
MNRAS 504, 3084–3091 (2021) doi:10.1093/mnras/stab1082
Advance Access publication 2021 April 19

A machine learning approach for GRB detection in AstroSat CZTI data

Sheelu Abraham,1,2‹ Nikhil Mukund,2,3‹ Ajay Vibhute,2,4 Vidushi Sharma ,2 Shabnam Iyyani,2

Dipankar Bhattacharya,2 A. R. Rao ,5 Santosh Vadawale6 and Varun Bhalerao7

1Marthoma College, Chungathara, 679334 Nilambur, Kerala
2Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, 411007 Pune, India
3Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstraße 38,
D-30167 Hannover, Germany
4Savitribhai Phule Pune University, 411007 Pune, Maharashtra, India
5Tata Institute of Fundamental Research, 400005 Mumbai, India
6Physical Research Laboratory, Ahmedabad, 380009 Gujarat, India
7Indian Institute of Technology, 400076 Bombay, India

Accepted 2021 March 29. Received 2021 March 27; in original form 2019 June 30

ABSTRACT
We present a machine learning (ML) based method for automated detection of Gamma-Ray Burst (GRB) candidate events in
the range 60–250 keV from the AstroSat Cadmium Zinc Telluride Imager data. We use density-based spatial clustering to detect
excess power and carry out an unsupervised hierarchical clustering across all such events to identify the different light curves
present in the data. This representation helps us to understand the instrument’s sensitivity to the various GRB populations and
identify the major non-astrophysical noise artefacts present in the data. We use Dynamic Time Warping (DTW) to carry out
template matching, which ensures the morphological similarity of the detected events with known typical GRB light curves.
DTW alleviates the need for a dense template repository often required in matched filtering like searches. The use of a similarity
metric facilitates outlier detection suitable for capturing previously unmodelled events. We briefly discuss the characteristics
of 35 long GRB candidates detected using the pipeline and show that with minor modifications such as adaptive binning,
the method is also sensitive to short GRB events. Augmenting the existing data analysis pipeline with such ML capabilities
alleviates the need for extensive manual inspection, enabling quicker response to alerts received from other observatories such
as the gravitational-wave detectors.
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1 IN T RO D U C T I O N

GRBs, the most energetic explosions known to occur, typically
release 1046–1052 erg s−1 and last from a few milliseconds to a
couple of minutes. Based on the duration over which 5 per cent
to 95 per cent of the total burst fluence persists (T90), these events
are often classified as short when T90 is less than 2 s and long
when it is otherwise (Kouveliotou et al. 1993; Gehrels & Mészáros
2012). The long GRB events are associated with the death of massive
stars (Woosley 1993; Iwamoto et al. 1998; MacFadyen & Woosley
1999), and this correlation has been confirmed with the coincident
detection of a supernova 1c with the long GRB030329A (Stanek
et al. 2003). The short GRBs are supposed to have a different
progenitor and are likely to be produced due to the merger of
compact objects like binary neutron stars or a neutron star and a
black hole (Eichler et al. 1989; Narayan, Paczynski & Piran 1992).
The recent discovery of gravitational waves from the binary neutron
star merger GW170817 by the advanced LIGO and advanced Virgo
observatories (Abbott et al. 2017a) together with the detection of
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a short GRB (GRB170817A) by various gamma-ray instruments
such as Fermi-GBM and Integral (Goldstein et al. 2017), have
confirmed this proposed mechanism, thus marking the beginning
of the multimessenger astronomy era.

A GRB event can be divided into two main epochs: a prompt
emission phase and a subsequent afterglow phase. The former
occurs in gamma rays immediately after the initial burst trigger,
while the latter is observed in multiple wavelengths from gamma
rays to radio extending over a period lasting from days to months.
Timely identification of prompt emission is necessary to carry out
follow-up observation in multiple wavelengths by ground and space-
based telescopes. This step can lead to the detection of afterglows,
which is crucial in determining the GRB’s redshift and various other
properties. Simultaneous operation of multiple detectors capable of
GRB detection would lead to improved sky coverage and constrain
the event’s time of occurrence to a higher degree of precision.
Observing short-duration GRBs, in conjunction with a GW trigger,
helps in understanding the kilonovae mechanisms. Accurate time
localization of these events can also constrain the differences in
speed of light and gravity and thus scrutinize various theories of
gravity (Abbott et al. 2017b).
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Automated detection of GRB 3085

The onboard alert systems of the Burst Alert Telescope (BAT; [50–
150 keV]) on the Neil Gehrels Swift Observatory (Gehrels et al. 2004)
and of the Gamma-Ray Burst Monitor (GBM; [8 keV–40 MeV]) on
the Fermi satellite (Meegan et al. 2009), have led to an increased
number of detections along with more afterglow observations.
Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, is a
wide field hard X-ray detector, and the increased transparency of
collimators and surrounding supporting structures makes it sensitive
to GRBs (Rao et al. 2016). In this paper, we overcome the absence
of an onboard detector using an automated ML pipeline that enables
low latency event detection in CZTI data.

The paper is organized as follows: in Section 2, the various pre-
processing steps involved in generating light curves from CZTI
data are presented. Section 3 briefly overviews the three machine
learning algorithms used in this work and the proposed detection
scheme. Section 4 talks about the results from the blind search,
while conclusions and prospects are presented in Section 5.

2 AstroSat CZTI: DATA AND PRE-PROCESS I NG

AstroSat (Agrawal 2006; Singh et al. 2014) is India’s first mul-
tiwavelength space observatory capable of making observations in
X-ray and UV bands. It carries the following five science instruments
for simultaneous observations of the source of interest: Ultra-Violet
Imaging Telescope (UVIT; Tandon et al. 2017), Large Area X-
ray Proportional Counters (LAXPC; Yadav et al. 2016), Soft X-ray
Telescope (SXT; Singh et al. 2017), Cadmium Zinc Telluride Imager
(CZTI; Rao et al. 2017), and Scanning Sky Monitor (SSM; Ramadevi
et al. 2017). In particular, CZTI consists of an array of Cadmium Zinc
Telluride (CZT) detectors, which are pixellated such that each pixel
acts as an independent photon-counting detector. CZTI has a detector
area of 976 cm2 build using CZT modules and makes use of Coded
Aperture Mask (CAM) for imaging (Bhalerao et al. 2017a). The
total detection area is achieved by using 64 CZT modules of area
15.25 cm2 each. These 64 modules are arranged in four identical and
independent quadrants. The collimator walls separate these modules
and collimators above each detector module, restrict the field of
view to 4.6◦ × 4.6◦ (full-width at half-maximum) at photon energies
below 100 keV. As the penetrating power of X-ray photons increases
strongly with energy, the collimator slats, and the coded aperture
mask transmits a significant fraction of photons above 100 keV, and
the instrument behaves like an all-sky open detector enabling the
detection of GRBs from any direction. It also carries a Caesium
Iodide (Tl) based scintillator detector operating as anticoincidence
with the main CZT detector and is used as a veto detector. The coded
aperture telescope is sensitive to hard X-ray polarization and was
recently used to measure the polarized hard X-ray emission from
Crab nebula (Vadawale et al. 2018).

CZTI is configurable in 16 different modes. The default mode of
operation is the event mode, denoted as Mode M0 (Normal Mode).
CZTI also records accumulated spectral and housekeeping infor-
mation once every 100 s and stores the recorded information when
it is changed to Secondary Spectral Mode (Mode SS). Whenever
the spacecraft passes through the South Atlantic Anomaly (SAA),
High Voltage (HV) in the CZTI and Veto detectors are switched
off, and the detector is in Mode M9 (SAA mode), during which
only the housekeeping information is recorded once every second.
During the normal mode, whenever a photon hits a detector, CZT
records the photon’s arrival time, its position on the detector plane,
and the corresponding energy. The time-tagged event list is stored
in an event file. The events from four quadrants are stored as four
different extensions of the event file. The recorded events also contain

events generated due to the interaction of charged particles with
the instrument or spacecraft body. The X-ray photons, consequently
generated, can also deposit their energies in the CZTI detectors.
Because of the pixellated nature of CZT, one charged particle can
produce events in many pixels of CZT at the same time and are
referred to as ‘bunches’. During pre-processing, those bunches that
do not belong to any astronomical source are mostly removed from
the event file. Time intervals where data are not present due to SAA
passage and data transmission errors are ignored, and a Good Time
Interval (GTI) file is produced. The events belonging to GTIs are
filtered and passed for further processing. During the data cleaning
process, events from noisy or flickering pixels are also removed. The
onboard calibration source, Am-241, emits X-rays of energy 60 keV
and an alpha particle simultaneously. The alpha particle is absorbed
in the CsI (TI) crystal, whereas the X-ray gets detected in the CZT
pixel, and the alpha flag is set to 1. The events having the alpha flag
equal to 1 are thereby removed from the event list. The cleaned event
list so obtained is used as the input to the GRB detection algorithm.

One event file from CZTI usually consists of multi-orbit data,
which may span 6000–30 000 s. We have divided the data into small
chunks of 500 s each to check for any trigger present. This step,
however, limits the ability to identify a trigger that occurs between
two such chunks of data. Each event file consists of data from all
four quadrants and the four veto channels, and only those events
with energy higher than 60 keV are considered for further analysis.
We conduct the search in the count space, and the conversion from
counts to flux depends on the effective area as a function of direction
and energy. This conversion varies quite strongly for CZTI (Bhalerao
et al. 2017a) and requires prior knowledge of the transient location.
For bright transients, there has been limited success in localizing a
burst (Bhalerao et al. 2017b), and in such cases, one can attempt a
joint solution for the source direction and spectrum. Consequently,
it is possible that the event clustering is not related to the intrinsic
characteristics of the GRB but only to the location in the relative
detector coordinates. We also perform pre-processing to clean the
time series before feeding it to the analysis pipeline. It is never
perfect, and traces of SAA could still be visible in certain data
segments. However, the pipeline is configured to take care of such
noise sources, and in most cases, vetoes them successfully.

3 C A N D I DAT E E V E N T SE L E C T I O N

This section describes the framework (see Fig. 1) used for GRB
candidate event detection and its resourcefulness in bringing down
the time needed to issue Gamma-ray Coordinates Network (GCN)
alerts to the broader astronomy community. We also discuss the
different machine learning algorithms deployed to detect real GRBs
candidates from false triggers that arise from artefacts such as
instrumental noise, cosmic rays, or even random fluctuations.

3.1 Template bank generation

We start with creating a template bank for long GRB light curves
using 87 known GRBs.1 The key idea is to minimize the number of
templates while still achieving maximal coverage of the light curves’
morphologies. These templates are obtained from already identified
CZTI data events using the GCN trigger information published by the
currently operating space observatories. We carry out one second bin-
ning for each event and use the interval correlation optimized shifting

1list of GRBs available as supplementary material
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Figure 1. Schematic depicting the steps involved in AstroSat GRB candidate
event detection pipeline.

(icoshift) technique (Savorani, Tomasi & Engelsen 2010; Tomasi,
Savorani & Engelsen 2011) to correct for any delays among the light
curves observed within the four quadrants. We then normalize every
light curve individually by rescaling them to be between 0 and 1. This

process also brings down the mean DC background close to zero for
all GRB-like events. These curves are further stacked together to get
a temporal sequence with a higher signal-to-noise ratio (SNR) for
each of the 87 known GRB events. We then carry out a hierarchical
clustering using Dynamic Time Warping (DTW; see Section 3.2)
and identify the significant morphologies present within the data
(see Fig. 2). The mean profile within each such cluster is then used to
generate the GRB template bank. We use a bottom-up agglomerative
clustering where the objects start as individual clusters, which are
then hierarchically combined to form a dendrogram. The technique
allows the user to choose any valid distance metric to compare the
similarity between the objects. By maximizing the sum of similarities
among the adjacent clusters, we can achieve optimal leaf ordering
within the dendrogram (Bar-Joseph, Gifford & Jaakkola 2001). This
ordering allows observing the progressively changing morphology
within the given data samples. Hierarchical clustering has previously
successfully identified the dominant groups among the short-duration
transients, such as those observed in gravitational-wave observatories
(Mukund et al. 2017). We construct a template bank consisting of
52 GRB light-curve templates based on the hierarchical clustering
analysis results. We carefully choose these templates to guarantee
adequate representation of all the probable morphologies of GRB
events.

3.2 Detection scheme

We perform one second binning for the 500s data chunks indepen-
dently for each of the four quadrants. We identify data significantly
above the background noise by setting a threshold level three times
the median absolute deviation above the median noise level. We then
perform clustering using the DBSCAN (Ester et al. 1996) algorithm
on these samples and identify the significant temporal sequences
that are later used in template matching analysis. DBSCAN, which
stands for Density-based spatial clustering of applications with noise,
groups together data sets with similar features and identifies outliers
automatically. As compared to K-Means like clustering algorithms
(Hartigan & Wong 1979), there is no need to specify the number

Figure 2. Hierarchical clustering of known GRB light curves using DTW as the distance measure. Mean curve identified in each cluster is further utilized in
the search for new events via DTW based template matching. Events within the box depict the typical background events seen in the CZTI data.
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Automated detection of GRB 3087

Figure 3. Distance between two GRB light curves estimated using DTW with symmetric Kullback–Leibler metric and an adjustment window size of five
samples. Each curve is individually normalized based on its peak height.

Figure 4. Shallow two-layer generalized regression neural network with
Gaussian kernels used to synthesize simulated light curves from a limited
amount of training data. W represents the Weight, and b is the bias used in
the respective neural network hidden layer. The number of radial basis layers
(278) equals the number of training data sets. We use 80 per cent of light
curves from 87 verified GRB events and use the data from all four quadrants.

of clusters present in the data. The only required parameters for
this algorithm are the minimum number of points in each cluster
(minPts) and the maximum separation between samples (eps) for
them to part of the same cluster. For this search looking for long
GRB candidate events, we set to a value of five to both minPts
and eps. We have used python implementation of DBSCAN from
scikit-learn (Pedregosa et al. 2011).

Once the clusters are identified, the corresponding temporal
sequences are normalized and checked for similarity to known
astrophysical signals using the above-mentioned DTW technique. It
is a general method developed for time-series alignment for speech
and handwriting recognition. It can be applied to detect similar
temporal sequences that are relatively stretched or squeezed with
the template (Sakoe & Chiba 1978). The method eliminates the
need for feature extraction and can be easily extended to carry out
the similarity search using a template bank of known sequences.
DTW finds the optimal alignment between time-series data, which
allows a non-linear mapping of one signal to another, minimizing
the distance between the two. To overcome the quadratic time
and space complexity associated with the original DTW algorithm,
we use FastDTW (Salvador & Chan 2007) implementation, an
approximation to DTW whose complexity is linear, thus speeding
up the computation time. Pursuing alternative methods like cross-
correlation or matched filtering in this scenario would require a dense
template bank, making them computationally challenging for rapid
detection. DTW has previously been demonstrated to be helpful in
the similarity study between light curves from both GRBs and their
X-ray flares (Zhang, Zhang & Castro-Tirado 2016).

Let X and Y be two vectors of lengths M and N, respectively. To
create a mapping between the two vectors, we need to define a path.
The aim is to find the path of minimum distance. The optimal path
starts from (0,0), ends at (M, N), and in between maps the vectors on
to a common set of indices ix & iy such that the total sum of distances,
d

d =
∑

m ε ix
n ε iy

dm,n(X, Y) (1)

is minimized where the distance dm, n is expressed in terms of sym-
metric Kullback–Leibler (KL) metric (Kullback & Leibler 1951),

dm,n(X, Y) = (xm − yn)(log xm − log yn) . (2)

The KL divergence is widely used in Bayesian inference and provides
information about how well an approximate probability distribution
represents the real underlying model.

The DTW path is constrained to move close to the diagonal by
specifying a window around the main diagonal to minimize the effect
of outliers. Additionally to ensure alignment of the complete signal
and not just segments as well to prevent sample skipping, only the
following transitions are permitted while the path proceeds from
(0,0) to (M, N),

(m, n) → (m + 1, n)

(m, n) → (m, n + 1)

(m, n) → (m + 1, n + 1) .

Fig. 3 shows one such instance of DTW-based alignment of two
GRB light curves. We claim a detection if a trigger matches any of
the template GRB models within a specified DTW distance and is
coincidentally present in at least three quadrants channels.

3.3 Performance evaluation

In general, we can assess the performance of the detection scheme
described above from its receiver operator characteristic (ROC)
curve, which compares the rate of detected actual events to the
false triggers at varying detection threshold levels. Based on the
available comparatively small data set, we carry out non-parametric
modelling of both the GRB-like events and the expected noise
sources and construct the ROC curves mentioned above. Combining
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Figure 5. Receiver operator characteristic (ROC) curve depicting the true
positive rate versus the false positive rate for both the DTW template matching
scheme and a traditional peak detection algorithm. Curves are generated by
varying the respective threshold parameter, DTW distance, and the peak
prominence.

GRNN with discrete wavelet transform has been previously shown to
model temporal sequences effectively (Kişi 2011). The usual discrete
wavelet decomposition (DWT) splits the signal into approximation
and detail coefficients where the detail coefficients record the in-
formation lost between successive lower frequency approximations.
However, wavelet packets decompose the details coefficients further
into approximation and detail coefficients, thus improving the coarse
resolution DWT and not being as computationally expensive as the
continuous wavelet transform (CWT). We carry out such wavelet
packet decomposition (Laine & Fan 1993; Ta 1994; Walczak, Van

Den Bogaert & Massart 1996) of the light curves using Daubechies
wavelets and train a generalized regression neural network (GRNN)
with these extracted features to generate the synthetic light
curves.

With their feed-forward shallow network architecture (see Fig. 4),
GRNNs avoid back-propagation and carry out a single pass learning
with as many neurons as the number of data sets (Specht 1991).
These networks use normalized radial basis function in their hidden
layer, memorize all input–output sequences, and generalize them for
newer inputs. These characteristics considerably decrease the overall
training time and make them well suited for problems where training
data availability is limited (Sarshar, Kabiri & Barkeshli 2001). We
use the manually verified 87 GRB events and 36 non-astrophysical
artefacts that include instances of SAA and cosmic rays to create
a training data set where 20 per cent is kept aside for validation.
GRNN learning is, in general, sensitive to the variance of the involved
radial basis function. We compare the network predictions against
the validation data and optimize this parameter by minimizing the
normalized mean-squared error between the actual and predicted
light curves. To generate synthetic events (1000 samples each for
source and background events), we introduce random jitter at a few
percent levels in the extracted wavelet parameters, draw samples
from their distribution, and feed them to the respective trained
GRNNs.

To access the relative improvement in performance, we compare
the DTW classifier with a traditional peak finding algorithm on the
synthetic data set and depict the obtained ROC curves in Fig. 5.
These curves are constructed by varying the respective threshold
parameter, DTW distance, and the peak prominence and calculating
the true positive rate (TPR) and the false positive rate (FPR) at
each of these points. As compared to the Euclidean metric, the
DTW distance calculated using the symmetric KL metric provides
better performance. We set the permissible FPR to 1 per cent (TPR
= 98 per cent) and accordingly get an upper limit on the DTW

Figure 6. Few detection scenarios encountered while searching for long GRBs with one-second binning. The upper panel shows the correctly identified events,
while the lower panel highlights instances of contamination from non-GRB transients. The horizontal red line determines the threshold caused by the noise
background level, and significant points above this are clustered using the DBSCAN algorithm. Each cluster is uniquely coloured, with the vertical line providing
the cluster centre.
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Table 1. GRBs candidate events detected with the machine learning algorithm described in this paper. GCN circulars have been issued for
the highlighted events.

GRB ID Trigger time T90 Peak Total Mean Detection
count counts background significance

(UTC) (s) rate (s−1) count rate (s−1)

GRB151019A Oct 19 2015 8:05:25 6.1 ± 0.16 1370 ± 79.7 4877 ± 112.4 453 ± 25.2 64.4 ± 4.2
GRB151217A Dec 17 2015 4:58:21 29.6 ± 0.07 108 ± 30.0 2030 ± 137.1 503 ± 22.6 4.8 ± 1.3
GRB151219B Dec 19 2015 9:11:18 16.5 ± 0.15 300 ± 37.8 1952 ± 92.8 473 ± 22.9 13.8 ± 1.8
GRB151224A Dec 24 2015 2:26:35 7.1 ± 0.19 117 ± 30.3 440 ± 41.2 477 ± 23.5 5.4 ± 1.4
GRB160119C Jan 19 2016 3:08:26 31.2 ± 0.12 233 ± 31.8 4819 ± 147.2 423 ± 21.5 11.3 ± 1.6
GRB160128A Jan 28 2016 12:59:42 33.4 ± 017 712 ± 61.0 9614 ± 189.1 469 ± 23.7 32.9 ± 2.9
GRB160214A Feb 14 2016 9:17:26 26.6 ± 0.1 526 ± 55.7 3840 ± 139.1 463 ± 30.8 24.4 ± 2.7
GRB160221B Feb 21 2016 18:56:43 7.8 ± 0.05 378 ± 49.4 1319 ± 58.1 491 ± 24.0 17.1 ± 2.3
GRB160223B Feb 23 2016 9:59:03 13.5 ± 0.15 239 ± 38.5 1985 ± 85.3 480 ± 28.8 10.9 ± 1.8
GRB160310C Mar 10 2016 16:27:13 16.7 ± 0.01 1481 ± 82.9 13327 ± 154.3 503 ± 23.4 66.0 ± 4.0
GRB160325B Mar 25 2016 6:59:23 43.6 ± 0.02 1467 ± 81.9 22263 ± 279.8 474 ± 22.8 67.4 ± 4.1
GRB160418A Apr 18 2016 18:08:44 31.0 ± 0.37 532 ± 48.0 7247 ± 175.9 425 ± 22.0 25.8 ± 2.4
GRB160720A Jul 20 2016 18:25:23 14.5 ± 0.06 430 ± 41.8 4244 ± 99.9 459 ± 23.7 20.1 ± 2.0
GRB160805A Aug 05 2016 22:26:18 20.1 ± 0.02 132 ± 30.9 218 ± 60.3 428 ± 22.3 6.4 ± 1.5
GRB160824B Aug 24 2016 13:51:28 17.8 ± 0.06 172 ± 35.5 2556 ± 98.9 590 ± 29.5 7.1 ± 1.5
GRB160829B Aug 29 2016 14:18:47 18.0 ± 0.05 1652 ± 85.5 5438 ± 131.5 504 ± 25.0 73.6 ± 4.2
GRB170210B Feb 10 2017 2:48:13 34.3 ± 0.16 985 ± 70.4 13444 ± 249.0 551 ± 26.3 42.0 ± 3.2
GRB170216A Feb 16 2017 16:39:33 14.8 ± 0.19 301 ± 41.0 2634 ± 91.0 508 ± 24.0 13.4 ± 1.8
GRB170228A Feb 28 2017 19:03:01 13.4 ± 0.02 728 ± 62.1 4356 ± 103.5 485 ± 23.8 33.1 ± 2.9
GRB170311C Mar 11 2017 13:45:10 7.4 ± 0.05 486 ± 53.9 2152 ± 59.1 517 ± 23.8 21.4 ± 2.4
GRB170316A Mar 16 2017 17:02:22 14.2 ± 1.22 261 ± 41.9 1861 ± 106.7 486 ± 25.2 11.8 ± 1.9
GRB170423B Apr 23 2017 20:55:22 12.9 ± 0.05 441 ± 46.6 2413 ± 77.1 474 ± 23.6 20.3 ± 2.2
GRB170614A Jun 14 2017 11:40:01 15.6 ± 0.27 666 ± 54.6 6181 ± 122.1 485 ± 23.4 30.2 ± 2.6
GRB170808B Aug 08 2017 22:27:47 12.1 ± 0.05 1292 ± 77.6 3679 ± 79.3 460 ± 22.4 60.2 ± 3.9
GRB170825B Aug 25 2017 12:00:06 5.9 ± 0.02 449 ± 52.4 1543 ± 54.2 501 ± 24.0 20.1 ± 2.4
GRB170901B Sep 01 2017 11:59:57 11.4 ± 0.04 310 ± 43.3 2138 ± 66.7 495 ± 23.3 13.9 ± 2.0
GRB170915A Sep 15 2017 3:51:28 10.2 ± 0.07 246 ± 38.7 1708 ± 72.9 543 ± 25.4 10.6 ± 1.7
GRB180401A Apr 01 2018 20:17:35 19.5 ± 0.03 806 ± 65.3 6177 ± 110.5 531 ± 24.2 35.0 ± 2.9
GRB180403A Apr 03 2018 13:32:52 7.0 ± 0.06 186 ± 38.0 881 ± 39.4 497 ± 23.3 8.3 ± 1.7
GRB180411C Apr 11 2018 12:28:32 75.0 ± 0.02 360 ± 47.9 4603 ± 222.6 487 ± 24.1 16.3 ± 2.2
GRB180416C Apr 16 2018 8:10:52 9.2 ± 0.05 429 ± 46.3 2595 ± 67.0 508 ± 23.6 19.0 ± 2.1
GRB180426A Apr 26 2018 13:10:59 12.4 ± 0.03 434 ± 49.7 1944 ± 61.6 498 ± 23.3 19.4 ± 2.3
GRB180504B May 04 2018 3:15:57 13.3 ± 0.03 251 ± 51.0 1870 ± 89.0 501 ± 47.9 11.2 ± 2.3
GRB180526A May 26 2018 11:04:18 57.8 ± 0.15 541 ± 55.6 6504 ± 213.9 497 ± 24.6 24.3 ± 2.6
GRB180603A Jun 03 2018 16:22:57 31.1 ± 0.07 372 ± 42.8 6124 ± 139.7 486 ± 23.4 16.9 ± 2.0

threshold value to be 12 for the KL metric-based distance estimation.
We carried out initial prototyping of the algorithms in MATLAB. The
final detection pipeline is written in python for better integration with
the rest of the satellite data analysis tools. The pipeline is currently
configured to alert the CZTI AstroSat support team about the most
probable GRB candidates, who then makes the final decision on
issuing GCN alerts.

4 R ESULTS

Some of the detection scenarios involving true detection of long
GRBs along with typical false-positive candidates are shown in
Fig. 6. The upper panels show the correctly identified events, while
the lower panels depicted certain instances when the events picked
up were due to noise artefacts. After the testing and validation
steps mentioned in the previous section, we carried out a blind
search targeting long GRB events on the CZTI data collected from
2015 October 8 to 2018 November 7. The pipeline detected 223
probable candidates, out of which 170 were already known to be
GRBs. Detailed analysis of the rest led to the discovery of 35 long
GRBs candidate events along with 18 false positives. Table 1 lists

these newly discovered events along with their trigger time in UTC,
T90,2 peak count rate, total count rate, mean background counts, and
detection significance with their uncertainties. Of these, GCN alerts
were issued for two such events, namely GRB180526A (Sharma,
Vibhute & Bhattacharya 2018a) and GRB180603A (Sharma, Vibhute
& Bhattacharya 2018b). The observed number of false triggers are
higher than the expected as shown in Fig. 5. While the origin of many
of these is not well understood, some of them seem to be related to
the scenario shown in Fig. 6 (lower right), where we see multiple
short-duration transients all occurring within tens of seconds.

Certain minor modifications were necessary to make the pipeline
sensitive to GRBs occurring at shorter time-scales. As these events
showed a higher sensitivity to the time bins’ size, it was necessary to
vary the bin size across time-scales ranging from 32 to 512 ms for the
entire data chunk and select the value that maximizes the peak count
in at least three of the four quadrants. The time bin’s optimal value
was determined using the differential evolution (Storn 1996) global

2The calculation of T90 and the other column values are described in
Appendix A
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Figure 7. Instances of short GRBs detected in CZTI data. In each case, we optimize the time binning to maximize the peak counts in multiple quadrants. Time
bins used for GRB170127C, GRB171103A, and GRB171223A are respectively 85, 106, and 55 ms. The DBSCAN algorithm identifies significant clusters
denoted by the green circles, followed by the DTW technique, which cross-matches them with the known GRB templates.

optimizer, which performed a gradient-free direct search across this
continuous parameter space. Besides, the 3σ detection threshold
used for longer GRBs had to be increased to 4.5σ to minimize
contamination from the background noise. In Fig. 7 we report the
triggers seen for GRB170127C (Ajello et al. 2019), GRB171103A,
and GRB171223A, which were respectively constructed using a bin
size of 85, 106, and 55 ms.

5 C O N C L U S I O N S A N D O U T L O O K

We demonstrated various machine learning algorithms’ resourceful-
ness for robust GRB detection using AstroSat CZTI data. Automating
such tasks can bring down the response time leading to efficient
follow-up studies related to multimessenger astronomy. Compared to
conventional peak detection algorithms, incorporating morphology
decreases the false detection rate from instrumental artefacts and
non-GRB phenomena. The newly developed scheme has been tested
on both short and long-duration GRB events and is now part of the
AstroSat CZTI data analysis pipeline. In the future, we would like
to focus more on improving the detection efficiency for short GRBs
through better time localization and a reduction in the number of
false positives. One natural way to achieve this would be to extend the
template bank to include more models for real and spurious events.
The techniques presented in this work are very well applicable to
astronomical data sets such as stellar spectra or temporal sequences
that are transient hence like the gravitational-wave transient signals.
The feasibility of embedding such ML algorithms in FPGA-based
hardware for low latency onboard trigger detection is also worth
exploring in the context of next-generation detectors and would be
part of future studies.
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A P P E N D I X : L I G H T C U RV E PA R A M E T E R S

The AstroSat CZTI method of estimating the T90 is based on the
accumulation of counts. A similar process is used in BeppoSAX,
HETE-2, CGRO/BATSE, and INTEGRAL observatories. At first, the
light curve is generated with counts per time bin. We coarsely choose
and store the information of the GRB that includes both pre- and
post-background regions from the light curve. The count estimated
in each time bin in the light curve has a Poisson error associated with
it. We simulate 50 000 such light curves by randomly drawing each
bin count from the corresponding Poissonian distribution.

For each simulated light curve, the parameters: T90, peak count
rate (PCR; which is the maximum count rate observed in the light
curve of the GRB), accumulated total counts, and mean background
rate are calculated as follows:

(i) The background is modelled by fitting the selected pre- and
post-GRB background regions by a polynomial. The local mean
background rate (MBR) is obtained by averaging the count rates
found in these regions, subsequently subtracted from the light curve.
The peak count rate and the corresponding time found in the resultant
light curve are noted.

(ii) Using the background-subtracted light curve, the cumulative
counts per bin are plotted with time. The duration, T90 is calculated as
T90 = T95 − T5, where T95 and T5 are the times when 95 per cent and
5 per cent of the total GRB event counts are obtained, respectively.
The accumulated total counts in T90 interval is also calculated. We
obtain the distribution for each parameter with the above steps, and
its mean and standard deviation are used for reporting the parameter
value and its uncertainty. In the case of count rate, we note that the
standard deviation obtained from the distribution only reflects the
variation arising from different simulations of the light curve, and
therefore, the total error on the reported count rate value (N s−1) is
the sum of the standard deviation of the distribution and the Poisson
error (

√
N ).

The detection significance is calculated as PCR/
√

MBR and the
error on it is obtained by the standard method of error propagation
using the uncertainities reported for PCR and MBR.
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