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ABSTRACT
After a decade of design and construction, South Africa’s SKA-MID precursor MeerKAT has begun its science operations.
To make full use of the widefield capability of the array, it is imperative that we have an accurate model of the primary
beam of its antennas. We have taken available L-band full-polarization ‘astro-holographic’ observations of three antennas and
a generic electromagnetic simulation and created sparse representations of the beams using principal components and Zernike
polynomials. The spectral behaviour of the spatial coefficients has been modelled using discrete cosine transform. We have
provided the Zernike-based model over a diameter of 10 deg averaged over the beams of three antennas in an associated software
tool (EIDOS) that can be useful in direction-dependent calibration and imaging. The model is more accurate for the diagonal
elements of the beam Jones matrix and at lower frequencies. As we get more accurate beam measurements and simulations in
the future, especially for the cross-polarization patterns, our pipeline can be used to create more accurate sparse representations
of MeerKAT beams.

Key words: instrumentation: interferometers – techniques: interferometric – methods: data analysis – techniques: image pro-
cessing.

1 IN T RO D U C T I O N

Observational radio astronomy is continuing its growth through
the construction of new generations of radio telescopes such as
LOFAR (van Haarlem et al. 2013), ASKAP (McConnell et al.
2016), MeerKAT (Jonas & MeerKAT Team 2016), and the upcoming
SKA (Braun et al. 2015). The new and upcoming telescopes can
offer exquisite sensitivity and resolution and the ability to image
large fractions of the sky very quickly which makes them ideal for
exploring new science that relies on the detection of extremely weak
astrophysical signals. However, to make full use of these enhanced
capabilities, observers must improve their calibration techniques and
the models of instrumental effects. The first and second generations
of calibration strategies (defined in Smirnov 2011a) can no longer
do justice to the new interferometers.

The key science goals of these newcomers will often demand an
implementation of more advanced calibration strategies where both
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direction independent (e.g. receiver electronics) and dependent (e.g.
primary beam and ionosphere) effects are taken into account under
an unified mathematical formalism such as the radio interferometer
measurement equation (RIME: Hamaker, Bregman & Sault 1996;
Smirnov 2011a) which relates the visibilities observed (Vpq ) by
a baseline pq (formed by the antennas p and q) to the true sky
represented by the ‘brightness matrix’ B. It is given by the equation
(following Smirnov 2011a, equation 18)

Vpq = Gp
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where Kpq = e−2πi(upq l+vpqm)+wpq (n−1)], u, v, w are the coordinates
of the baseline in a reference frame oriented towards the observing
direction, G and E are their direction independent (DIE) and depen-
dent systematic effects (DDE), respectively, l, m are the ‘direction
cosines’ towards the sky and n = √

1 − l2 − m2. In this paper, E
will be used to denote only the primary beam (hereafter, only beam,
which should not be confused with the point spread function of an
array), neglecting other DDEs, such as the ionospheric, tropospheric,
and Faraday rotation effects.
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The worrying assumption of traditional self-calibration, i.e.
second-generation calibration, is that DDEs are trivial, which implies
each visibility is a measurement of the sky ‘coherency function’
corrupted by some multiplicative gains. In such a scenario, an inter-
ferometer array would measure the Fourier transform of one common
sky. This assumption holds only if the DDEs are identical across all
antennas and constant in time, which they are not. In the presence
of the actual non-trivial DDEs, the observed visibilities would be a
convolution of the ‘sky coherency’ and the DDEs (Smirnov 2011b).
In our case, the beam convolves the ideal visibilities with a different
kernel per antenna and per time and frequency step and, hence, we get
a different uv-plane for every baseline, time, and frequency sample.
Correcting for the beam effects is not trivial and still under much
experimentation (for an example, see Bhatnagar, Rau & Golap 2013;
Tasse et al. 2018), but a clear pre-requisite step towards this complex
task would be making an accurate beam model.

A simple approximate model can be created using, e.g. Gaussian
or Jinc functions that can capture the basic features of the beam.
However, such models cannot account for asymmetries in the shapes
of the main and side lobes and the position and level of far-out
sidelobes. Capturing such spectral effects will be crucial to properly
characterize weak astrophysical signals. For instance, the foreground
cleaning techniques in the intensity mapping of neutral Hydrogen
(HI) during the epoch of reionization (Mellema et al. 2013) and also
at lower redshifts (Santos et al. 2015) rely on the spectral smoothness
of the diffuse Galactic foregrounds, which can be destroyed by such
frequency effects if the beam is not properly modelled and corrected
for.

More realistic models of the beam, in angular space, time, and
frequency, can be either phenomenological, based on the appearance
of the far-field radiation pattern of an observing antenna, or physical,
based on the actual engineering physics of the antenna (described
briefly in Jagannathan et al. 2018, Section 3.1). One of the most
widely used phenomenological methods is ‘astroholography’ (AH),
where a holographic measurement of the far-field pattern of an an-
tenna scanning an astronomical source is taken, by cross-correlating
its measured voltages with that of another antenna tracking the same
source (for more information see Morris et al. 1988; Cotton 1994;
Harp et al. 2011; Perley 2016). Measurement of the beam directly
through this method is usually called ‘beam holography’ and using
the measured beam to model the figure of the reflecting surface of
an antenna, through the Fourier relationship between the far-field
pattern and the aperture illumination function, is usually called ‘dish
holography’. The first use of AH in radio astronomy was aimed at
the latter (Scott & Ryle 1977). However, the basis of most physical
approaches is the electromagnetic (EM) simulation of an antenna.
EM simulations can predict the beam over a large field of view
relatively easily, but it is computationally very expensive to produce
EM models for each antenna of an array and for every frequency
channel. In addition, it is more difficult to account for the temporal
and environmental behaviour of the beam in EM simulations. On the
other hand, beam models created from AH observations are more
accurate and easier to obtain for multiple frequency channels and
time samples, but they are usually restricted to smaller fields of
view and angular resolution. Therefore, information from both AH
observation and EM simulation can lead us to a better representation
of the beam.

This paper is the second in a series of papers dealing with the
modelling and effects of the primary beams of radio astronomy
antennas taking into account both the physical and phenomenological
approaches. The first paper presented the modelling of the Karl G.
Jansky Very Large Array (VLA) beam from AH and compared

these models to those created from EM simulations and physical
considerations (Iheanetu et al. 2019, hereafter ‘Paper I’). It presented
two different techniques of AH beam modelling – ‘data-driven’
modelling using Principal Component Analysis (PCA) and ‘basis-
driven’ modelling using Zernike polynomials (ZP). In this paper,
we will present different approaches of modelling available AH
measurements and EM simulations of MeerKAT, an SKA-MID
precursor array located in South Africa. Here, we call the data-driven
approach ‘characteristic’ and the basis-driven approach ‘analytic.’
Besides the PCA and ZP approaches, we will also demonstrate the
use of spherical harmonics (SH). The characteristic and analytic basis
models created from the AH observations will be compared with each
other and also with the EM simulations. We will also present spectral
modelling of the spatial coefficients using discrete cosine transform
(DCT).

A simpler and analytic primary beam model of MeerKAT is
presented by Mauch et al. (2020) based on cosine-tapered field
illumination (equation 3 in the paper).1 They have compared this
model with an azimuthal average of the AH beam of M. de Villiers
(in preparation) and found a good match out to 2.5 deg from the
phase centre. We have used the same AH beams and created a more
elaborate asymmetric sparse model based upon it.

Section 2 gives a general introduction to MeerKAT and describes
the AH observations and EM simulations used in this work. Section
3 describes the general formalism of the characteristic and analytic
approaches of modelling the spatial shape of the beam. Here, we also
discuss spectral modelling of the spatial coefficients and compare the
different approaches. Finally, we end with the main conclusions of
the paper and some remarks about our future work in Section 4. The
Zernike-based model presented here is available through the openly
accessible tool EIDOS.2

2 BEAM MEASUREMENT AND SI MULATIO N

MeerKAT is located in the Upper Karoo region of South Africa.
It has 64 interlinked receptors among which, 48 are located in a
core region of 1 km in diameter centred at −30◦42

′
47.41

′′
South,

21◦26
′
38.00

′′
East. The other 16 are located outside the core giving a

maximum baseline of 8 km. Fig. 1 (left-hand panel) shows a satellite
picture of the MeerKAT location and Fig. 1 (right-hand panel) shows
a recent photograph of some of its antennas. The left-hand and
right-hand panels of Fig. 2 show the distribution of the receptors
outside and inside the core, respectively. We refer the readers to
Jonas & MeerKAT Team (2016) and Camilo et al. (2018) for more
information about MeerKAT.

Three receivers of MeerKAT are expected to cover three different
bands of the radio spectrum, namely the UHF (580–1015 MHz),
L (900–1670 MHz), and S (1750–3500 MHz) band. We will only
focus on L band because substantial AH observations have been
carried out at these frequencies. Beams of all the 64 antennas have
been measured at L band, but we have the observations of only three
antennas available for this work. On the other hand, the EM-simulated
beams of MeerKAT have been created from the physical properties
of a generic MeerKAT antenna and, hence, it is assumed to be same
for all antennas. Because AH and EM beams rely on completely
different methods and pipeline, one can be used to check the sanity
of another. In the following subsections, we describe the two beams
and use one to check the accuracy of the other. Antenna-to-antenna

1Available at https://pypi.org/project/katbeam.
2https://github.com/ratt-ru/eidos
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2972 K. M. B. Asad et al.

Figure 1. Left-hand panel: A satellite view of the MeerKAT receptor pads before the installation of the receptors, with the Hydrogen Epoch of Reionization
Array (HERA) in the neighbourhood, captured from Google Earth. Right-hand panel: A photograph of some of the MeerKAT receptors with the flat-topped
hills (Karoo Kopies) capped by dolerite sills, a reminder of the Gondwanan past, in the background (courtesy SARAO).

Figure 2. The distribution of the 64 antennas of MeerKAT, each identified by an integer ranging from 0 to 63. Note that the actual names of the antennas are
given as M000, M001, M002, and so on. Left-hand panel: The distribution outside the 1-km-core. Right-hand panel: The distribution inside the 1-km-core. The
core is loosely delimited by the hexagonal boundary visible in the satellite image of Fig. 1 (left-hand panel). The West–East and South–North distances are
shown relative to the arbitrary centre located at −30◦42

′
47.41

′′
South, 21◦26

′
38.00

′′
East.

variation of the beam for the three antennas, yet another check of the
sanity of the beam, is also discussed.

2.1 Astroholographic observation

AH observations are available for all 64 antennas of MeerKAT.
We have taken one such observation in which the nearest bright
quasar 3C 273 (Schmidt 1963) was scanned using 18 antennas and
simultaneously tracked using another 36 antennas for 0.5 h. The
relevant observational parameters are given in Table 1. It is classified
as an ‘astro’-holographic observation because it was targeted at an
astronomical object; for an example of a holographic observation of
the beam of a MeerKAT antenna using a satellite beacon instead of
an astronomical source, see Jonas & MeerKAT Team (2016, fig. 6).

After calibrating the observed data, the AH beam was extracted for
three of the scanning antennas (M009, M012, and M015) using all the
available tracking antennas. The raw noisy beam measurements are
then de-noised via aperture-plane masking. Aperture-plane masking
is performed relying on the Fourier relationship between the primary
beam and the aperture illumination function (AIF) of an antenna.
The measured beams are Fourier transformed to obtain the AIF, the
Fourier modes lying outside the physical aperture plane are masked
and, finally, the masked AIF is inverse-Fourier transformed to create
a smooth de-noised beam. We have used the de-noised beam for all
analyses in this paper.

For AH observations, the correlator is operated as in normal
observing mode (while the antenna tracking strategy is necessarily
different), and a set of visibilities is generated. The calibration

MNRAS 502, 2970–2983 (2021)
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Table 1. Information about the holographic observation analysed in this
paper. The data were averaged in frequency to get a resolution of 0.8 MHz
and only three among the 18 available scanning antennas were used.

Experiment ID 20181206-0010
Target object 3C 273
Target RA (J2000) 12h29m06.70s

Target DEC (J2000) +02◦03
′
08.6

′′

Start time 2018 December 6, 10:29:01 SAST
Duration 0.5 h
Time resolution 1.0 s
Scanning antenna M009, M012, M015
Centre frequency 1284.0 MHz
Bandwidth 856 MHz
Channel width 0.835937 MHz
Number of channels 1024
Average elevation 39.82◦
Average azimuth 303.22◦

Figure 3. Frequency-dependent squint of the given AH observation (violet to
red colours) and EM simulation (shades of grey). The horizontal and vertical
squints are calculated from the pointing centre.

process is broadly similar to that of a normal observation, but some
important subtleties need to be taken into account (see e.g. Paper I for
an extended discussion). The data in this work were reduced using
a combination of the standard MeerKAT Science Data Processing
(SDP) pipeline and the MeerKAT holography tool KATHOLOG (M.
de Villiers, in preparation).

Before producing models from the AH measurements, we shift
the beam centres at each frequency channel independently to remove
the frequency-dependent offset, i.e. squint, of the beam centre from
the pointing centre. The squint is different for each of the feeds
of each antenna and it also varies with frequency. Therefore, for
an accurate comparison between the AH and EM data sets, we
remove squint from both of them. The squints were calculated by
fitting 2D elliptical Gaussians on the beam measurements at each
frequency.3 The spectral behaviour of the squints corresponding to
the E00 element of the AH measurement is shown in Fig. 3. Note
that the pointing offset averaged over all frequencies is related to
the mechanical pointing error of an antenna, not with its optical
properties. Therefore, we have calculated the squint after taking out
the average pointing error. The resulting squint varies horizontally

3The python module gaussfitter is used.

Figure 4. Holographic observation of MeerKAT primary beam over 10 deg at
1070 MHz averaged over three antennas (M009, M012, M015). The observed
data has been smoothed by masking Fourier modes in the aperture plane.
Top and bottom colour-bars are for the off-diagonal and diagonal elements,
respectively. For details, see Section 2.1 and Table 1.

from low to middle frequencies of the L band, but the variation
at higher frequencies is in the vertical direction. We store the per-
frequency per-antenna per-feed squint values and these can be added
to the squint-less beam model at a later stage if desired.

The re-centred squint-less beam data set has the shape (Nh
ν ×

2 × 2 × 256 × 256) where Nh
ν is the number of frequency channels,

the 2 × 2 matrices represent the Jones elements, and 256 × 256
correspond to the total number of pixels. The beam centre is
always at the pixel position (128,128). We then normalize the
beams with respect to the centre by dividing the complex Jones
images by the complex Jones matrix formed by the central pixel, i.e.
E(x, y) = E(x, y) · E−1(x = 128, y = 128) where x, y are the pixel
coordinates. Finally, we average the beam measurements of the three
antennas to create an antenna-averaged beam because the EM model
is created for a generic MeerKAT antenna and, hence, it would be
more appropriate to compare this model with an averaged AH beam
(the antenna-to-antenna variation is discussed in Section 2.3).

We refer to this re-centred normalized three-antenna-averaged AH
beam over a diameter of 10 deg as Eh. It is effectively a squint-
less differential beam measurement with respect to the centre. As
an example, the squared amplitude of the AH beam at a particular
frequency (1070 MHz) is shown in Fig. 4. The main lobe and the first
three sidelobes in the diagonal elements and a cloverleaf pattern in
the off-diagonal elements are visible in the figure.

The sidelobe levels can be seen more clearly in Fig. 5 where
a 1D cut through the centre of the Stokes I beam (average of the
diagonal Jones elements) is shown. The asymmetry of the beam
is also clear from the difference between the horizontal (red solid
line) and vertical (blue solid line) cuts. The first sidelobe level
is more than 20 dB below the maximum and the second sidelobe
more than 30 dB below. Cuts through the main-diagonal (green
solid line) and the antidiagonal (magenta solid line) of the average
cross-polarization pattern is also shown. Cross-polarization power
increases with radius and reach a maximum of ∼−35 dB in the
central region of the cloverleafs. The corresponding cuts through the
VLA beam are shown in the same figure (dashed lines) and we see

MNRAS 502, 2970–2983 (2021)
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2974 K. M. B. Asad et al.

Figure 5. Horizontal (IH) and vertical (IV) cuts through the centre of the
Stokes I beam at 1070 MHz and the diagonal cuts (CDm for the main and
CDa for the antidiagonal) through the centre of the average cross-polarization
pattern. The solid lines show the results for MeerKAT and the dashed lines
for VLA.

that the first sidelobe level of VLA beam, at 1070 MHz, is almost
an order magnitude higher than that of MeerKAT. However, their
cross-polarization levels are comparable.

2.2 Electromagnetic simulation

MeerKAT primary beam has been simulated using the EM simulation
software GRASP4 taking into account the principles of physical
optics (PO) and the physical theory of diffraction (PTD). The
GRASP simulations compare well with EM simulations performed
using the MLFMM (multilevel fast multipole method) technique of
FEKO.5 The simulations are available for the whole L band with a
spectral resolution of 5 MHz and over the entire hemisphere. For
the purpose of this paper, we restrict ourselves to within a diameter
of 10 deg. The frequency-dependent squints of the simulated beam
are shown in Fig. 3 (shades of grey). Squint varies smoothly in a
horizontal direction as one goes from low-to-high frequencies and
this trend is similar to the AH measurements. We remove these
squints and re-centre the EM models to the same pixel as the
centre of the AH measurements and normalize them using the same
convention. The re-centred and normalized EM data set of shape
(Ne

ν × 2 × 2 × 256 × 256), where Ne
ν is the number of channels in

the EM simulation, is hereafter referred to as Ee.
The EM model at 1070 MHz is shown in the top row of Fig. 6 (top

panel, top row) and the residuals after subtracting the model from
the corresponding AH measurement is shown in the bottom row.
The residuals have been multiplied by 100 for better visualization.
There is a low-level dipolar structure in the residuals and further
investigation is needed to identify its cause which is not within the
scope of this paper. However, it is certain that the diagonal Jones
elements of Eh and Ee are much closer to each other than the off-
diagonal elements. The good match in the diagonal and the relatively
poor match in the off-diagonal element can be seen more clearly in
the bottom panel of Fig. 6, where the radial profiles of the E00 and
E01 elements of the AH and EM data sets and the corresponding
residuals are shown.

4https://www.ticra.com/software/grasp
5https://altairhyperworks.com/product/FEKO

Figure 6. Top: Electromagnetic simulation of MeerKAT beam at 1070 MHz
over a diameter of 10 deg (top row) and the residuals after subtracting it from
the AH measurement (bottom row). The residuals are multiplied by 100 for
better visualization. Bottom: Radial profiles of the E00 and E01 elements of the
AH (blue crosses) and EM (green solid line) data sets and the corresponding
residuals (red dots).

Furthermore, the proximity between the observation and simula-
tion can be quantified as a fractional difference with the normalized
root-mean-square error (NRMSE) of the magnitude of the EM model
with respect to that of the given AH measurement. We use NRMSE to
show the overall (as the images are averaged over 10 deg) similarity
of the two data set as shown in Fig. 7. It is defined as

NRMSE =
√

(|Eh| − |Ee|)2

|Eh| , (2)

as a function of frequency. The NRMSE of the off-diagonal, i.e.
cross-polarization, elements is, on average, around four times higher
than that of the diagonal elements and the error increases with
frequency. Again, to what extent this discrepancy is due to actual
error of the EM models cannot be known for certain because the
low-level off-diagonal elements are less well-known in the AH
observations and also become more noisy at higher frequencies. The
NRMSE of the diagonal elements increases smoothly with frequency,
but that of the off-diagonal elements increases rapidly after around
1350 MHz. The outliers in this figure are caused by Radio Frequency
Interference (RFI) and not due to any intrinsic effect of the model or
the measurement. Note that the NRMSE is averaged over a diameter
of 10 deg and, hence, dominated by the errors near the nulls.

2.3 Accuracy of the beams

The AH observation and EM simulation are completely independent
methods. The first derives from data while the other from solving
differential equations. Therefore, we can compare them to check their
relative consistency at various levels of accuracy. The EM simulation
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Figure 7. Left-hand panel: Normalized root-mean-square error (NRMSE) of the EM model with respect to the AH observation as a function of frequency
averaged over a diameter of 10 deg. Right-hand panel: NRMSE of the AH beams of three antennas (M009, M012, M015) with respect to the beam averaged
over the three antennas (Ea). Both the diagonal (dots) and off-diagonal (crosses) elements are shown.

accounts for the mean features of the beam whereas AH observation
helps representing the actual characteristics of the antennas. The
NRMSE of the diagonal elements of Ee is around 0.1 over 10 deg
which is very low considering the fact that there are as many as three
nulls and sidelobes within this diameter; the error would be much
lower within the main lobe. The good match is also evident in the
radial profiles of the two beams shown in Fig. 6. Therefore, we can
safely say that the observation and simulation match well with each
other for the diagonal elements.

The case is very different for the off-diagonal (or cross-
polarization) elements. The corresponding NRMSE is four times
higher and can be more than 1.0 at higher frequencies. As mentioned
above, this discrepancy could be due to the fact that the polarized
observation was not calibrated properly. Due to the lack of available
polarization-calibrated data and the lack of information regarding
the accuracy of simulated cross-polarization beam, we are not
considering the off-diagonal elements in our sparse beam model
described in Section 3.

We use an AH beam averaged over three antennas, but the beam
is known to vary from antenna to antenna. The right-hand panel
of Fig. 7 shows the NRMSE of the beams of the three antennas
with respect to the averaged beam Eh averaged over a diameter of
10 deg for both the diagonal (below NRMSE = 0.1) and off-diagonal
(above NRMSE = 0.1) elements. For the diagonal elements, the
antenna-to-antenna NRMSE variation range from 0.001 to 0.007
across the band which is almost an order of magnitude lower than
the NRMSE of the simulated beam with respect to Eh (left-hand
panel). M009 and M012 show similar variations across the band,
but the variations of the M015 antenna is higher. The variations
in the off-diagonal terms are greater as expected and this gives us
another reason for not trusting the polarization data at this stage.
Even though the NRMSE of the M015-beam is almost a factor of 2
higher than the other two antennas, we can consider the averaged
beam to be a good approximation for all antennas in this case
because the NRMSE for all three antennas is considerably low.
However, we caution the readers that we are talking about only three
antennas and the scenario might change when all the antennas are
considered.

In the following section, we present two different sparse models
for the diagonal elements of the beam Jones matrix, one for the AH
observation and the other for the EM simulation, both within a field of
view of 10 deg, and compare the two models at every stage. A single
model combining information from both observation and simulation

might be beneficial in some cases, as discussed in the introduction,
but we have kept the models separate for now. Our main motivation
behind modelling the two data sets in parallel was to compare the
results of the noisy (observation) and noiseless (simulation) cases.

3 BEAM MODELLI NG

The squint-less, normalized, differential AH measurement Eh and the
EM simulation Ee are effectively the starting point for the main body
of our work. We model the spatial beamshape using characteristic and
analytic basis functions and the spectral behaviour using DCT. This
creates a sparse representation of the given beam data sets that can
be used in direction-dependent calibration and imaging effectively.

3.1 Spatial modelling

The beamshape is modelled using two types of orthonormal bases:
‘characteristic basis’ (derived from PCA) and ‘analytic bases’ (ZP
and SH). The method and results of the two approaches are described
in the following two subsections. Here, we will focus on just one
frequency channel, centred at νc = 1070 MHz, because both Eh and
Ee are sampled at this frequency, and the spectral behaviour of the
spatial coefficients will be treated in the next section.

3.1.1 Characteristic basis

In this approach, the basis vector (eigenvector or eigenbeam) to
describe a beam is created from the AH beam measurement itself,
akin to the characteristic basis function pattern (CBFP) method (e.g.
Maaskant & Ivashina 2012; Mutonkole et al. 2016, and references
therein). Following the method described in section 4.3 of Paper I, we
have used PCA to create such eigenbeams with the help of singular
value decomposition (SVD).

As opposed to the analytic bases, it is more appropriate to apply
PCA on the spatiospectral beam-cube, containing data for all the L-
band frequency channels of Eh and Ee. We remove the RFI-affected
channels from the AH measurement, stack Eh and Ee together and
flatten the spatial dimensions to create a 4D array Ehe of shape Nν

× 2 × 2 × Npx, where Nν = Nh
ν + Ne

ν is the total number of RFI-
free frequency channels, and Npx the total number of pixels in a
beam image. For each complex Jones element, the Nν × Npx matrix
Ehe(ν) is decomposed into three complex matrices – U, a Nν ×
Nν unitary matrix, �, a Nν × Nν diagonal matrix whose diagonals
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2976 K. M. B. Asad et al.

Figure 8. The principal component model created from the AH observation (left-hand panels; Ech) and EM simulation (right-hand panels; Ece) at 1070 MHz.
The models and the residuals (Eh − Ech and Ee − Ece) are shown in the top panels and the bottom panels show the radial profiles (averaged over concentric
annuli) of the data, model and residual for the E00 and E01 elements. In the top panels, the power beams are shown in dB unit and the residual images are
multiplied by 100 to improve visualization.

contain all the singular values, and Vc, a Nν × Npx unitary matrix
– using SVD.6 Here, Vc is the collection of our basis vectors or
principal components (PC), i.e. eigenbeams, and Cc = U� contains
the corresponding coefficients (for the relationship between SVD
and PCA, see Jolliffe & Cadima 2016, Section 2a). The models for
all frequencies of L band are reconstructed from the eigenbeams and
the coefficients as Ec(ν) = Cc

0Vc
0, where Cc

0 contains the strongest
coefficients and Vc

0 the corresponding PCs.
The results over the full L band will be presented in Section 3.2;

here we focus on a single channel. The top row of Fig. 8 shows
the reconstructed diagonal Jones elements of Ech(νc) (first from the
left-hand side; AH) and Ece(νc) (second from the left-hand side;
EM) where νc = 1070 MHz.7 The corresponding residuals after
subtracting the models from Eh are shown below the models. Note
that all the residual images are calculated from the actual amplitudes
of the Jones elements, not the squared amplitudes, i.e. power. These
models are created using Nc = 15 strongest PCs. The NRMSE
([(|Eh| − |Ech|)2]1/2/|Eh|) of the model created from AH is shown
in Fig. 9 as a function of number of modes used. We see that PCA
can represent the beam measurements accurately with less than 15
components (red plus markers), but we have used 15 modes for a fair
comparison with the models created using analytic bases.

The bottom panels of Fig. 8 show the radial profiles of the E00 and
E11 Jones elements of the data (blue dots), the characteristic models
(green line) and the residuals (red dots). Radial profiles are created
by averaging the beam images in concentric circular annuli. In both

6The python module scipy.linalg.svd is used.
7In this paper, Ex refers to a model created using the basis function x = {c,
z} for both AH observation and EM simulation whereas Exh and Exe refer
to the AH and EM models created using the basis, individually.
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Figure 9. Normalized root-mean-square error (NRMSE) of the principal
component model (red) and the Zernike model (blue) as a function of the
number of modes used at a frequency of 1070 MHz averaged over a diameter
of 10 deg. The plus and cross signs represent the errors for the E00 and E01

elements, respectively.

the images of the top panels and the radial profiles of the bottom
panels, we show the squared amplitude for the sake of consistency.
The mean and standard deviation of the residuals are shown above
the radial profile plots. If we take the square root of these values, we
see that with 15 PCs, we can reach an rms residual level of ∼10−3

for the diagonal Jones elements for both the AH and EM beams.
Along with a faithful representation of the beam, one other advan-

tage of using an orthogonal basis is the sparsity of the representation
– the beam can be described using less information. The AH or
EM data sets contained 4Npx × Nν parameters for describing the
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MeerKAT L-band beam modelling 2977

full-Jones beam and although the characteristic basis model Ec now
needs 4Nc(Npx + Nν) parameters to represent the full-bandwidth full-
polarization beam, the frequency behaviour of the PC coefficients can
be modelled using Nc

ν < Nν parameters, as described in Section 3.2,
further reducing the information-load. However, Npx will still be a
large number, especially if a bigger field of view or better resolution
is desired. This is where the ‘analytic basis’ approach comes in. It
can further sparsify the model by representing the spatial dimensions
via 2D analytic functions calculated over unit discs.

3.1.2 Analytic basis

We test two types of analytic bases to represent Eh and Ee – ZP (for an
introduction, see Lakshminarayanan & Fleck 2011, and Appendix A)
and SH. Unlike PCA, the analytic basis models are created for each
AH and EM frequency channel independently. The basic procedure is
the same for both ZP and SH. If the analytic bases are denoted by V =
{Z, S} for ZP and SH, respectively, and the corresponding coefficients
by C, then the decomposition of Eh gives us the coefficients

C = (VT V)+ VT Eh, (3)

where T stands for transpose and + for the Moore–Penrose
pseudoinverse.8 These coefficients can be used to reconstruct a beam
model as

Em =
Nm∑
i=0

CiVi , (4)

where i = 0 denotes the strongest among the selected coefficients,
and i = Nm the weakest, and m = {z, s} for ZP and SH. The results
of the decomposition and reconstruction of the AH and EM data sets
using these bases are presented below.

Zernike polynomial model: ZP models Ez created from the AH
(Ezh) and EM (Eze) data sets are shown in the top panels of Fig. 8,
the former third from the left and the latter last from the left. Like
the PCA model, the 15 strongest modes were used to reconstruct
these. We keep using 15 coefficients because, as shown in Fig. 9 and
described in more detail below, modelling error cannot be reduced
substantially by including more coefficients in the case of a single
frequency channel. By comparing the residual images of the two
leftmost panels with those of the two rightmost panels of Fig. 8,
we immediately see that PCs can represent the data more faithfully
with the same number of modes. A comparison of the corresponding
radial profiles reveals that the residual levels for Ezh and Eze are, on
average, an order of magnitude higher than those for Ech and Ece.

NRMSE of Eh−z (difference between AH measurement and ZP
representation) is shown in Fig. 9 (blue plus markers for E00 and blue
crosses for E01 for comparison) as a function of number of modes
used; Ee−z, not shown here, follows a similar trend. After using the
15 strongest Zernike modes, the NRMSE of E00 is ∼0.1 and that
of E01 around 0.3; compare them to the corresponding NRMSE for
Eh−c (red plus and cross) – around 0.02 and 0.2. Comparing the
blue and red markers, we see that the NRMSE for Eh−z

00 and Eh−c
00

decreases in a similar fashion as more modes are included, but they
always maintain a difference of almost an order of magnitude. The
difference is lower for the off-diagonal elements as both of them are
dominated by noise; we do not include these cross-polarization terms
in our final model.

ZP are real functions, therefore, we model both the real and
imaginary parts using the real functions and store the resulting

8Calculated using the python module numpy.linalg.pinv.

Figure 10. The beam model created by decomposing AH observations using
spherical harmonics. We have used 40 and 15 modes for the diagonal and off-
diagonal elements, respectively. The bottom panels show the corresponding
residuals, multiplied by 100 for better visualization.

complex coefficients. The beam measurement and simulation were
decomposed using the first 300 Zernike modes and the 15 strongest
ones among them were selected for this particular reconstruction at
1070 MHz. As discussed before, the main reason for using analytic
bases is to reduce the amount of information needed to represent the
spatial structure. It is, therefore, imperative to look at the shapes of
the Zernike modes needed for that representation. However, we want
to find the strongest Zernike coefficients needed to model both the
beam measurements and simulations for all frequencies and, hence,
the shapes of the individual modes is discussed in Section 3.2.

Spherical harmonic model: Unlike the ZP, the SH are complex
valued although their imaginary parts do not have any zero-frequency
component and for any order (or degree) n, the frequency m =
0 contains the average of all the harmonics. We decompose the
observed complex beam Eh using the first 256 complex SH (with a
maximum n of 15) and select the strongest coefficients. Unlike PCs
and ZPs, SH’s cannot reconstruct the diagonal elements accurately
with 15 modes and at least 40 modes are needed for a reasonable
representation. Therefore, the SH model Esh, shown in Fig. 10 (left-
hand panel), has been created using 40 coefficients. Even with 40
modes, SH does not perform as well as PC and ZP – the residuals
show a dipolar structure in the main lobe of the beam. This precludes
using SH for modelling 10-deg beams across a wide bandwidth and,
hence, in the next section, we will focus only on ZP and PC.

3.2 Spectral modelling

The two full-bandwidth sparse representations Ec, based on PC, and
Ez, based on ZP, can be compressed even further if we model the
spectral behaviour of the associated strongest coefficients in each
case. PCs are calculated from the combined data set of the full-
bandwidth AH and EM beams, but ZP decomposition is performed
at each frequency channel separately. To prepare a data set for PCA,
we removed the RFI-affected channels from AH measurements, as
mentioned in Section 3.1.1, and created a new data set containing
only the non-contaminated AH channels and all the EM channels.

We used three different figures of merit to detect RFI-affected
channels in the AH measurement: the rms of the beam images, the
position of the peak in the diagonal elements and the difference
between the energies of the ZP coefficients of adjacent channels. In
the RFI-affected channels, rms is comparatively high and the beam
is not exactly centred at the central pixel (128,128). The data set
created after removing the unusable channels based on these two
criteria was used for PCA. However, these criteria could detect only
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2978 K. M. B. Asad et al.

Figure 11. The strongest principle components, as a function of frequency, for the AH (dots) and EM (solid lines) models. The top two panels show the real
parts of the diagonal Jones elements and the bottom two panels the imaginary parts.

the worst channels. To identify the remaining lower level RFI, we
used ZP coefficients Czh(ν). ZP decomposition was performed on
all channels including the RFI-affected ones because, unlike PC, ZP
coefficients of one channel do not depend on those of another. Then,
we identified the channels ν i for which Czh

00 (νi) − Czh
00 (νi+1) > 10−3

as RFI-affected. Finally, we created a comprehensive list of RFI-
affected channels and masked those channels in both Czh(ν) and the
PC coefficients Cch(ν).

3.2.1 Principal components

The most dominant PCs are shown in Fig. 11 as a function of
frequency for the diagonal Jones elements of Ech (dots) and Ece

(solid lines). AH measurements are available from 856 to 1712 MHz
with a resolution of 0.83 MHz, but we show results up to the effective
L-band edge, 1670 MHz. EM simulations are available from 900 to
1670 MHz with a resolution of 5 MHz. The top two panels in the
figure show the real parts of Cc(ν) and the bottom ones the imaginary
parts. The first five real PCs of the diagonal elements of Eh and Ee

match very well and their difference is only visible in the imaginary
parts which are at a much lower level.

The amplitude of the strongest PC (red lines in Fig. 11) models
the beamwidth as a function of frequency to a large extent. This
amplitude decreases smoothly with frequency because beamwidth
is proportional to λ/D, but it also exhibits a low-level frequency-
dependent ripple, more clearly visible in the imaginary part (red
lines in E

imag

00 and E
imag

11 ). The ripple of MeerKAT beam is described
in more detail in Section 3.2.4.

3.2.2 Zernike coefficients

In order to select the most dominant Zernike coefficients Cz(ν), we
calculate the average of the absolute value of the real and imaginary

parts separately over all frequencies for both AH measurement and
EM simulation. The 15 strongest Zernike modes selected from these
data sets is shown in Fig. 13. The red circles and blue dots show the
average energies of the coefficients for Eh and Ee, respectively. We
see that the real part of the diagonal elements is mainly represented
by the Zernike modes with an angular frequency m = 0, i.e. the
spherical modes. The spherical modes are symmetric, but the beam
has asymmetries which are represented by the astigmatism (m = 2)
and coma (m = −1) modes. The imaginary part is also represented by
the spherical, astigmatism and coma modes, but astigmatism is much
more dominant than the spherical modes. The energies of Eh

00 and
Ee

00 match very well in the real part as opposed to the imaginary part.
Spectral behaviour of the most dominant Zernike coefficients is

presented in Fig. 12. Like Fig. 11, Czh are plotted using dots and Cze

using solid lines. Similar to the PCs, the strongest Zernike coefficients
for modelling the real part of the diagonal elements match very well
between Eh and Ee and the ripple of the beamwidth is also clearly
visible in the imaginary parts. Note that higher order spherical modes
are needed for modelling higher frequency beams because number
of sidelobes within the 10◦ diameter increases with frequency.

The spectral shape of the spatial coefficients is modelled using
DCT as described below. We discuss spectral compression only
for the ZP case because this is the basis we have used in our final
models and ZPs can represent the beam using less information.
The spectral behaviour of the PCs can be modelled using the same
method if needed.

3.2.3 Discrete cosine transform

Only 15 ZP coefficients were needed to model the beam at 1070 MHz
as shown in Figs 8 and 9, but at least 20 coefficients are necessary
for the full L band. Therefore, we model the spectral behaviour of
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MeerKAT L-band beam modelling 2979

Figure 12. The five strongest Zernike coefficients, as a function of frequency, for the AH (dots) and EM (solid lines) models. The top two panels show the real
parts of the diagonal Jones elements and the bottom two panels the imaginary parts.

the 20 most dominant spectral coefficients Cz, i.e. Czh for AH and
Cze for EM. Before compressing the coefficients, we interpolate9

their energies, for both AH and EM models, to Ni
ν = 7701 channels

from 900 to 1670 MHz with a resolution of 0.1 MHz. In case of Czh,
the coefficients for the RFI-affected channels were reconstructed by
interpolation from the RFI-free ones and then the coefficients of
Nh

ν = 1024 channels were used to fill Ni
ν channels via piecewise

linear interpolation. In case of Cze, coefficients from the original
Ne

ν = 155 channels are used to fill the Ni
ν channels.

Interpolated coefficients Cz are then compressed via DCT. First,
we decompose the coefficients using DCT of Type II as

Ck = 2√
wNi

ν

Ni
ν−1∑

n=0

Cn(ν) cos

[
πk(2n + 1)

2Ni
ν

]
(5)

for 0 ≤ k < Ni
ν where w = 4 when k = 0 and w = 2 otherwise. We

have seen that the number of resulting DCT coefficients that are more
than 10 times higher than the noise level in the decomposition is usu-
ally around 30 for Cze and 40 for Czh. Therefore, we decided to keep
40 DCT coefficients for each Jones elements of the AH model and 30
for the EM model. Czh needs more coefficients because it has noise.

If the resulting most dominant DCT coefficients are denoted by
C′, we can reconstruct a de-noised smooth spectral model of the
coefficients via Inverse DCT (same as DCT of Type III) as

Ĉn(ν) = C′
0

Ni
ν

+
√

2

N

Ni
ν−1∑

k=0

C′
k cos

[
πn

Ni
ν

(
n + 1

2

)]
(6)

9The python module numpy.interp is used to perform a piecewise linear
interpolation.

for 0 ≤ n < Nν . Both Cz(ν) (thick coloured lines) and Ĉz(ν) (thin
white lines) are shown in Fig. 14 for both the AH (left-hand panels)
and EM (right-hand panels) models. The sixth to tenth most dominant
coefficients for modelling Eh

00 and Ee
00 are shown because the first

five coefficients, already shown in Fig. 12, have even less error and
are not representative of the rest of the coefficients.

From Fig. 14, we see that the smooth reconstruction of the spectral
behaviour follows the original energies of the coefficients closely.
DCT can also reconstruct the small-scale ripple on the coefficients
to some extent, but further work is needed to model the ripple more
accurately based on physical considerations.

We need only 2 × 2 × 2 × Nd × Nz coefficients to represent
the full L-band complex beam model of MeerKAT where Nd is the
number of DCT coefficients for modelling the spectral behaviour of
each the Nz ZP coefficients. To show the accuracy of the semi-analytic
beam models created from these coefficients, provided inEIDOS, we
reconstruct the models for 155 channels from 900 to 1670 MHz and
calculate their NRMSE with respect to the given measurement and
simulation. These errors are also compared with the corresponding
error of the PC-based models.

Fig. 15 shows the NRMSE of the PC and ZP-based models
for the E00 and E01 elements. The left-hand and right-hand panels
show the errors for Eh and Ee, respectively. Although we have not
described the modelling of the off-diagonal Jones elements, their
NRMSE is included in this plot in order to compare them with the
corresponding errors of the diagonal elements. For example, we see
that the NRMSE of Ech

01 is almost the same as the NRMSE of Ezh
00

which shows that PC models are usually much closer to a given data
at the expense of modelling the noise. Ezh

00 is almost an order of
magnitude higher than that of Ech

00 which also reiterates the results
presented in Fig. 9 for a single channel. However, we need much less
information to reconstruct beam models using ZP and, hence, only
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2980 K. M. B. Asad et al.

Figure 13. Frequency-averaged energies of the 15 strongest Zernike coefficients for the AH (red) and EM (blue) models. The energies are multiplied by 100
for better visualization. The coefficients are selected from the spectral average of the AH and EM models together, but the corresponding energies are shown
separately.

Figure 14. Spectral modelling of the sixth to tenth strongest Zernike coefficients using DCT for AH (left-hand panels) and EM models (right-hand panels).
Both the real (top panels) and imaginary (bottom panels) parts are shown. The thick coloured lines show the original interpolated energies of the coefficients
and the thin white lines running through them represent the corresponding DCT reconstructions.
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Figure 15. Normalized root-mean-square error of the ZP and PC-based AH and EM models as a function of frequency. Left-hand panel shows the error of Ezh

and Ech with respect to the given AH measurement and the right-hand panel the error of Eze Ece with respect to the given EM simulation.
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MeerKAT L-band beam modelling 2981

Figure 16. Coefficients of the theoretical beamwidth (λ/D) as a function
of frequency for the given AH (red dots) and EM (blue) data sets, and the
Zernike-based models created from the AH (red solid line) and EM (green)
data sets. The inset plot shows the amplitude of the beamwidth ripple in
arcmin units in the horizontal (δθH) and vertical (δθV) directions for the AH
(red) and EM (blue) data sets.

Zernike coefficients are provided in EIDOS. Errors of the diagonal
elements increase with frequency for both Eh and Ee because there
are more sidelobes at higher frequencies making the modelling less
optimal. Off-diagonal elements exhibit comparatively higher error,
as expected. The outlier points in the left-hand panel are caused by
RFI which is present in the AH measurement, but not in our models.

By comparing the left-hand and right-hand panels of Fig. 15, one
can see that PCs model the AH measurement and EM simulation
with similar errors (blue and green markers), but ZPs exhibit higher
error (red and magenta markers) in modelling the AH data set. This
is because the measurements have low-level noisy structure and PCs
are more prone to modelling the noise than ZPs. Even though PCs
are more faithful to a given data, representing all the structures and
irregularities in an AH observation might not be desirable.

3.2.4 Beamwidth and ripple

As a final test of the ZP-based models, we compare the full-width at
half-maximum (FWHM or ‘beamwidth’) of the beam models with
that of the original data sets as a function of frequency. To calculate
the beamwidth, we fit 2D elliptical Gaussian functions to the data sets
and models within the region where beam amplitude is more than
0.01. The same method was used to calculate squint as described
in Section 2.1 and shown in Fig. 3. The resulting beamwidth θ

has a horizontal (semimajor axis) and a vertical (semiminor axis)
component and they vary from the theoretical beamwidth θ t = λ/D
(where λ denotes wavelength and D = 14 m, the dish diameter).
Fig. 16 shows θ /θ t (for the horizontal width only) as a function of
frequency for the Stokes I beams (00 element of the Mueller matrix)
of the AH measurement (red dots), EM simulation (blue line), and
the Zernike models created from the AH (red line), and EM (blue
line) data sets. The ripple of θ (ν) is clearly visible here because θ t(ν)
is smooth. It is more prominent at the lower part of the band. The
models follow the original data sets closely, although they diverge
more at the upper part of the band. There is a clear division between
the lower and upper parts of the L band in terms of beamwidth and,
hence, the band can be conveniently divided into two subbands: one
before ∼1350 MHz, the other after it. If we model the lower and

upper subbands separately, the models will be more accurate, albeit
at the expense of increasing the amount of required information.
For continuum science, a continuous full-bandwidth beam is more
desirable, but for emission line studies, e.g. in case of H I intensity
mapping, we can use a more accurate model of the beam created
from the lower subband.

The ripple of the beamwidth is caused by the interference of
the electric field diffracted from the secondary reflector with the
electric field of the main beam (de Villiers 2013). To show the
amplitude of the MeerKAT ripple, we subtract a smooth third-
order polynomial from θ (ν) calculated from the original AH and
EM data sets. The resulting ripple δθ (ν) for the lower subband
is shown in the inset of Fig. 16 in arcmin units. The top and
bottom panels show the horizontal (δθH) and vertical (δθV) ripples,
respectively, and the AH and EM data sets are represented by the red
and blue colours, respectively. δθH is significantly larger than δθV

which can be interpreted as a frequency-dependent ‘beam squash’
(Heiles et al. 2001), i.e. the beam is not squeezed symmetrically but
squashed along a preferred direction. The ripples predicted by the
EM simulation match reasonably well with the AH measurements.
The match is relatively poor in case of δθV because it is at a lower
level and, hence, more affected by the noise of the AH data set.

4 PR I M A RY B E A M C O R R E C T I O N

We have provided the ZP based model of the primary beam in the
EIDOS package. The model is accurate for the diagonal elements of
the Jones matrix. It is averaged over three antennas. In spite of these
limitations, the model can already be used in primary beam correction
of Stokes I images and in direction-dependent calibration. As an
example, we show an application of the EIDOS primary beam using
the DDFacet10 (Tasse et al. 2018) imaging software and compare
the result with an image produced by WSCLEAN11 (Offringa et al.
2014) without any model of the primary beam.

Fig. 17 demonstrates the application of the primary beam pattern
during deconvolution of a wideband MeerKAT-16 (taken using 16
antennas of the MeerKAT array) image. Panels (b) and (d) show
images produced by DDFacet with and without a primary beam
model. In both cases, the underlying sky model being fitted during
deconvolution is a power-law spectrum12 (i.e. two parameters, flux
and spectral index, per model pixel). In case (b), this sky model
is unable to account for the apparent spectral curvature induced
by the primary beam, resulting in clear artefacts around brighter
sources. In case (d), the imager is supplied with our MeerKAT
primary beam model. The spectral effects of the beam are then
accounted for properly, allowing the power-law spectrum sky model
to fit the underlying emission better. The remaining artefacts are
probably due to the unknown pointing errors. Panels (a) and (c)
show images produced by WSCLEAN which deconvolves without
any primary beam information. In case (a), the spectral model is
a first-order polynomial (two parameters per model pixel), which
also leaves substantial artefacts. In case (c), the spectral model is a
third-order polynomial (four parameters per model pixel), which is
able to fully fit the spectral curvature induced by the beam. Although
the image quality in case (c) and (d) is comparable, the former uses
twice as many degrees of freedom in the deconvolution model (being
forced to absorb primary beam effects into the sky model), while the

10https://github.com/saopicc/DDFacet
11https://sourceforge.net/projects/wsclean/
12This uses the SSD deconvolution mode of DDFacet
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2982 K. M. B. Asad et al.

Figure 17. Images of the field around NGC 4993, observed with 16 antennas of MeerKAT at L band. The images are highly saturated (−10 to 50μJy linear
scale) to emphasize deconvolution artefacts. Panel (a) has been produced using WSCLEAN, with a first-order polynomial spectral model, (b) using DDFacet
without a primary beam, with a power-law spectral model, (c) using WSCLEAN, with a third-order polynomial spectral model, and (d) using DDFacet with a
primary beam, with a power-law spectral model.

latter is able to recover a more physical sky model, with primary
beam effects being explicitly accounted for in the instrumental
measurement equation.

5 C O N C L U S I O N

This is the second in a series of papers dealing with primary beam
modelling effects of radio astronomy antennas. The basic formalism
was set in Paper I (Iheanetu et al. 2019) in the context of the VLA. In
this paper, we extend that formalism and use it to create MeerKAT
beam models from AH (Eh) observations and EM simulations (Ee).
Our aim was to present a pipeline that is able to create sparse
representations of the beam, given any data set, that can be used
for direction-dependent calibration and imaging. This model can be
called ‘eidetic’ because it reconstructs the given data sets faithfully.
We have modelled the given Eh (Fig. 4) and Ee (Fig. 6) over a
diameter of 10 deg using characteristic and analytic basis functions,
for all frequencies of L band and without considering the cross-
polarization, and compared the results. Here, Eh is averaged over
three antennas and Ee is a generic simulation for an ideal antenna.

The diagonal elements of Ee matches well with Eh but their differ-
ence increases with frequency (Figs 6 and 7). We have decomposed
the two beam data sets using PC, ZP, and SH. PCs and ZPs can
represent the beam measurements and simulations very well with
around 15 modes (compare the panels of Fig. 8), but 10-deg-beams
cannot be modelled as well using the same number of SH modes
(Fig. 10). Therefore, we focus on PCs and ZPs.

The coefficients corresponding to the most dominant PC and ZP
modes are modelled in frequency using DCT. Therefore, a full-

bandwidth full-polarization 10-deg beam model can be represented
using 2 × 2 × 2 × Nd × Nb coefficients where Nd is the number
of DCT coefficients needed to model the spectral behaviour of each
of the Nb PC or ZP coefficients. The first PC models the beamwidth
as a function of frequency to a large extent (red line in the diagonal
elements of Fig. 11) and the small-scale ripple of the width can be
seen clearly in the imaginary part of this component. The spectral
behaviour of the most dominant PC (Fig. 11) and ZP (Fig. 12)
modes representing Eh (dots) and Ee (solid lines) matches well in
the diagonal elements.

Beam models can be represented by analytic basis functions like
ZPs using less information than the characteristic bases like PCs
because for the latter, we also need to store the eigenbeams. By
looking at the 15 most dominant ZP modes (Fig. 13), we see that the
diagonal elements of Eh or Ee are modelled mainly by the symmetric
spherical modes and the asymmetries in the beam are modelled by
the coma and astigmatism modes.

We have been able to represent the spectral behaviour of the
coefficients using 40 DCT coefficients for Eh and 30 for Ee

(Fig. 14). Before DCT decomposition, the coefficients for the RFI-
affected channels in Eh are calculated by interpolating from the RFI-
free channels. Through interpolation and DCT, we have calculated
coefficients for all frequencies between 900 and 1670 MHz with a
resolution of 0.1 MHz.

The resulting beam models calculated from the ZP coefficients
have a residual error (after subtracting the model from data) of around
10−5 corresponding to the power of the diagonal element (Fig. 8). For
the electric field, the corresponding residual levels would be around
10−3. Comparatively, the PC-based models exhibit lower residuals
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(Fig. 8). The off-diagonal elements are less accurate and the errors of
all the Jones elements increase with frequency, as seen in the trend
of the NRMSE (Figs 9 and 15). However, NRMSE should be used
with caution because it is averaged over a diameter of 10 deg and,
hence, mostly dominated by errors in the nulls and noisy regions.

The antenna and frequency-dependent squints of the beam (Fig. 3)
were taken out before modelling, but they can be reintroduced by re-
centring the model beams at a later stage if required. On the other
hand, the squash effect (Fig. 16) is already incorporated in the Zernike
coefficients; the beamwidth has a ripple of amplitude ∼0.3 arcmin in
the horizontal and ∼0.1 arcmin in the vertical direction and it varies
as a function of frequency with a period of ∼20 MHz.

The ZP and corresponding DCT coefficients for representing Eh

and Ee are provided in the EIDOS software tool that can be used
to calculate MeerKAT eidetic beam models for any frequency of
the L band. The diagonal Jones terms have been modelled with a
high degree of certainty; between the high signal-to-noise ratio of
the AH measurements and the excellent match to EM, we do not
expect that the diagonal model can be much improved (although
further investigation into elevation dependence and antenna-to-
antenna differences is certainly merited). The off-diagonal terms,
however, need further refinement; the intrinsically high noise of AH
suggests that these models can be improved with additional AH
observations, and relatively poor match with EM simulation also
needs to be further investigated. Therefore, we have not discussed
the modelling of the off-diagonal elements in this paper.

The advantage of having a Zernike-based eidetic model of the
beam is that it can be calculated quickly and instantaneously during
calibration or beam-correction. For example, we have compared the
quality of the images produced by applying our eidetic beam on a
real observation using the DDFacet imager with that produced by
WSCLEAN without any prior information of the beam. We have seen
that WSCLEAN can produce images comparable in quality to that of
DDFacet (Fig. 17), but only at the expense of twice as many degrees
of freedom. Therefore, in spite of the limitations, the beam models
given in EIDOS can already be used in primary beam correction of
Stokes I images through DDFacet.

Our beam models can be used in MeerKAT-specific pipelines
through the radio astronomy package STIMELA.13 The VLA beam
models presented in Paper I will also be included in this tool. In
future papers, we will explore the spatial, spectral, and polarization
effects of these beams on continuum imaging and intensity mapping.
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DATA AVAILABILITY

The beam models presented in this paper can be created using
the EIDOS python package: https://github.com/ratt-ru/eidos. The

13https://github.com/SpheMakh/Stimela

underlying data is available in the SARAOArchive: https://archiv
e.sarao.ac.za.
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A P P E N D I X A : Z E R N I K E P O LY N O M I A L S

The Zernike polynomials of order n and angular frequency m can be
written in polar coordinates as (following Born & Wolf 1999, chapter
IX, section 9.2.1)

Zm
n (ρ, φ) = Rm

n (ρ)eimφ, (A1)

where n and m are non-negative integers with n ≥ |m| and n − |m| is
always even. The radial polynomials

R±m
n (ρ) =

n−m
2∑

s=0

(−1)s(n − s)!

s!
(

n+m
2 − s

)
!
(

n−m
2 − s

)
!
ρn−2s (A2)

and the normalization is such that for all permissible values of n and
m, R±m

n (1) = 1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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