric variability and dynamics in these atmospheres (Tan &
Showman 2019; Tan & Showman 2021). This mechanism works as
follows: imagine two adjacent atmospheric columns, one of which
has a thick cloud layer and the other has a relatively thin cloud
layer. The two columns experience different radiative heating and
cooling rates due to the different cloud opacity, which then generate
isobaric temperature differences. This drives an overturning flow that
maintains the patchy clouds against settling, potentially sustaining
the circulation. In a previous work, we confirmed the viability of this
mechanism and explored dynamical properties of the circulation
using local 3D models that assume a Cartesian geometry and a
constant Coriolis parameter f across the domain (Tan & Showman
2021). We demonstrated the importance of rotation in regulating the
large-scale atmospheric dynamics and cloud formation, showing that
the typical horizontal length scales of vortices and cloud patterns are
inversely proportional to the Coriolis parameter f if other parameters
are held fixed, and that the mean cloud vertical extent decreases with
decreasing rotation period.

The latitudinal variation of the Coriolis parameter in global
geometry, the so-called β effect where β = df/dy and y is distance
increasing northward, introduces additional dynamical behaviors
compared to those in the f-plane models (Tan & Showman 2021).
For example, the β effect can introduce horizontal anisotropy in the
turbulence (Rhines 1975; Vallis & Maltrud 1993) as well as large-
scale atmospheric waves (Holton & Hakim 2012), both of which play
crucial roles in the global circulation of giant planets (see reviews
by Ingersoll et al. 2004; Vasavada & Showman 2005; Del Genio
et al. 2009; Showman et al. 2018). In addition, the regional models
in Tan & Showman (2021) occupy only a limited fraction of the
surface area of BDs and EGPs, and therefore qualitative comparisons
between model outputs and observed lightcurve variability were
lacking.

In this study, we extend the modelling framework of Tan & Show-
man (2021) to a global geometry to investigate the global atmospheric
circulation driven by the cloud radiative feedback and the resulting
lightcurve variability. We show that when the bottom frictional
dissipation is relatively strong, horizontally isotropic storms and
turbulence are prevalent at mid-to-high latitudes while zonally
propagating waves are present at low latitudes near the observable
layer. The differential propagation of equatorially trapped waves
induces short-term evolution of simulated lightcurves, analogous to
the wave beating effects described in Apai et al. (2017). Eastward
propagating equatorial Kelvin waves are sometimes dominant, caus-
ing a slightly shorter rotation period of the atmospheric features
relative to the underlying planetary rotation period, which agrees
well with observational results by Allers et al. (2020). When the
bottom dissipation is weak, strong and broad zonal jets develop
and modify wave propagation and lightcurve variability. We find
systematic equator-to-pole differences of clouds and temperature
structures due to the latitudinal variation of the Coriolis parameter
f, supporting recent observations by Vos et al. (2017) and Vos et al.
(2020). Large-scale equatorial disturbances may help to explain the
nature of longitudinal variation in Doppler mapping (Crossfield et al.
2014) and time-varying polarization (Millar-Blanchaer et al. 2020)
of Luhman 16B.

The paper is organized as follows. Section 2 briefly introduces
the global numerical model. Section 3 describes results of models
with different rotation periods and drag time-scales as well as their
resulting lightcurve variability. In Section 4, we discuss implications
of the results and draw conclusions.
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2 MO D EL

The general circulation model (GCM) used in this study is fully
described in Tan & Showman (2021), and here we apply the GCM
to a global domain. Key elements of the model are summarized
below. We solve the standard 3D hydrostatic primitive equations
using an atmospheric GCM, the MITgcm (Adcroft et al. 2004). Two
tracer equations that represent the mass mixing ratio of condensable
vapor and clouds are integrated simultaneously. We assume the ideal
gas law for the equation of state. The deep layers in our models
have reached the convective zone which is typically at pressures
larger than a few bars for typical L and T dwarfs (Burrows et al.
2001). Effects of rapid convective mixing on both entropy and tracers
are parametrized using a simple convective adjustment scheme that
instantaneously homogenizes entropy and tracers in the convectively
unstable regions.

A Rayleigh drag is applied to the horizontal winds at pressures
higher than five bars to crudely represent interactions between the
modelled atmosphere and the quiescent interior where large-scale
flows are likely retarded due to significant magnetohydrodynamic
dissipation. Rapid convective mixing of specific entropy and fast
rotation may lead to the Taylor-Proudman effect that could be
efficient in slowing down large-scale winds in the shallow outer layer
(see the detailed argument in Schneider & Liu 2009). Because of the
much hotter interior of L and T dwarfs and likely strong magnetic
fields of BDs (∼kG, Kao et al. 2016, 2018), the ‘quiescent’ region
inside BDs is expected to extend to a much shallower depth than that
of Jupiter. Therefore the drag is applied uniformly in the horizontal
direction. The form and strength of the drag are highly uncertain
because of the unknown nature of interactions between the interior
and the shallow outer layer. Yet no theoretical study systematically
investigates how such interactions should be parametrized in GCMs
of gaseous planets. Nevertheless, this simple drag serves to dissipate
flows in our bottom model layers, and similar drag schemes have
been used in previous studies of Jupiter (Schneider & Liu 2009)
and hot Jupiters (e.g. Liu & Showman 2013; Tan & Komacek 2019;
Carone et al. 2020).

The drag is the strongest at the bottom boundary and is charac-
terized by a drag time-scale τ drag, then it linearly decreases with
decreasing pressure until it reaches zero at five bars. There is no drag
at pressures lower than five bars. As in Tan & Showman (2021),
we set a relatively strong drag time-scale τ drag = 105 s for the
major suit of models. We have tested models with stronger drags
(τ drag = 104 and 103 s), and they are quantitatively similar to those
with τ drag = 105 s. Therefore, τ drag = 105 s is chosen to represent
dynamics in the ‘strong-drag’ regime. For τ drag sufficiently larger
than 105 s, dynamics is in the weak-drag regime. The drag is said to
be ‘strong’ in a practical sense that the resulting zonal-mean zonal
flows near the bottom layer are rather weak (with velocities much
smaller than 100 m s−1) based on our modelling results discussed in
Section 3.2, whereas the drag is said to be ‘weak’ when the resulting
zonal flows near the bottom layer are strong (with velocities much
greater than 100 m s−1). Using scaling argument in the convective
layers, Showman & Kaspi (2013) argue that the characteristic speeds
of large-scale zonal flows near the top of convective zone range from
only a few to tens of m s−1 depending on the number of jets. We
therefore expect that the strong-drag regime might be appropriate
for BDs and hot directly imaged EGPs. Nevertheless, in Section 3.2,
we show results with weaker drags of τ drag = 106 and 107 s to
explore possible circulation patterns for two reasons. First, it is
theoretically motivated to understand dynamics in different regimes
in spite of its applicability in realistic situations. Second, recent

gravity measurements of Jupiter and Saturn suggest that significant
meridional density gradients (and therefore the vertical wind shears
associated with the zonal jets) exist deep in the convective zone of
Jupiter and Saturn (Guillot et al. 2018; Kaspi et al. 2018; Iess et al.
2019). This indicates that strong organized zonal flows near the top
of convective zone remain possible for BDs.

Atmospheric motions are driven by the horizontal pressure gra-
dient that is rooted from horizontal differential radiative heating
and cooling. In calculating the radiative flux, we assume a grey
atmosphere with a single broad thermal band for simplicity and
computational efficiency. The gas opacity in our model atmosphere
is κgas = max (κR, g, κmin), where κR, g is the Rosseland-mean
opacity from Freedman et al. (2014) assuming solar composition.
The Rosseland-mean opacity gives a good estimation of radiative
flux in the optically thick limit. The atmosphere above about one
bar is optically thin by the gas opacity alone, and there is no good
choice a priori for the opacity in the grey approximation. A minimal
opacity κmin is then imposed in the gas opacity. We assume κmin =
10−3 m2 kg−1, which is consistent with that used in semi-grey models
in Guillot (2010) for hot giant planets. The total atmospheric opacity
κ is simply the sum of the gas and cloud opacities κ = κgas + κc, the
latter of which is determined by the cloud mixing ratio as a function
of time and location.

The cloud formation scheme is the same as that in Tan &
Showman (2021). Cloud forms when the mixing ratio of condensable
vapor exceeds the prescribed saturation mixing ratio qs. Otherwise,
evaporation occurs when the vapor mixing ratio is less than qs. The
saturation mixing ratio qs is assumed to depend on pressure alone: qs

is qdeep at a condensation pressure pcond and then rapidly decreases
when pressure is less than pcond. At pressures larger than pcond, qs

is assumed to be arbitrarily large such that no condensation would
occur. The condensation pressure pcond is assumed to be 0.5 bar,
roughly consistent with conditions of typical mid-L dwarfs in which
clouds form at and above ∼1 bar (e.g. Tsuji 2002; Burrows, Sudarsky
& Hubeny 2006). The deep mixing ratio qdeep is assumed to be
2 × 10−4 kg/kg. At pressures higher than five bars, the vapor field is
relaxed towards qdeep over a time-scale of 103 s. The assumed qdeep in
this study is less than that of silicate vapor in atmospheres with solar
abundance. This value is tuned to generate cloud opacity that greatly
exceeds the gas opacity, but not to trigger convection within the
cloud-forming region. Convection within the cloud forming region
complicates the dynamics as it would introduce instability that does
not totally rely on resolved large-scale flow (Tan & Showman 2019).
We aim at exploring large-scale cloud-driven dynamics in a cleanest
possible context, therefore we do not chose a realistic qdeep.

We assume a constant cloud particle number per dry airmass
Nc (in unit of kg−1) throughout the atmosphere. Cloud particles
are assumed to be spherical and have a single size locally in each
grid cell, and the particle size is then determined via a given Nc

and time- and location-dependent amount of condensate (using the
scheme of Tan & Showman 2021). We assume Nc = 1011 kg−1,
which results in typical cloud particle size around 0.5 μm given the
assumed qdeep, consistent with that expected for L dwarfs (Saumon
& Marley 2008; Burningham et al. 2017). Optical properties of cloud
particles, including the extinction coefficient, scattering coefficient,
and asymmetry parameter are averaged using the Rosseland-mean
definition. Tables containing these parameters as functions of temper-
ature and pressure are pre-calculated for the GCM to read in during
the integration. We use enstatite (MgSiO3) to represent properties
of the cloud species, including a density ρc = 3190 kg m−3 and the
refractive index. Enstatite is one of the most representative cloud
species in atmospheres of L and early T dwarfs, and is appropriate
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for our atmospheric conditions (Ackerman & Marley 2001; Saumon
& Marley 2008; Marley & Robinson 2015). However, the choice of
cloud species is not critical in this study as long as the cloud opacity
exceeds the gas opacity.

The global models in this study have different horizontal resolution
depending on the rotation period – the shorter the rotation period, the
smaller the deformation radius and thus higher resolution is needed.
Our horizontal resolution of the cubed-sphere grid is C96 (equivalent
to 384 × 192 grid points in longitude and latitude), C128 (512 × 256),
C192 (768 × 384), and C256 (1024 × 512) for rotation period of
20, 10, 5, and 2.5 h, respectively. These horizontal resolutions are
among the highest published so far for exoplanet and brown dwarf
global models.1 The radius of the object is assumed to be 7 × 107

m, similar to the Jovian radius RJ. Although radius of real BDs
varies from more than 2RJ to slightly less than RJ depending on
their masses and ages, our choice of radius should be representative
for field BDs. A standard fourth-order Shapiro filter is applied in
the horizontal velocity and temperature fields to maintain numerical
stability (Shapiro 1970). The pressure domain is between 10 bars and
10−3 bar, which is discretized evenly into 55 layers in log pressure.
The model pressure domain is deep enough to reach the convective
zone, where we argue that rapid convective mixing leads to small
horizontal temperature gradient. The upper boundary is high enough
for models to safely capture dynamics associated with clouds. The
temperature at the bottom boundary (10 bars) is fixed at 2600 K,
resulting in atmospheric temperatures comparable to those of L
dwarfs. We adopt physical parameters relevant for BDs, including
the specific heat cp = 1.3 × 104 Jkg−1K−1, the specific gas constant
R = 3714 Jkg−1K−1, and a surface gravity g = 1000 ms−2. Models
with τ drag = 105 s equilibrated after ∼100 simulation days. After
equilibration, we integrated them for additional 300 days, and the
time-mean statistical results were obtained with outputs of the last
200 days. Models with τ drag = 106 and 107 s equilibrated after ∼200
and ∼1000 simulation days, respectively, and their statistical results
were obtained similarly to those with τ drag = 105 s.

3 R ESULTS

3.1 Results with varying rotation and strong bottom drag

3.1.1 Temperature and cloud patterns

Results of global models with rotation periods of 20, 10, 5, and 2.5 h
and with a drag time-scale τ drag = 105 s (note that the frictional drag
is applied only at pressures greater than 5 bars) are shown in Fig. 1.
Fig. 2 shows the corresponding outgoing top-of-atmosphere thermal
flux. These results are obtained after the models reach statistical
equilibrium. Pressures of thermally radiating levels are sensitive to
cloud top pressures – the radiating pressure could be lower than 0.05
bar in cloudy regions and could be about three bars in clear-sky
regions. Dynamics at 0.23 bar is representative for layers near and
slightly below the cloud-forming region. Quantities at slightly higher
or lower pressures are qualitatively very similar to those at 0.23 bar.

There is a lack of strong zonal jets, in the sense that the zonal-
mean zonal winds are much weaker than the eddy velocities, in all
models shown in Figs 1 and 2 due to dissipation of kinetic energy
by the strong bottom drag. The circulation in the cloud-forming

1If the horizontal resolution is insufficient to fully resolve dynamics within
the deformation radius of local regions (especially near the polar regions),
storms will cease to exist and there would not be dynamics in these regions.

region is dominated by active vortices, turbulence, and waves. At
0.23 bar, typical isobaric temperature differences are above 100 K,
and local horizontal wind speeds can exceed 1000 m s−1. Mid-to-
high latitudes are filled with cyclones2 which are less cloudy than
their surroundings, and anticyclones which are associated with thick
clouds. In the cloudy areas, less thermal radiation escapes to space
due to large cloud opacity, and this cloud greenhouse effect warms
up the lower cloud-forming region. In the cloud-free areas, more
radiation can escape to space from the hotter, deeper region due to
the lack of cloud opacity, efficiently cooling down the atmospheric
column. This patchy-cloud configuration is self-maintained by the
circulation driven by clouds themselves (Tan & Showman 2021).
Positive buoyancy is generated in the cloudy regions, and it maintains
the cloudiness against cloud gravitational settling by transport
of condensable vapor upward to the condensation level; whereas
negative buoyancy in the cloud-free regions generates downwelling
that advects cloud-free air from above, maintaining the IR cooling.
In rapidly rotating conditions, the tendency of geostrophy implies
that the warm, cloudy regions are anticyclonic and cool, cloud-
free regions are cyclonic. The spatial patterns of the outgoing
top-of-atmosphere thermal flux are highly correlated with that of
cloud patchiness. Other than the vortices, turbulence and transient
waves with smaller horizontal length scales and higher oscillation
frequencies are also present. The basic findings from these global
models agree well with those of box models with a fixed Coriolis
parameter f across the domain (Tan & Showman 2021).

At a given rotation period, typical sizes of vortices are generally
larger at lower latitudes and smaller at higher latitudes. This is more
prominent in rapidly rotating models with rotation periods of 5 and
2.5 h. The overall sizes of vortices are larger with longer rotation
period. This is because the typical sizes of vortices driven by cloud
radiative feedback are close to the Rossby deformation radius Ld =
cg/|f| (Tan & Showman 2021), where cg is the phase speed of gravity
waves, f = 2�sin φ, � is planetary rotation rate and φ is latitude.
The dependence of Ld on � and φ naturally leads to the spatial
and rotation-period dependence of vortex sizes. Individual vortices
are short lived and experiences merging, disruption, shearing, and
straining over typical time-scales of tens of hours. There is no
systematic migration of individual vortices after they form. This is
likely because the atmosphere is filled with vortices, and individual
vortex is significantly disrupted by adjacent vortices before they can
migrate over a long distance.

As shown by Tan & Showman (2021), greater |f| leads to overall
thinner clouds. Qualitatively, stronger rotation leads to a larger degree
of geostrophic balance in the flows that exerts greater suppression
to the vertical velocity, making the flows less efficient to vertically
transport tracers against cloud gravitational settling. Therefore, the
variation of the Coriolis parameter f from the equator to the poles as
well as the different rotation period have significant consequences
for the vertical extent of clouds. In Fig. 3, we show the time- and
zonal-mean cloud mixing ratio as a function of pressure and latitude
for models with four rotation periods. With a given rotation period,
the vertical extent of clouds is largest at the equator and decreases
poleward. The cloud thicknesses at the equator are almost the same
among models with different rotation periods. At the poles, the
zonal-mean cloud thickness is smaller when the rotation period is
shorter. For rapidly rotating models, f spans a larger range and is
responsible for the greater change of the zonal-mean cloud thickness.

2Cyclones have relative vorticity as the same sign as the local planetary
rotation, whereas anticyclones have the opposite sign of relative vorticity.
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Figure 1. Instantaneous global temperature maps at 0.23 bar on the left-hand column and the corresponding horizontal cloud mixing ratio at 0.23 bar on the
right-hand column. These results are from models with four rotation periods of 20, 10, 5, and 2.5 h (from the top to the bottom row) and with a drag time-scale
τ drag = 105 s at the bottom boundary. Horizontal thin dotted lines in the maps are constant-latitude lines with a spacing of 15◦, and vertical thin dotted lines are
constant-longitude lines with a spacing of 30◦. T

As a result of the equator-to-pole cloud thickness variation, the
time- and zonal-mean temperature-pressure (T-P) structures exhibit
a systematic equator-to-pole variation due to the cloud radiative
feedback. Fig. 4 shows the time-averaged zonal-mean T-P profiles
at selected latitudes for the model with a rotation period of 2.5 h.

The isobaric temperature variation can reach more than 100 K from
the equator to the poles. On top of this systematic equator-to-pole
zonal-mean variation, instantaneous differences in the T-P structures
associated with the cloudy and clear-sky regions are also present,
similar to that shown in Tan & Showman (2021).

MNRAS 502, 2198–2219 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2198/6101225 by guest on 09 April 2024



Atmospheric circulation of brown dwarfs and directly imaged exoplanets 2203

Figure 2. Instantaneous global map of outgoing top-of-atmosphere thermal flux corresponding to those shown in Fig. 1.

Figure 3. Time- and zonal-average cloud mass mixing ratio as a function of latitude and pressure for models with four rotation periods of 20, 10, 5 and 2.5 h
(from the left to right) and with a drag time-scale τ drag = 105 s at the bottom. The white regions have log10qc < −7.

3.1.2 Equatorial wave properties

Dynamics near the equator shows qualitative differences to that at
mid-to-high latitudes, which can be seen from two features. The first
is the morphology of the eddies. Eddies near the equator are likely
more elongated in the zonal direction, which is in contrast to the
horizontally isotropic vortices at mid-to-high latitudes. This feature
is more prominent in models with rotation periods of 5 and 2.5 h.
The second difference is the time evolution of the eddies. Equatorial
eddies exhibit systematic eastward or westward propagation, while
trajectories of mid-to-high-latitude vortices are more akin to random
walks and show no systematic migration along certain directions.
Fig. 5 shows the Hovmöller diagrams (longitude-time sequence) of

outgoing thermal flux at the equator as a function of longitude and
time for models with different rotation periods. All models exhibit
obvious characteristic eastward propagating patterns (those moving
towards the upper right of the panels) with zonal speeds on the order
of a few hundred m s−1. On the contrary, Fig. A1 in Appendix A
similarly shows the Hovmöller diagrams at 45◦ latitude where
stochastically evolving vortices dominate, and there is not evidence
of eastward or westward propagation of the eddies. These propa-
gating eddies at low latitudes have much larger zonal wavelengths
than the mid-to-high-latitude vortices (comparing Figs 5 and A1),
showing dominant features characterized by zonal wavenumbers
of a few. Westward propagation of eddies is also present with a
slower phase speed. The time evolution of the zonally propagating
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Figure 4. Time- and zonal-average temperature-pressure profiles at selected
latitudes from the model with a rotation period of 2.5 h and with a drag
time-scale τ drag = 105 s at the bottom.

eddies is not always coherent, and often shows complications as they
evolve. For example, some existing perturbations disappear when
they propagate while some new perturbations are generated. The
propagating eddies at low latitudes are likely equatorially trapped
waves, and they exert significant effects on the short-term evolution
of lightcurve variability as will be discussed in Section 3.3.

Based on both the morphology and time evolution of the eddies,
latitudinal boundaries that separate the two groups of atmospheric
motions seem to emerge. The boundary is closer to the equator
with shorter rotation period. This boundary is likely related to
the equatorial deformation radius Leq = √

cg/β. Poleward of this
distance from the equator, there is sufficient room for mature vortices

to develop and the dynamics is dominated by vortices. Within
this scale from the equator, dynamics are shaped by equatorially
trapped waves that are coupled to the cloud radiative effect. Using
cg ∼ 2000 m s−1 obtained from fitting theoretical off-equatorial
deformation radius to the measured sizes of dominant vortices as
a function of f in the constant−f models of Tan & Showman (2021),
the equatorial deformation radius Leq extends to about 24, 17, 12,
and 9◦ away from the equator for models with rotation periods of
20, 10, 5, and 2.5 h, respectively. This is roughly consistent with that
shown in Figs 1 and 2 and their time evolution (not shown).

Now we turn to characterize properties of equatorial waves that
are present in our simulations. We perform a spectral analysis
at the equator in the wavenumber-frequency domain, similar to
that performed in Wheeler & Kiladis (1999) and Showman et al.
(2019). The brief procedure is the following. We perform two-
dimensional fast Fourier transforms on the outgoing thermal flux
as a function of longitude and time near the equator to obtain the
raw Fourier coefficients in the wavenumber-frequency space. These
raw coefficients are then heavily smoothed in the wavenumber-
frequency space to generate the background spectrum. Finally, the
raw coefficients are divided by the background spectrum to obtain the
relative power spectrum, in which significant signals will appear to
have values greater than 1. The eddy fields are further decomposed
into symmetric and anti-symmetric components about the equator
because it helps to clarify the wave properties (Wheeler & Kiladis
1999; Kiladis et al. 2009). The relative power spectrum of models
with different rotation periods are shown in Fig. 6 for the symmetric
components and Fig. 7 for the anti-symmetric components.

Our space–time spectral analysis demonstrates the robust exis-
tence of groups of zonally propagating waves. In the symmetric
components, a group of eastward waves with zonal wavenumbers
between 2 to 10 are present in all models. Weaker signals of westward
waves with zonal wavenumbers between −10 and −2 exist in models
with rotation periods of 5 and 2.5 h but not in those with rotation

Figure 5. Hovmöller diagrams (longitude-time sequence) showing the time evolution of outgoing thermal flux at the equator for models with four rotation
periods of 20, 10, 5 and 2.5 h (from the left to right) and a drag time-scale τ drag = 105 s. Fluxes shown in these panels are sampled every 0.3 day.
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Atmospheric circulation of brown dwarfs and directly imaged exoplanets 2205

Figure 6. Wavenumber-frequency relative power spectrum of the symmetric components around the equator for models with four rotation periods of 20, 10, 5,
and 2.5 h and with a drag time-scale τ drag = 105 s. Solid lines are three sets of n = 1 equatorially trapped Rossby waves with three equivalent depths of he =
300, 150, and 50 m (equivalent to Kelvin wave phase speeds of 548, 387, and 224 m s−1). Here n is the meridional mode number used in classic equatorial wave
theory. Dashed lines are three sets of Kelvin waves with the same equilibrium depths. The horizontal axis represents zonal wavenumber with negative values
representing westward propagation and positive values representing eastward propagation. The vertical axis is frequency in a unit of cycle per day (CPD). The
relative power spectrum shown here is nondimensional. Fluxes used in this analysis are sampled every 0.3 day.

periods of 20 and 10 h. In the anti-symmetric components, models
with rotation periods of 20 and 10 h exhibit evidence of both eastward
and westward waves with zonal wavenumbers in between about −5
to 5, and those with 5 and 2.5 h host westward waves with zonal
wavenumbers between −10 and 1.

We compare the signals in Figs 6 and 7 to dispersion relations
of adiabatic, freely propagating equatorial waves derived from the
shallow-water system (Matsuno 1966). These waves are character-
ized by an equivalent depth he, such that the gravity wave speed
(which is the same as the Kelvin wave speed) cg = √

ghe where g is
the surface gravity.3 Although waves in our simulations are highly
diabatic and tightly coupled to radiative effects of clouds, this serves
as a baseline comparison. Solid lines in Fig. 6 represent the dispersion
relations of adiabatic free equatorial Rossby waves with a meridional
mode number n = 1 and with three equivalent depths of 300, 150,
and 50 m (equivalent to gravity wave phase speeds of 548, 387, and
224 m s−1). Dashed lines in Fig. 6 represent dispersion relations of
Kelvin waves with the same equivalent depths. In the anti-symmetric
components shown in Fig. 7, n = 0 westward mixed Rossby-gravity

3Linear equatorial wave theories in the continuously stratified atmospheres
often decompose the atmosphere into a set of shallow-water systems with
different equilibrium depths corresponding to different vertical modes of the
continuously stratified atmosphere (see discussion in, e.g. Kiladis et al. 2009;
Tsai, Dobbs-Dixon & Gu 2014). This is partly why shallow-water equatorial
waves are often used as a baseline for comparisons to either observations or
simulated atmospheres (see a review by Kiladis et al. 2009).

(MRG) waves and n = 0 and eastward inertia gravity (EIG) waves
with three equivalent depths of 400, 200, and 100 m (gravity wave
phase speed of 632, 447, and 316 m s−1) are plotted as dotted lines.

In the symmetric components (Fig. 6), evidence of Kelvin waves
is quite strong for all models as the spectral powers follow the Kelvin
wave dispersion relations (dashed lines) reasonably well. Amplitudes
of the Kelvin waves are stronger among low zonal wavenumbers
between 2 and 6. The wave speeds of our simulated Kelvin waves are
somewhat dispersive. Kelvin modes with lower zonal wavenumbers
(longer zonal wavelengths) typically have slower phase speeds than
those with higher zonal wavenumbers. A phase speed of ∼550 m s−1

brackets the upper limit of phase speeds in all models. The phase
speeds of waves with a zonal wavenumber of 2 in cases with rotation
period of 10 and 5 h are much slower than 220 m s−1. There is no
evidence of equatorial Rossby waves in models with rotation periods
of 20 and 10 h, and the evidence is tentative in models with 5 and
2.5 h. However, even in the case with 2.5 h, the westward branch
with relatively high frequencies >0.5 cycle per day (CPD) obviously
deviates from the theoretical Rossby-wave dispersion relation. There
are no wave signals at frequencies higher than those shown in
Fig. 6 in the symmetric components, suggesting the absence of high-
frequency inertia gravity waves.

In the anti-symmetric components (Fig. 7), MRG and n = 0 EIG
waves are evident in cases with rotation periods of 20, 10, and 5 h.
They have either eastward or westward phase velocities with speeds
larger than that of the Kelvin waves. In the case of 2.5 h, although
the wave signals lie in between the dispersion relations of theoretical
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2206 X. Tan and A. P. Showman

Figure 7. Wavenumber-frequency relative power spectrum of the anti-symmetric components around the equator for the same data sets used in Fig. 6. Dotted
lines are three sets of MRG waves with three equivalent depths of he = 400, 200, and 100 m (equivalent to having Kelvin wave phase speeds of 632, 447, and
316 m s−1). Fluxes used in this analysis are sampled every 0.1 day.

MRG waves assuming different equilibrium depth, the signals show
somewhat constant frequency between zonal wavenumber −7 and
−3, making the interpretation less obvious. Nevertheless, these
diagrams (Figs 6 and 7) quantify the propagation of waves and help
to recognize the wave types.

Because eastward Kelvin waves seem dominant in both the
equatorial time evolution of out-going thermal flux (Fig. 5) and the
spectral analysis (Fig. 6), we further illustrate their properties in the
physical domain by extracting from the total dataset through filtering
in the wavenumber-frequency domain, similar to the procedure in
Wheeler & Kiladis (1999). At a given latitude, we choose a signal
with a zonal wavenumber and a frequency in the wavenumber-
frequency domain, then project it back to the longitude-time domain.
We repeat this process for all latitudes near the equator and obtain the
propagating wave in the physical space. Panel (a) in Fig. 8 shows the
snapshot of an eastward symmetric wave with a zonal wavenumber
of 4 and a frequency of about 0.15 CPD that shows a strong signal
in the model with a rotation period of 10 h (the upper right panel in
Fig. 6). An example of adiabatic free Kelvin wave is shown in panel
(b) as a comparison to our simulated wave. The adiabatic free Kelvin
wave has eddy zonal velocity in phase with the pressure anomaly,
and the disturbances decay away from the equator. Our simulated
wave shows certain similarities to the adiabatic free Kelvin wave –
velocities have much larger zonal components than the meridional
components in most places, and the geopotential anomalies decay
away from the equator. Note that cloud abundances correlate well
with the convergence/divergence of the wind field (see a comparison
between vectors and the colors that represent the cloud abundance).

Meanwhile, in the simulated wave, the eastward zonal velocity
pattern exhibits a moderate eastward phase shift compared to the

geopotential anomalies in the zonal direction (whereas those in the
adiabatic free Kelvin wave are in-phase). Moreover, the simulated
wave exhibits a north-west-southeast phase tilt in the Northern
hemisphere and a southwest-northeast phase tilt in the Southern
hemisphere for the geopotential anomalies. This likely reflects a
tendency that the circulation resembles wave patterns excited by a
stationary heat source that is symmetric about the equator (Matsuno
1966; Gill 1980). An example of such a stationary wave solution
subjected to damping on both velocity and layer thickness in the
shallow-water system adopted from Showman & Polvani (2011) is
shown in panel (c). This so-called Matsuno-Gill pattern is character-
ized by an eastward shift of the Kelvin component at the equator and
a westward shift of Rossby components off the equator. Therefore it
shows the north-west-southeast phase tilt in the Northern hemisphere
and a southwest-northeast phase tilt in the Southern hemisphere,
as well as that the maximum positive zonal velocity is east of the
height maximum at the equator. In our simulations, when cloud
forms by convergence at the equator, the accompanied heat source
drives the flow towards the Matsuno-Gill shape. However, because
clouds themselves are also advected by flows over a time-scale that
is comparable to that required to form the Matsuno-Gill pattern, the
advection of the heat source disrupts the complete formation of the
Matsuno-Gill pattern. This is why our simulated wave still shows
quantitative discrepancies to that in panel (c).

It is likely that our simulated eastward, Kelvin-like waves resemble
properties of both the adiabatic free Kelvin waves and the forced-
damped Matsuno-Gill circulation. Recently, using a quasi-linear
moist shallow-water system, Vallis & Penn (2020) showed that the
Matsuno-Gill-like circulation is excited by latent heating (which
itself is coupled to the flow, somewhat analogous to the cloud
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Figure 8. Panel (a): a snapshot of the horizontal structure of eastwardly
propagating, symmetric wave at 0.23 bar with a zonal wavenumber 4 and
a frequency of about 0.15 CPD in the simulation with a rotation period of
10 h. Thick solid lines are positive geopotential anomalies from 0.5 × 104 to
3.5 × 104 m2s−2 and thick dashed lines are negative geopotential anomalies
from −3.5 × 104 to −0.5 × 104 m2s−2 (with H marking the high-geopotential
center and L marking low-geopotential center). Arrows represent wind
vectors, and colors represent cloud mixing ratio associated with this wave.
Panel (b): an example of an adiabatic free Kelvin wave as a function of
non-dimensional zonal and meridional distances. Similar to panel (a), arrows
represent wind vectors and thick lines represent height perturbations in the
shallow-water system. Panel (c): An analytic forced-damped stationary wave
solution forced by a zonal-wavenumber-1 stationary forcing centred around
[0,0]. Light colors represent larger values in the height field and arrows are
eddy wind vectors. This is adopted from Showman & Polvani (2011), which
the details of the solution is referred to.

radiative heating in our cases) at the equator, and a slow eastward
migration of the whole pattern is driven by the interactions of the flow
and moisture field. It is unclear how much the mechanism shown in
Vallis & Penn (2020) participates in the eastward propagation of our
simulated waves in addition to that related to the free Kelvin wave.
Teasing out the detailed mechanisms in our simulations is beyond
the scope of this paper as they are highly nonlinear. Here we still
refer these zonally traveling disturbances as waves, partly because
these disturbances follow wave dispersion relations reasonably well
(as shown in Figs 6 and 7).

The origin of the equatorial waves in our simulations is likely
related to self-excitation by cloud radiative feedbacks. However, even
treating them as waves, mechanisms controlling the wave properties
are unclear and little previous work exists. Linear stability analyses
on the cloud radiatively coupled dynamics was carried out for inertia
gravity waves in an f-plane system and a quasi-geostrophic system

by Gierasch, Ingersoll & Williams (1973), and they showed that
unstable modes are possible as a result of cloud radiative instability.
Here, we extend their theory to the equatorial β-plane which is
appropriate for equatorially trapped waves. The derivations are
shown in Appendix B. In the linear theory, we find that unstable
modes are possible for a set of Kelvin and n = 0 MRG modes,
suggesting a source of kinetic energy on the equatorial waves shown
in our models. However, the unstable modes from the theory do
not propagate. All other modes that resemble the classic adiabatic
free equatorial waves discovered by Matsuno (1966), including
propagating Kelvin, Rossby, MRG, eastward and westward inertia
gravity modes, show damping on the eddy amplitudes due to thermal
radiation. The linear theory is not a total failure because it still
predicts the kinetic energy sources for most equatorial waves in our
simulations, but it cannot explain the propagation of the simulated
waves. This situation is similar to that in the nonrotating two-
dimensional system shown in Tan & Showman (2021).

The wave speeds shown in Figs 6 and 7 are significantly slower
than expected from adiabatic waves with long vertical wavelengths
in conditions appropriate for our simulated atmospheres, the latter
of which is characterized by a much larger dry equivalent depth
he,dry = c2

g,dry/g ∼ 4000 m, where cg, dry ≈ 2NH ∼ 2000 m s−1, N is
the Brunt-Vaisala frequency, and H is the scale height. This is similar
to equatorial waves in Earth’s troposphere that are affected by latent
heat released from moist convection (Wheeler & Kiladis 1999). To
understand the reduced phase speed of tropical waves by diabatic
effects, the following idealized framework has been proposed (see a
review by Kiladis et al. 2009). Suppose that the large-scale diabatic
heating and cooling Q is included in the linearized thermodynamics
system as the following

∂

∂t

(
∂φ

∂z

)
+ wN2 = Q, (1)

where φ is the geopotential (note that ∂φ/∂z is proportional to
the temperature perturbation), z = −Hlog (p/ps) is the log-pressure
coordinate, p is pressure, ps is a reference pressure, and w is vertical
velocity in log-pressure coordinates. Furthermore, if the heating and
cooling are proportional to the vertical velocity such that Q = αwN2

(where α is an arbitrary constant), then equation (1) becomes

∂

∂t

(
∂φ

∂z

)
+ w(1 − α)N2 = 0. (2)

If α is positive and less than 1, diabatic heating and cooling effectively
reduce the stability of the atmosphere and therefore reduce the wave
phase speeds. For Earth’s tropical waves, the problem reduces to
determine theoretical values based on parametrized moist convection
for α to explain the observed wave speeds (e.g. Neelin & Held
1987; Emanuel, David Neelin & Bretherton 1994; Haertel & Kiladis
2004), but the problem has not been completely solved (Kiladis et al.
2009). For waves coupled purely with cloud radiative feedback, the
relation Q = αwN2 likely holds as well. In regions with upwelling,
vapor is advected above the condensation level and clouds form,
which generates warming near the condensation level due to cloud
radiative effect. In regions with downwelling, cloud-free air is
advected downward and clears out the region, enhancing the IR flux
to space and inducing cooling. To quantitatively confirm the positive
correlation between upwelling and heating, or downwelling and
cooling, we calculate the cospectral power density for the quantity
wQ in the cloud forming layer, which is simply 2R(wkQ

∗
k) where

wk and Qk are the coefficients at wavenumber k space for vertical
velocity and heating rate, and Q∗

k is the conjugate of Qk. A detailed
description of similar exercises in constant−f models is referred to
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2208 X. Tan and A. P. Showman

Figure 9. Time-averaged and zonal-mean zonal velocity as a function of
pressure and latitude for models with a rotation period of 5 h and different
drag time-scales τ drag = 105, 106, and 107 s from the top to bottom row.

Tan & Showman (2021). The wQ cospectral power density shows
positive values for almost all zonal wavenumbers, proving that Q
= αwN2 with a positive α holds well in our models. Therefore, we
expect the above idealized framework may be used to qualitatively
understand the reduced wave speeds seen in our simulations (however
it does not address questions as why and how certain wave modes
are excited but others are not). As for the detailed determination of
α, we defer to a future study.

3.2 Results with weaker bottom drag

We examine properties of the circulation when the bottom frictional
drag becomes weaker by performing two additional models with
drag time-scales of τ drag = 106 s and 107 s and a rotation period of
5 h. Note that in all models, the frictional drag is applied only at
pressures greater than five bars, well below the cloud condensation
level of 0.5 bar. Fig. 9 shows the time-averaged zonal-mean zonal
wind as a function of pressure and latitude for models with drag
time-scales of τ drag = 105, 106, and 107 s from the top to the bottom
panel. When the drag is strong (τ drag = 105 s), the zonal-mean
zonal wind is much weaker than local horizontal wind speeds of
vortices and turbulence. The zonal-mean zonal flow at low latitudes
exhibits an interesting vertical wind shear, with a westward mean flow
centring at around 0.5 bar and an eastward mean flow around 0.01
bar. The equatorial eastward jet centring around 0.01 bar corresponds
to a superrotation, which requires up-gradient angular momentum
transport to the equator by eddies. Our analysis (not shown) suggests
that horizontal eddy momentum transport by transient waves is

responsible for this local superrotation. This might be somewhat
analog to those proposed for superrotation in solar-system bodies,
such as Venus, Titan, tropospheres of Jupiter and Saturn (see a
recent review by Imamura et al. 2020). In the model with τ drag =
106 s, a broad equatorial westward jet and high-latitude eastward
jets with speeds ∼400 m s−1 emerge. At low latitudes, the vertical
wind shear is similar to that with τ drag = 105 s despite the overall
equatorial jet velocity being westward. The jet speeds are comparable
to the horizontal mean eddy velocity, but the vortices are still nearly
isotropic at mid-to-high latitudes. Near the equator, the equatorial
waves are Doppler shifted by the westward jet whose speed is
comparable to that of wave propagation. In the model with τ drag = 107

s, the jet speeds become much stronger, reaching about −2200 m s−1

at the equator and more than 1500 m s−1 at about ±50◦ latitude.
Compared to the jet structure with τ drag = 106 s, the meridional
width of the equatorial jet with τ drag = 107 s is very similar and
only the jet speed increases. However, at high latitudes, the cores of
eastward jets are closer to the equator than those with τ drag = 106 s.
There is a strong barotropic (pressure-independent) component for
zonal jets with τ drag = 107 s.

The RMS horizontal eddy velocity in the cloud forming regions
is about 400–550 m s−1, which is much larger than the jet speeds in
the model with τ drag = 105 s. Even in the model with τ drag = 106

s, the jet speeds are only comparable to the eddy velocities. In the
following analysis, we focus primarily on the model with τ drag =
107 s in which the jet speeds well exceed the eddy velocities and the
dynamics exhibits obvious differences to those with τ drag = 105 s.

Cloud formation is affected by the presence of strong zonal jets
in the case with τ drag = 107 s. Wind shears at the flanks of the mid-
latitude jets create strong cyclonic regions poleward of the jets and
strong anti-cyclonic regions equatorward of the jets. Anti-cyclones
that are associated with cloud formation tend to be more vulnerable
in the strong cyclonic zones, in the sense that they are sheared apart
and destroyed more easily than in other regions. On the other hand,
formation of cyclones that are associated with thin clouds are more
prevalent in the cyclonic zones. In addition, vortices tend to migrate
towards regions with background absolute vorticity closer to that of
vortices (e.g. Scott 2011; O’Neill, Emanuel & Flierl 2015). There is
a tendency that cyclones formed near the mid-latitude jets migrate
to the poleward flanks of the jets where it is cyclonic, whereas anti-
cyclones tend to migrate to the equatorward flanks of the jets. These
behaviors are observed in time evolution of storms in the simulation
with τ drag = 107 s (not shown). All these imply that, clouds associated
with anti-cyclones are relatively depleted in the polar flanks of the
mid-latitude jets and are more abundant in the equatorial flanks of
the jets. The vortex behaviors influenced by the strong zonal jets
described above may be one of the mechanisms responsible for
the cloud mixing ratio at 0.23 bar in panel (a) of Fig. 10. There
are also zonal-mean upwelling equatorward of the mid-latitude jets
where it is cloudy and zonal-mean downwelling poleward of the
mid-latitude jets where it is less cloudy (not shown). This mean
meridional circulation may or may not be a mechanism driving
the meridional cloud gradient. It could simply be radiatively driven
given the existing meridional cloud gradient. Shapes of vortices are
deformed due to the significant horizontal wind shear, especially near
latitudes between 15−45◦ and 50−70◦ (see Fig. 10). Interestingly,
there is a strong polar cyclone at each pole with the center of the
cyclone not aligned with the pole. Clouds are also strongly depleted
in the cyclones, and the same reasons mentioned above for cloud
depletion poleward of the mid-latitude jets might also be relevant.
An instantaneous temperature map at 0.23 bar is shown in panel (b)
and instantaneous absolute vorticity f + ζ is shown in panel (c) of
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Figure 10. Instantaneous results from the model with a rotation period of
5 h and a drag time-scale τ drag = 107 s after the model reached a statistical
equilibrium state. Panel (a) shows the cloud mixing ratio at 0.23 bar; panel
(b) shows temperature at 0.23 bar; and panel (c) shows the absolute vorticity
at 0.23 bar. Note that strong eastward jets are located at ±48◦ latitude.

Fig. 10, where ζ = k · ∇p × v is the relative vorticity, v is horizontal
velocity vector, k is the local upward unit vector on the sphere, and ∇p

is the horizontal gradient in pressure coordinates. Due to the radiative
effects of clouds, strong cyclonic regions where clouds are relatively
depleted are systematically colder than anti-cyclonic regions.

The development of robust zonal jets with a weaker bottom
frictional drag is consistent with that found in Showman et al.
(2019), who studied atmospheric circulation of brown dwarfs using
horizontally isotropic, randomly evolving thermal forcing. Storms
and vortices excite Rossby waves, and their generation, propagation,
and wave breaking interact with the mean flow, driving zonal jets
(Dritschel & McIntyre 2008). Without efficient removal of kinetic
energy by the strong bottom frictional drag, zonal jets can be pumped
up and maintained by wave-mean-flow interactions. Some features
of the jets in our simulations are interesting. First, the jets are quite
meridionally broad, with the equatorial westward jet extending to
±40◦ latitude and subsequent eastward jets at about ±70◦ latitude
for the case with τ drag = 106 s and at about ±48◦ latitude for the
case with τ drag = 107 s. As a comparison, Jupiter has about seven
subtropical zonal jets in each hemisphere (e.g. Ingersoll et al. 2004).
Classic turbulence-driven jet theory predicts that the meridional jet
spacing is related to wind speed via the Rhines scale π

√
U/β where

U is a characteristic wind speed, indicating that the number of jet
on a sphere is roughly given by Njet ∼ √

2�a/U where � is the
rotation rate and a is planetary radius (see reviews by, e.g. Vasavada
& Showman 2005; Dritschel & McIntyre 2008; Showman, Cho &
Menou 2010). Given a typical wind speed of several hundreds of
m s−1 in the case with τ drag = 106 s and ∼2000 m s−1 in the case with
τ drag = 107 s, one would expect a number of zonal jets of ∼9 in the
case with τ drag = 106 s and ∼5 in the case with τ drag = 107 s, which
are obviously greater than that seen in our simulations. Second, the
equatorial jets are westward in our simulations, whereas those in
Jupiter and Saturn are eastward.

The broader-than-expected jets are probably related to the efficient
horizontal mixing of potential vorticity (PV) caused by strong
vortices, which tends to break the PV staircase and smooth out the
jet structure. One interpretation of the Rhines jet scaling is that the
jets are a natural result of PV staircases. Eastward jets correspond
to the PV discontinuity whereas the westward jets correspond to the
PV homogenization, and jet speed is determined by the meridional
width of the PV staircase (e.g. Dritschel & McIntyre 2008; Scott &
Dritschel 2012). But if the magnitude of vorticity sources is much
larger than the background PV discontinuity, mixing of PV between
the staircases leads to destruction of the PV staircase, therefore the jet
scaling does not apply well in this situation (Scott & Dritschel 2012).
In strongly forced and damped cases of Showman et al. (2019), the
PV structure is disrupted by eddy vorticity and the resulting zonal jets
are less sharp and meridionally broader than those that are weakly
forced and damped. In our case, the vorticity mixing is even more
extreme. We find that in our simulations, the vorticity associated with
mid-to-high-latitude vortices are typically much stronger than either
the background planetary vorticity or that associated with the zonal
jets. These vortices occurs somewhat randomly in space and time –
their occurrence is not particularly constrained by the presence of
zonal jets – and they can easily disrupt the zonal-mean PV structure.
In panel (c) of Fig. 10, we can see that the eddy relative vorticity
is far greater than the background planetary vorticity in the case
with τ drag = 107 s. Fig. 11 shows the vertically averaged zonal-mean
zonal wind in the left panel and its corresponding absolute vorticity
(together with the planetary vorticity) in the right panel. Because
the barotropic component dominates the jet structure in the case
with τ drag = 107 s (panel (c) in Fig. 9), the absolute vorticity is a
good representation of PV. The eastward jets correspond to the sharp
gradient of absolute vorticity at ±48◦ latitude. There is a lack of other
absolute vorticity staircase in other regions. Meanwhile, absolute
vorticity between ±40◦ latitude tends to be homogenized (although
still far from being completely well mixed). In some cases, the cross-
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Figure 11. Left-hand panel: time- and vertically averaged zonal-mean zonal
wind as a function of latitude for the model with a rotation period of 5 h and a
drag time-scale τ drag = 107 s after the model reached a statistical equilibrium
state. Right-hand panel: zonal-mean absolute vorticity (f + ζ ) corresponding
to the zonal-mean zonal wind in the left-hand panel and planetary vorticity f.

equator homogenization of absolute vorticity can lead to a strong
equatorial westward jet (Dunkerton & Scott 2008). Such a tendency
may be responsible for the broad, strong equatorial westward jets in
our simulations.

There is a local absolute vorticity maximum northward of the jet
at 48◦ latitude and a local minimum southward of the jet, indicating
that the jet violates the barotropic stability criteria. This is associated
with the accumulation of cyclones northward of the jet and anti-
cyclones southward of the jet. A positive feedback likely takes
place in this case: the jet structure triggers accumulation of vortices,
and the accumulation of those vortices further strengthens the jet
structure that already promotes the accumulation. Similar influences
of the migration and accumulation of vortices on the jet structure has
been proposed in previous modelling studies of Jovian atmospheric

dynamics (Thomson & McIntyre 2016). A balance may be reached
between the accumulation of vortices and the instability associated
with the jet that tends to restore the jet structure towards stability.

In box simulations with constant Coriolis parameter f performed in
Tan & Showman (2021), we showed that when the bottom frictional
drag is weak (τ drag = 107 s), kinetic energy accumulates and a pair
of a cyclone and an anticyclone forms with sizes comparable to the
simulated domain size. In the global domain, the presence of β-effect
excites Rossby waves, and eddy-mean-flow interactions channel the
kinetic energy to the zonal direction, forming zonal jets instead of
ever larger vortices. Our simulations demonstrate the importance of
the β effect on the formation of zonal jets.

Finally, equatorially trapped waves also exist in the weak-drag
models but their propagation is influenced by the equatorial jets.
The influence is most prominent in the case with τ drag = 107 s,
in which equatorial waves are Doppler shifted by the equatorial jet
with a zonal-mean zonal wind ∼−2200 m s−1. In the wavenumber-
frequency analysis for this case, we remove the Doppler shifts
associated with the jet for which we assume a uniform zonal-mean
zonal wind of −2130 m s−1 according to Fig. 11. The results are
shown in Fig. 12. Part of the signals shown in these panels are likely
associated with waves propagating relative to the zonal-mean zonal
wind. We find evidence of eastward Kelvin waves and westward
Rossby waves in the symmetric component around the equator. A
family of MRG waves is also indicated in the analysis of the anti-
symmetric component although their signals slightly deviate from the
theoretical ones. However, in reality, the equatorial jet has horizontal
shears, whose influences on waves cannot be removed by simply
assuming a uniform zonal-mean zonal wind in the analysis shown
in Fig. 12. Such influences may be responsible for the abnormally
strong westward Rossby wave signal (which is only tentative in the
strong-drag cases shown in Fig. 6) in the left-hand panel, as well
as for signals around zonal wavenumber 3–5 and frequency 0.1–
0.2 CPD in the right-hand panel, which is absent in the strong drag
cases (Fig. 7). Indeed, when we slightly change the assumed uniform
zonal-mean zonal wind in the wavenumber-frequency analysis, the
position or strength of the above ‘abnormal’ signals is sensitive to
the assumed zonal-mean zonal wind. But the signals associated with
the Kelvin waves and MRG waves are only moderately affected,
indicating that Kelvin waves and MRG waves seem robust.

Figure 12. Wavenumber-frequency relative power spectrum of the symmetric component around the equator (on the left-hand panel) and of the anti-symmetric
component (on the right-hand panel) for the model with a rotation period of 5 h and τ drag = 107 s. Doppler shifts in the power spectrum associated with a
uniform zonal-mean zonal wind −2130 m s−1 are removed, and most signals shown in these panels are likely associated with waves propagating relative to the
zonal-mean zonal wind. On the left-hand panel, solid lines are theoretical equatorial Rossby waves and dashed lines are theoretical Kelvin waves, same as those
shown in Fig. 6 for a rotation period of 5 h. On the right-hand panel, dotted lines are theoretical MRG waves, same as those shown in Fig. 7 for a rotation period
of 5 h.

MNRAS 502, 2198–2219 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2198/6101225 by guest on 09 April 2024



Atmospheric circulation of brown dwarfs and directly imaged exoplanets 2211

(a)

(b)

(c)

(d)

(e)

(f)

Figure 13. The top four panels (a to d) show normalized lightcurves as a function of rotation period for models with four different rotation periods of 20, 10, 5,
and 2.5 h (from the top to bottom panels) and with a drag time-scale τ drag = 105 s. In each panel, the black line represents a viewing angle of 0◦ (equator-on),
and the red line represents a viewing angle of 45◦, and the blue line represents a viewing angle of 90◦ (northern-pole-on). The bottom two panels show the
normalized lightcurves for models with a rotation period of 5 h and τ drag = 106 s in panel e and τ drag = 107 s in panel f (in which a strong westward equatorial
jet develops).

3.3 Simulated lightcurves

Due to the significant inhomogeneity in the outgoing thermal flux,
lightcurve variability is expected from our simulations. Fig. 13 shows
the simulated lightcurves normalized to their time-mean values as a
function of time that is normalized by the rotation periods of the
models. Panels a to d are lightcurves from models with τ drag = 105

s and rotation periods of 20, 10, 5, and 2.5 h, respectively. Panels
e and f are lightcurves from models with a rotation period of 5 h
and τ drag = 106 and 107 s, respectively. Black, red and blue lines

in each panel represent viewing angles of 0, 45, and 90◦ relative
to the equator, respectively – 0◦ means an equator-on view and 90◦

means a northern-pole-on view. The former maximizes the rotational
modulation of the lightcurve whereas in the latter there are no
rotational effects. The atmospheres in our models are statistically
symmetric between the northern and Southern hemisphere, and
therefore simulated lightcurves viewed from two hemispheres are
qualitatively similar.

The simulated lightcurves exhibit several important characteris-
tics. For all models, the amplitudes of lightcurve variability are
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Figure 14. Peak-to-peak variability amplitudes for normalized lightcurves
with different viewing angles from models with different rotation periods and
τ drag = 105 s. A subset of lightcurves are shown in Fig. 13.

maximized when viewed equator-on, whereas they are minimized
when viewed pole-on. Part of the reason is because the horizontal
length scales of storms are larger at low latitudes, which causes
larger flux perturbations when the object is viewed equator-on. This
is consistent with the viewing angle dependence of near-IR flux
variability amplitude found by Vos et al. (2017). The peak-to-peak
amplitude of the equator-on lightcurve is typically a few percent and
decreases with decreasing rotation period –the amplitude is almost
4 per cent for the case with rotation period of 20 and 10 h, and
slightly more than 2 per cent for the case with 5-h rotation, and
finally slightly more than 1 per cent for the case with 2.5-h rotation.
These characteristics are further summarized in Fig. 14, which shows
the peak-to-peak amplitudes of normalized lightcurves with different
viewing angles.

Lightcurves with rotation periods of 10, 5, and 2.5 h exhibit clear
periodicity related to the rotation period at least during certain times
in their evolution. However, at some points the rotational periodicity
can be complicated by the time evolution of the surface patchiness.
For instance, in the case with a rotation period of 5 h, the 5-h
periodicity is clear before the 12th rotation period, but transition
to double peaks within a rotation period after that. By eye, the shape
of lightcurves for a rotation period of 20 h is more complicated by
short-term irregularities. This is perhaps because the rotation period
is long and the typical sizes of vortices are relatively large, which
together indicate that evolution of individual vortices (typically over
a time-scale of several tens of hours) may significantly impact the
lightcurve evolution over rotational time-scales.

Viewed from pole-on, lightcurves are much smoother and show
much longer periods of variation. The amplitude of pole-on
lightcurves decreases with decreasing rotation period. This lightcurve
variability is caused by the statistical fluctuations of the ensemble of
storms as discussed in Tan & Showman (2021). The fewer storms
projected in the disk, the larger the effects that the evolution of an
individual storm can have on the the lightcurve. Sizes of storms
near the poles inversely decrease with decreasing rotation period,
therefore the above trend found in pole-on lightcurves emerges.
Even though smaller than those viewed equator-on, the peak-to-peak
amplitudes of pole-on lightcurves can still reach almost 2 per cent
for cases with 20 and 10 h and 1 per cent for the case with 5 h, which

are detectable given sensitivities of current instruments (e.g. Wilson
et al. 2014; Metchev et al. 2015). This may contribute to some long-
term variations in observed lightcurves that are not easily explained
by rotation modulation (e.g. some samples can be seen in Metchev
et al. 2015).

Weak-drag models with τ drag = 106 and 107 s similarly exhibit
significantly time-varying waves and vortices, and some proper-
ties of their lightcurves are similar to those with τ drag = 105 s,
including peak-to-peak normalized lightcurve amplitude of a few
percent, certain irregular time variability, viewing-angle dependence
of variability amplitude, and complications on the periodicity due to
evolution of cloud patchiness. However, because weak-drag models
develop meridionally broad, strong zonal jets, zonal advection of
clouds by the jets can modify the periodicity of the lightcurves. As
shown in Fig. 9, the equatorial jets are both westward with speeds of
a few hundred m s−1 and about 2000 m s−1 in models with τ drag =
106 and 107 s, respectively. Although Kelvin waves have eastward
phase speeds relative to the mean flow, in the rotational frame they
travel to the west due to the strong westward equatorial jet. Their
lightcurves, especially viewed equator-on, are expected to show
periodicity longer than the rotational period of the model. This is most
prominent in the case with τ drag = 107 s in panel f of Fig. 13, wherein
the lightcurve shows only 18 periods over 20 rotational periods.

We divide contributions to the lightcurve variability by surface
inhomogeneities into two groups of dynamical features: the zonally
propagating equatorial waves and mid-to-high-latitude vortices (the
latter do not migrate along the zonal direction). We diagnose the
effects of the two groups in the lightcurve by the following process.
First, in the model outputs, we artificially hold the equatorial region
to be static. A synthetic lightcurve is generated based on this
configuration, and the time evolution of the shape of the variability
is caused only by evolution of mid-to-high-latitude vortices. Then,
we artificially hold the mid-to-high-latitude regions to be static
but do not hold the equatorial region static. The resulting time
evolution of the shape of the variability represents only effects of
the propagating equatorial waves. Fig. 15 shows these experiments
for four models with τ drag = 105 s, in which the thick grey lines are
the original full lightcurves; the red lines are lightcurves wherein the
equatorial regions are held fixed from time zero; and the blue lines
are lightcurves wherein mid-to-high latitudes are held fixed from
time zero. All cases are viewed equator-on. The equatorial region is
defined as in between ±25◦ latitude for the case with rotation period
of 20 h, between ±20◦ latitude with 10 h, and between ±15◦ latitude
with 5 and 2.5 h. These latitudinal bands are chosen to safely include
the equatorial trapped waves. Slight changes of these latitudes do not
influence our results and conclusions.

In general, both the equatorial waves and mid-to-high-latitude
vortices contribute to the short-term evolution of the full lightcurve
variability – removing the time evolution of either component results
in significant changes in the lightcurves. However, equatorial waves
impact the time evolution of lightcurve shapes in more critical ways.
First, the wave beating effect that causes the change of variability
amplitude with time is much weaker when the equatorial regions are
held fixed. This is most obvious in the case with a rotation period of
5 h, in which the red curve (for which equatorial region is held time
invariant) has almost a constant amplitude, and the splitting to double
sub-peaks shown in the original lightcurve does not occur. Second,
there are significant phase differences in the lightcurve variability
between the full lightcurve and the lightcurve with equatorial regions
fixed. This is obvious in all cases and we take the case with 2.5-h
rotation as an example: the red curve starts to show phase differences
relative to the thick grey curve at a time of about the 7th rotation
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Figure 15. Normalized lightcurves with an equator-on viewing angle for models with four different rotation periods of 20, 10, 5, and 2.5 h (from the top to
bottom panels) and with a drag time-scale τ drag = 105 s. In each panel, the thick grey line is the full-model lightcurve. The red line is from thermal flux outputs
wherein the equatorial region is held fixed at time zero and stays invariant, while the mid-to-high-latitude regions are not modified. On the contrary, the blue
line is from outputs wherein the mid-to-high-latitude regions are held fixed at time zero. The equatorial regions here are defined as between ±25◦ for the model
with a rotation period of 20 h, and between ±20◦ for 10 h, and between ±15◦ for both 5 and 2.5 h.

period; towards the end the red and grey curves show an almost 180◦

phase difference. The blue curve, for which mid-to-high-latitude
regions are held time invariant, mostly only show differences in
the local peaks and troughs of the variability, but not in the long-
term evolution of the amplitude and the phase of the variability.
Our diagnostic analysis suggests that equatorial waves have major
impacts on the lightcurve variability and the time evolution of the
shape of the variability, and mid-to-high-latitude vortices contribute
to the local features of the lightcurves. This is in good agreement
with the analysis of long-term observed lightcurves of a few BDs
by Apai et al. (2017), in which they found that waves can explain
the major evolution of lightcurves, and ‘spots’ are needed to fit the
remaining local inconsistency between data and the wave model.

Both eastward and westward waves are present at low latitudes, and
the eastward Kelvin waves are sometimes more dominant as visually
shown in Fig. 5 and in the wavenumber-frequency analysis (Figs 6
and 7). This implies a faster rotation of the equatorial features than
the intrinsic planetary rotation, which may lead to a slightly shorter
period of the lightcurve variability than the underlying rotation
period. This effect has been clearly shown in the case with 2.5-
h rotation in Fig. 15, and now we quantify this using periodogram
analyses of the simulated lightcurves shown in Fig. 13. Fig. 16 shows
power densities (in arbitrary unit) by the periodogram analysis for
normalized lightcurves viewed equator-on for our models.

Several features are interesting in the periodograms for models
with τ drag = 105 s. First, some cases exhibit slight shifts of the
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 16. Periodograms of normalized lightcurves for models with four
rotation periods of 20, 10, 5, and 2.5 h and with a drag time-scale τ drag = 105

s (panel a to d). Periodogram for the model with a rotation period of 5 h and
τ drag = 106 s is shown in panel e, and for that with τ drag = 107 s is in panel f.
In panel c, additional dotted lines are from output samples at different times
much later than that for the solid blue line.

major peaks to a period slightly shorter than the rotation period.
In particular, cases with 20 and 2.5 h show obvious shifts. This
is because of the eastwardly propagating Kelvin waves with phase
speeds of a few hundred m s−1. Second, the power densities exhibit
major peaks very close to (in some cases exactly the same as) the
underlying rotation period of the models. However, these peaks are
broadened, indicating that the dynamical features, either eastward
or westward with various phase speeds, could contaminate the
periodicity of the lightcurve variability. Third, there is usually a
secondary peak of the power density at a period of approximately half
of the rotation period. This may be caused by the equatorial features
with a zonal wavenumber 2 that appears twice to the ‘observer’
as the objects rotate once. Finally, our models have shown that
different equatorial waves that travel in different zonal velocities
may contribute to the flux patchiness differently at different times
(Fig. 5). This could cause time variability on the properties of
lightcurves when the lightcurves are sampled over a finite period
(as the real observations do). This is illustrated for the case with
5-h rotation and τ drag = 105 s in panel c of Fig. 16. We show two
additional periodograms of lightcurves that sample the model outputs
at different times, and each of them also samples about 20 rotational
periods as the original one. Their relative shapes differ slightly,
and importantly, their major power density peaks can be at periods
both longer and shorter than the underlying rotation period. This
suggests that not only these waves can cause differences between the
‘observed’ lightcurve periodicity and the underlying rotation period,
but also the degree of this deviation may vary with time.

For models with weaker frictional drags, the development of strong
equatorial westward jets induce shifts in the period of variability.
Panel e and f in Fig. 16 show periodograms for the case with τ drag

= 106 and 107 s, respectively. The first-order feature of them is that
their major peaks shift to longer periods compared to the rotation
period, and the shift is stronger in the case with τ drag = 107 s.

4 D I SCUSSI ON AND C ONCLUSI ONS

Existence of large-scale zonally propagating waves at low latitudes in
our simulations opens up an avenue to understand weather on isolated
BDs and directly imaged EGPs, and its consequences on the observed
lightcurve variability. Rapidly evolving isotropic storms and vortices
are prevalent at mid-to-high latitudes, contributing to lightcurve vari-
ability especially when the objects are viewed relatively pole-on (in
which rotational modulation of lightcurve variability is diminished).
Both dynamical features are driven by the cloud radiative feedback,
providing an essential physical mechanism to explain several types of
time evolution of lightcurve variability (see a summary and analysis
in Apai et al. 2017). Eastward propagating Kelvin waves with phase
speeds of a few hundred m s−1 are sometimes dominant in our
simulations, and the existence of these waves in atmospheres of
BDs may explain the shorter rotation period of the atmosphere than
that of the interior observed for a nearby BD (Allers et al. 2020).
Our models predict that different equatorial waves that may travel in
different zonal velocities could influence the lightcurves differently
at different times. The interesting consequence is that these waves
can cause differences between the ‘observed’ lightcurve periodicity
and the underlying rotation period, and the degree of this deviation
may vary with time. It will be interesting that the same observations
performed by Allers et al. (2020) could be repeated for the same
system in the future to examine its long-term variability.

Recently, Vos et al. (2017), Vos et al. (2018), and Vos et al. (2020)
suggested a viewing angle dependence of the observed near-IR colors
and variability amplitude for a large sample of field BDs. Our
dynamical models provide support for their observational results.
Larger variability amplitude when viewed more equator-on is a
natural result of the equatorial maximum of rotational variability
along with our finding that cloud patches reach maximum sizes at
low latitudes (Figs 1, 2, 13, and 14). The vertical extent of zonal-
mean cloud mixing ratio is higher at lower latitudes (Fig. 3), which
could be responsible for the redder near-IR colors when viewed more
equator-on. The near-IR colors show a wide scatter in the colour-
magnitude diagram for mid-to-late L dwarfs (see colour-magnitude
diagrams for a large sample of BDs in, e.g. Faherty et al. 2016;
Liu, Dupuy & Allers 2016). Due to the latitudinal variation of
the cloud thickness at a given rotation period and the dependence
of global-average cloud thickness on varying rotation period, the
different viewing angles and the variation of rotation periods of the
field BDs might contribute to the scatter of observed near-IR colors.
Millar-Blanchaer et al. (2020) showed that assuming two broad zonal
bands with different cloud properties in each hemisphere, they can
reproduce time-averaged polarization measured for the nearby BD
Luhman 16B. Our models do not show clear zonally banded cloud
structure like those in Jupiter and Saturn, but exhibit smooth equator-
to-pole cloud thickness variations. It is worthwhile to explore how
can polarization be produced by the smooth equator-to-pole cloud
thickness variation with different viewing angles and compare it to
the measured polarization.

Amplitudes of our simulated lightcurves typically range from 0.5
per cent to a few percent depending on the rotation period and viewing
angle, consistent with those found in the majority of observed
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lightcurves (Buenzli et al. 2014; Radigan 2014; Radigan et al. 2014;
Wilson et al. 2014; Metchev et al. 2015; Vos et al. 2018). We did not
reproduce variability with amplitude much greater than a few percent.
Yet, several field BDs and free-floating low-mass objects have shown
large variability with peak-to-peak amplitudes greater than 10 per
cent (e.g. Buenzli et al. 2012; Apai et al. 2013; Buenzli et al. 2015;
Lew et al. 2016; Apai et al. 2017; Zhou et al. 2020). Either cloud
patches with sizes larger than those in our simulations or a greater
horizontal contrast of outgoing thermal flux are required to explain
those very large varability amplitudes. Our models only occupy a
very limited parameter space. Further exploring parameter space,
including broad range of surface gravity, atmospheric temperature,
and varying cloud particle size, will yield richer dynamical behaviors.

Our models are highly idealized in the sense that radiative transfer
and cloud formation (including the cloud microphysics and the
treatment of sub-grid-scale structure) are vastly simplified in order
to emphasize the role of atmospheric dynamics. Our modelled cloud
structures capture the first-order behaviour of cloud formation that
has been shown by previous cloud formation models of BDs – a
sharp cloud base typically emerges around the condensation level
and the cloud mixing ratio smoothly decreases with decreasing
pressure due to mixing (see reviews by, e.g. Helling & Fomins
2013; Marley & Robinson 2015; Helling 2019). Our cloud scheme
neglects temperature feedback on cloud formation, which could
influence locations of the cloud base, and it certainly does not capture
all the sophisticated microphysical processes. Future endeavours
should include better representation of radiative transfer, cloud
microphysics, and parametrization of sub-grid cloud structure.

Finally, we summarize our major findings in this study as follows:

(i) Vigorous atmospheric circulation can be triggered and main-
tained by cloud radiative feedback in conditions appropriate for
BDs and directly imaged EGPs. When the bottom frictional drag
is strong, zonal flows in the deep layers of our models are weak
(with speeds much smaller than 100 m s−1). In the observable layer
where clouds form, mid-to-high latitudes are dominated by isotropic
vortices, with thick clouds forming in anticyclones and thin clouds or
clear sky in cyclones. This is consistent with the results of previous
f-plane models (Tan & Showman 20210). At low latitudes, large-
scale zonally propagating waves with both eastward and westward
phase speeds are the dominant dynamical feature. At a given rotation
period, sizes of storms and vortices are typically larger at lower
latitudes than those at higher latitudes. The overall sizes of storms
are larger when the rotation period is longer.

(ii) Lightcurves from our simulations have amplitudes from 0.5
per cent to several percent, consistent with the majority of observed
lightcurves. For a given rotation period, the lightcurve amplitude
decreases with increasing viewing angle (0◦ means equator-on and
90◦ means pole-on), while it typically increases with increasing
rotation period at a given viewing angle. When the bottom drag is
strong, zonally propagating waves at low latitudes have typical phase
speeds of a few hundred m s−1. They can cause short-term evolution
of lightcurves via wave beating effects, qualitatively similar to the
observed lightcurves of some field BDs as summarized in Apai et al.
(2017). The eastward Kelvin waves can cause the equatorial flux
inhomogeneity rotating faster than the underlying planetary rotation,
which may help to explain the observed shorter rotation period of
atmospheric features than that of the interior (Allers et al. 2020).
Isotropic storms and vortices at mid-to-high latitudes also contribute
to the lightcurve variability.

(iii) Clouds are generally mixed to higher altitudes near the
equator than at high latitudes due to the stronger effect of rotation

at high latitudes. This supports the observed redder IR colors for
objects viewed more equator on (Vos et al. 2017; Vos et al. 2020).

(iv) We expect that the strong-drag models might be appropriate
for BDs and directly imaged EGPs because efficient convective
mixing in the interior is expected to suppress strong zonal flows
near the top of convective zone. But we still perform experiments
with weaker drags to explore dynamics in the weak-drag regime.
We find that robust zonal jets with speeds from several hundred
to more than 2000 m s−1 can form in our weak-drag models, with
typically a broad westward equatorial jet and a high-latitude eastward
jet in each hemisphere. Similar to the weak-drag cases, vortices
form at mid-to-high latitudes and equatorially trapped waves form
at low latitudes. Both the zonal propagation of equatorial waves and
the spacial distribution of vortices are affected by the presence of
strong jets. Simulated lightcurves show longer periodicity than the
underlying rotation period due to the strong westward equatorial jets.
The meridionally broad jet structure may be related to the efficient
potential vorticity mixing associated with intense eddies.

(v) The origin of the equatorially propagating waves in our
simulations is likely related to the self-excitation by cloud radia-
tive feedbacks. Physical properties of the equatorially symmetric
eastward waves resembles properties of both adiabatic free Kelvin
waves and forced-damped waves triggered by a stationary equatorial
heat source. Linear stability theory of waves coupled with cloud
radiative feedback may help to explain the origin of our simulated
waves but fails to explain their propagation.
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APPENDI X A : H OV MÖL L E R D I AG R A M S AT
MI D LATI TUDES

In Fig. A1, we show the Hovmöller diagrams of outgoing thermal
flux at 45◦ latitude as a function of longitude and time for models
with different rotation period. These regions are dominated by
stochastically evolving vortices, and there is no systematic eastward
or westward propagation seen in these diagrams, which is in stark
contrast to the equatorial disturbances shown in Fig. 5.

MNRAS 502, 2198–2219 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2198/6101225 by guest on 09 April 2024

http://dx.doi.org/10.1088/0004-637X/812/2/163
http://dx.doi.org/10.1103/RevModPhys.73.719
http://dx.doi.org/10.1086/500293
http://dx.doi.org/10.1093/mnras/staa1733
http://dx.doi.org/10.1051/0004-6361/201731152
http://dx.doi.org/10.1111/j.1365-2966.2008.13135.x
http://dx.doi.org/10.1038/nature12955
http://dx.doi.org/10.1088/0004-637X/729/2/128
http://dx.doi.org/10.1175/2007JAS2227.1
http://dx.doi.org/10.1175/2007JAS2223.1
http://dx.doi.org/10.1002/qj.49712051902
http://dx.doi.org/10.1051/0004-6361/201935671
http://dx.doi.org/10.3847/0067-0049/225/1/10
http://dx.doi.org/10.1088/0067-0049/214/2/25
http://dx.doi.org/10.1051/0004-6361/200913354
http://dx.doi.org/10.1086/342150
http://dx.doi.org/10.1016/0019-1035(73)90074-2
http://dx.doi.org/10.1002/qj.49710644905
http://dx.doi.org/10.1051/0004-6361/201321620
http://dx.doi.org/10.1038/nature25775
http://dx.doi.org/10.1051/0004-6361/200913396
http://dx.doi.org/10.1175/JAS3352.1
http://dx.doi.org/10.1146/annurev-earth-053018-060401
http://dx.doi.org/10.1098/rsta.2011.0581
http://dx.doi.org/10.3847/0004-637X/818/1/24
http://dx.doi.org/10.3847/1538-4365/aac2d5
http://dx.doi.org/10.1038/nature25793
http://dx.doi.org/10.3847/0004-637X/830/2/141
http://dx.doi.org/10.3847/2041-8205/829/2/L32
http://dx.doi.org/10.3847/1538-3881/ab5f59
http://dx.doi.org/10.1088/0004-637X/770/1/42
http://dx.doi.org/10.3847/1538-4357/833/1/96
http://dx.doi.org/10.3847/1538-3881/aa984f
http://dx.doi.org/10.3847/2041-8213/ab13b9
http://dx.doi.org/10.1146/annurev-astro-082214-122522
http://dx.doi.org/10.1111/j.1365-2966.2011.19448.x
http://dx.doi.org/10.1088/0004-637X/754/2/135
http://dx.doi.org/10.1088/0004-637X/799/2/154
http://dx.doi.org/10.3847/1538-4357/ab3d25
http://dx.doi.org/10.1093/mnras/stx2191
http://dx.doi.org/10.3847/1538-4357/ab6ef2
http://dx.doi.org/10.1088/2041-8205/789/1/L14
http://dx.doi.org/10.1175/1520-0493(1987)115\&lt;0003:MTCBOT\&gt;2.0.CO;2
http://dx.doi.org/10.1088/0004-637X/797/2/120
http://dx.doi.org/10.1088/0004-637X/750/2/105
http://dx.doi.org/10.1088/0004-637X/793/2/75
http://dx.doi.org/10.1093/mnras/stv181
http://dx.doi.org/10.1017/S0022112075001504
http://dx.doi.org/10.1088/0004-637X/785/2/158
http://dx.doi.org/10.1086/592734
http://dx.doi.org/10.1175/2008JAS2798.1
http://dx.doi.org/10.3847/1538-3881/aabfc2
http://dx.doi.org/10.1080/03091929.2010.509927
http://dx.doi.org/10.1017/jfm.2012.410
http://dx.doi.org/10.1088/0004-637X/707/1/716
http://dx.doi.org/10.1088/0004-637X/776/2/85
http://dx.doi.org/10.1088/0004-637X/738/1/71
http://dx.doi.org/10.3847/1538-4357/ab384a
http://dx.doi.org/10.1051/0004-6361/201937159
http://dx.doi.org/10.3847/1538-4357/ab4a76
http://dx.doi.org/10.3847/1538-4357/835/2/186
http://dx.doi.org/10.3847/1538-4357/ab0c07
http://dx.doi.org/10.1175/JAS-D-14-0370.1
http://dx.doi.org/10.1051/0004-6361/202038771
http://dx.doi.org/10.1088/0004-637X/793/2/141
http://dx.doi.org/10.1086/341262
http://dx.doi.org/10.1175/1520-0485(1993)023\&lt;1346:GOMFAJ\&gt;2.0.CO;2
http://dx.doi.org/10.1088/0034-4885/68/8/R06
http://dx.doi.org/10.1093/mnras/sty3123
http://dx.doi.org/10.3847/1538-3881/ab9642
http://dx.doi.org/10.3847/1538-4357/aa73cf
http://dx.doi.org/10.1093/mnras/stx2752
http://dx.doi.org/10.1175/1520-0469(1999)056\&lt;0374:CCEWAO\&gt;2.0.CO;2
http://dx.doi.org/10.1051/0004-6361/201322995
http://dx.doi.org/10.1088/2041-8205/798/1/L13
http://dx.doi.org/10.3847/0004-637X/826/1/8
http://dx.doi.org/10.1088/1674-4527/20/7/99
http://dx.doi.org/10.1088/2041-8205/788/1/L6
http://dx.doi.org/10.3847/1538-3881/aaabbd
http://dx.doi.org/10.3847/0004-637X/818/2/176


Atmospheric circulation of brown dwarfs and directly imaged exoplanets 2217

Figure A1. Hovmöller diagrams (longitude-time sequence) showing the time evolution of outgoing thermal flux at 45◦ latitude for models with four rotation
periods of 20, 10, 5, and 2.5 h (from the left to right) and a drag time-scale τ drag = 105 s.

A P P E N D I X B: C L O U D R A D I AT I V E LY IN D U C E D
E QUATO R I A L WAV E S

Equatorially trapped waves in our simulations play vital roles in the
evolution of simulated lightcurves, and may be responsible for the
puzzling time evolution of some observed lightcurves (Apai et al.
2017). Given their central importance, we explore their nature using
a linear wave theory that is coupled to cloud radiative effect. We
will show that the linear theory may be used to explain the energetic
sources of our simulated waves, but cannot capture the propagating
nature of the simulated waves.

The analysis of cloud radiatively induced instability was first
carried out by Gierasch et al. (1973) in the quasi-geostrophic system
and inertia gravity wave (f-plane) system. In the absence of rotation,
2D hydrostatic gravity waves have a set of pure unstable growing
modes (no propagation) and sets of attenuating, eastward, and
westward propagating mode. In an f −plane approximation, inertia
gravity waves with small horizontal wavelengths can host purely
unstable modes but unstable modes cease at larger horizontal scales.
In a quasi-geostrophic flow, unstable modes are possible for axially
symmetric flows and flows with nonzero β (Gierasch et al. 1973).
We now extend this theory to the equatorial β plane.

B1 Cloud radiative effect upon thermodynamics

We first present the thermodynamics related to cloud radiative effect
following Gierasch et al. (1973). Assuming that the change of
outgoing thermal flux is due to brightness temperature deviation
that is caused by either actual temperature variation or the cloud-top
altitude variation, we can write the change of emitted flux as

δ
(
σT 4

c

) = 4σT 3
c (δTc − �cδzc) , (B1)

where Tc is the brightness temperature, σ is the Stefan-Boltzmann
constant, δzc is the change of cloud-top altitude, and �c = | dTc

dzc
|.

Because of the change of outgoing radiative flux, the atmospheric
column is no longer in equilibrium and so net heating/cooling must
occur. Denoting Q as the heating rate per unit mass, ρ the gas density,

and D the cloud thickness, we have∫ D

0
Qρdz = −δ

(
σT 4

c

) = 4σT 3
c (�cδzc − δTc) . (B2)

For analytic simplicity, Q is assumed to obey the following linear
relation at any level:

Q = 4σT 3
c

M
(�cδz − δT ) , (B3)

where M = ∫ D

0 ρdz. Moreover, clouds are assumed to be perfectly
advected by the flow, i.e. sedimentation is negligible compared to
the vertical advection, so that the rate of change in cloud-top altitude
is simply the vertical velocity w. Taking the time derivative of
equation (B3), we have

∂Q

∂t
= 4σT 3

c

M

(
�cw − ∂T

∂t

)
. (B4)

Then we assume a basic state of the atmosphere at rest with small
horizontal temperature perturbations. The linearized equation of
thermodynamics in height coordinates expressed using temperature
is written:

∂T

∂t
+ w

(
∂T

∂z
+ g

cp

)
= Q

cp

. (B5)

Combining with equation (B4) we have the linearized thermody-
namic equation

∂2T

∂t2
+ ∂w

∂t
� = 1

τ

(
�cw − ∂T

∂t

)
, (B6)

where � = dT
dz

+ g

cp
, and 1

τ
= 4σT 3

c

cpM
. Here τ represents a radiative

time-scale of the cloud-forming atmosphere.
By just the terms involving vertical velocity in equation (B6),

∂w
∂t

� = 1
τ
�cw, an instability is obvious with a growth rate of λc = �c

�τ
.

Now we consider the full linearized dynamical equations below.

B2 Rossby, MRG, and inertia-gravity modes

We start with the linearized dynamical equations with a basic state at
rest in an equatorial β plane, where the Coriolis parameter is written
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f = βy. The zonal and meridional angular momentum, hydrostatic
balance, and continuity equations are, respectively

∂u

∂t
− βyv = −∂φ

∂x
, (B7)

∂v

∂t
+ βyu = −∂φ

∂y
, (B8)

∂φ

∂z
= gT

T0
, (B9)

∂u

∂x
+ ∂v

∂y
+

(
∂

∂z
− 1

H

)
ω = 0, (B10)

where T0 is a reference temperature, z = −Hln (p/p0) is the vertical
coordinate at log pressure, H = RT0/g is the scale height, and φ is
the geopotential. Equations (B6) to (B10) forms a closed set.

We seek wave-like solutions:

{u, v, φ, T , ω} = {ũ(y), ṽ(y), φ̃(y), T̃ (y), ω̃(y)}ez/(2H )

× sin(πz/D)eikxx+λt , (B11)

where ũ(y), ṽ(y), φ̃(y), T̃ (y) and ω̃(y) are functions of y only.
To satisfy the form of equatorially trapped waves, the boundary
condition is typically applied to ensure that the disturbances vanish
when |y| → ∞. Repeating the derivations for the classic equatorial
waves (e.g. Matsuno 1966; Holton & Hakim 2012), we arrive at an
equation for ṽ(y):[
L2

d

(
λ2

(
1
τ

+ λ
)

c2
g(λc − λ)

− k2
x + ikxβ

λ

)
− Y 2

]
ṽ + d2ṽ

dY 2
= 0, (B12)

where c2
g = N2/k2

z , N2 = g�/T0, Y = y/Ld , and Ld is the equa-
torial deformation radius modified by the diabatic cloud radiative
effect:

L4
d ≡ c2

g(λ − λc)(
1
τ

+ λ
)
β2

. (B13)

Note that in the equatorial theory of Hayashi (1970) that considered
latent heating effects, a complex equatorial deformation was also
possible. In the adiabatic limit of τ → ∞, the deformation radius
recovers the classic definitionLd = √

cg/β and the dispersion recov-
ers the classic dispersion relation of adiabatic, unforced equatorially
trapped waves (Matsuno 1966). In the limit of τ → 0, there is no
solution that satisfies the boundary condition. The following relation
has to be met for the given boundary condition:

L2
d

(
λ2

(
1
τ

+ λ
)

c2
g(λc − λ)

− k2
x + ikxβ

λ

)
= 2n + 1; n = 0, 1, 2, ...

(B14)

Then, the solution has the form

ṽ(Y ) = ṽ0Hn(Y ) exp(−Y 2/2), (B15)

where ṽ0 is a constant with units of velocity, and Hn(Y) designates the
nth Hermite polynomial. In addition, solutions satisfy the boundary
condition if exp (− Y2/2) diminishes when |y| → ∞, which requires
that the real part of L2

d is positive.
We first seek solutions with real, positive λ. Possible solutions

should be in the range between 0 and λc. Outside this range, there is
no solution that satisfies a real kx, which is required to have wave-
like zonal disturbances. Equating the imaginary part in the LHS of
equation (B14) to zero, one obtains

λ3 + 1

τ
λ2 + c2

gk
2
xλ − λcc

2
gk

2
x = 0. (B16)

Figure B1. Top panel: dispersion relations of the imaginary components −λi,
i.e. the propagating components, for cloud-radiatively-coupled free equatorial
waves. Frequency and zonal wavenumbers have been nondimensionalized as
λ∗ = λ/(βcg)1/2 and k∗ = k(cg/β)1/2 following Holton & Hakim (2012),
Chapter 11. Different modes are labelled in the right panel and with different
colours and line styles. The dotted line corresponds to a special case in the
Kelvin and n = 0 unstable modes. Bottom panel: dispersion relations of the
real components λr, i.e. the attenuating or growing components, for equatorial
waves. Negative λr represents attenuating modes and positive λi represents
growing modes.

There is one positive real root that satisfies 0 <λ<λc. This dispersion
relation is that of the pure hydrostatic gravity waves, the same as
equation (28) in Gierasch et al. (1973) when f = 0. Equating the
remaining real parts in equation (B14), one obtains

(2n + 1)2

(
λ3 + 1

τ
λ2

)
+ c2

gk
2
xλ − λcc

2
gk

2
x = 0. (B17)

Only when n = 0 (the MRG modes), both equations (B16) and (B17)
can be simultaneously satisfied, and there is a set of purely unstable,
nonpropagating n = 0 modes. In this case, L2

d is purely imaginary
and fails the strict meridional boundary condition. Nevertheless, by
solving equation (B14) numerically, we cannot find other modes
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that contain a positive real part of λ. All other modes have both
negative real parts and imaginary parts, and they resemble the classic
equatorial waves – the propagating Rossby, MRG, and inertia-gravity
modes but with damping in the wave amplitudes due to thermal
radiation. The dispersion relations for all possible solutions are
plotted as solid curves in Fig. B1, in which the top panel shows
the −λi (in the same format as that plotted in classic literature
of equatorial waves, e.g. Holton & Hakim 2012) and the bottom
panel shows the λr, where λ = λr + iλi. Despite that the special
nonpropagating unstable mode in equation (B16) does not strictly
satisfy the lateral boundary condition, at least their disturbances do
not amplify with |y| → ∞. So we still plot the dispersion relation as
the dotted lines in Fig. B1.

B3 Kelvin modes

The Kelvin mode is a special mode in which the meridional velocity
is zero. The governing equations for the zonal and meridional angular
momentum, and continuity are simplified to

∂u

∂t
= −∂φ

∂x
, (B18)

βyu = −∂φ

∂y
, (B19)

∂u

∂x
+

(
∂

∂z
− 1

H

)
ω = 0. (B20)

We make use of equations (B18), (B9), (B20), and (B6) and assume
wave-like solutions of equation (B11), then we obtain the following

dispersion relation

λ3 + 1

τ
λ2 + c2

gk
2
xλ − λcc

2
gk

2
x = 0. (B21)

This is the same as equation (B16) for n = 0 modes, and growing
modes with positive λ exist. Additional constraints from the lateral
boundary condition should be satisfied. Combining equations (B18)
and (B19), one obtains

ũ = ũ0 exp

(
β

kxλi + ikxλr

2
(
λ2

i + λ2
r

) y2

)
, (B22)

where ũ0 is the amplitude of the perturbation zonal velocity at the
equator, and λ is written as λ = λr + iλi. If one restricts ũ to vanish
with |y| → ∞, kxλi < 0 needs to be satisfied. With this regard,
the purely unstable modes fail to satisfy the boundary condition,
and only the eastward propagating but decaying modes are valid
solutions. This reaches the same conclusion as the n = 0 unstable
modes. The dispersion relation of the unstable Kelvin modes are also
represented as dotted lines in Fig. B1.

Our key finding is that there is only one set of growing but
nonpropagating modes corresponding to the Kelvin and n = 0 modes
that may be marginally relevant. This may provide a way to excite
the Kelvin waves, n = 0 MRG waves and n = 0 eastward inertia
gravity waves seen in our simulations. Other propagating modes
have properties quantitatively similar to the adiabatic-free modes but
with damping of their amplitudes due to thermal radiation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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