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ABSTRACT
We study the effect of dark matter (DM) being encapsulated in primordial black holes (PBHs) on the power spectrum of
density fluctuations P(k); we also look at its effect on the abundance of haloes and their clustering. We allow the growth of
Poisson fluctuations since matter and radiation equality and study both monochromatic and extended PBH mass distributions.
We present updated monochromatic black hole mass constraints by demanding < 10 per cent deviations from the � cold dark
matter (CDM) power spectrum at a scale of k = 1 h Mpc−1. Our results show that PBHs with masses > 104 h−1 M� are excluded
from conforming all of the DM in the Universe. We also apply this condition to our extended Press–Schechter (PS) mass
functions, and find that the Poisson power is scale dependent even before applying evolution. We find that characteristic masses
M∗ ≤ 102 h−1 M� are allowed, leaving only two characteristic PBH mass windows of PS mass functions when combining with
previous constraints, at M∗ ∼ 102 h−1 M� and ∼10−8 h−1 M� where all of the DM can be in PBHs. The resulting DM halo
mass functions within these windows are similar to those resulting from CDM made of fundamental particles. However, as soon
as the parameters produce unrealistic P(k), the resulting halo mass functions and their bias as a function of halo mass deviate
strongly from the behaviour measured in the real Universe.

Key words: dark matter – early Universe – large-scale structure of Universe.

1 IN T RO D U C T I O N

Our current cosmological paradigm posits a flat Universe that is
currently dominated by dark energy, with about a third of the energy
density in the form of matter, of which ∼80 per cent is made up of an
unknown form that does not interact with photons called dark matter
(DM), and the remaining ∼20 per cent corresponding to ordinary
baryons. The accuracy with which this model fits the power spectrum
of temperature fluctuations of the cosmic microwave background, the
CMB (Planck Collaboration 2020), is stunning and indicates that at
the very least it represents a very effective model of the Universe
(Peebles 2020).

Because of this there has been a lot of effort trying to understand
the nature of these two dark components. Here we will concentrate
on an alternative scenario for the DM. Even though from the particle
physics point of view there are excellent candidates for the DM
particle in supersymmetry (see de Swart, Bertone & van Dongen
2017 for a historical review), it is not clear whether DM would be
made up of a single particle [Peebles (private communication)].

In line with this possibility, there has been a lot of attention devoted
to primordial black holes (PBHs). These objects are thought to be
able to form early in the history of the Universe as noted early
on by Zel’dovich & Novikov (1966), Hawking (1971), and Carr &
Hawking (1974). In these works the authors noticed the possibility
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that overdensities in the early universe could collapse and form black
holes. Since then there have been numerous works that have explored
the possibility that these PBHs could make up a large fraction of the
DM, even perhaps all of it (see for instance Khlopov 2010; Carr,
Kühnel & Sandstad 2016b; Carr et al. 2017; Carr & Kühnel 2020).
In order to test this idea the MAssive Compact Halo Object searches
(MACHO), proposed initially by Paczynski (1986), were designed
and executed in the 90s. The result of the MACHO searches returned
such low occurrence of detected microlensing events that it led to
the idea that PBHs could not possibly make up a sizeable fraction of
the DM (see for instance Alcock et al. 2000; Tisserand et al. 2007;
Wyrzykowski et al. 2011). However, after the first detection of a
gravitational wave event by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) consortium (Abbott et al. 2016), that
included black holes with masses that could not be comfortably
produced from the death of massive stars in standard stellar evolution
scenarios, the interest in PBHs rekindled rapidly (see for instance
Bird et al. 2016; Garcı́a-Bellido 2017).

As PBHs do not form from dying stars, they can have any range
of masses. There is a simple way to estimate the minimum mass a
PBH can have by requiring that its Schwarzschild radius be equal
to its Compton wavelength. This leads to MPBH ∼ 10−5 g, i.e. one
Planck mass. In the case where the PBH forms as a fluctuation
collapses in the early Universe, the maximum mass can be even
larger than the mass within the present-day horizon, even though
these objects would naturally lie outside our own horizon. In most
of the literature about PBHs it is assumed that they evaporate due to
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Hawking radiation (Hawking 1974, 1975), i.e. the mass of a PBH is
not constant with time, and the mass of a PBH determines the time
it will survive since its formation before it evaporates away. A PBH
of ∼1.7 × 1011 g formed at the end of inflation would be in their last
stages of evaporation by the present day.

The PBH mass spectrum depends on the mechanism that leads
to their formation. In the case where there is a characteristic, single
scale for the collapse of PBHs, their masses would be unique, in
what is commonly termed monochromatic mass functions (Dolgov
& Silk 1993; Garcı́a-Bellido, Linde & Wands 1996; Clesse & Garcı́a-
Bellido 2015; Green 2016; Inomata et al. 2017). This characteristic
scale arises as a result of the need to increase the fluctuations in the
energy content of the Universe in these early epochs, because the
physical overdensity needed for collapse is actually quite large of
δphysical
c ∼ 0.5 (Niemeyer & Jedamzik 1998; Green & Liddle 1999).

However, it is clear that these ideas are simplified and the actual
distribution of PBH masses can be broad, to different degrees. The
actual abundance of PBHs can be obtained by applying peaks theory
approaches to the collapse of these overdensities (Germani & Musco
2019; Germani & Sheth 2020; Escrivà, Germani & Sheth 2020).

The difficulty in reaching the large fluctuations required for black
hole collapse as the overdense patch enters the horizon can be
alleviated by an increase in the small-scale power in the primordial
spectrum. For instance, hybrid inflation models produce what is
usually termed a blue index (Linde 1994), and this has been the
subject of several studies for formation of PBHs (see for example
Kawasaki, Kitajima & Yanagida 2013; Gupta, Sharma & Seshadri
2018).

In a recent paper by Sureda et al. (2020; SMAP from this point
forwards) we presented a study of extended Press–Schechter (PS;
Press & Schechter 1974) distributions of PBH masses formed from
primordial inhomogeneities with blue indices on small scales in two
different scenarios. One of them can be interpreted as the formation
of PBHs at fixed conformal time (FCT; i.e. with the amplitude of
fluctuations of all mass scales at a single conformal time of formation)
in bubble collisions in antipeaks of the energy density field during
inflation (Hawking, Moss & Stewart 1982; Kodama, Sasaki & Sato
1982; Deng & Vilenkin 2017; Deng 2020). The other considers the
route of using PS to obtain the PBH mass function for formation at
horizon crossing (HC), i.e. the amplitude of fluctuations is calculated
as the mass scale enters the horizon.

With the possibility, at least from the theoretical point of view, of
producing these primordial black holes, also came the study of the
consequence of their existence. Assuming that PBHs emit radiation
due to their evaporation, it is possible to estimate how much energy
would be injected to the medium due to this process, in particular
during Big Bang nucleosynthesis, which could affect the abundance
of light elements (Carr et al. 2016b) or as an excess of extragalactic γ -
rays (Carr et al. 2016a). The gravitational effects of PBHs can be seen
via lensing of background objects (Dai & Guerras 2018; Bhatiani,
Dai & Guerras 2019; Hawkins 2020), or because of the effects of
their accretion by neutron stars (Capela, Pshirkov & Tinyakov 2013),
among several other processes. There are also constraints related to
gravitational waves, for example so as not to exceed the detected
events from LIGO (Abbott et al. 2016) presented by Ali-Haı̈moud,
Kovetz & Kamionkowski (2017), from the lack of detections of
lower mass black hole mergers by Abbott et al. (2018), and from
the gravitational wave background limits resulting from the first
Advanced LIGO run (Wang et al. 2018). Notice that some of these
constraints are still under study as Montero-Camacho et al. (2019)
show that the neutron stars constraints should be relaxed, which is

also the case with the constraints from gravitational wave detections
(Boehm et al. 2021; Luca et al. 2020).

Constraints on the amplitude of the power spectrum on small
scales also restrict the possibility that PBHs can form from large
non-linear anisotropies in the power spectrum (e.g. Gow et al.
2021). The effect of large overdensities of massive PBHs induce μ

distortions in the CMB (Chluba, Hamann & Patil 2015). On the other
hand, the production of primordial gravitational waves from large
amplitude fluctuations cannot exceed Pulsar Timing Array (PTA)
thresholds, updated with the North American Nanohertz Observatory
for Gravitational waves (NANOGrav; Arzoumanian et al. 2018),
and fluctuations cannot exceed the small-scale constraints on the
power spectrum from y-distortions (Lucca et al. 2020), or 21-cm
observations (Gong & Kitajima 2017; Bernal et al. 2018; Mena
et al. 2019; Muñoz, Dvorkin & Cyr-Racine 2020). Put together these
constraints place an upper limit of 100 − 104 M� for the mass of
PBHs of monochromatic or narrow lognormal mass distributions
centered on these masses; however, there is the possibility that
some of these constraints need to be relaxed somewhat from lack
of physical models for PBH formation (e.g. Akrami, Kuhnel &
Sandstad 2018). Future constraints from the Primordial Inflation
eXplorer (PIXIE) will put more stringent constraints on the amplitude
of spikes in the spectrum, which will not be able to exceed the current
measured amplitude of the CMB spectrum by more than one order
of magnitude up to scales of k ∼ 104 h Mpc−1 (Chluba, Khatri &
Sunyaev 2012).

The presence of PBHs as a fraction of the DM can also induce the
formation of mini-haloes that would boost the fluctuation spectrum.
The consequences of these have also been used to put similar
constraints on the possible abundance of PBHs (e.g. Gosenca et al.
2017). Carr & Silk (2018) study the possible modifications to
the abundance of structures from Poisson fluctuations sourced by
PBHs. They also look at the possibility of haloes forming around
individual PBHs. Their study provides a combination of constraints
for monochromatic and extended PBH mass distributions. These
constraints are also in agreement with the non-detection of Poisson
fluctuations in the power spectrum of Lyman-α forest observations
(Murgia et al. 2019).

In general, adding all these constraints together gives us an idea
of the allowed range of PBH masses that can constitute a sizeable
fraction of the DM. These constraints can be translated and applied
to extended mass distributions (Carr et al. 2017; Bellomo et al. 2018;
SMAP). In particular, SMAP show that combining all available
monochromatic constraints that are not currently in dispute, and
including an additional one for the abundance of super massive black
holes of active galactic nuclei applicable specifically to extended
PBH mass distributions, there are several regions of the parameter
space for the FCT and HC scenarios that still allow 100 per cent of
the DM in PBHs.

This paper explores the effects of stochasticity of having primor-
dial black holes make up a fraction fPBH of DM in the Universe. We
concentrate on effects on the shape of the power spectrum of density
fluctuations P(k) and place constraints on the abundance of PBHs that
are complementary to these previous works, concentrating on scales
accessible via large-scale structure measurements. We also study the
modifications to the detailed shape of the halo mass function and of
the dependence of their clustering as a function of halo mass Mh (Carr
& Silk 2018; Carr et al. 2020), and how these constrain the fraction of
DM in PBHs. The mass distributions of PBHs that we will consider
here come either in monochromatic or extended form, which will
have different phenomenology and will be explored separately. In
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the case of extended distributions we will verify whether allowed
regions of the parameter space from SMAP are still viable.

This paper is organized as follows. In Section 2 we present the
extended mass functions for PBHs, to then calculate the effect of
Poisson noise on the power spectrum of density fluctuations in Sec-
tion 3, where we also look at the case of monochromatic distributions.
In Section 4 we use the power spectrum including Poisson noise to
infer the resulting halo mass functions and dependence of bias on
halo mass. Section 5 shows the resulting constraints on the fraction
of DM that can be in the form of PBHs with monochromatic and
extended mass distributions. We finish summarizing our work in
Section 6.

2 PR I M O R D I A L B L AC K H O L E MA S S
F U N C T I O N S

We will focus on two types of PBH mass functions. The standard
monochromatic distribution where all PBHs have a single, unique
mass, MPBH such that the average density of matter in PBHs ρ̄PBH

reads

ρ̄PBH = fPBHρ̄m = MPBHn̄PBH, (1)

where fPBH is the fraction of the average density of DM, ρ̄m, in PBHs,
and their average number density is n̄PBH.

We will also use the extended mass functions of a previous paper
of our team, SMAP, where we use a modified PS formalism (e.g.
Sheth, Mo & Tormen 2001) to obtain the mass functions for two
different PBH formation mechanisms.

In the PS formalism, the differential mass function takes the form

dn

dM
(M) = Anνf (ν)

ρm

M2

d log ν

d log M
= Anf (ν)

ρ̄m

M

dν

dM
, (2)

where M is the PBH mass, ρ̄m is the average density in PBHs, An is
the amplitude which is set such that ρ̄m is the matter density at z =
0 (see below), and the multiplicity function can be expressed as

f (ν(M)) = 2√
2π

exp

(
−1

2
ν(M)2

)
. (3)

Notice that this function is normalized such that its integral from 0
to ∞ is 1. In these expressions, ν(M) is a measure of the peak height
defined as

ν (M) = δc

σ (M)
, (4)

where δc is the linear threshold for PBH formation, and σ 2(M) the
variance of the density field that depends on the power spectrum of
density fluctuations.

In the case of black holes that form in the early universe, the
relevant power spectrum is the primordial one that consists on a
power law that allows, beyond observable scales, features such as
the primordial spectral index becoming larger or, equivalently, bluer
(Linde 1994)

Pprim(k) =
⎧⎨
⎩

As

(
k
k0

)ns
for k < kpiv,

Asε
(

k
k0

)nb
for k ≥ kpiv.

(5)

The normalization is set at the fiducial wavenumber,
k0 = 0.05 Mpc−1, for which As = 2.101 × 10−9 Mpc3, ns =
0.9649 ± 0.00042, consistent with no evidence for significant
deviation from a power law over the range 0.008 Mpc−1 ≤ k ≤ 0.1
Mpc−1 (Planck Collaboration 2020). The pivot in the power law is
introduced at the scale kpiv above which the spectral index turns blue,

i.e. nb > 1; we choose kpiv = 10 Mpc−1, well beyond the observable
range of the linear power spectrum in CMB and large-scale structure
measurements (e.g. Ivanov, Simonović & Zaldarriaga 2020 reach k
= 0.25 h Mpc−1). Since P(k) must be a continuous function,

As

(
kpiv

k0

)ns

= As ε

(
kpiv

k0

)nb

and

ε =
(

kpiv

k0

)ns−nb

.

We assume that black holes evaporate due to Hawking radiation
that translates into no black holes with masses below the mass that
has evaporated at a given redshift, i.e. because of this the actual PBH
mass function evolves with time as the number density at low PBH
masses will change depending on whether that mass has already
evaporated (zero number density) or not. Additionally, we only take
into account in our calculations black holes with an abundance of
at least one per Hubble volume. This last consideration is not a
modification to the mass function, only a realization that the mass
within the horizon is the only relevant one at any given moment.
These two effects make the actual mass density of PBHs different
from ρ̄ unless the extra factor An is added to ensure consistency
with the average mass density (see the following subsection for more
details).

Therefore, extended mass distributions take the following generic
form,

dn/dM(M, z) =
{

0 for M < Mev(z),

Fprocess(nb, M
∗, kpiv) for M ≥ Mev(z),

(6)

where Mev(z) is the PBH mass that evaporates completely by
redshift z and Fprocess is a linear combination of functions of the
Schechter form fully determined by the process of PBH formation,
the blue spectral index of the primordial power spectrum, nb, which
characterizes the primordial spectrum above the pivot wavenumber
kpiv, and the characteristic mass scale, M∗, and can be found in
Sureda et al. (2020). The function Fprocess encodes details such as
the time at which the linear fluctuations of the PS formalism are
calculated, which in SMAP are taken to be at an FCT or at the
moment the fluctuation enters the horizon, at HC. Further, in each
case, since the formation of PBHs is assumed to take place during
radiation domination, only a fraction of the energy density collapses
into PBHs that behave from the moment of their collapse as matter,
and therefore their density evolves as a−3, where a is the scale factor
of the Universe, i.e. slower than radiation. In the simplest case where
all DM is in the form of PBHs, the fraction is exactly the ratio of
matter to radiation density at the time of formation. SMAP identifies
two possibilities here. The first one is that only a fraction of all linear
overdensities that satisfy the PS condition for collapse will produce
a PBH; the second one corresponds to the case where a fraction of
every individual sufficiently overdense region collapses and forms
a black hole. This distinction is parametrized by the fm parameter
(fm = 1 or minimum possible fm, or more simply fm = β = ρ̄/ρ̄m

at the time of PBH formation, for the former and latter cases). All
these features translate into different mass functions that are mostly
of statistical origin, which we present in more detail with some
possible interpretative aspects in Appendix A.

The PS formalism is an excellent tool to infer the distributions
of PBH masses assuming their formation is related to the linear
fluctuations in energy density in the early Universe. One should
notice that even if fPBH < 1 this formalism would be applicable as
long as any other DM constituents are much lighter, and possibly
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Figure 1. Example cumulative mass function of PBHs normalized such
that the mass density in PBHs equals the DM density at z = 0, that is,
the density in objects of mass ≥Mev(z = 0) shown by the left vertical grey
line, and ≤M1pH(z = 0), which corresponds to the intersection between the
mass functions and the horizontal grey line that represents the inverse of the
Hubble volume at z = 0. HC and FCT mass functions with fm = 1 are shown
as solid and dashed lines, respectively, and FCT mass functions for fm = β are
shown in dotted lines. Colours correspond to different characteristic masses
M∗ indicated in the figure key. Notice that for HC, only mass functions with
M∗ < 5 × 1012 h−1 M�, the maximum effective cutoff mass for HC, are
shown. The blue spectral index is nb = 2.5 for FCT and 3.5 for HC. For FCT
with fm = β only the higher M∗ cases are shown, for clarity. The grey vertical
line on the right shows the mass within the z = 0 Hubble volume.

relativistic at the time of PBH collapse. In this case the amplitude of
the mass function is smaller by a factor fPBH. PS does not take into
account any possible evolution of the PBH masses by, for instance,
early accretion of other DM constituents or baryons during the matter
domination epoch. However, we will concentrate on finding the
regions where fPBH ∼ 1, where the accretion of matter on to PBHs is
less significant.

Fig. 1 shows examples of cumulative mass functions for different
characteristic PBH masses for HC and FCT with fm = 1 (solid and
dashed), and FCT with fm = β (dotted), with nb = 3.5 for HC and 2.5
for FCT. The left vertical grey line shows the mass of a BH that has
evaporated by z = 0 due to Hawking radiation. No PBH should exist
today below that mass if this mechanism is present in black holes.
On the other hand, the horizontal grey line shows the inverse of the
Hubble volume at z = 0. The intersection of the mass functions with
this horizontal line shows the mass of the most massive black hole
with a probability of finding just one such PBH within the Hubble
volume. More details about this quantity can be found in Section 2.2.
One expects to find higher mass black holes in decreasing fractions of
independent Hubble volumes, but we simply ignore this possibility.
As can be seen in the FCT mass functions with fm = 1, once the
characteristic mass is higher than M∗ ∼ 1026 h−1 M�, the amplitude
of the mass function is such that regardless of M∗ the functions look
the same within the range of observable PBH masses at z = 0.

Notice the feature in the fm = 1 FCT mass function with M∗ =
1040 h−1 M� at the pivot mass Mpiv. This is due to the change of the
spectral index at this mass scale; the feature is quite sharp due to the
use of a top hat window function in k-space. It would be smoother
for other choices such as Gaussian, or top hat in real-space.

The feature in the fm = β case for FCT is at a much lower mass,
M ∼ 1011 h−1 M�, which makes most of the mass functions with
characteristic masses above this value look very similar, especially
once M∗ is large enough that the sharp feature essentially makes the
maximum mass of a PBH within the horizon to match Mpiv.

Also worthy of note is the lack of HC mass functions for
M∗ > 1012 h−1 M�. This is due the condition M∗ ≤ Mpiv ∼ 5 ×
1012 h−1 M� in the HC formation case.

We show examples with characteristic masses of even up to
M∗ = 1040 h−1 M� in FCT. However, in no cases the mass of a
PBH with an abundance of at least one per horizon at z = 0 is higher
than M∗ = 1023 h−1 M� which corresponds to the mass within the
z = 0 Hubble volume (right vertical grey line). Such PBHs are
extremely massive and, in the more extreme mass functions, all
matter within the horizon lies in few PBHs. However, we show
in this work (as is also shown in SMAP at least for HC) that
only mass functions with M∗ < 100 h−1 M� are allowed by the
different available observables that are sensitive to the abundance
of PBHs.

The slopes of the PS PBH mass distributions (at masses well below
the characteristic mass) are also related to the physics of formation
and to the spectral index, particularly to the blue index nb. In the
FCT case the logarithmic slope of the differential mass function n is
related to nb via n = −(9 − nb)/6. For extreme cases with M∗ > Mpiv

in FCT, the slope changes for masses >Mpiv to n = −4/3. In the HC
case the relation reads n = −(9 − nb)/4, giving a maximum steepness
for the abundance of n = −2 consistent with previous estimates (cf.
Carr 1975; Carr & Silk 2018).

Therefore, it is possible to associate the same PBH mass function
to both the HC and FCT collapse mechanisms, except that the blue
spectral indices nb, the amplitude of the power spectrum, and linear
thresholds for collapse δc will be different in each case.

2.1 Effect of fPBH

We now explore the effects of having only a fraction of the total
DM mass in PBHs, fPBH. This permits the calculation of the allowed
fraction of DM in black holes given some particular observable that
is sensitive to the presence of PBHs.

There are two ways to think about the fraction of DM in PBHs.
One takes into account that there is only a fraction of the mass in
PBHs in, say, a halo,

MPBH
h = fPBHMh

and this can be used to work out the number of PBH conforming a
halo, or populating a region of a given volume V.

The other way is to consider this fraction for the calculation of
Poisson noise when thinking about overdensities. In this case Poisson
noise will contribute only in part to the realization of an overdensity,
because smooth DM (smooth in the sense that candidate DM particles
are usually tens of orders of magnitude lighter than PBHs) will trace
(1 − fPBH) of the excess mass within V. The overdensities in DM
coming from the initial conditions and the Poisson noise will be
considered independent. In this case the contribution of Poisson noise
from PBH to the total rms fluctuation reads

σPoisson = fPBHσN

assuming that σ N encapsulates the Poisson noise for the patch which
is being considered.
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2.2 Fraction of mass within the horizon as fluctuation becomes
causal

Here we remark on one interesting effect of the sparsity of PBHs
in extended mass distributions that fall steeply with PBH mass M,
adopting for the moment the simplified assumption that all of DM is
in the form of PBHs, i.e. that the fraction of mass in PBHs is fPBH =
1.

In these distributions PBHs of the highest masses tend to be very
rare and even likely not to be found within the causal volume at early
times. Let N(M) represent the cummulative number of PBHs,

N (M) = V n(M) = V

∫ ∞

M

dn

dM ′ dM ′. (7)

We will refer to the mass at which the cummulative number function
equals one PBH per volume as M1pV,

n(M1pV ) = 1/V . (8)

For the special case when the volume is that of the comoving horizon,
V = VH(z), we define M1pH(z) = M1pV, which is a function of redshift
because the Hubble volume increases with cosmic time, and it will
enter calculations as the upper mass of PBH that are in causal contact
at redshift z, as is the case of fluctuations that enter the horizon.

We will define the number density fraction of PBH as

fnV (z) =
∫ M1pV

Mev(z)
dn
dM

dM

ρ̄m
, (9)

where ρ̄m is the average comoving density of DM, and the volume
density fraction,

fρV (z) =
∫ M1pV

Mev(z) M
dn
dM

dM

ρ̄m
. (10)

The normalization of the mass function An is defined so that fρVH
(z =

0) = 1, where VH is the present-day Hubble volume.
These last two quantities are also named differently for the case

when V = VH(z), fnH(z), and fρH(z) replacing the generic volume V
by the Hubble volume VH(z).

2.2.1 Evolving PBH number and mass density

With extended PBH mass functions the content of matter in PBHs in
the Universe evolves with time. The evolution of the average matter
density, for a fraction of mass in PBH of fPBH reads

ρ̄m(a) = (1 − fPBH)a−3ρm,0 + ρPBH(a), (11)

where,

ρPBH(a) = fPBHfρH(a)a−3ρm,0. (12)

We show two examples of mass and number density evolution
with fPBH = 1 in Fig. 2 which displays the HC and FCT cases with
similar overal shapes of their mass function. The blue lines show the
case of intermediate M∗ values that show constant density in PBHs
within the horizon. The red lines show the case of low M∗, close
to the value of the evaporated mass of PBHs today. The top panel
shows that in this case, the evaporation causes the density of mass
in PBHs to drop by more than a factor of 2 since decoupling. The
bottom panel shows that the effect is actually stronger for the space
density of PBHs. This is due to small black holes that evaporate such
that between decoupling and the present day their number density
drops by more than one order of magnitude for the low M∗ case, and
by about a factor of 3 for the mass functions with intermediate M∗. It
is worthy of note that reducing the population of PBHs by two-thirds

Figure 2. Top panel: Evolution of the comoving mass density as a function
of redshift, for fm = 1 FCT and HC (differenty line types) and different values
of M∗ (different colours, indicated in the figure key). The horizontal dotted
line represents the unit ratio (i.e. no change with time). Bottom: Wvolution
of the comoving PBH number density as a function of redshift, normalized
to their abundance at z = 0, with same colours and lines as the top panel. In
both panels fPBH = 1, i.e. all of DM at z = 0 is in PBHs.

does not impact the mass density in PBHs significantly, indicating
that in this case most of the mass resides in higher mass PBHs.

In the case that a fraction of the matter fPBH is in PBHs, the
evolution of the evaporated mass, and the effect of increasingly more
massive PBHs entering the horizon make the total DM mass density
to evolve with time.

2.2.2 Effective halo masses

Because in general, for extended mass distributions, M1pH < ∞ the
average mass within the horizon at redshift z is

ρ̄PBH(z) = fPBHfρH(z)ρ̄m, (13)

which will be noticeably lower than fPBHρ̄m for all redshifts where
M1pH(z) ≤ M∗.

Therefore, on average, because the mass contained in the over-
density is lower since fρH(zin(Mh)) < 1, where zin(Mh) is the redshift
at which Mh enters the horizon, the effective mass of the halo that
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collapses from these patches will be smaller. Taking a fraction fPBH

of the DM in PBH,

Meff
h = (1 − fPBH(1 − fρH(zin)))ρ̄mV

which translates into

Meff
h

Mh
= 1 − fPBH(1 − fρH(zin)). (14)

Since Meff
h has the potential to be much smaller than Mh the expected

abundance of very low mass DM haloes can decrease by several
orders of magnitude with respect to some types of CDM. For instance,
for CDM composed of particles such as the neutralino, the abundance
keeps increasing slightly down to DM haloes of Earth mass (Angulo
& White 2010).

The abundance of haloes can be used to place strong constraints
on the parameters of PBH-extended mass functions, as Fig. 1 shows
that for characteristic masses M∗ = 1011 h−1 M� the abundance
of PBHs surviving down to z = 0 reaches at most a value
nPBH ∼ 100 h3/Mpc−3. Since the Lagrangian volume of a halo of
1011 h−1 M� is roughly 10−2 h3/Mpc−3 this clearly shows that the
DM in such haloes would be typically concentrated in a single PBH,
and observations of dwarf satellites of nearby galaxies which are
hosted by DM haloes of this mass, show extended DM distributions
(e.g. de Blok 2010).

Fig. 3 shows the effective masses of DM haloes for several values
of M∗. It can be inferred that for M∗ = 1010 h−1 M� the effective
mass of dwarfs would be strongly reduced. Notice though that smaller
effective PBH masses lower the impact on observable masses. In
particular, for the values of M∗ that allow a sizeable fraction of DM
in PBHs according to SMAP, the effect becomes noticeable only
at halo masses of Mh ∼ 103 h−1 M� or below, much lower than the
masses of the DM satellites that show the possible excess with respect
to observations.

This is an approximate approach that allows to see effects coming
from the sparsity of PBHs on DM haloes, that we will refine later
on when we use the full power spectrum of density fluctuations to
estimate the actual halo mass function.

3 POISSON N OISE AND THE POW ER
SPECTRUM

If we concentrate on measurable fluctuations, ignoring the blue
part of the primordial power spectrum, the �CDM linear power
spectrum of density fluctuations at late times, after decoupling, has
the following form:

P�CDM(k, z) = Pprim(k)T 2(k)D2
1(z), (15)

where T(k) is the transfer function and D1(z), the linear growth
factor. To calculate the �CDM transfer function and growth factors
we adopt the density parameters �b = 0.048, �CDM = 0.262, ��

= 0.69 for baryons, cold dark matter (CDM), and dark energy,
respectively, and an amplitude of fluctuations on spheres of 8 h−1

Mpc of σ 8 = 0.81, consistent with the combined constraints from
Planck Collaboration (2020). For the primordial power spectrum
the parameters are those given in Section 2. This power spectrum
responds only to the evolution of fluctuations down to decoupling
ignoring any shot noise from DM constituents such as primordial
black holes.

If mass is distributed in discrete tracers, there is an extra component
to the power spectrum coming from shot noise,

P tracers
Poisson (k) = 1/n̄, (16)

Figure 3. Effective mass ratios resulting from the change in the matter
density within the horizon expected for extended PBH mass functions of
different characteristic mass (different colours as indicated in the figure) for
FCT and HC (top and bottom, with nb = 2.5 and 3.5, respectively). All cases
correspond to growth of Poisson fluctuations since the beggining of matter
domination with fPBH = 1.

where n̄ is the average number density of tracers within the horizon,
in the same units as P(k). This approximation ignores possible
departures in the initial distribution of PBHs from a Poissonian
one at the time of their formation (see Desjacques & Riotto 2018
for an explanation of the possible departures from Poisson at low
wavenumbers). We will limit our analysis to the linear regime where
our assumption is reasonable (Luca et al. 2020). Notice that P(k) has
units of volume, i.e. a constant power indicates larger fluctuations on
smaller scales. If we consider PBHs as constituting part of the mass
budget, this term will be present independently of the shape of the
PBH mass distribution.

In addition to this, Poisson inhomogeneities from PBHs will also
undergo the dynamics of fluctuation growth as they can affect the
gravitational potential. We will briefly review the growth of matter
and Poisson fluctuations in what follows.

(i) When matter is in the form of fundamental particles the growth
of inhomogeneities behaves as in the standard �CDM overdensities
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during radiation domination, in the sense that they can grow since
the moment they enter the horizon and all the way to z = 0.

Because of the initial conditions, during the radiation era the
growth factor for �CDM matter fluctuations within the horizon is
logarithmic, much slower than outside the horizon where D1(a)∝al

with l = 1, 2 in the matter and radiation epochs, respectively. Inside
the horizon, matter density fluctuations continue to grow. These
phenomena are fully taken into account by the transfer function
that quantifies the ratio between the actual growth of a fluctuation
of scale k since it entered the horizon, with respect to what it would
have been able to grow had it never entered it (Dodelson 2003).

We can therefore use the full linear �CDM transfer function T(k)
to go back and forth between the amplitude of �CDM fluctuations
at the moment a given k-mode enters the horizon and at any later
redshift.

In addition to this one also needs D1 to relate the amplitude of
fluctuations P(k) at any redshift with the amplitude when a scale
k entered the horizon by finding the redshift zin such that the
wavenumber k enters the horizon, k = 2π /rH(zin) where rH is the
horizon size as a function of redshift.

Since for a wavenumber that is well outside the horizon at equality,
e.g. koutside = 0.001 h Mpc−1, T(koutside) = 1, we can obtain the
amplitude at horizon entry and use it to infer the amplitude of the
fluctuations at redshift z,

G�CDM(k, z) = T (k)
D1(z)

D1(zin(k))
. (17)

(ii) Poisson fluctuations in the density of PBHs are also able to
survive until matter domination because PBHs are massive enough
that the absorption of radiation has no effect on them in practice,
especially on their spatial distribution. It is therefore reasonable
to consider Poisson fluctuations in their distribution at the end of
radiation domination.

Poisson fluctuations can only affect the potential around the time
when matter domination begins. One should not consider that the
Poisson fluctuation of the PBH density can grow before the time
when the PBHs themselves dominate the energy budget. Poisson
fluctuations in energy density are a sampling error relative to the
total available energy density within a sampling volume, and if a
component does not dominate the energy budget, the sampling error
of counting a few more or a few less particles of that component
will not have any significant effect on the energy sampled within
the volume. On the other hand, the usual fluctuations of the matter
component including PBHs do evolve in time, as they are not the
result of a sampling of the energy within a volume, but are simply the
result of the dynamics of that component that are entirely determined
by the evolution in the dominant component. Thus, even though DM
fluctuations evolve in the usual way since their formation, the Poisson
fluctuations associated with that component only evolve since matter-
radiation equality.

Then, in this case the growth of fluctuations is different,

GPoisson(k, z) = max

(
1,

D1(z)

D1(min(zeq, zin(k))

)
, (18)

where the redshift to be taken into account as the beginning of the
growth of the mode is whatever happens last, the redshift when
the mode enters the horizon, or the redshift of matter and radiation
equality (Carr & Silk 2018).

In order to obtain the correct amplitude for the Poisson power
spectrum we need to take into account the growth of fluctuations

in the applicable scales by using Gi,

P (k)PBH
Poisson(k, z) =

(
1

n̄(zin(k))
+ T 2

M (k, z)

)
G2

i (k, z), (19)

where the subindex i corresponds to ‘Poisson’ or ‘�CDM’ depending
on the choice of growth for the Poisson fluctuations. Note that by
choosing ‘Poisson’ we may be slightly underestimating the growth
of Poisson fluctuations, as PBHs become a non-negligible fraction
of the energy budget slightly before equality. This last equation
includes both the evolving and unevolving Poisson contributions,
and can be used to work out present day modifications to the
power spectrum from overdensities other than the �CDM initial
conditions; it also adds another term, TM(k, z) to allow the possi-
bility of additional phenomenology associated to the discreteness
of PBHs from extended mass distributions. It is also worth to
note that the evolution of the number density of black holes due
to evaporation and to their sparsity, characteristic of extended
PBH mass functions, and entirely absent in monochromatic ones,
can introduce a dependence of the Poisson noise on scale, since
different scales enter the horizon at different cosmic times, and
therefore they can do so with different number densities and Poisson
fluctuations.

The effect of the fraction of mass in PBHs is such that it multiplies
directly the variance. The total P(k) is then

P (k, z) = P�CDM(k, z) + f 2
PBHP PBH

Poisson(k, z). (20)

3.1 Monochromatic PBH mass distributions

In the case of monochromatic distributions, PBHs have a
unique mass and the Poisson component is P PBH

Poisson(k, z) =
(1/n̄(zin(k)))GPoisson(k, z)2, where the comoving number density of
PBHs is constant for monochromatic PBHs, n̄(zin(k)) = n̄.

Including the effect of the fraction of mass in PBHs we obtain

P PBH
Poisson(k, z) = f 2

PBH

n̄
GPoisson(k, z)2. (21)

This equation ignores the limit where a mode k contains ≤1 black
hole. There would be a single PBH of ∼1013 h−1 M� within the
equivalent real space volume of kNL = 1 h Mpc−1. Therefore if the
constrained fraction of DM in PBHs of this mass (or higher) is close
to fPBH = 1 at these wavenumbers, our calculations need to be revised
to include the change in the �CDM power spectrum due to the lack
of DM on these and larger wavenumbers.

Fig. 4 shows examples of Poisson P(k) for different monochro-
matic PBH masses and different cases of evolution of the Poisson
fluctuations. The case with no evolution of the dashed line appears as
a constant line as the power spectrum is shown per unit volume that
makes the Poisson spectrum simply the inverse of the number density
of matter tracers, i.e. of PBHs. The blue solid lines show an increment
from large to small scale (small to large wavenumber) up to the scale
of the horizon at the time matter domination starts, since this case
shows the evolution since equality. For comparison, the red dotted
lines show growth since the mode enters the horizon, which exceeds
the expected growth for Poisson fluctuations. As can be seen the
Poisson power can overcome the �CDM spectrum (shown in black)
depending on the assumed evolution of Poisson fluctuations and the
PBH mass; we use this to estimate a maximum allowed fraction of
mass in PBHs with equation (27).
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Figure 4. Power spectra from Poisson noise for monochromatic PBH mass
functions of masses 100–106 in increments of 2 dex (bottom to top blue
solid lines) for growth since equality. The dotted line shows the case of
MPBH = 106 h−1 M� for growth since horizon entry, whereas the dashed is
the case of no growth. For comparison, the black solid line shows the �CDM
power spectrum at zCMB = 1100. The vertical dotted line shows the standard
wavenumber up to which which we require the Poisson power spectrum not
to exceed 10 per cent of the value of the �CDM power spectrum.

3.2 Extended mass distributions

The variance in the matter density of PBHs within a volume
corresponding to the wavenumber k is related to the actual shape
of the extended mass distribution dn/dM.

We begin by illustrating how the relative fluctuation in number
density and in the PBH masses enter the relative fluctuation of the
mass density. In a simplified but illustrative picture one can write,

σ 2(ρm) = σ 2(n) 〈M〉2 + σ 2(〈M〉)n2, (22)

where n is space density and <M > is the average mass of PBHs, and
the variances are assumed independent of one another. In particular
notice that if the distribution is monochromatic, the fluctuation of the
average mass of PBHs vanishes and we are left with the Poisson term
σ (ρm) = n1/2 < M >. In the case of some extended mass distributions,
the most massive PBH can influence significantly the amount of mass
in a given volume and this can have a stronger effect than the variance
in the total number of PBHs in that volume multiplied by the average
PBH mass. In what follows we present both terms of the fluctuation
for the case of extended PBH mass distributions, so as to calculate
the full fluctuation in the PBH mass density due to Poisson noise.

Let us define the density of matter in PBHs,

ρ̄PBH(V , z) = fPBHfρV (z)ρ̄m =
∫ M1pV

Mev(z)
Mdn/dMdM,

and define the number density of PBH within volume V,

n̄(V , z) =
∫ M1pV

Mev(z)
dn/dMdM.

The fluctuation in the mass due to Poisson noise can be approxi-
mated by

δ2
M(V , z) = V

(
1

ρ̄PBH

∫ M1pV

Mev(z)
M ′ dn

dM
(M ′)�2

NδM
dM ′

)−1

, (23)

where �2
NδM

= max(1, NδM), to avoid relative fluctuations above unit
in a given mass bin and,

NδM = V

∫ M ′+δM

M ′
dM ′′ dn

dM
(M ′′).

When numerically integrating this equation, we set δM to the
integration step in mass, which is chosen for convergence.

Combining the Poisson noise in number and in mass, and including
the effect of fraction of mass in PBHs which directly multiplies the
variance,

P PBH
Poisson(k, z) = f 2

PBHGPoisson(k, z)2

×
(

1

n̄(Vk, zk)
+ δ2

M (Vk, zk)

)
, (24)

where zk is the redshift when the mode k starts to grow, set to equality
– or later for larger modes – in our main analysis, and Vk = (2π /k)3 is
the volume associated to the mode k. The terms between parenthesis
correspond to the terms of equation (22) that was presented to
illustrate the Poisson noise in number density and mass; in particular,
the second term corresponds to TM(k, z) from equation (19). Note
that the evolving Poisson power spectrum depends on the redshift the
mode k either enters the horizon or starts to dominate the potential,
zk, as well as the redshift at which the power spectrum is calculated,
z.

We remark that the assumptions adopted here are reasonable in
linear theory, for small fluctuations. Care will be taken to ensure that
this approximation is applicable in the following sections.

Fig 5 shows the resulting power spectra for the Poisson component
of DM composed entirely of PBHs for the FCT and HC scenarios of
extended PBH mass distributions, for the different cases of growth
of Poisson fluctuations after equality of matter and radiation, and
since the modes enter the horizon, compared to the �CDM power
spectrum, all at z = 1100. As can be seen, the Poisson spectrum is
able to dominate over the �CDM case at small scales, depending on
the assumed growth.

The common feature is that there is a dependence on scale of
the Poisson variations in number and in mass, which result from a
dependence of the scatter in number and mass within the horizon
with time, i.e. as a function of the volume associated to the mode
and the time when the Poisson fluctuation becomes dominant. The
dependence arises from there being only PBHs with at least the mass
of evaporated black holes Mev(z) at a given redshift z, and with at most
the mass that results in an abundance of just one PBH per volume,
M1pV; higher mass PBHs will be present in decreasing fractions of
spheres of sizes larger than those corresponding to the mode k. This
latter detail is in part where the Poisson effect on mass density of
PBHs comes from, aside from there being noise in the mass of PBHs
that are within the horizon.

What we see in the figure is that, in the case of no evolution
(green lines), the Poisson power in number density decreases with
wavenumber for small k, which indicates that the variations of M1pV

and Mev combined result in higher number densities of PBH as the
redshift increases (very slightly for FCT but clearly noticeable for
HC). When the variation in mass is added in the no evolution case
the noise is orders of magnitude higher and roughly constant except
at very high wavenumbers where the noise decreases, showing that
M1pV is low enough that the abundance of PBHs rapidly increases
to high numbers lowering the importance of the mass component of
the noise.

It is also interesting to note that the slope of the PBH mass function
has a strong influence on the amplitude of the Poisson amplitudes in
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Figure 5. Power spectra at z = 1100 from Poisson noise for FCT and HC
PBH mass functions (top and bottom, respectively) of characteristic mass
M∗ = 102 h−1 M� and nb = 2.5 and 3.5 (for FCT and HC), including
different terms of equation (24), the one due to the number density alone in
dotted, and including also noise in the total matter due to Poisson acting on the
extended mass functions in dashed, with no evolution in green, evolution since
the modes enter the horizon in red, and evolution since matter domination in
blue. For comparison, the black solid line shows the �CDM power spectrum
at the same redshift; the break at kpiv = 10Mpc−1 shows the effect of the
blue index in the primordial power spectrum. The vertical dotted line marks
the standard wavenumber used here to calculate allowed fractions of mass in
PBHs.

number and mass. The variance in number is lower in HC than in
FCT, but the variance in mass is higher, with an effect of 10 orders of
magnitude increase for HC compared to only ∼2 for the FCT mass
function; this is simply due to the steepness of the mass function; a
steeper drop of the mass function increases the importance of low
mass PBHs, thereby lowering the mass component of the Poisson
fluctuation. We tested whether the increase in the amplitude of the
Poisson spectrum due to δM can be explained by the most massive
PBHs that enter the volume associated to a given wavenumber k,
and find that for shallow PBH mass function slopes such as the FCT
examples shown in the figure, a large fraction ∼50 per cent of the
increase is produced by the most massive PBH in V(k); including
the 10 most massive PBHs increases the fluctuations almost to the
amplitude calculated using equation (23).

Any appreciable changes to the power spectrum of density fluctu-
ations at k = 1 h Mpc−1 can likely be observed today as this affects
structures on scales of clusters of galaxies; it is difficult to disentangle
non-linear effects at these scales but it is safe to say that at present
we do not expect orders of magnitude differences with respect to
the �CDM predictions. Therefore, the condition in the extended
mass function case is the same as the one for the monochromatic
distribution of equation (27) that at this scale the Poisson contribution
is at most 10 per cent that of �CDM at kNL or smaller wavenumbers.

4 PO I S S O N N O I S E A N D T H E A BU N DA N C E A N D
CLUSTERI NG O F DARK MATTER H ALOES

Dark matter haloes result from the evolution of overdensities in the
matter density field that exceed the linear threshold for collapse.
In some cases the population of PBHs will be able to track these
overdensities in an accurate way and the halo mass function will
correspond to �CDM; the reason for this is that we consider
PBH seeds to be randomly distributed in space in the Lagrangian
volumes of haloes prior to their horizon entry after which primordial
overdensities are modified into �CDM shape. However, shot noise
fluctuations can also contribute to the linear overdensity and produce
DM haloes following a Poisson rather than �CDM spectrum.
Additionally, as the clustering of haloes depends on their rarity (rarer
density peaks cluster more strongly in Gaussian random fields; see
for instance Mo & White 1996), a modification to the halo mass
function can also be accompanied by a change in the clustering of
haloes as a function of halo mass.

It should be kept in mind that in both cases, the relevant fluctuations
are the linear ones that opens the possibility to explore the small
effects introduced by Poisson noise from PBHs on scales that are
difficult to study using the measured power spectrum at the redshifts
where halo mass function and clustering are measured (z ∼ 0).1

Both baryon effects (e.g. Sawala et al. 2013) and primordial non-
gaussianity (e.g. Mana et al. 2013) also change the abundance of
massive DM haloes but are not taken into account in this work.

We will explore these two effects separately, the changes to
the mass function and clustering of haloes due to PBH Poisson
fluctuations, in the next subsections.

4.1 Halo mass function

The actual mass function of DM haloes can be calculated using
the same general approach presented in Section 2, except that the
collapse of haloes takes place during matter domination, in all patches
with linear overdensities higher than a given threshold for collapse,
δh

c (Mo & White 1996). We apply this formalism to find out the actual
present day halo mass functions resulting from adding the Poisson
noise to the �CDM power spectrum of density fluctuations. To do
this we use the publicly availabe code by E. Komatsu2 to calculate
the mass function using the power spectra with the contribution of
Poisson fluctuations at z = 1100 (some of which are shown in Figs 4
and 5) evolved to z = 0.

Fig. 6 shows that the Poisson contribution can produce important
and noticeable changes in the halo mass function with respect to the
�CDM model (lines, colours indicated in the figure key), irrespective

1Simulations show that this is not strictly true as the halo mass function and
clustering measured in simulations is only fit when non-linear corrections
are introduced (e.g. Sheth, Mo & Tormen 2001). The departures would again
need to be stronger than those introduced by non-linearities to be able to
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Figure 6. Halo mass functions resulting from the full power spectrum con-
sisting of �CDM fluctuations and Poisson noise from monochromatic (top)
and FCT- and HC-extended PBH mass functions (middle and bottom panels,
respectively). Colours correspond to different PBH masses or characteristic
masses (as indicated in the figure) and in the case of extended distributions,
different line types show results for different blue spectral indices. All cases
correspond to growth of Poisson fluctuations since the beginning of matter
domination. The black solid lines in all panels show the pure �CDM halo
mass function, as reference, and the filled circles with errorbars show a recent
measurement of the halo mass function by Abdullah et al. (2020).

of the PBH mass function. For illustrative purposes, the points show
recent measurements from Abdullah, Klypin & Wilson (2020), who
use an updated group catalogue from the Sloan Digital Sky Survey-
Data Release 13 (Albareti et al. 2017) to estimate masses using the
abundance matching technique as in Wang et al. (2008).

For the monochromatic case, the PBH masses we chose to show are
within the range that are currently ruled out by different observations
such as lensing (Tisserand et al. 2007), x-ray binaries (Inoue &
Kusenko 2017), and large-scale structure effects (Carr & Silk 2018;
Murgia et al. 2019). However, the halo mass function does not depart
strongly from the �CDM case even for MPBH = 106 h−1 M�.

For extended distributions, it is interesting to note that the resulting
mass functions with Poisson noise from PBHs shown in the figure are
in regions of the PBH mass function parameter space that precludes
100 per cent of the DM to be in the form of PBHs according to SMAP
and, still, there are cases where the mass functions are quite similar
to the �CDM case as well as to the observational points, such as the
red dashed lines.

It is also worth mentioning that in some cases, especially those
shown for HC and high nb, the abundance of low mass haloes
Mhalo < 109 h−1 M� can be suppressed relative to �CDM (black
lines) even for low M∗ values that could affect the number of satellite
subhaloes in galaxies (see Fielder et al. 2019 for a recent update
on the observed abundance of satellite galaxies) and the statistics of
low mass DM haloes detected via strong lensing searches (He et al.
2020). These particular models are apparently in good agreement
with observations and �CDM at the high mass end but present
deviations at low halo masses. The lower amplitude of the halo mass
function at low halo masses is also a prediction of warm dark matter
models (�WDM), but the shapes of the mass functions for �WDM
and DM made of PBHs would be different as the former show a
clear drop of abundance of DM haloes starting at a pivot mass that
depends on the mass of the WDM particle (He et al. 2020).

In the next section we will quantify which PBH mass functions,
assuming that these make up most or all of the DM in the universe,
produce halo mass functions that depart the most from the one
corresponding to the �CDM, and use this to reject regions of
the parameter space of monochromatic and extended PBH mass
functions.

To understand the excess of high mass haloes for high MPBH or
M∗ (monochromatic and extended mass functions, respectively) one
can go back to the examples of power spectra of Figs 4 and 5, where
it is clear that the Poisson contribution increases the amplitude of
fluctuations on larger scales for higher values of MPBH and M∗

for each PBH mass function case. This translates into a larger
fraction of fluctuations above the threshold for halo collapse that
produces higher abundances of high mass haloes. Incidentally, this
also means that these high mass objects are in peaks of the density
field that are not as rare as in the standard �CDM case, and that
are sourced by inhomogeneities that are spatially uncorrelated. In
the next subsection we will quantify the effect that this has on their
clustering.

4.2 Clustering of haloes constituted by primordial black holes

We can also use the actual linear power spectrum that contains both
the fluctuations in matter coming from primordial overdensities as

detect/reject PBHs as the source of change in abundances and clustering of
haloes.
2https://wwwmpa.mpa-garching.mpg.de/∼komatsu/codes.html
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well as the ones of PBH Poisson origin, evolved to the present day,
to calculate the bias factor of haloes as a function of their mass. Mo
& White (1996) presented an analytical model for the bias factor,

b(M, z) = 1 + ν(M)2 − 1

δh
c (z)

, (25)

that shows the dependence of the bias on ν and δh
c , the significance

of peaks in the matter distribution from which the haloes form, and
the linear overdensity for halo collapse.

We use the parametric modification of the Mo & White (1996)
presented by Sheth et al. (2001) that provides a better fit to results
from numerical simulations. Notice that this allows to obtain the
bias of haloes starting from power spectra of any form. We are aware
that the bias formulae were not tested with power spectra that differ
from �CDM as much as the ones we present here, for example for
PBH mass functions with M∗ > 104 h−1 M�, but this still allows
to determine the PBH mass function parameters that produce bias
functions that show some significant departure.

To calculate the bias of haloes we use the implementation of the
Sheth et al. (2001) formulae by E. Komatsu1 that uses as input
the linear power spectrum, which in our case includes the PBH
Poisson contribution. The results are shown in Fig. 7 (lines) where
the effect of the Poisson contribution for high PBH masses and M∗

parameters is very strong, as models with MPBH or M∗ ∼ 104 h−1 M�
(monochromatic, top, and extended PBH mass distributions, middle
and bottom, respectively) or greater are clearly inconsistent with
observations as haloes of the mass of galaxy clusters would cluster
even less strongly than the smooth matter field. For comparison we
show the measurements by Wang et al. (2008) who measure the
clustering of groups of galaxies; in particular we show the results
for masses calibrated using the abundance matching technique, i.e.
using numerical simulations to match the abundance of DM haloes
to that of galaxy groups, ranking the former by their DM mass and
the latter by their total luminosities. Even though the masses are
somewhat dependent on the fiducial cosmology, the increase in the
level of clustering with halo mass is clear. Wang et al. (2008) present
bias as a function of group mass relative to their lowest mass sample;
because of this we rescale their results to the amplitude of �CDM at
their lowest mass bin.

The drop of the clustering amplitude to values even below that
of the mass (b < 1) for high values of PBH mass or M∗ in the
PBH mass function shows that haloes are forming primarily from
Poisson fluctuations sourced by massive PBHs (individual ones for
monochromatic functions); i.e. the power spectrum at the scales of
collapse of massive haloes contains a significant contribution from
Poisson fluctuations (cf. Figs 4 and 5) that are spatially uncorrelated
and therefore tend to wash out the �CDM clustering, in stark contrast
with the trend shown by galaxy groups. The excess of power on
scales corresponding to the mass of these large haloes makes their
collapse much more common than in �CDM. In the latter, such
objects would be located on extreme peaks of the density field and
cluster more strongly (see for instance Padilla & Baugh 2002; Wang
et al. 2008; Finoguenov et al. 2020).

When the PBH mass, or the characteristic mass drops to
103 h−1 M�, the strong effect of Poisson fluctuations vanishes and
the �CDM model behaviour is recovered, modulo 10 per cent
differences below Mh = 1013 h−1 M�. In the following section we
will quantify the departure in the clustering dependence on mass from
observations with respect to �CDM, to assess the region of parameter
space that produces halo clustering that matches observations as
reasonably well as is achieved with the standard cosmological model.

Figure 7. Halo bias resulting from the full power spectrum consisting of
�CDM fluctuations and Poisson noise from monochromatic (top) and FCT-
and HC-extended PBH mass functions (middle and bottom, respectively).
Different colours show different PBH masses (monochromatic) and charac-
teristic masses (extended distributions). For the latter, line types correspond
to different blue spectral indices. All cases correspond to growth of Poisson
fluctuations since the beginning of matter domination. The black solid lines
in all panels show the pure �CDM halo mass function, as reference. The
solid points with errorbars show the measurements by Wang et al. (2008),
scaled to the amplitude of the �CDM bias for the lowest mass bin.
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5 C O N S T R A I N T S O N TH E A BU N DA N C E O F
PB H AND THEIR POSSIBLE RO LE AS DARK
MATTER

Here we provide quantitative constraints on the possibility that DM is
in the form of PBHs in either monochromatic or PS mass functions.

As there is no evidence of departure from �CDM in the observed
CMB temperature power spectrum (Planck Collaboration 2020), any
PBH population is required to satisfy

f 2
PBHP PBH

Poisson(k, z) << P�CDM(k, z), for k ≤ kNL. (26)

The upper limit on k for this condition corresponds to the scale where
non-linear, baryonic, and redshift space distortion effects make it
difficult to predict the actual measured P(k) by the model. We choose
kNL = 1 and 10 h Mpc−1 (in some cases). The first scale is where
the effect of baryons is generally thought to reduce the non-linear
power spectrum amplitude by about 30 per cent (Schneider et al.
2019). The larger kNL value corresponds to the scale at which a warm
DM model starts to depart from CDM (Stücker, Busch & White
2018). Apart from baryons and the nature of DM, primordial non-
gaussianity can also affect the linear power spectrum on small scales.
Taruya, Koyama & Matsubara (2008) show that the effect at these
scales is of a few per cent at low redshifts. The main effect of non-
linear evolution is to broaden much more strongly the positive tail
of the distribution of overdensities thereby increasing the amplitude
of the power spectrum by orders of magnitude, making it difficult
to find traces of small variations of the power spectrum at high
wavenumbers. However, in the last equation, we will still adopt a
conservative maximum of 10 per cent effect on the linear P�CDM(k),
but will make the comparison between the Poisson and �CDM power
spectra at z = 1100 when fluctuations are still linear.

Substituting and solving for fPBH at kNL,

fPBH(M, z) = min

(
1,

(
0.1 P�CDM(kNL, z)

P PBH
Poisson(k, z)

)1/2
)

, (27)

where the 0.1 factor corresponds to the adopted 10 per cent effect.
To calculate the maximum allowed fraction of DM in PBHs from

changes in the halo mass function and halo bias as a function of mass
we use the standard χ2 per degree of freedom (d.o.f.) assuming no
correlation between mass bins,

χ2(�) = 1

nd.o.f.

∑
i

(
(O(Mi) − M(�,Mi)

σO (Mi)

)2

,

where O(Mi) and σ O(Mi) correspond to the measurements and errors
of the halo bias or halo mass function in bins of halo mass Mi, and
M is the corresponding model that depends on the mass function
parameter set �, which is � = {MPBH} for the monochromatic case,
and � = {M∗, nb} for the extended PS distributions. The maximum
allowed fraction of mass in PBHs is then the one that produces a
departure from {O(Mi)} of �χ2 = χ2 − χ2

min = 1 with respect to
the minimum reduced χ2 value.

For the bias as a function of mass we only use the three highest
mass bins of Wang et al. (2008) as {O(Mi)} because the first mass
bin is only used as a reference amplitude and is quoted with zero
error.

We notice that the measurements of the halo mass function by
Abdullah et al. (2020) depart significantly from the �CDM case in
the lower mass bins (cf. Fig. 6) which induces a very bad fit for models
with and without PBHs. This is not surprising as measured halo mass
functions are subject to systematic biases. Since we do not intend
to allow �CDM parameters to vary, or to model possible biases in
measured halo mass functions in this work, instead of comparing

the halo mass functions of models and observations, we make the
comparison against the �CDM halo mass function adopting Poisson
fluctuations for a volume corresponding to that of the SDSS-DR13
(Albareti et al. 2017) with the same redshift cuts adopted by Abdullah
et al. (2020). We take these as the {O(Mi)} set of data and repeat
the procedure followed for the bias of haloes as a function of mass.
We checked that the errors obtained this way are consistent with the
ones from Abdullah et al. (2020) at equal number densities.

5.1 Constraints on fPBH for monochromatic distributions

The effect of Poisson fluctuations coming from single mass black
holes was presented in Fig. 4 for the linear power spectrum and
in the top panels of Figs 6 and 7 for the halo mass function and
dependence of halo bias on halo mass, where in all cases the effect
becomes larger as the PBH mass increases.

Applying the criterion that the modification to the �CDM power
spectrum at wavenumbers of 1 and 10h Mpc−1 should not exceed
10 per cent returns allowed fractions of DM in PBH from equa-
tion (27) that are shown in the top panel of Fig. 8. As can be seen, for k
= 1 h Mpc−1 the least permissive case is that of growth since the mode
enters the horizon, as expected, although this is only a shift of 2 dex on
the PBH mass that allows 100 per cent of DM in PBHs (ignoring any
other constraints) with respect to the preferred case of growth since
matter and radiation equality. The upper limit for fPBH = 1 ranges
from MPBH = 102 h−1 M� to MPBH ∼ 105 h−1 M� in the case of no
evolution. We also show the constraints with growth since equality
(GPoisson) for k = 10 h Mpc−1 as a light blue line, and restrict masses
to MPBH < 102 h−1 M� in order to allow fPBH = 1. Incidentally, Gow
et al. (2021) show that even with very narrow peaks in the power
spectrum it is rather difficult to form PBHs with monochromatic (or
narrow lognormal) distributions beyond these masses. Notice that at
the masses where the approximation adopted for P (k)PBH

Poisson for the
monochromatic case is no longer accurate (MPBH ∼ 1013 h−1 M�)
the allowed fraction of DM in PBHs is already very low, <10−3.

The resulting maximum allowed fractions of DM in PBHs result-
ing from the �χ2 between the measured dependence of bias on halo
mass and the model with different fractions of DM as PBHs are
shown as a blue solid line in the bottom panel of Fig. 8. The orange
line shows the allowed fractions fPBH for the constraint using the
halo mass function. Both constraints are shown only for growth of
Poisson fluctuations since matter domination.

In both the top and bottom panels, we further compare our con-
straints with a representative set of other monochromatic constraints
for the same region of MPBH (there are other constraints for lower
masses that are not shown for brevity), namely, lensing events toward
the Magellanic clouds (EROS; Tisserand et al. 2007), from XRBs (
noue & Kusenko 2017), effects coming from the accretion of PBHs
and how this affects the CMB (Serpico et al. 2020), and LSS effects
also from Poisson fluctuations (extracted from Carr & Silk 2018);
as it can be seen, the latter place constraints consistent with ours
for GPoisson at kNL = 1 h Mpc−1, as expected, but our constraint
from departures of the power spectrum does not taper off for higher
masses. The constraints from the halo mass function and bias as a
function of mass for growth since equality (bottom panel) are also
consistent with our results for departures from the power spectrum
at kNL = 1 h Mpc−1, and with the LSS constraints even showing a
similar minimum allowed fraction of fPBH ∼ 10−3 for MPBH > 1010.
In all cases, from our measurements we find strong drops in the
allowed fraction of mass in monochromatic PBHs starting at MPBH

= 104 to 106 h−1 M�.
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Figure 8. Fraction of DM in PBHs as a function of monochromatic PBH
mass, from the contribution of Poisson noise to the linear power spectrum
(top) and to the halo mass function and bias as a function of mass (bottom).
In the top panel, the solid line shows the case of growth since the redshift of
matter and radiation equality, whereas the dashed is the case of no growth
and dotted, of growth since the mode enters the horizon. The light blue
solid line shows the more stringent case of requiring a small variation of the
power spectrum with respect to �CDM at k ≤ 10h Mpc−1. In the bottom
panels the blue line shows the constraints from the halo bias as a function
of mass, whereas the orange line shows the constraints from variations in
the halo mass function; both cases correspond only to growth during matter
domination for clarity. The grey dotted lines in both panels show a selection
of other constraints for monochromatic PBH mass distributions from lensing
(EROS; Tisserand et al. 2007), x-ray binaries (XRBs; Inoue & Kusenko
2017), effects of accretion on the CMB (Serpico et al. 2020), and large-scale
structure effects (LSS; extracted from Carr & Silk 2018).

5.2 Constraints on fPBH for extended mass distributions

In this section we look at constrains on the fraction of DM in PBHs
with extended mass distributions coming from the effect of Poisson
noise on the power spectrum and from departures of the halo mass
function and clustering from their observed values.

As presented in equation (27), we allow the power spectrum
to depart by at most 10 per cent in two wavenumbers k = 1 and
10h Mpc−1. The resulting constraints for the case where Poisson
fluctuations can grow during matter domination alone can be seen

in the top panels of Fig. 9. The case where Poisson fluctuations take
into account the change in the mass density due to the extended
nature of the mass function is shown in red; this is the case that is
more relevant for the extended mass distribution, where apart from
noise on the number density, there is also an associated noise of the
mass due to high mass PBHs entering or not entering the volume
(i.e. the mode k). As can be seen in this case, when requiring a
maximum departure of 10 per cent from �CDM at k = 1 h Mpc−1

the region of parameter space that allows 100 per cent of DM in PBHs
corresponds to M∗ < 100 h−1 M� in both FCT and HC, regardless
of the choice of fm, with a less stringent constraint in HC for n <

−1.6 or, equivalently, nb < 2.5. The constraints ignoring Poisson
noise in the mass (blue lines) are non-existent in HC indicating no
constrains on the range of parameters shown in the figure.

Only in FCT the Poisson noise in number alone produces con-
straints on the parameter space, with fPBH < 1 regions in the right-
hand panel at higher M∗ values than for Poisson noise including mass
(blue versus red contours, respectively); this is not unexpected since
Fig. 5 showed that the Poisson noise from number density is lower
than when including noise from PBH masses for FCT, and even more
so for HC. The case of FCT with fm = β is even less stringent for the
spectrum from Poisson noise in number alone and allows all mass
functions with nb below the intersection of the dark blue fractions
with the pivot mass for fm = β (light blue). The bump in the light blue
contours at M∗ ∼ 1024 h−1M� is due to the tail of PBHs with masses
above Mpiv taking momentary importance before their abundances
drop below 1 per horizon as M∗ continues to increase (see example
mass functions in Fig. 1). The long dash–dotted lines show the fPBH

= 1 contour when the restriction is applied at k = 10 h Mpc−1, and
as it can be seen the effect is that of shifting down the contour by
about 3 dex in M∗ for HC and FCT.

The region with fPBH ∼ 0.1 allowed in the high M∗–nb range for fm

= 1 in the upper right-hand panel is rejected for the following reason.
The Poisson power spectrum for PBH mass function parameters
in the grey hatched region vanishes for wavenumbers <kNL = 1
h Mpc−1 because the PBHs are typically more massive than the
horizon mass that corresponds to this scale. In this case the amount of
DM on the NL scale as it enters the horizon is different than assumed
in �CDM for any fPBH > 0 and this modifies the total mass power
spectrum, which is not accurately represented in our formalism.

Notice that these constraints rule out the fPBH = 1 regions (green)
with high M∗ for FCT found by SMAP. It also introduces further
partial constraints than those found in SMAP for HC for the case
of the Poisson power spectrum constraint using kNL = 10 h Mpc−1,
but without completely removing their allowed fPBH = 1 region with
M∗ ∼ 100 h−1 M�.

For illustrative purposes the grey dashed contours in all panels
show the average mass of PBHs, which can in turn be converted into
space densities (labels on the left and right show these quantities,
respectively).

As Poisson fluctuations can influence the gravitational potential
slightly prior to matter domination, we also looked at the more
restrictive case of when allowing Poisson fluctuations to grow since
entering the horizon, but the changes are small, with shifts in the fPBH

= 1 contours for kNL = 1 h Mpc−1 of only a fraction of a dex toward
lower values of M∗, still unable to remove the SMAP allowed ranges
for M∗ < 100 h−1 M�.

The bottom panels of Fig. 9 show contours of the fraction of
DM in PBHs constrained using the halo mass function (orange) and
the bias of haloes as a function of their mass (cyan). In order to
estimate the maximum allowed PBH fraction for the bias of haloes
we again use the standard χ2 per degree of freedom between models
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Figure 9. Top: Fraction of DM in PBHs as a function of the PBH mass function parameters n and M∗, resulting from equation (27) applied to the extended
mass function Poisson power spectra of equation (24), taking only into consideration the case of growth of Poisson fluctuations during matter domination. The
different line types show different fractions of matter in PBH (see the key). Red colours show the Poisson noise on both, number density and matter, whereas
blue corresponds to Poisson noise from number densities alone. The left- and right-hand panels show HC and FCT mass functions for fm = 1, respectively, for
the same range of blue spectral indices (shown on the top axis). The powder blue lines on the top right correspond to FCT with fm = β (shown only for Poisson
in number as there is no difference for Poisson in mass between the two FCT cases). All lines correspond to fractions calculated at kNL = 1 h Mpc−1, except
the long dash–dotted lines, which show the fPBH = 1 contour for kNL = 10 h Mpc−1. The grey contours show different values of the average PBH mass (left)
and PBH number density (right) as labelled in both the top and bottom panels. Bottom: Fraction of DM in PBHs such that the reduced �χ2 = 1 between the
halo mass function calculated using the full Poisson power spectrum and the �CDM halo mass function with observational errors from Abdullah et al. (2020)
at equal abundance (orange), and the same for the bias as a function of halo mass compared to Wang et al. (2008) (cyan), as indicated in the legend. In the top
and bottom panels the near horizontal black line in the left-hand panels shows the pivot mass scale Mpivot above which there are no possible mass functions for
HC (hatched region); the long dashed black line shows the case of fm = β, which further limits M∗ to take this maximum value in HC (left), and marks the
pivot feature in the mass function for the fm = β FCT case (right). The grey hatched regions in the right-hand panels correspond to departures from �CDM due
to lack of fluctuations on kNL = 1 h Mpc−1. The green shaded regions show the parameter ranges that allow 100 per cent of mass in PBH according to Sureda
et al. (2020). The grey area shows the region where there are no PBH at z = 0.

and observations with � = {M∗, nb}. The orange and cyan lines of
equal PBH fraction delimit the regions where for the quoted fPBH

the reduced �χ2 = 1 for the halo mass function and halo bias as a
function of mass.

These contours are calculated only for the case of Poisson
fluctuation growth since matter-radiation equality, including Poisson

noise both in number density and mass. As it can be seen, the contours
show that the constraints from variations in the power spectrum,
adopting the condition of 10 per cent departure from the �CDM
power spectrum at kNL = 1 h Mpc−1, are equivalent to the constraints
from the halo mass function and halo bias, as the solid contours of
the top and bottom panels are an excellent match.
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In the case of the mass functions and halo bias, the high M∗

FCT regions allowed to conform 100 per cent of DM according to
SMAP are also mostly excluded except for the region with M∗ =
1025 h−1 M� and nb ∼ 2.5, but this region is rejected as explained
above.

6 C O N C L U S I O N S

In this work we studied the power spectrum of density fluctuations,
the halo mass function, and the halo clustering as a function of its
mass when DM is composed at least in part by PBHs. We study the
case where PBHs have a monochromatic mass distribution, i.e. have
a single unique mass, and also PS-like mass functions from Sureda
et al. (2020), in two formation scenarios, (i) collapse of fluctuations
as they enter the horizon (HC), and (ii) formation at early FCT.

We first notice that for extended mass functions, as the Hubble
volume increases, there is an associated change of the mass density
in black holes. A larger Hubble volume allows PBHs of increasingly
higher mass to achieve a number density of 1 per horizon, and
therefore increase the mass density as a function of scale associated
to this volume. Another factor that changes the PBH mass density
is the evaporation by Hawking radiation, that we assume all black
holes are subject to. This variation of the number density of PBHs
per unit volume, as a function of the volume and time, introduces
novel features in the Poisson noise of PBHs that depends on scale in
a non trivial way.

We calculate the effect of the Poissonian nature of PBHs that are
tens of orders of magnitude more massive than candidate particles
for DM, and find that the linear theory Poisson power spectrum can
in many cases surpass the �CDM one already at decoupling. By
requiring that the contribution of the former is at most 10 per cent
of the latter at a wavenumber of kNL = 1 h Mpc−1, the parameter
space of both monochromatic and extended mass distributions are
constrained further. Monochromatic masses are thus restricted to
MPBH < 103 h−1 M� consistent with previous estimates by Carr &
Silk (2018) and Murgia et al. (2019), and 102 h−1 M� for the more
restrictive case using k = 10 h Mpc−1. For extended mass functions
of either HC or FCT formation mechanism the characteristic mass,
where the mass function starts to drop exponentially, is limited to
M∗ < 100 h−1 M� (30 h−1 M� for k = 10 h Mpc−1), which is also
the case for the HC mass function for blue spectral indices nb >

3. These constraints remove the windows where all of DM is in
PBHs with FCT mass functions with M∗ > 1015 h−1 M�, reported
by SMAP.

This choice of a maximum PBH Poisson contribution of
10 per cent at the scale k = 10 h Mpc−1 to the �CDM power spectrum
is reasonable as can be seen when using it to calculate the resulting
halo mass function and halo bias. PBH masses or characteristic
masses above the limits given in the previous paragraph make the
halo mass function and the bias of haloes differ strongly from the
standard �CDM case, which in turn make them inconsistent with
observations.

It is worth noting that the Poisson contribution to the power
spectrum induces changes in the halo mass function at low halo
masses, which could be constrained with statistical analyses of strong
lensing residuals as proposed by He et al. (2020).

When including all other probes of the existence of PBHs, we find
that extended PBH mass distributions can still conform 100 per cent
of the DM. In particular, all of the DM can be constituted by
PBHs formed at HC or at FCT for M∗ ∼ 30 h−1 M� (for ranges
of nb), and for PBHs formed at FCT at the end of inflation with
M∗ ∼ 10−7 h−1 M� (see Sureda et al. 2020). Note that the windows

with M∗ ∼ 30 h−1 M� have two advantages. They correspond to
physically sensible mass functions as the overdensity for collapse
in these cases is of the same order of magnitude as the typical
overdensities at the median time of collapse (SMAP). Additionally,
they would produce ∼3 × 109 PBHs of > 30 M� in massive spiral
galaxies, i.e. abundant black holes in the mass range detected by
LIGO (Abbott et al. 2016).
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APPENDI X A : CASES AND INTERPRETATIO N
O F E X T E N D E D MA S S FU N C T I O N S W I T H T H E
PRESS–SCHECHTER FORMALI SM

The processes for formation presented in SMAP for their Press–
Schechter calculations consists of the following:

(i) Formation of PBH as a fluctuation enters the horizon. For this
the amplitude of fluctuations in the PS formalism are calculated at the
time the mode enters into causal contact. This channel of formation is
referred to as ‘Horizon Crossing’ or HC. In SMAP we assume that the
PBH formation occurs only during the epoch of radiation domination.
Note that in no cases would a PBH form after equality if kpiv > keq,
where keq ∼ 2π /RH(z = zeq) is the wavenumber corresponding to the
horizon radius at the time of equality zeq. The mass within the scale
corresponding to kpiv is the maximum mass that a PBH can take
in this formalism, as at smaller wavenumbers the power spectrum
index is ns = 0.96 < 1 which does not allow the formation of PBHs
in the PS formalism applied in the case of fluctuations that enter the
horizon (SMAP adopt a top hat filter in k-space; a Gaussian window
function would allow PBH formation to slightly higher masses). This
mass is Mpiv ∼ 5 × 1012 h−1 M�fm, where fm is the fraction of the
mass within the linear mode that collapses into a black hole. The
maximum cutoff mass scale M∗ of the resulting PBH mass functions
is then �Mpiv having only a slight increment with the blue spectral
index nb of 0.25 dex from nb = 1.1 to 4.

(ii) Formation at a fixed conformal time, referred to as FCT. In
this case the amplitude of fluctuations is taken at the end of inflation,
and in SMAP we assume that nucleation bubbles of different scales,
sourced by inhomogeneities in the inflaton field, are able to produce
primordial black holes as the bubbles collide with each other, in the
antipeaks of the energy density during reheating. In linear theory
these antipeaks distribute in the same way as overdensities and
this analogy allows to use a PS-like distribution for the masses
collapsing at the antipeaks of the distribution of energy density.
In this case there is no limit to the maximum PBH mass as the
formation occurs during reheating, at or slightly before the onset
of radiation domination. The pivot scale of the primordial power
spectrum has the effect of inducing a sharp feature in the mass
function at Mpiv ∼ fmρcrit(zform(2π /kpiv)3), the total energy density
contained in a sphere of the scale corresponding to kpiv at the moment
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of formation of the PBHs, zform, multiplied by a factor fm, the fraction
of mass within the horizon that is able to collapse into the PBH.
For a typical end of inflation of aform ∼ 2 × 10−26 this mass is
Mpiv ∼ 6 × 1032 h−1 M�fm.

For M∗ < Mpiv, the generic form of Fprocess in equation (2) can
be fit by a power law with index n and an exponential cutoff at M∗,
i.e. by a single Schechter function. Only FCT allows the possibility
of M∗ > Mpiv and in this case there is a first exponential cutoff at
Mpiv after which an additional power law with lower amplitude and
exponential cutoff at M∗ takes over. The connection to the physics
behind PBH formation lies in the relation between the non-linear
overdensity for collapse and the fraction of mass fm of the mode
that reaches linear overdensity for collapse δc, the cutoff mass scale
M∗, and nb and the pivot scale where the spectral index turns blue,
kpiv. These relationships can be found in SMAP for both formation
scenarios.

The value of the linear overdensity δc is allowed to vary freely over
several orders of magnitude since we do not propose a direct physical
mechanism that relates this linear overdensity with the physical, non-
linear one that leads to collapse. However, Sureda et al. (2020) also
estimate the typical overdensities at the time of collapse that under
certain choices of fm can be of the same order of magnitude as the
overdensity for collapse. On the other hand, simulations (as well as
analytic studies) have shown that the physical collapse occurs when
δphysical
c ∼ 0.5 (see for instance Niemeyer & Jedamzik 1998; Green

& Liddle 1999).
Given the lack of a physical model we consider two possible

scenarios. One where, of all the regions that satisfy a particular
choice of linear density contrast, only a fraction corresponding to the
ratio of matter to total density at the average time of PBH formation,
ρ̄m(zform)/ρcrit(zform) actually collapse. They do because only these
volumes satisfy the condition for the physical density contrast ≥
δphysical
c . This allows the density of matter in PBHs that evolves as a

matter component to conform the totality of DM today. In this case,
both for HC and FCT, the redshift of formation (average redshift
for HC) is the one where the linear overdensity reaches δc, and the
fraction of an individual linear mode that collapses is fm = 1.

The other scenario is that the collapse occurs in a subvolume within
every single one of all the regions that have a linear overdensity
of this particular δc value, or larger. The subvolume V = fmVH

containing a mass fmMH, where VH and MH are the volume and
mass within the horizon, is overdense enough, with ≥ δphysical

c , and
therefore collapses. In this case, the value of the fraction is exactly
the ratio of matter to radiation densities at the (median) time of
collapse, fm = β = ρ̄/ρ̄m. For FCT the formation time of the PBH
is the same as the time the linear overdensity reaches this critical
value. For HC the actual formation of the PBH takes place when the
non-linear fluctuation with δphysical ∼ 0.5 enters the horizon, i.e. at an
earlier time such that the scale factor of the universe was smaller than
the actual scale factor at which the linear overdense mode enters the

horizon. The PS mechanism is still applicable as long as the horizon
entry of both, the non-linear and linear fluctuations, occur during
the same epoch of the Universe (i.e. radiation domination), and that
the ratio of scale factors between non-linear collapse (1/(1 + zcoll))
and linear horizon entry 1/(1 + z) is monotonic accross the time
of PBH formation; this ensures that the relative amplitude of the
modes are relevant for the collapse of different masses. The redshift
of collapse can be related to the redshift of entry of the linear mode
by considering the ratio of the volume of the Lagrangian region
that collapses into a black hole and that of the horizon that can be
obtained considering that PBHs at formation are a fraction of the
energy density of the universe such that today they constitute the
DM. Considering that the formation takes place during radiation
domination, the relation takes the form

1 + zcoll = f −1/2
m (1 + z). (A1)

The redshift of formation for the HC case is calculated by averaging
the redshift of horizon crossing of different masses weighted by their
relative abundances.

Even though we propose no physical model for the non-linear
evolution of the overdensities that will lead to the collapse of a PBH
we are able to bracket the range of possibilities that lies between
these two possible views, that a fraction of the volumes that satisfy
the linear overdensity for collapse turn into PBHs, or that the collapse
occurs in a subvolume of each and every one of the volumes that
satisfy the condition for collapse. A physical model for PBH collapse
driven by primordial inhomogeneities could lie somewhere between
these two cases.

In this work we mainly focus on the first view, that a fraction
of the regions with linear overdensity ≥δc undergo collapse in full,
i.e. with fm = 1, but we also show results for fm < 1. In particular,
allowing fm = β in HC, that is, the case of collapse of a fraction of
every single horizon that satisfies the linear overdensity condition,
the pivot mass decreases to Mpiv ∼ 1010 h−1 M�, i.e. only by about
3–4 orders of magnitude, essentially reducing slightly the allowed
range of M∗ for HC (i.e. the minimum value of fm ∼ 10−4–10−3).
In the case of FCT, the pivot mass is much smaller than for fm

= 1, Mpiv ∼ 3 × 1011 h−1 M� corresponding to fm ∼ 10−24. In the
latter case all values of M∗ are permitted but the feature in the mass
function due to the pivot scale of the power spectrum shifts to the
smaller Mpiv. At first sight, a fraction of order 10−3 typical for the
HC case does not require as strong a fine tuning as the one for FCT.
However, a different model for reheating after inflation such that
reheating ends at larger-scale factors can dramatically increase fm for
FCT (e.g. Kuroyanagi et al. 2014; Cook et al. 2015; Asadi & Nozari
2019; German 2020) and alleviate this possible issue. Because of this
we consider both HC and FCT scenarios in their two forms referred
to generically by fm = 1 and fm = β.
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