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ABSTRACT
In certain pulsar timing experiments, where observations are scheduled approximately periodically (e.g. daily), timing models
with significantly different frequencies (including but not limited to glitch models with different frequency increments)
return near-equivalent timing residuals. The average scheduling aperiodicity divided by the phase error due to time-of-arrival
uncertainties is a useful indicator when the degeneracy is important. Synthetic data are used to explore the effect of this degeneracy
systematically. It is found that phase-coherent TEMPO2 or TEMPONEST-based approaches are biased sometimes towards reporting
small glitch sizes regardless of the true glitch size. Local estimates of the spin frequency alleviate this bias. A hidden Markov
model is free from bias towards small glitches and announces explicitly the existence of multiple glitch solutions but sometimes
fails to recover the correct glitch size. Two glitches in the UTMOST public data release are reassessed, one in PSR J1709−4429
at MJD 58178 and the other in PSR J1452−6036 at MJD 58600. The estimated fractional frequency jump in PSR J1709−4429
is revised upward from �f/f = (54.6 ± 1.0) × 10−9 to (2432.2 ± 0.1) × 10−9 with the aid of additional data from the Parkes
radio telescope. We find that the available UTMOST data for PSR J1452−6036 are consistent with �f/f = 270 × 10−9 + N/(fT)
with N = 0, 1, and 2, where T ≈ 1 sidereal day is the observation scheduling period. Data from the Parkes radio telescope can
be included, and the N = 0 case is selected unambiguously with a combined data set.
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1 IN T RO D U C T I O N

The long-term spin-down of a radio pulsar may occasionally be
interrupted by a glitch: an event in which the pulsar’s spin fre-
quency suddenly increases. Glitches are typically recognized by
their influence on the timing residuals (Espinoza et al. 2011; Yu
et al. 2013), which are the deviations between the expected and
measured pulse times of arrival (ToAs). The expected arrival times
are predicted by a timing model, which parametrizes both the
intrinsic evolution of the rotational phase of the pulsar (frequency
and frequency derivatives, glitches) as well as astrometric effects
(Roemer, Shapiro, and Einstein delays, dispersion, position, proper
motion, and parallax; Lorimer & Kramer 2004; Edwards, Hobbs &
Manchester 2006).

To estimate the parameters of a glitch, a model of the effect of
the glitch on the rotational phase of the pulsar is assumed. A typical
simple form based on a Taylor expansion is (Lower et al. 2020)

�φg(t) = �φ + �f (t − tg) + 1

2
�ḟ (t − tg)2 + . . . , (1)

where �φg(t) denotes the extra phase accumulated in response to
the glitch relative to a no-glitch phase model. The free parameters
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here are tg, the glitch epoch; �φ, the permanent jump in rotational
phase due to unmodelled effects or an uncertain glitch epoch; �f,
the permanent jump in spin frequency; and �ḟ , the permanent jump
in the first spin frequency derivative with respect to time. These
parameters may be estimated in the same way as other parameters in
the pulsar timing model: through a least-squares fit that minimizes the
χ2 of the post-fit residuals (Hobbs, Edwards & Manchester 2006).
Alternatively, they may be estimated through Bayesian inference
with a software package such as TEMPONEST (Lentati et al. 2014),
which incorporates parameters describing the deterministic timing
model and noise sources and calculates a posterior probability
distribution for these parameters via nested sampling with MULTINEST

(Feroz, Hobson & Bridges 2009). When reporting glitch parameters
estimated in this way, it is tacitly assumed that the χ2 of the post-fit
residuals has a unique minimum.

In this paper we explore the validity of the single-minimum
assumption and the consequences for glitch parameter estimation,
when the scheduling of ToA measurements is periodic. By periodic
we mean that the gap between consecutive ToAs is approximately
equal to an integer multiple of some common period, e.g. if timing
data are collected at the same local sidereal time for each observation.
The role of observational scheduling on pulsar glitch measurement
has received some attention previously. It is well understood that a
higher density of observations is advantageous when trying to detect
and characterize glitches (Wong, Backer & Lyne 2001; Dodson,
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McCulloch & Lewis 2002; Janssen & Stappers 2006; Ashton et al.
2019; Basu et al. 2020), but quantitative statements along these lines
are rare, due to the large number of factors that may be considered.
Espinoza et al. (2014) pointed out that an infrequent observing
cadence, combined with a jump in first frequency derivative, can
mask a glitch with sufficiently small permanent frequency jumps.
They gave a quantitative lower bound on the detectable permanent
frequency jump, �flim = �T |�ḟ |/2, where �T is the average time
between observations. Similarly, Shannon et al. (2016) noted in their
analysis of PSR J0835−4510 that glitches with �f smaller than
10−7 Hz are indistinguishable from timing noise, using timing data
with a monthly observing cadence. Melatos et al. (2020) showed
that the ability of a hidden Markov model (HMM) to detect glitches
with �f = 10−8 Hz in the presence of moderate timing noise is
diminished, if the time between observations exceeds ∼10 d. In their
timing of the frequently glitching pulsar PSR J0537−6910, Marshall
et al. (2004) employed a strategy in which observations are spaced
logarithmically, in order to keep phase uncertainty below 0.1 cycles
without expending an inordinate amount of observing time. Finally,
the Canadian Hydrogen Intensity Mapping Experiment (CHIME)
collaboration has recently noted that their determinations of the
pulse frequency of newly discovered pulsars may be in error by
n/(1 sidereal day), where n is a small integer, due to the transit nature
of the instrument (Good et al. 2020). This is another manifestation of
the underlying issue we explore here in detail. To our knowledge, the
specific issue of the effect of periodicity in observation scheduling
on the estimation of glitch parameters has not been considered
previously.

The paper is structured as follows. In Section 2, we derive a
practical condition for when periodic scheduling leads to errors in
estimating the spin frequency of the pulsar, i.e. the time derivative
of the phase to leading order in a Taylor expansion. We demonstrate
that the condition is satisfied in some existing pulsar timing data
sets, leading to a near-degeneracy between timing models with sig-
nificantly different spin frequencies. In Section 3, we specialize to the
case of degeneracy between glitch models with different permanent
frequency jumps. In Section 4, we investigate how degeneracy in
timing models affects specific glitch parameter estimation methods.
Section 4.1 discusses glitch parameter estimation with TEMPO2
(Hobbs et al. 2006), both in the context of phase-coherent timing
(Section 4.1.1) and local estimation of the pulsar’s spin frequency
(Section 4.1.2). Section 4.2 discusses glitch parameter estimation
with TEMPONEST, and Section 4.3 discusses an HMM-based approach
(Melatos et al. 2020). Finally, in Section 5 we discuss periodic
scheduling in the context of the UTMOST public data release (Lower
et al. 2020).

2 PHA SE AMBIGUITY

In this section, we explore a simple, non-glitch case in which there
may be ambiguity in the measurement of the evolution of the pulsar’s
rotational phase. The ambiguity is ultimately due to near-periodicity
in the scheduling of the ToA measurements used to determine the
timing model parameters. The case without a glitch builds intuition
for the more general case with a glitch, which is discussed in
Section 3.

2.1 Quasi-periodic scheduling

We denote the measured ToAs by {t1, t2, . . . , tN}, and consider the
time gap between the ith and (i + 1)th ToA, �ti = ti + 1 − ti. We
call a sequence of observations ‘periodic’, if we have the following

approximate equality for all i:

�ti ≈ niT , (2)

where ni is an integer and T is a common, fundamental period
independent of i.

Equation (2) expresses the periodicity condition intuitively as an
approximate equality between the time gap between consecutive
ToA measurements, �ti, and an integer multiple of some common
period T. However, it is more accurate to think of this condition as a
restriction on the fractional part of the factor that multiplies T in the
exact version of equation (2), which is not strictly an integer. That is,
we have the exact equality

�ti = (ni + εi)T , (3)

where ni is an integer, and the remainder εi is a real number satisfying
|εi| < 0.5 by construction.

2.2 Phase error

In the limiting case of perfect periodicity, there is a choice of T for
which we have εi = 0 for all i. The degeneracy is exact: Any extra
term in the timing model that contributes an integer number of pulsar
rotations over the time-scale T predicts ToAs that coincide exactly
with those measured, so timing models with and without such an extra
term cannot be distinguished. The simplest extra term is of the form

�φ(t) = Nt

T
, (4)

where N is an integer. Equation (4) corresponds to a permanent
change in the pulse frequency of size �f = N/T.

The limiting case εi = 0 is special. We now allow εi �= 0, start
with the true phase model φ(t), and add a spurious term of the form
equation (4). A term of this form produces indistinguishable timing
models for εi = 0, so one expects the degeneracy to break slightly,
when εi is small. The degeneracy can be quantified by asking: what
is the effect of the spurious phase term on the timing residuals, as
a function of εi? In general, the total phase residual at the ith ToA
is given by Ri = φi − ni, where φi is the predicted pulsar rotational
phase at the ith ToA, and ni is the closest integer to φi (Taylor 1992).
The phase residual contributed across a gap of length �ti = (ni +
εi)T by �φ(t) is given by

δφi = frac [�φ(�ti)] = frac

[
N

T
(ni + εi)T

]
= frac(Nεi), (5)

where frac(·) denotes the fractional part, and the last equality follows
from the fact that N and ni are both integers by construction, so their
product has no fractional part. For N = 1 we then simply have δφi =
εi.

2.3 Worked example

We illustrate the arguments of this section with an example drawn
from a real data set. The UTMOST pulsar timing programme (Bailes
et al. 2017) uses data taken at the Molonglo Observatory Synthesis
Telescope, and has released public data for a large number of pulsars
(Lower et al. 2020). Here we consider the data set released for PSR
J1452−6036, consisting of 287 ToAs measured between 2017 July
and 2019 July. Our aim is to determine whether the observations of
this pulsar are close enough to periodic that there is ambiguity in
the phase evolution of the pulsar. We therefore seek to determine
the value of T that minimizes the average value of |εi| as defined in
equation (3). If there is a choice of T which makes |εi| particularly
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Figure 1. Mean fractional scheduling aperiodicity 〈|εi|〉 as a function
of scheduling quasi-period T for the UTMOST observations of PSR
J1452−6036.

small, then the phase residuals induced by a phase term of the form
in equation (4) will be correspondingly small.

Fig. 1 graphs the average of |εi| as a function of T for this data
set. A sequence of local minima is clearly visible, with the lowest
value of 〈|εi|〉 occurring at T = 86 158 s, and 〈|εi|〉 = 4 × 10−3. We
therefore expect that the magnitude of the timing residuals induced
by an extra phase term of the form �φ(t) = t/(86 158 s) will be
∼4 × 10−3.

Once we know the magnitude of the residuals induced in a data
set due to a spurious phase term of the form in equation (4), we
can compare it against the magnitude of the stochastic residuals due
to ToA measurement error. The quoted uncertainties on the ToA
measurements in the PSR J1452−6036 data are typically 1 ms. The
pulsar spins at roughly 6 Hz, so ToA uncertainties ∼1 ms correspond
to phase residuals σ ToA ∼ 6 × 10−3. Hence, residuals induced by the
extra phase term �φ(t) are of the same order as the residuals due to
ToA measurement error. It is therefore reasonable to expect that the
two sets of timing residuals look similar, with and without �φ(t).
Equivalently, we refer to the indicative ratio

R = 〈|εi |〉/〈σToA〉. (6)

If the condition R � 1 is satisfied, as it is in this example, we
expect phase models with and without the �φ(t) term to give similar
residuals. This is demonstrated in Fig. 2, where the top panel shows
the timing residuals for the original UTMOST timing model and
the middle panel shows the timing residuals for a timing model
with an extra phase term �φ(t) = t/(86 158 s) added. The bottom
panel shows the difference between the two sets of residuals. The
difference is no more than a few milliseconds, of the same order as
the typical ToA error. After re-fitting the spin frequency, the new
timing model has a spin frequency 1.1605 × 10−5 Hz larger than the
UTMOST timing model. Presented with the top or bottom panel in
Fig. 2, an analyst would have no reason to doubt either timing model,
even though they are different. We emphasize that in this case the
degeneracy between the two timing models does not involve glitches.

2.4 Detecting residuals from frequency misestimation

If the frequency in the timing model is incorrect by a multiple of
the inverse of the scheduling period T, the induced phase residual
across a given ToA gap is given by equation (5). We may therefore

Figure 2. Timing residuals for the UTMOST observations of PSR
J1452−6036 between MJD 57955 and MJD 58600, using the UTMOST
timing model (top), and a model that matches the UTMOST timing model
except for an overall frequency increment of 1.1605 × 10−5 Hz (middle). The
bottom panel shows the difference between the two sets of residuals (error
bars not shown). The uncertainty on the spin frequency reported by TEMPO2
is 6 × 10−10 Hz.
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seek to detect the ‘signal vector’ S, the kth element of which is the
cumulative sum of the induced phase residuals up to and including
the kth ToA gap:

Sk =
k∑

i=1

δφi . (7)

In the absence of any other sources of timing residuals, S is exactly
what we expect to see if the frequency is misestimated due to
periodic observation scheduling. Successful detection of this signal
in the residuals enables disambiguation between timing models that
produce timing residuals that appear by eye to be indistinguishable.

Our treatment of this detection problem follows Levy (2008).
Since we know precisely the form of the expected signal, cross-
correlating the vector S with the residuals R = (R1, R2, . . . , RN ) is
an optimal means of detection if the noise in R is additive, white,
and Gaussian. We assume that the noise has the covariance matrix
C = diag(σ 2

1 , σ 2
2 , . . . , σ 2

N ), where σ i is the reported uncertainty on
the ith ToA, measured in cycles. After calculating the expected signal
S according to equation (7), we may compute the cross-correlation
test statistic

γ = RTC−1S (8)

and compare this test statistic to a threshold γ th chosen to give a
particular false alarm rate Pfa,

γth =
√

STC−1SQ−1(Pfa), (9)

where Q−1(x) is the inverse of

Q(x) = 1√
2π

∫ ∞

x

du exp(−u2/2). (10)

The probability of detection Pd for a given probability of false alarm
Pfa is then given by

Pd = 1 − Q
[√

STC−1S − Q−1(Pfa)
]
. (11)

This gives a quantitative estimate of the reliability of detecting the
residuals caused by misestimating the frequency when observations
are periodically scheduled.

For concreteness, consider again the UTMOST data set for
PSR J1452−6036. We calculate εi according to (3) assuming T =
86 158 s, and subsequently calculate S assuming N = 1. The latter
quantity is the induced phase error signal due to the frequency in the
timing model being 1/(86 158 s) = 1.161 × 10−5 Hz too large. For
Pfa fixed at 0.01, we find Pd = 0.98. Hence, it is possible to reliably
detect the presence of the signal S due to an incorrect frequency
measurement and therefore reject a timing model that contains such
a signal, if one is aware of the effect and has a sufficiently long stretch
of data. We caution that this is an idealized treatment that ignores
the presence of other noise sources (e.g. timing noise). If significant
timing noise is present in the data, the assumption of a diagonal
noise covariance matrix breaks down, and a modified approach is
recommended. We note also that for all of the results presented
in this section, N can be either positive or negative – it makes no
difference whether the spurious phase term �φ(t) corresponds to an
increase or decrease in frequency.

3 G LITCHES

We now turn to the subject of degeneracy between glitch models.
The idea is essentially the same: under the conditions described in
Section 2, certain glitch sizes are difficult to distinguish from one
another on the basis of ToA measurements, especially based on visual

inspection of the timing residuals. We begin by guiding the reader
step by step through a worked example based on simulated data in
Section 3.1 in order to illustrate the application of the key ideas.
We then show in Section 3.2 that a jump in the frequency derivative
during a glitch does not affect the argument in Section 2 nor the
conclusions in the rest of the paper.

3.1 Worked example

We examine a simulated data set that is generated as follows.
First, a timing model is chosen. We choose to take as our starting
point the timing model from the UTMOST data release for PSR
J1452−6036, in which a glitch was detected at MJD 58600.29 with
�f = 1.745 × 10−6 Hz, �φ = 0, and no reported �ḟ or exponen-
tially recovering component (Lower et al. 2020). The timing model
used to generate the simulated data set matches the timing model for
PSR J1452−6036 from the UTMOST data release, except that the
glitch at MJD 58600.29 has size �f = 1.2106 × 10−5 Hz instead.
All other glitch parameters are identical – there is no phase jump at the
glitch epoch, change in frequency derivative, or exponential recovery
included in the simulated data. We wish to generate a set of synthetic
ToAs that are consistent with the chosen timing model. Starting
with the real PSR J1452−6036 data set used in Section 2, we use
LIBSTEMPO1 to generate a new set of idealized ToAs. The synthetic
ToAs begin as an exact copy of the PSR J1452−6036 ToAs but are
shifted slightly so that they show zero residuals when analysed with
the chosen timing model. White, Gaussian noise is then added to each
ToA at a level commensurate with the reported uncertainty for that
ToA. This synthetic data set serves two purposes. In the remainder
of this section, it is used to illustrate the principle that periodicity in
observation scheduling leads to a degeneracy between glitch models.
In Sections 4.1, 4.2, and 4.3, it is used to examine how glitch analyses
with TEMPO2, TEMPONEST, or an HMM-based approach may be
confounded by this degeneracy between glitch models.

Fig. 3 compares two glitch models for the synthetic data set
described above. The top panel of Fig. 3 shows the residuals for the
true timing model (i.e. the chosen timing model used in generating
the synthetic data set), while the bottom panel shows the residuals
for a timing model in which the glitch size is set to 5 × 10−7 Hz.
Why 5 × 10−7 Hz? Because the true glitch size of 1.2107 × 10−5 Hz
may be written as 1/(86 158 s) + 5 × 10−7 Hz, and hence expresses
the degeneracy noted in Section 2. The two sets of timing residuals
both appear white by eye. The root mean square (rms) residuals for
the original timing model with glitch size �f = 1.2107 × 10−5 Hz
are 2729μs, while the rms residuals for the case with a glitch size
of �f = 5 × 10−7 Hz are 2726μs. That is, the residuals are nearly
equal, even though �f is approximately 24 times larger in the former
model. Note that in the glitch model with �f = 5 × 10−7 Hz, an
unphysical phase jump of �φ = 0.326 has also been included.

3.2 Jumps in frequency derivative

Glitches are often accompanied by a jump in the frequency derivative,
which can be a significant fraction of the pre-glitch frequency
derivative. In Section 3.1, we do not include a jump in frequency
derivative, to keep things as simple as possible. We now show that
jumps in frequency derivative do not affect the arguments made in
Section 2: The degeneracy persists even when a frequency derivative
jump is present.

1https://vallis.github.io/libstempo/
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Figure 3. Timing residuals for the synthetic data set described in Section 3.1,
using a timing model with (top) �f = 1.2106 × 10−5 Hz that matches the
injected glitch size, and (bottom) �f = 5 × 10−7 Hz that is approximately
24 times smaller than the injected glitch.

To be explicit, we consider two glitch models:

φg,1(t) = �f (t − tg) + 1

2
�ḟ (t − tg)2 (12)

φg,2(t) =
(

�f + 1

T

)
(t − tg) + 1

2
�ḟ (t − tg)2, (13)

where �f, �ḟ , and tg are defined as in equation (1) and T is the
observing period. While these two glitch models contain a frequency
derivative change, they none the less differ by t/T (plus a constant,
tg/T), which has the form of equation (4). Therefore, the arguments
of Section 2 apply, and these two glitch models show comparable
residuals when the observations are periodic with period T.

The above argument extends to glitch models with exponentially
decaying terms, or any other terms that may be appropriate, as long as
those other terms are common to both glitch models being compared,
and the only difference between them is a frequency increment as
described in Section 2.2.

4 G LITC H PA R AMETER ESTIMATION

In this section, we discuss the effects of periodic observation
scheduling on specific glitch parameter estimation techniques using
TEMPO2 (Section 4.1), TEMPONEST (Section 4.2), and an HMM
(Section 4.3).

4.1 TEMPO2

4.1.1 Phase-coherent timing

In Section 3 and Fig. 3, we demonstrate that when a glitch occurs
in a pulsar, there may be multiple timing models that give similarly
small timing residuals. Of course, the illustrative worked example in
Section 3.1 is fashioned deliberately by exploiting our foreknowledge
of the glitch parameters injected into a synthetic data set. Does the
same outcome arise ‘naturally’, when the true glitch parameters
are unknown, e.g. in real astronomical data or blind injections in
synthetic data? In this section, we perform a phase-coherent timing
analysis using TEMPO2 of the same synthetic data set. This is not a
truly blind analysis, but the steps taken in the course of this analysis
approximate one typical course of action for the parameter estimation
of a previously unknown glitch using astronomical data.

We begin by inspecting the timing residuals for the synthetic data
set used in Section 3.1 with a timing model that matches the injected
parameters but without a glitch. The residuals are shown in the top
panel of Fig. 4. The pre-glitch residuals are close to white, but there
is a clear point at MJD 58600 where the timing model ‘fails’, and
the residuals diverge and begin to wrap. At epochs where the phase
residuals wrap around, we add phase jumps by hand to restore phase
connection. At this stage we use TEMPO2 to tag each ToA with the
number of pulses that have elapsed since the first ToA. We emphasize
that this pulse numbering is model dependent. With the phase jumps
added, we see a clear transition from flat phase residuals to a linear
ramp in the residuals in the middle panel of Fig. 4 – a clean glitch
signature. Using the pulse-numbered ToAs, it is straightforward to
fit the glitch parameters with TEMPO2. For simplicity, we fit only
the glitch frequency increment �f and an unphysical glitch phase
jump �φ to account for uncertainty in the glitch epoch. We set
the glitch epoch to be the same as the injected glitch epoch, MJD
58600.29, for ease of comparison with the injected glitch parameters.
The TEMPO2 fit returns �f = (5.008 ± 0.006) × 10−7 Hz, and �φ =
0.320 ± 0.003. The associated residuals are plotted in the bottom
panel of Fig. 4. By eye, they appear close to white, with variance
consistent with the ToA error bars, which are of the order of 1 ms.
This timing model is a good fit: The reduced χ2 returned by TEMPO2
is 0.98. It is not, however, an accurate recovery of the injected glitch
parameters, which are �f = 1.2106 × 10−5 Hz and �φ = 0.

The above analysis exemplifies a general principle: Given a set
of ToAs containing a glitch, if the ToAs are consistent with multiple
glitch models due to periodicity in the observation schedule, then
the glitch model with the smallest �f is more likely to be recovered
by a phase-coherent timing analysis. This occurs because ToAs that
are consistent with a small glitch display a relatively gentle linear
ramp in the post-glitch residuals. This linear ramp will be picked
out by eye, and subsequently used to number the post-glitch pulses.
A larger glitch (e.g. 1.2106 × 10−5 Hz compared to 5 × 10−7 Hz)
has a different phase model, which assigns a different numbering
to the post-glitch pulses. Once the analyst restores phase connection
(whether correctly or incorrectly) and numbers the pulses according
to this phase connected solution, the range of possible glitch models
is restricted.

4.1.2 Local frequency estimation

Rather than constructing a phase-connected timing solution and
subsequently estimating glitch parameters, it is also possible to
estimate the frequency evolution locally by fitting for the frequency
using small sets of ToAs closely spaced in time that are derived from
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Figure 4. Timing residuals for the synthetic data set described in Section 3.1
before (top panel) and after (middle panel) adding phase jumps to account
for wraps in pulse phase. The bottom panel shows the residuals obtained after
accounting for a glitch with �f = (5.006 ± 0.015) × 10−7 Hz and �φ =
0.323 ± 0.008.

sub-integrations of a longer observation. In this case, the inter-ToA
spacing is much smaller than T, the fundamental observing period.
We stipulate that the ToAs are closely spaced in time to sidestep
the issue of distinguishing between phase models with frequencies
differing by 1/T, which arises once ToAs separated by more than T

are included in the fit. In order to distinguish between timing models
that differ in spin frequency by 1/T, the time τ between the first and
last ToAs in each local fit must be long enough that the accumulated
phase error exceeds the phase error σ ToA due to the ToA uncertainty:

τ/T 
 σToA. (14)

We consider three applications of local frequency estimation to
synthetic data. For each application, we generate a synthetic data set
with the same timing model parameters and observation schedule as
described in Section 3.1 (so the observation period T is still roughly
86 158 s). At each session when a synthetic observation is made, we
generate four ToAs spaced closely, with τ � T. In the first of the three
applications, we take τ = 1100 s,2 giving τ /T ≈ 2σ ToA. The results of
the local spin frequency estimation for this data set are shown in the
top panel of Fig. 5. The scatter in the post-glitch frequency estimates
is of the order of 10μHz, prohibiting a determination of the post-
glitch spin frequency that distinguishes between glitch models with
sizes separated by 1/T ≈ 1.2 × 10−5 Hz. However, if τ is increased
by a factor of 5, we instead have the result shown in the middle panel
of Fig. 5. The scatter in the frequency estimation is much reduced
to ∼1μHz, and it is clear that a glitch with �f ≈ 1.2 × 10−5 Hz
is preferred over the value recovered by the phase-coherent analysis
in Section 4.1.1 (�f ≈ 5 × 10−7 Hz). Finally, we can analyse the
same synthetic data set but use eight ToAs spanning two consecutive
observing sessions in each local frequency estimate, so that τ ≈ T.
The results for this case are shown in the bottom panel of Fig. 5. The
scatter in post-glitch frequency estimations is again reduced, down
to roughly 0.1μHz. However, the local estimates are centred around
5 × 10−7 Hz – the same incorrect estimate recovered by the phase-
coherent analysis in Section 4.1.1. In both the phase-coherent case
and the τ ≈ T case, the assumption that the increase in frequency
due to the glitch contributes less than one full rotation between two
observation sessions leads to the incorrect estimate.

4.2 TEMPONEST

The Bayesian pulsar timing package TEMPONEST is sometimes used
to estimate glitch parameters (Shannon et al. 2016; Yu & Liu
2017; Lower et al. 2020; Parthasarathy et al. 2020). If the glitch
parameters are not already well constrained, it is common to first
use TEMPO2 to obtain a set of pulse-numbered ToAs, following the
procedure described in Section 4.1.1. Note that it is impossible to run
TEMPONEST without pulse-numbered ToAs, unless the timing model
parameters are already well constrained. As noted in Section 4.1.1,
pulse numbering restricts the range of viable glitch models. Even
if one chooses an uninformative prior for �f, TEMPONEST only
assigns high posterior probability to glitch models that are consistent
with the pulse numbering used. As such, glitch sizes estimated with
TEMPONEST exhibit the same bias towards small glitch sizes as those
estimated with a phase-coherent TEMPO2 analysis.

4.3 HMM

Recently, Melatos et al. (2020) presented a new approach to pulsar
glitch detection that models the rotational evolution of the pulsar
with an HMM and selects between models with and without glitches
present. Like TEMPO2-based approaches, the HMM operates on
ToAs. Therefore, the arguments in Sections 2 and 3 suggest that one

2This corresponds to one ToA every 4.5 min, which is quite typical for pulsars
observed by UTMOST.
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Figure 5. Results of local spin frequency estimation described in Sec-
tion 4.1.2. The top panel shows the case τ /T ≈ 2σToA, the middle panel
shows the case τ /T ≈ 10σToA, and the bottom panel shows the case where
multiple observing sessions are used in each spin frequency fit. The location
of the glitch is indicated by the vertical dotted line. In all cases, the true
size of the glitch is �f = 1.21 × 10−5 Hz. Note the 102-fold decrease in the
vertical scale from the top to the bottom panels.

ought to be careful when estimating glitch parameters with an HMM,
if the observations are scheduled periodically. It turns out that the
HMM estimates �f more accurately than TEMPO2 and TEMPONEST for
the synthetic data set from Section 3.1, as reported in Section 4.3.1.
However, it is still somewhat prone to the same ambiguities arising
from periodic scheduling, as demonstrated in Section 4.3.2 with the
aid of specific examples.

The HMM consists of three essential components, which we
briefly describe here. We refer the reader to Appendix A and Melatos
et al. (2020) for further details. In the HMM, the state of the pulsar is
described by its pulse frequency f, and the time derivative of the pulse
frequency ḟ . The values of f and ḟ are measured relative to a fiducial
frequency evolution that is taken from a Taylor expansion of the phase
model calculated by TEMPO2. For example, the state (f , ḟ ) = (0, 0)
indicates that the state of the pulsar is exactly as predicted by the
Taylor expansion at that time-step. The state (f , ḟ ) is ‘hidden’: It
is not observed directly, since the HMM operates only on ToAs.
Instead, we define an ‘emission probability’ L(�ti ; f , ḟ ) that gives
the probability of observing a given ToA gap �ti if the pulsar’s state
is (f , ḟ ) during this gap. The expression for L(�ti ; f , ḟ ) used in this
paper is given by equation (A2). Finally, it is necessary to specify the
‘transition probabilities’ that determine the probability that one state
transitions to another state after each ToA gap. The HMM tracks the
spin wandering directly, as a realization of a Markov chain. This is in
contrast to TEMPONEST, which estimates the ensemble characteristics
(power spectral density) of the residuals due to timing noise (Lentati
et al. 2014). In this work, we use transition probabilities that assume
a random walk in the second frequency derivative of the pulsar. This
matches the prescription adopted by Melatos et al. (2020). Other,
qualitatively similar forms of the transition probabilities are also
possible and produce qualitatively similar results. Once detected,
the parameters of the glitch may be estimated by constructing the
sequence of a posteriori most likely (f , ḟ ) states of the pulsar using
the forward–backward HMM algorithm, and subsequently reading
off �f at the most probable glitch epoch. With the parameter choices
adopted in this work, the HMM is computationally cheap – the search
for glitches described in Section 4.3.1 takes roughly 10 min to run
on a modern desktop CPU (the quoted time is measured on an Intel
Core i5-9300H CPU running at 2.40 GHz.)

4.3.1 Worked example

To illustrate the effect of periodic scheduling on glitch measurement
with an HMM, we re-analyse the same synthetic data set presented
in Section 3.1 and analysed with TEMPO2 in Section 4.1. The details
of the parameter choices in the HMM analysis can be found in
Appendix A. Most relevant to the issue at hand is the range of f,
which is taken to be [−3 × 10−7, 2.5 × 10−5] Hz, bracketing the
TEMPO2 timing solution. This range of frequencies is chosen to
encompass a large enough range of glitch sizes to demonstrate
the essential point. In particular, it covers �f ± 1/(1 sidereal day),
where �f = 1.21 × 10−5 Hz is the injected glitch size. A wider
frequency range is possible, but would significantly increase the
computation time required without adding anything new [see section
4.4 of Melatos et al. (2020)]. A glitch is detected at the 231st ToA
gap, between MJDs 58599 and 58603, with log Bayes factor 250.
We denote this model by M1(231). While the epoch matches the
injected glitch, which occurs at MJD 58600.29, we mimic a realistic
analysis by persevering and searching ‘blindly’ for a second glitch
by comparing M1(231) to a set of two-glitch models M2(231, k)
that contain glitches during the 231st gap and the kth gap (k �=
231). This procedure is the greedy hierarchical algorithm described
in section 4.2 in Melatos et al. (2020). We find that the two-glitch
model M2(231, 232) is favoured over M1(231) with a log Bayes factor
of 53. We then compare the two-glitch model M2(231, 232) to a set of
three-glitch models M3(231, 232, l). None of the three-glitch models
are favoured over M2(231, 232) with log Bayes factor less than 0
for all l �= 231, 232, so we terminate the search. Note that we do
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Figure 6. (Top) Frequency path recovered by the HMM forward–backward
algorithm for the analysis of the synthetic data set described in Section 3.1.
The recovered glitch size is �f = 1.2078 × 10−5 Hz. (Bottom) Heatmap
showing the evolution of the logarithm of the posterior probability for f from
the HMM analysis of the same synthetic data set. Time increases from left
to right, and at each time-step the posterior has been marginalized over ḟ .
Values in the heatmap are clipped below −103 to aid readability. The favoured
model, M2(231, 232), includes glitches during ToA gaps 231 and 232.

not interpret M2(231, 232) as a model with two truly distinct spin-up
events, because the ToA gaps are adjacent. M2(231, 232) is favoured
over M1(231) because the one-glitch models are constructed such that
the glitch occurs at the beginning of the ToA gap, whereas in these
data the glitch occurs nearly 1 d into a 4-d-long gap. The two-glitch
model contains enough freedom to mitigate the phase error caused
by the simple form of the glitch model assumed by the HMM, which
only allows for a glitch to occur at the beginning of a ToA gap, and
includes no phase jumps.

Given M2(231, 232), the HMM forward–backward algorithm
computes the posterior distribution of f and ḟ during each ToA
gap. From this posterior distribution, we construct a sequence of
frequency and frequency derivative states by choosing the a posteriori
most likely states during each ToA gap (Rabiner 1989; Melatos et al.
2020). The frequency sequence f(ti) constructed in this way is shown
in the top panel of Fig. 6. The location of the glitch is clear. Reading
off the size of the glitch gives �f = 1.2078 × 10−5 Hz, compared
to the true glitch size of 1.2107 × 10−5 Hz. While the glitch model
allows for a change in ḟ (which can be positive or negative), we
do not observe such a change in the recovered ḟ (ti) sequence. This
is in agreement with the injected glitch parameters, which include
�ḟ = 0.

While this appears to be a relatively successful recovery of the
glitch parameters – more so than the phase-coherent analysis of
Section 4.1.1 – we can further inspect the posterior distribution
of spin states to determine what effect the observation schedule
has on this mode of analysis. A heatmap of the logarithm of the
posterior distribution of f (marginalized over ḟ ) as a function of
ToA gap index is shown in the bottom panel of Fig. 6. It exhibits
a multiply peaked structure both before and after the glitch, with
peaks separated by 1.1618 × 10−5 Hz. This spacing is significant: It
is close to 1/(86 158 s) = 1.1607 × 10−5 Hz, where 86 158 s is the
observation scheduling period for this data set. These multiple peaks
in the posterior f distribution are indicative of the degeneracy caused
by periodic observation scheduling. While the peaks appear to be
equal in height based on the logarithmic heatmap, after the glitch
the peak at �f = 1.2078 × 10−5 Hz is systematically higher (by a
factor of at least 1.5) than the other two, and therefore features in the
recovered sequence.

4.3.2 Robustness of parameter estimation against uncertainty in
glitch epoch

The HMM succeeds in recovering the correct glitch size in Sec-
tion 4.3.1 despite the periodic scheduling. However, small variations
in the epoch of the glitch can significantly perturb the recovered
frequency path when the scheduling is periodic.

Fig. 7 shows the marginalized post-glitch posterior distributions
of f(t250) (t250 is chosen to show the posterior distribution of f well
after the glitch, which occurs at t231) for 12 injected glitches that have
the same size as the previous example, �f = 1.2107 × 10−5 Hz, but
epochs distributed uniformly between MJD 58599 and MJD 58603,
i.e. anywhere within the 231st ToA gap. The posterior in each case
has the same multiply peaked structure as in the bottom panel of
Fig. 6, with the largest peak located randomly near one of three
values: 5 × 10−7, 1.2 × 10−5, and 2.4 × 10−5 Hz. In all but one of
the panels of Fig. 7, only one or two peaks of the three-peak structure
seen in the bottom panel of Fig. 6 are high enough to be seen by eye.

Thus, HMM-based analyses of data sets with periodic scheduling
do not necessarily recover the correct glitch size: Of the 12 posterior
f distributions shown in Fig. 7, only 4 peak at the correct location of
1.2107 × 10−5 Hz. The rest have peaks displaced from the true glitch
size by approximately 1/(86 158 s), indicating that the ambiguity due
to periodic scheduling is responsible for the failures to recover the
correct glitch size in the other realizations.

Phase-coherent timing analyses of similar data sets are biased
towards recovering the smallest plausible glitch size. The HMM
shows no systematic bias. None the less, it is not guaranteed to
return the true glitch size either. Therefore, the methods complement
one another and are safest to use in tandem. If periodic scheduling
is unavoidable for some reason, a chance discrepancy between the
methods is one way to catch errors in the estimate of �f, as the
example in Sections 4.1.1, 4.1.2, and 4.3.1 demonstrates in practice.
Interestingly, the HMM posterior distribution readily reveals the
existence of multiple high-likelihood frequency tracks, which are
not seen so easily in a timing analysis.

5 R EASSESSING UTMOST GLITCHES

From mid-2017 onwards, it was decided to use the Molonglo
Observatory Synthesis Telescope in transit-only mode (Venkatraman
Krishnan et al. 2020). In this mode, the transit of astronomical
objects through the primary beam occurs at the same time each
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Figure 7. Posterior probability distributions P(f) of f during the 250th ToA
gap (well after the glitch at t231) for 12 synthetic data sets with randomized
glitch epochs in the interval MJD 58599 < tg < MJD 58603 as described in
Section 4.3. In all cases, the true frequency deviation is 1.2107 × 10−5 Hz
and the glitch occurs during the 231st ToA gap.

Figure 8. Histogram of R for all 300 pulsars in the UTMOST data release.

Figure 9. Recovered frequency path (top) and posterior distribution of f
(bottom) for the HMM analysis of the UTMOST observations of PSR
J1709−4429, laid out as in Fig. 6. Before the glitch, which occurs during
the 81st ToA gap, the posterior distribution of f is well constrained,
showing only a narrow band of support near f = 0 Hz. After the glitch,
the posterior distribution of f has support in three distinct f regions, separated
by 1/(1 sidereal day). The parameters used in this analysis are reported in
Table A1.

Figure 10. Local spin frequency estimation of the glitch size �f for the glitch
in PSR J1709−4429 at MJD 58178 using UTMOST observations, laid out as
in Fig. 5. The error bars on the pre-glitch frequency estimates are too small
to be seen.
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Figure 11. Timing residuals for combined UTMOST and Parkes observa-
tions of PSR J1709−4429 for two timing models with glitch sizes �f/f =
54.6 × 10−9 (top) and �f/f = 2429.7 × 10−9 (bottom). In each plot, the
unphysical phase jump �φ has also been adjusted to minimize the jump
in residuals before and after the glitch. UTMOST observations are shown
as squares, and the Parkes observations are shown as circles. In both plots,
all other timing model parameters besides �f and �φ are identical to those
published in the UTMOST data release.

sidereal day, with a typical dwell time of 5–20 min (Lower et al.
2020). Thus, the ToAs used in the UTMOST timing programme are
collected in clusters separated by integer multiples of 1 sidereal day
(86 164 s), closely matching the observing period of 86 158 s seen
in the UTMOST data set for PSR J1452−6036. In most cases, the
cadence of observations is 3–7 d.

With this in mind, we check to see if periodic scheduling
compromises the phase reconstruction of UTMOST pulsars. We
calculate 〈|εi|〉 [where εi is defined in equation (3)] for each of
the 300 pulsars in the UTMOST data release, using only ToAs
measured after 2017 September in transit mode, and assuming
T = 86 164 s. Recall that 〈|εi|〉 measures the magnitude of timing
residuals (measured in terms of cycles), which can be expected if one
chooses a timing model that displaces f by 1/T from its true value,
where T is the scheduling period. Fig. 8 shows a histogram of R
[defined in equation (6)], for the 300 targets. Data sets with R � 1 are
relatively unlikely to support multiple glitch models with comparable
residuals. The residuals induced by the wrong choice of �f are so
large, that the error is obvious. However, there is a sizeable population
of pulsars with 〈|εi|〉/〈σ ToA〉 < 1, including two pulsars that are

known to have glitched since 2017 September: PSR J1709−4429
(〈|εi|〉/〈σ ToA〉 = 0.81) and PSR J1452−6036 (〈|εi|〉/〈σ ToA〉 = 0.12).
The glitch in PSR J1709−4429 has not been reported by any timing
programmes other than UTMOST. Given the periodic observation
schedule, the possibility that the reported glitch sizes are in error by
1.16 × 10−5 Hz or more must be taken seriously. We now examine
the two objects in turn.

5.1 PSR J1709−4429

Lower et al. (2018) reported a glitch in PSR J1709−4429 at MJD
58178 ± 6 of size �f/f = (52.4 ± 0.1) × 10−9, based on UTMOST
data analysed with TEMPO2 and TEMPONEST. An updated parameter
estimate was published by Lower et al. (2020), who gave a glitch size
of �f/f = (54.6 ± 1.0) × 10−9, again based only on the UTMOST
data. An HMM-based analysis of these data recovers a glitch size of
�f/f = 2405 × 10−9, as shown in Fig. 9. The glitch size recovered
by the HMM is larger than the Lower et al. (2020) result by 2.29 ×
10−5 Hz – roughly 2/(1 sidereal day). This suggests that at least one
of these methods is confounded by the periodicity of the observations,
but without further information it is difficult to decide which glitch
size is closer to the truth.

Re-processing the UTMOST data to produce multiple ToAs per
observation session allows us to estimate the local spin frequency
post-glitch, as described in Section 4.1.2. The results of this exercise
are shown in Fig. 10. The post-glitch frequency measurements appear
to be centred around roughly 2 × 10−5 Hz, consistent with the HMM
estimate. Note that preceding the glitch, this pulsar was not observed
with sufficiently long observations and sufficient sensitivity to extract
enough high-quality ToAs per observing session for a useful local
frequency fit. Each of the pre-glitch frequency estimates therefore
incorporates ToAs from observing sessions separated by multiple
days, and the error bars are correspondingly much smaller than the
post-glitch frequency estimates. The use of widely separated ToAs
is not a concern for the pre-glitch frequency estimates, as the pre-
glitch frequency is not in question, having been well measured by
UTMOST before the switch to a periodic observing schedule, and
this is the first glitch since the switch.

Fortunately, the pulsar timing programme carried out at the Parkes
radio telescope has released public data covering the period during
which the glitch was reported (Hobbs et al. 2011), and the Parkes
pulsar timing programme does not schedule observations with the
same regularity as UTMOST. Hence, the combined UTMOST and
Parkes data can be expected to estimate the glitch parameters better
than the UTMOST data alone. Fig. 11 shows timing residuals for two
glitch models with the combined UTMOST and Parkes data. With
the combined data, the glitch model with �f/f = 2429.7 × 10−9 is
clearly preferred, close to what was recovered in the HMM and local
frequency estimation analyses.

As a final step, we re-estimate the glitch parameters with the
combined UTMOST and Parkes data using TEMPONEST to fit for the
timing model parameters and the noise parameters. We start with a
pulse numbering derived from a timing model with glitch size �f/f =
2429.7 × 10−9. The glitch model used follows Lower et al. (2020),
and is given by

�φg(t) = �φ + �f (t − tg)

+ 1

2
�ḟ (t − tg)2 − �fdτde−(t−tg)/τd . (15)

The obtained glitch parameters are shown in Table 1. The unphysical
phase jump �φ = −0.342 ± 0.005 arises because we choose to
fix the glitch epoch at MJD 58178, as in the analysis of Lower et al.
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Table 1. Estimated glitch parameters for the glitch in PSR J1709−4429 at MJD 58178. The glitch model parameters are defined
in equation (15).

tg �φ (�f + �fd)/f �ḟ /ḟ �fd/f τ d

MJD × 10−9 × 10−3 × 10−9 d

This work 58178 ± 6 −0.342 ± 0.005 2432.2 ± 0.1 4.7 ± 0.3 <0.1 –
Lower et al. (2020) 58178 ± 6 0.372 54.6 ± 1.0 1.06+0.36

−0.43 54.3 ± 1.0 99.1+11.3
−9.6

(2020). We report only an upper limit on the size of the exponentially
decaying term, �fd. The posterior distribution for �fd has support
between the lower end of the prior range, 10−18 Hz, and 10−9 Hz, but
no support above 10−9 Hz. The decay time-scale τ d is unconstrained
– the posterior distribution has significant support across the entire
prior range of (1, 1000) d. Previous glitches of this pulsar have
been measured with an exponentially decaying component roughly
1 per cent as large as the permanent frequency jump, with a decay
time-scale of approximately 100 d (Yu et al. 2013).

5.2 PSR J1452−6036

Lower et al. (2020) also reported a glitch in PSR J1452−6036 at MJD
58600.29 ± 0.05, with a glitch size of �f /f = (270.7+0.3

−0.4) × 10−9

and no measured �ḟ . In the following, we keep �ḟ fixed at zero for
simplicity.

Local frequency estimation with the UTMOST data does not
constrain the glitch size – the typical ToA uncertainty is high, roughly
1 ms, and so the corresponding phase error is ∼6 × 10−3. Based on
the arguments of Section 4.1.2, an observation session long enough to
break the degeneracy between glitch models would be roughly 1 h.
This is much longer than the actual ∼5 min observation sessions.
The maximum possible observation time in a single transit with
UTMOST for this pulsar is somewhat longer, roughly 20 min, but
not long enough to break the degeneracy. In general, the maximum
time that UTMOST can observe a given pulsar depends strongly on
its declination: Pulsars near the ecliptic transit the primary beam in
approximately 10 min, while pulsars near the south celestial pole
remain in the primary beam for hours. However, most pulsars are
not routinely observed by UTMOST for more than 10 min at a time
(Jankowski et al. 2019). Alternatively, the per-ToA uncertainty that
would allow a 5 min observation session to break the degeneracy is
roughly 0.1 ms.

We may apply the arguments of Section 2.4 to search for excess
post-glitch phase residuals due to misestimation of the glitch size.
We set Pfa = 0.01, and find that the threshold calculated according
to equation (9) is γ th = 1.99. The probability of detection given
by equation (11) is only Pd = 0.07. We search for the induced
residual signal defined by equation (7) in the residuals of three glitch
models: the originally reported model, a model with �f increased
by 1/(1 sidereal day) to give �f/f = 2069 × 10−9, and a model with
�f increased by 2/(1 sidereal day) to give �f/f = 3868 × 10−9. The
residuals for each glitch model are shown in Fig. 12. We find in each
case that the test statistic γ = RTC−1S does not exceed γ th; i.e. we
do not detect an induced phase error. γ is largest for the glitch model
with �f/f = 3868 × 10−9, where we calculate γ = 0.62. As Pd is low,
this non-detection does not allow us to constrain the true parameters
of the glitch.

Jankowski, Keane & Stappers (2021) recently reported on wide-
band observations of this pulsar at the Parkes radio telescope, which
by chance happen to lie on either side of this glitch. Combining
these observations with the UTMOST data, they report a glitch size
�f/f = 270.52(3) × 10−9, consistent with the value found by Lower

et al. (2020). As with the PSR J1709−4429 observations, the Parkes
observations of PSR J1452−6036 are not on the same schedule
as the UTMOST observations, and so the estimate of �f from the
combined data is not confounded by the periodicity of the UTMOST
observations.

6 C O N C L U S I O N

In this paper, we show that periodic scheduling of pulsar observations
can lead to erroneous estimates of frequency in pulsar timing models
if the frequency is not well measured a priori. We examine in detail
the effect this has on the estimation of pulsar glitch parameters.
Specifically, the estimated permanent frequency jump �f may be
displaced from its true value by an integer multiple of 1/T, where
T is the scheduling period. We find that in certain existing data
sets the excess timing residuals induced by misestimating the spin
frequency of the pulsar due to periodic scheduling are comparable to
the stochastic residuals induced by ToA measurement error.

We find that ‘by-eye’ attempts to restore phase connection through
the use of pulse numbering can bias the recovered glitch size towards
smaller values. When the true value of �f is larger than 1/T, this
bias yields incorrect estimates of �f. Local frequency estimation
can mitigate this bias, as long as the ToAs used in the fits are
sufficiently accurate. An HMM-based approach may also fail to
recover the correct �f. However, the HMM does not appear to be
biased in the same way as the phase-coherent timing-based method,
and the existence of multiple solutions is readily apparent from a
brief inspection of the products of the analysis, e.g. the posteriors of
f(t1), . . . , f(tN).

We re-evaluate two glitches detected by UTMOST, in PSR
J1709−4429 and PSR J1452−6036. In the case of PSR J1709−4429,
additional public data from the Parkes radio telescope break the
degeneracy in glitch models, and we recover a new glitch size �f/f =
(2432.2 ± 0.1) × 10−9, much larger than the previously reported
value �f/f = (54.6 ± 1.0) × 10−9. For PSR J1452−6036, we attempt
to detect the presence of phase residuals induced by an incorrect
choice of glitch model by cross-correlating the observed residuals
with the expected induced signal. However, we are unable to defini-
tively confirm or exclude the previously reported glitch model using
the UTMOST data alone, because the noise is relatively high, and
there are relatively few post-glitch observations. Recently released
complementary observations from the Parkes radio telescope break
the degeneracy and confirm that the glitch size is �f/f = 270.52(3) ×
10−9 (Jankowski et al. 2021).

In view of the issues raised here, we recommend that wherever
possible, future observing campaigns aimed at glitch measurement
should avoid periodic observation scheduling. In cases where peri-
odic observations are unavoidable, such as the CHIME/Pulsar (Ng
2018; Good et al. 2020) and future UTMOST-2D (Venkatraman
Krishnan et al. 2020) programmes, care should be taken when making
inferences about the frequency of a pulsar, particularly after a glitch
has occurred. A small number of complementary observations from
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3410 L. Dunn, M. E. Lower and A. Melatos

Figure 12. Timing residuals for UTMOST observations of PSR
J1452−6036. Glitches are indicated by the vertical dotted line, with sizes
�f/f = 270 × 10−9 (top), 2069 × 10−9 (middle), and 3868 × 10−9 (bottom).
The post-glitch residuals appear to be identical, despite the significant
differences in glitch sizes in the three timing models. Other timing model
parameters match those released in the UTMOST data release.

another observatory can also help break the degeneracy between
glitch models.
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APPEN D IX A : H MM RECIPE AND
PA R A M E T E R S

The HMM-based analysis described in Section 4.3 involves choosing
a number of input parameters. In this appendix, we briefly describe
these choices. For a more detailed discussion of the considerations
involved in choosing the analysis parameters, see Melatos et al.
(2020). There are broadly three classes of parameters involved: those
that specify the (f , ḟ ) pairs under consideration, those that specify
the connection between observations (ToAs) and (f , ḟ ) pairs, and
those that specify the probabilities of transitions between (f , ḟ )
pairs. A complete list of parameters is given in Table A1.

We specify the allowed range of frequencies and frequency
derivatives in two stages. First, we specify a fiducial phase evolution
by fixing the frequency f0 and frequency derivative ḟ 0 at a reference
epoch T0, derived from a Taylor expansion computed by TEMPO2. The
HMM tracks deviations away from this fiducial model on a discrete
grid in the f–ḟ plane. The range of allowed deviations is specified
by lower (f−, ḟ −) and upper (f+, ḟ +) bounds. The discretization is
specified by bin sizes ηf and ηḟ .

To incorporate timing noise, we adopt a simple prescription that
drives the second frequency derivative with a white noise term ξ (t)
satisfying 〈ξ (t)ξ (t

′
)〉 = σ 2δ(t − t

′
) [see section 3.4 in Melatos et al.

(2020)]. Other, similar prescriptions yield similar results (Melatos
et al. 2020). The free parameter σ controls the magnitude of the
timing noise in the model. The discrete nature of the f–ḟ grid sets
a lower bound on σ : Errors in the estimation of ḟ , caused by the
finite bin width ηḟ , cause the frequency to spuriously wander across
a ToA gap by an amount δfbin ∼ ηḟ �ti . It is desirable that the HMM
‘correct’ this spurious wandering, through the freedom allowed in
the timing noise model. With ξ (t) defined as above, the frequency
wandering across �ti is given by δfTN = σ (�ti)3/2. Equating δfbin and
δfTN with �ti replaced by its average over all ToAs, 〈�ti〉, suggests
the following approximate lower bound:

σ ≥ ηḟ 〈�ti〉−1/2. (A1)

In the analyses presented here, we choose σ = ηḟ 〈�ti〉−1/2.
Given a particular ToA gap �ti, the probability of a particular

(f , ḟ ) state is calculated as a von Mises distribution (Melatos et al.
2020)

L(�ti ; f , ḟ ) = [2πI0(κ)]−1

× exp{κ cos[2π (�tif − �t2
i ḟ /2 + ��i)]}, (A2)

where I0(x) is the modified Bessel function of the first kind, κ

is a free parameter known as the concentration, and ��i is the
phase contribution over the ToA gap from the fiducial phase model
specified by f0, ḟ 0, and the reference epoch T0. This distribution
is peaked when the number of cycles accumulated across the ToA
gap, �tif − �t2

i ḟ /2 + ��i , is an integer (the minus sign appears
because we employ a backwards Taylor expansion). To a good
approximation, we may identify κ as the reciprocal of the squared
uncertainty of the phase. There are two important contributions to
κ . One is the uncertainty on individual ToAs. For each ToA gap, the
phase uncertainties on the two ToAs that bracket the gap, σ ToA, 1 and
σ ToA, 2, contribute independently to the total phase uncertainty across
the gap. The second contribution comes from the discrete f–ḟ grid.
The binning in frequency contributes a phase uncertainty ηf�ti, and
the binning in frequency derivative contributes a phase uncertainty
ηḟ �t2

i /2. Combining all of these uncertainties in quadrature, and
recalling the identification of κ with the reciprocal squared phase
uncertainty, we arrive at the expression for κ used in these analyses:

κ = [
σ 2

ToA,1 + σ 2
ToA,2 + (ηf �ti)

2 + (ηḟ �t2
i /2)2

]−1
. (A3)

Note that κ depends strongly on the length of the ToA gap, and
therefore is recalculated for each gap in the data set. More details on
the theoretical underpinnings of (A2) and (A3) appear in section 3.3
and appendix C in Melatos et al. (2020).

Finally, we choose a Bayes factor threshold to be used in model
selection via the greedy hierarchical algorithm described in sec-
tion 4.2 of Melatos et al. (2020), when models containing glitches
are compared against models with no or fewer glitches. Informed by
synthetic data tests described by Melatos et al. (2020), we choose
here a threshold of Kth = 101/2.

Table A1. HMM parameters for the analysis (described in Section 4.3) of the synthetic data set described in Section 3.1
and the PSR J1709−4429 analysis described in Section 5.1. Parameters marked with an asterisk are from the UTMOST data
release.

Parameter Symbol Units Synthetic data PSR J1709−4429

Timing model reference epoch∗ T0 MJD 57 600 57 600
Fiducial frequency∗ f0 Hz 6.451 939 727 51 9.754 290 04
Fiducial frequency derivative∗ ḟ 0 Hz s−1 −6.038 24 × 10−14 −8.847 × 10−12

Frequency deviation [f−, f+] Hz [−3, 250] × 10−7 [−3, 250] × 10−7

Frequency derivative deviation [ḟ −, ḟ +] Hz s−1 [−6.04, 6.04] × 10−15 [−4.9, 5.1] × 10−14

Frequency bin size ηf Hz 1.7 × 10−8 1.7 × 10−8

Frequency derivative bin size ηḟ Hz s−1 1.21 × 10−15 2 × 10−15

Timing noise strength σ Hz s−3/2 2.56 × 10−18 2.05 × 10−18

Mean ToA uncertainty∗ 〈σToA〉 ms 5.327 0.506
Bayes factor threshold Kth None 101/2 101/2
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