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Matched filtering with non-Gaussian noise for planet transit detections
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ABSTRACT
We develop a method for planet detection in transit data, which is based on the matched filter technique, combined with the
Gaussianization of the noise outliers. The method is based on Fourier transforms and is as fast as the existing methods for planet
searches. The Gaussianized matched filter (GMF) method significantly outperforms the standard baseline methods in terms of
the false positive rate, enabling planet detections at up to 30 per cent lower transit amplitudes. Moreover, the method extracts
all the main planet transit parameters, amplitude, period, phase, and duration. By comparison to the state-of-the-art Gaussian
process methods on both simulations and real data, we show that all the transit parameters are determined with an optimal
accuracy (no bias and minimum variance), meaning that the GMF method can be used for both the initial planet detection and
the follow-up planet parameter analysis.
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1 IN T RO D U C T I O N

Exoplanet detection using transits has become the leading method to
detect new planets and determine their demographics. Kepler Space
Telescope (Koch et al. 2010) photometrically measured flux from
about 200 000 stars, with over 4000 confirmed planets (Akeson et al.
2013). One of the primary goals of such studies is to determine the
planet demographics, which is the planet occurrence rate as a function
of its parameters, such as the radius of the planet and the distance
from the star. This relies heavily on our ability to estimate how
reliable these candidates are (Steffen & Coughlin 2016). There are
several origins of a false positive (Thompson et al. 2018): A planet
can be mimicked by an eclipsing binary star, a single or multiple
outlier noise event, a fluctuation of host star’s brightness, a sudden
instrumental drop, an event in an off-set star (a star in the same field
of view that has no physical association with a given star; Bryson
et al. 2017), etc.

For small planets far from the star, distinguishing them from
false signals is difficult, as such planets are close to or below
the detection limit of the Kepler Space Telescope. One prominent
such group are habitable-zone Earth-like planets. Estimates for their
occurrence rate vary wildly, with 95 per cent confidence interval
covering more than one order of magnitude (Kopparapu 2013). This
has implications for the prospects of follow-up missions such as the
proposed Luvoir (France et al. 2017), where the predictions for the
number of spectroscopically detectable habitable-zone planets also
vary by a similar amount.

A traditional Kepler approach towards false positives is to perform
a series of tests, each designed to target a specific group of false
positives, and eliminate them if a candidate does not pass these
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individual tests. Those tests are, however, binary, meaning that a
candidate is either rejected or not, which is a rather crude approach
when on the detection limit. A likelihood analysis or a Bayesian
evidence analysis would be more informative for the subsequent
hierarchical analysis. Also, some of the cuts are rather heuristic, such
as checking for the proper shape of the transit by calculating a metric
distance (LPP metric) from the known planet shapes (Thompson
et al. 2018).

The goal of this paper is to develop a new and independent
planet detection pipeline, which is near-optimal, fast, and provides
sufficient statistical information for downstream tasks such as planet
demographics. Our goal is to develop a rigorous analysis of the stellar
variability and outlier false positives. Various Gaussian process (GP)-
based methods have been developed that can be used to model stellar
variability (Foreman-Mackey et al. 2017; Robnik & Seljak 2020) and
determine how likely it is that a given candidate is caused by stellar
variability. These methods are, however, computationally expensive,
so that they can only be used once a good candidate has been found
and an initial estimate on its parameters is known. They must be
combined with a simplified analysis of an actual planet search, where
a simplified model for the stellar variability and planet transits is
assumed. We will show that this is a crude assumption and results in
higher significance of false positives, and therefore a loss of many
real planet candidates, already at this initial stage of analysis.

We will present an alternative approach that is as fast as the simpli-
fied analysis currently used, but with the near-optimal performance
of the full GP analysis. It is therefore applicable to the complete
Kepler data set with no need for the secondary GP analysis. The
general idea behind our method is to use the Fourier-based GP
(Robnik & Seljak 2020), which describes the stellar variability as
a frequency-dependent noise. This naturally connects to the matched
filtering technique, which Fourier transforms the planet transit signal
template(s) and performs signal-to-noise weighting in Fourier space
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first. Afterwards, one looks for the highest peaks in its inverse Fourier
transform. Matched filtering can be shown to be optimal under the
assumption of Gaussian noise, and is the method of choice in many
statistical analyses, such as in Laser Interferometer Gravitational-
wave Observatory (LIGO) signal detection (Abbott et al. 2016).

Kepler data noise is not Gaussian, and noise outliers must be dealt
with; otherwise, they can lead to a significant increase in the false
positive rate. Here, we develop a Gaussianization transformation
approach, which maps a signal with non-Gaussian power-law tails
in the Kepler data to a Gaussian. Specifically, we take advantage
of the uncorrelated nature of noise to develop a method where this
procedure does not change the planetary transit signal component.
We will show that this approach eliminates the outlier false positives,
and gives superior results to the alternatives such as robust statistics
or outlier elimination (Tenenbaum et al. 2013).

2 N O ISE GAUSSIANIZATION
TRANSF ORMATION

Here, we first review the key results of Robnik & Seljak (2020). In
general, we write the data model d(t) as a sum of a transit signal s(t),
noise n(t), and stellar variability y(t). Here, we first discuss the noise
and the stellar variability, which can be viewed as a correlated noise,
so we assume there is no transit signal. Stellar variability is correlated,
and assumed to be Gaussian, which has been shown to be a good
assumption (Robnik & Seljak 2020). Noise is uncorrelated but non-
Gaussian, distributed according to the noise probability distribution
p(n). In the absence of planet signal, we assume to have a stationary,
time-ordered and equally spaced data di = d(n�t) for n = 0, 1, 2,
. . . , N − 1.

If we assume stationarity of the signal, the correlations depend
only on the time difference between the points, and the GP kernel
also depends only on their relative separation. Stellar variations could
also be described with a non-stationary form, but this would require
a significant increase in the complexity of the kernel, which we
want to avoid. Later, we will, however, describe the non-stationary
generalization due to the gaps in the data. To describe a stationary
kernel of a uniform time series, the most general approach is to
use the Fourier basis and describe the GP kernel using the power
spectrum (Robnik & Seljak 2020). A Fourier transform

ỹk = F{y}k = 1√
N

N∑
n=1

yneiωkn�t

yn = F−1{ỹ}n = 1√
N

N∑
k=1

ỹke−iωnk�t (1)

introduces a new basis in which the covariance matrix is diagonal and
can be described with the power spectrum, and the Fourier modes
F{y}k are uncorrelated. We denoted ωk = 2πk/N.

If, on the other hand, the data are uncorrelated, but non-Gaussian,
then we can Gaussianize it as a simple 1D point-wise non-linear
transformation:

ψi = ψ (1D)(ni). (2)

This transformation can be obtained by mapping the cumulative
distributions of the data to a Gaussian (Robnik & Seljak 2020).

Here, we want to apply to the Kepler data, which we assume
are composed of correlated and nearly Gaussian stellar variability,
added to an uncorrelated noise, containing non-Gaussian outliers.
Gaussianizing thus requires identifying the stellar component of the
data, subtracting it from the data, Gaussianizing the remaining un-

correlated part, adding the stellar component back, and transforming
to the Fourier basis:

G(y) = F{�(d − y) + y}, (3)

in the absence of the correlated structures, such as planet transits,
� = ψ (1D). In general, it is an invertible non-linear scalar function
that is local in the sense that it depends only on di and possibly on
its neighbours. We will use this generalization when dealing with
the correlated structures in the data, such as planet transits. The
correlated Gaussian component y(t) can be extracted from the data
with the Fourier GP (Robnik & Seljak 2020). Note that this step
does not add much to the cost of our pipeline because it is done only
once and because GP is never used for planet search and parameter
inference, where it would have to be iterated with the optimization
of the planet parameters.

We choose a function �(n) to Gaussianize the noise probability
distribution p(d), which then becomes

p(d) = exp

{
−1

2

N∑
k=1

( |Gk(d)|2
Pk

+ ln 2π + ln Pk

)}
, (4)

where Pk is the kth component of the power spectrum of y. Here, ||2
is a product of a complex mode with its complex conjugate, which
equals adding the squares of its real and imaginary components.

2.1 Uncorrelated non-Gaussian noise

We need to determine the non-linear local ψ(n) in equation (3).
Assuming uncorrelated noise, a given realization ni is distributed
according to some probability density function q, independent of
realizations at different times. Gaussianization � i(ni) = ψ (1d)(ni)
will then also act point-wise and will satisfy

P (ψ (1D)(ni) > XN ) = P (ni > Xq ), (5)

where XN and Xq are random variables distributed according to the
normal and q distributions. A unique function with the required
property is

ψ (1D) = CDF−1
N ◦ CDFq , (6)

where CDF−1
N is an inverse of the cumulative density function of

the normal distribution and CDFq is cumulative density function
corresponding to q.

In our application, noise is distributed normally except for the
outliers. Outliers have been shown to be uncorrelated in the Kepler
data (Robnik & Seljak 2020), so we can write for one data point
ni

q(ni) = (1 − a) N (ni) + a NCT (ni), (7)

where N is a Gaussian distribution that is defined by zero mean
and variance that by Parseval’s theorem is the sum over all power
spectrum components, NCT is a distribution modelling outliers and
a is a probability that a given realization is an outlier. As shown in
Robnik & Seljak (2020), the outlier probability density function
can be modelled well with a non-central t-distribution, and we
determine its parameters and a by a fit to the data PDF. For small
amplitude y the Gaussian contribution dominates, as a is typically
a very small number of the order of 10−3. For large y the NCT
contribution dominates as it decays only as a power law, in contrast
to the Gaussian that decays very rapidly. Correlated stellar variability
never produces a large outlier signal, so it is not affected by the
Gaussianization.
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Figure 1. Gaussianization transformation at a point i (blue line) depends on a flux di, as well as on its neighbours di + 1 and di − 1. If neighbours are not outliers
(central part of the red figure), a point i is Gaussianized according to a one-dimensional Gaussianization; i.e. outlier part of the distribution is mapped to the
central Gaussian part. If, however, neighbours are in the non-Gaussian part of the distribution (left and right parts of the red plot), then it is by far more likely
that they are all a part of the correlated structure generated by a real transit and the Gaussianization acts as an identity.

2.2 Filtering of correlated structures

So far, we assumed d(t) to be a sum of noise and stellar variability, but
in reality it also contains correlated structures such as planet transits,
which may depart significantly from the average of the flux. We do not
want this signal to be affected by the Gaussianization, i.e. we do not
want the deep transit signatures to be mistaken for the noise outliers
and have their depth reduced. Since outlier noise is uncorrelated
while real transit is not, we thus require that Gaussianization ψ1D(di)
to be identity if it acts on a correlated structure, and acts as a 1D
Gaussianization ψ1D(di) on an uncorrelated outlier. We write a full
Gaussianization at a point i as a mixture

�i = P di + (1 − P) ψ1D(di). (8)

P can be arbitrary if |di| is small as ψ1D(di) = di then, and P cancels
out. On the other hand, if |di| � 0, P should be 1 if point i is a part
of the correlated structure and 0 if it is not. A simple but effective
choice is

P(di |di−1, di+1) = P (i + 1 or i − 1 is an outlier| di−1, di+1), (9)

where P is probability for an outlier that is calculated under the
assumption that there are no correlated structures. We show that
such P satisfies the required properties:

(i) A priori probability of point i being an outlier is a. If i is
not a part of a correlated structure, then its neighbours are also
outliers with probability a. Probabilities are independent, since we
assume noise outliers are not correlated. A probability that i and one
of its neighbours are both outliers is then 2a2, which can be well
approximated to be zero for a typical value of a of 10−3: We assume
that the probability of two neighbours both being an outlier is zero.
Therefore, |di| � 0⇒i ± 1 are not outliers ⇒ P = 0.

(ii) On the other hand, if |di| � 0 and point i is a part of the
correlated structure then also |di + 1| � 0 or |yi − 1| � 0 and P is
close to 1, as required.

P is straightforward to compute:

P = 1 − P (i + 1 and i − 1 not outliers| di−1, di+1)

= 1 − P (i + 1 not outlier| di+1)P (i − 1 not outlier| di−1), (10)

where P (not outlier | d) is computed by a simple application of the
Bayes theorem:

P (not outlier | d) = (1 − a)N (d)

(1 − a)N (d) + aNCT (d)
. (11)

The Gaussianization of equation (8) preserves the correlated struc-
tures, such as planet transits or binary star transits, and reduces the
noise outliers by mapping them to the Gaussian distribution, thus
reducing their impact on the outlier false positives in the search for
the planets. It is visualized in Fig. 1. We will show that this procedure
is more effective than outlier rejection, and is easy to implement.

3 MATCHED FI LTER

Next, we look for a signal s in the data d in the presence of
the correlated non-Gaussian noise y + n, such as considered in
Section 2. The result will be a frequency-dependent filter, which
is a generalization of the Gaussian matched filter because of the
Gaussianization we perform on the noise. In Section 3.1, we will
specialize to the localized periodic templates that can be used for the
planet search, which will be further addressed in the next section.

The signal has a template form of an event with a time profile

s(t) = As0(t), (12)
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Figure 2. Top panels: a planet’s transit signal s0 (red) for the transit duration of 0.3 d in the left-hand panel and 0.6 d in the right-hand panel. Match filtering
with the frequency-dependent noise as in equation (23) is equivalent to a convolution of a Gaussianized signal with the template, if we replace the original
template s0(t) with F−1{F{s0}/Pk}(t) and normalize it. The matched filter template (blue) shows a partially compensated profile characteristic of a red noise
power spectrum P(ν) with high power at low frequencies. The effect is more significant for longer transits, which can be more easily contaminated by the
stellar variability. Bottom panel: noise power spectrum is taken from a realistic stellar variability analysis of star Kepler 90 (yellow), together with the 0.6 d
planet transit template in the Fourier domain (red). Inverse noise weighting of the matched filter suppresses the low-frequency components (blue) and leads to a
compensated profile in time domain (top panels).

where A is an amplitude of the signal and s0 is a template. Template
depends on additional parameters such as the time of transit t0 or
transit duration. The shape of the template is for now assumed to be
known; we will determine its parameters by a template bank search
method. An example of a signal is shown in Fig. 2. It shows the
effect of a typical red power spectrum taken from a realistic stellar
variability analysis of star Kepler 90 on the matched filter. If the
power spectrum were white, there would have been no effect, but for
the red power spectrum the effect shows up as a partially compensated
profile, which suppresses the low frequencies that are contaminated
by the correlated noise and hence need to be filtered out. The effect
is more significant for longer transits, because the stellar variability
has more power on longer time-scales.

We can write the data d(ti) as

d(ti) = y(ti) + n(ti) + As0(ti). (13)

By Gaussianizing the residuals under the assumptions of Section 2.2,
we obtain

�i(d − s) = �i(d) − si , (14)

Gk(d − s) = Gk(d) − F{s}k. (15)

Equation (4) becomes

− 2 ln p(y) =
N∑

k=1

|Gk(d) − AF{s0}k|2
Pk

+ c, (16)

where c = ln 2π + ln Pk − 2ln J(d − s). The main advantage of
the matched filter technique is that it can analyse the data for every
possible value of t0, by performing Fast Fourier Transform (FFT)-
based convolution of the data with the signal. This is complicated in
the non-linear case by the presence of the Jacobian term in c. In a
typical Gaussianization application, the Jacobian term is negligible,
so we will drop this term.

At a given template, there is a unique extremal value of the
amplitude Â, which can be obtained from the maximum likelihood,
for which the derivative

∂ ln p

∂A

∣∣∣∣
̂A

= 0. (17)

Taylor expanding the log-likelihood function around the optimal
amplitude, we obtain the variance of A

σ−2
A (t0) = −∂2 ln p

∂A2

∣∣∣∣
̂A

. (18)

Equating first derivative to zero gives

Â(t0, s0) =
∑N

k=1 G∗
kF{s0}k/Pk∑N

k=1 |F{s0}k|2/Pk

. (19)

Equation (18) gives

σ−2
A (t0, s0) =

N∑
k=1

|F{s0}k|2/Pk. (20)
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A signal to noise for the event s0 happening at time t0 is then defined
as the ratio of the signal to variance

SNR(t0) = ̂A(t0)
σA(t0) = (21)

=
∑N

k=1 G∗
kF{s0}k/Pk( ∑N

k=1 |F{s0}k|2/Pk

)1/2 (22)

=
F−1

{
G∗

kF{s0}k/Pk

}
( ∑N

k=1 |F{s0}k|2/Pk

)1/2 , (23)

where the last step is valid under the assumption that the template is
stationary. As expected from a matched filter, the SNR is proportional
to a convolution of the Gaussianized signal �(d) with the filter
profile s0, which is a multiplication of their corresponding Fourier
transforms, followed by an inverse Fourier transform. Noise power
modulates this convolution with the inverse noise weighting: The
larger the noise power Pk, the less weight a given Fourier component
contributes. The denominator term properly normalizes the SNR
by the expected signal of the matched filter profile, again inverse
weighted by the noise power.

The computational complexity of evaluating equation (23) for
some value of t0 is O(Nlog N). More importantly, evaluating it for all
t0 on a time lattice with a lattice spacing �t is still O(Nlog N) thanks
to the fast Fourier transform. This is very useful for a search over the
whole parameter space, which is required in the initial planet search
where we do not know planet period, phase, or transit amplitude.

Note, however, that the template may not be stationary. For
example, if there are gaps in the data, the template s0(t, t0) has
zeros where the data are missing and those zeros cannot be shifted.
In this case, the matched filter cannot be calculated by an inverse
Fourier transform and the cost of evaluating equation (23) for
all t0 on a time lattice is O(N2log N). We will show in the next
section how to simplify and avoid incurring this cost in the planet
search.

3.1 Periodic template

A special case of interest is a template containing multiple events that
repeat with a period P (not to be confused with the power spectrum
Pk). The template has the form

S0(t, P , φ) =
∑
m∈I

s0(t − mP − φ), (24)

where φ is a phase, I is a set of all integers m for which the data at
mP + φ are available, and s0 is a template of each individual event.
An example of S would be multiple transits of the planet.

In principle, one would have to add P as a parameter of the
template and find it using a template bank approach. However, for
the purpose of finding good planet candidates in the Kepler data a
few simplifications can be made to make this faster.

We will assume the following:

(i) Events s0 are localized: Overlap sums containing different
events F{s0(t)}kF{s0(t − P )}∗

k are zero. This can be used to write
the SNR(P, φ, S0) in terms of the SNR(t0, s0). This assumption is
in principle problematic for the planets with short periods, but we
verified that even for planets with a 3 d period this would result in
only a 3 per cent bias of the SNR.

(ii) For each m, we assume that for all t close to φ + mP either
almost all data are available or almost all data are missing. By close

we mean those t that contribute most to the SNR of the event. Then,
the template is approximately stationary and equation (23) can be
solved by the inverse FFT. This assumption fails only for the transits
with partially missing data. We justify this assumption by noting that
most of the missing data are collected in the time gaps that are long
compared to the transit time.

Inserting equation (24) into equation (23), using the linearity of
the Fourier transform, and the above stated assumptions, we derive

SNR(P , φ, S0) = 1√|I |
∑

m

SNR(mP + φ, s0), (25)

where SNR(P, φ, S0) is a joint signal-to-noise ratio of all periodic
events with the period P and phase φ found with the template S0(t, P,
φ). SNR(t0, s0) is an SNR of one individual event centred at t0, found
with the template s0(t, t0). Thus, one can look for periodic events by
first applying convolution 23 to get SNR(t0, s0), and then fold it at
different periods using equation (25).

4 PL A N E T SE A R C H

We now apply the Gaussianization and matched filter (GMF) formal-
ism to an example planet search in the Kepler data. We use the Kepler
data processed through the pre-search data conditioning module
(Jenkins et al. 2017), which eliminates systematic instrumental
errors. Specifically, we use PDCSAP flux, where long-term trends
have been eliminated. We normalize flux in different quarters as
described in Robnik & Seljak (2020), to get an evenly spaced
time series (except for gaps in the data), with unit variance of the
Gaussian part of the distribution and zero average. We Gaussianize
the data with equation (8) to obtain a normally distributed, correlated
noise, which may contain correlated structures, such as planet
transits.

Kepler time streams have gaps where the data are not available.
Filling this point with zeros is not advisable if the stellar flux is
highly correlated on short time-scales (e.g. Kepler 1517 in Fig. 3), as
this is introducing a jump in the data that may trigger a false positive
planet event. Instead, we use the Fourier GP (Robnik & Seljak 2020)
to determine the correlated stellar component of the data and insert
it in places where there are gaps. An example of gap filling is shown
in Fig. 3.

We will first discuss the template form of the signal from
equation (12). It is modelled by the dimensionless template form
U and the transit duration τ as described in Robnik & Seljak (2020)
and Parviainen (2015):

s0(t − t0) = U ((t − t0)/τ, u1, u2). (26)

Limb darkening parameters u1 and u2 are a property of the star;
their impact will be discussed in Section 4.1. U depends weakly on
the radius of the planet, which can be accounted for in an iterative
manner, but we verified that its impact on the SNR is less than one in a
thousand, so we will ignore it. In the planet search, we will first adopt
a template bank approach and search over the entire parameter space
to find the best planet candidates, and then optimize with respect to
the planet’s parameters once we are close to the peak.

For a matched filter analysis, we first need the noise power spec-
trum Pk, whose determination will be described in Section 4.2. Next,
we look for the planets that are significant enough to be detectable
without the period folding (Section 4.3). In this approach, we do not
lose information on the potential transit timing deviations (TTVs)
and transit duration deviations, which can be used for planetary
dynamics studies, e.g. planet–planet or planet–moon gravitational
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Figure 3. The Kepler data has gaps where no data are available. Data are missing in the form of either isolated data points or as larger gaps than can be as long
as 3 months. We fill the gaps by fitting the Fourier GP to the data. We show a segment of the data for two stars, namely Kepler 1279 and Kepler 1517. Red dots
are added to the data to fill the gaps.

interactions. Also, if TTVs are large, a folded analysis would leave
residuals, which we want to avoid. In the last stage (Section 4.4),
we look for small planets, where period is added as a parameter,
and a folded analysis is required to reach a sufficient signal to
noise.

4.1 Limb darkening parameters

Stellar flux density over the stellar disc is modelled by a quadratic
law in cosine of the angle spanned by the observer, centre of the star,
and the point on the surface of the star, as proposed in Kipping
(2013). Coefficients of the polynomial u1 and u2 can only take
values in the triangular region of the R2 set by the requirement that
physical profiles must have positive flux density and that flux density
is decreasing as the angle is increasing. In Kipping (2013), they
give a convenient reparametrization (u1, u2) 	→ (q1, q2), such that
physical region corresponds to (q1, q2) ∈ [0, 1]2. Reparametrization
also decreases correlations between the limb darkening coefficients,
so we use these coordinates.

Limb darkening parameters can be calculated from the properties
of the star: effective surface temperature, surface gravitational
acceleration, and metallicity (Claret & Bloemen 2011). As a result
of the experimental error in the stellar parameters and systematic
errors in the predictions, limb darkening coefficients are still only
constrained to a small subspace of the [0, 1]2 plane. Limb darkening
parameters do not have a strong impact on the SNR of the planet
candidate as compared to period P, phase φ, and transit duration τ :
Theoretical predictions from the stellar properties can be used as an
initial guess to find all of the planet candidates. Joint SNR of all
planet candidates can then be maximized with respect to the limb
darkening parameters if needed.

4.2 Noise power spectrum

Noise is composed of a white detector noise and a correlated
component due to the stellar variations. Power spectrum of the
stellar variations approaches zero at high frequencies, making the
white noise component dominant. We assume that the true noise
power spectrum is a smooth function of frequency. After Fourier
transforming the data and multiplying with the complex conjugate,
we perform a band power averaging to reduce the variance of
individual bandpowers. At high frequencies, we use wider bands,

as power spectrum is roughly constant, and variations are mostly the
standard fluctuations of a GP.

The presence of the data gaps requires the iterative estimation of
the power spectrum (Robnik & Seljak 2020) where in the n-th step
the just estimated power spectrum P(n) is used to simulate a flux series
with gaps whose power spectrum P (n)

sim is used to correct the estimate
of the power spectrum in the next step P (n+1) = P + P (n) − P (n)

sim,
where P is the estimate of the power spectrum obtained from the
data. In practice, a few steps are sufficient for the convergence.

If a large planet signal is present in the data, it affects the power
spectrum at high frequencies due to its U-shape. Thus, we first find
the large planets using a first rough estimation of the power spectrum,
eliminate these large planets from the flux, and recalculate the power
spectrum. We only do this once, as we find that an additional iteration
on this process is not necessary.

4.3 Search for the large planets

By large planets we mean those planets whose individual events
are significant on their own. First, using equation (23) we convolve
the data with the template forms of different transit durations. We
maximize over the transit duration first and then find peaks over the
time of the transit. For the found candidates, we then optimize the
exact SNR from equation (22) that properly accounts for the gaps.
These candidates are not forced to have equal transit time, and a
subsequent analysis can be used to determine their TTVs.

4.4 Search for the small planets

Finding small planets is more challenging, especially those on the
edge of detectability. It requires a search over their period, phase,
and transit duration. First, using equation (23) we convolve the
data with template forms of different transit durations. Then, using
equation (25) we search over the planet’s parameter space. If the
planet’s orbit was circular and perfectly aligned with the line of
sight the transit duration would be completely fixed by the period:
τK = qP1/3, by the Kepler’s third law. The proportionality constant
is given by the stellar radius R∗ and the stellar mass M∗: q =
R∗(4/πGM∗)1/3. Inclined and elliptical orbits allow for a different
transit duration, but it is sufficient to first fix the transit duration
to τK(P), maximizing over φ, and then only consider different τ

for the highest SNR candidates. This yields a top candidate at a
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Figure 4. Simulation of stellar background time series (blue) and added non-Gaussian outliers (red). Noise is correlated with a red power spectrum. In this
example, the power spectrum is extracted from the Kepler 90 data (shown in Fig. 2). The right-hand panel is zoomed part of the left-hand panel, showing the
correlations. This is one realization of the stellar background time series that will be used to test the false positive rate in Fig. 5.

given period, after neglecting all the other candidates at the same
period, knowing that there cannot be two planets at exactly the same
period. Peaks in the thus found SNR(P) = maxφ, τ SNR(P, φ, τ )
correspond to the planet candidates. This procedure assures no real
planets have been eliminated, but some of the candidates may be false
positives. We eliminate next those candidates that are caused by some
confirmed planet with higher SNR, e.g. its higher harmonics. Such
false positives appear because it would be unnecessarily expensive
to terminate the search every time a new candidate is found, since it
would require to eliminate it from the data and start over, which can
be expensive especially for the systems with many planets. Instead,
we find all the candidates first, and then sweep over the candidates,
starting at the highest SNR, removing them from the data one by
one, and identifying candidates lower on the list that still have SNR
above the threshold. This procedure ensures that the found planet
candidates are independent and not higher harmonics of higher SNR
candidates.

5 TESTING G M F ON SIMULATIONS AND REAL
DATA

We now compare our GMF method with baseline methods used in the
literature. We test the ability to extract the correct amplitude of the
injected planet, provide the smallest errors and accurately estimate
it, and to produce as few false positives as possible. We show that
GMF significantly outperforms the baselines in terms of the false
positives, and at the same time is as accurate in reproducing the SNR
as the most sophisticated GP methods (which cannot even be used
as a planet search engine due to their excessive computational cost).

5.1 False positive test

As our initial test, we simulate a background-only time series. Stellar
background is a Gaussian correlated noise, with the power spectrum
resembling the power spectrum of Kepler 90 (Robnik & Seljak 2020).
A given realization is a random sample from a Gaussian distribution.
Later, we also add the noise outliers, such that each point is an outlier
with some small probability a, independently of the other points, and
is thus drawn from the non-Gaussian distribution (Section 2). A
realization of both processes is shown in Fig. 4.

We search for the planet-shaped transits in the background over
periods in range between Tmin = 3 d and Tmax = 300 d, over all phases

and fix a transit duration to the Kepler value τK. We determine the
maximal SNR as a function of period T cumulative from Tmin to T.
We report the median over different realizations, so that 50 per cent
of realizations have higher SNR. In Fig. 5, we show the median of
the maximal SNR as a function of the period T, so this is the highest
SNR between 3 d and T range over which the search is performed.

First, we show the different methods of the planet search using the
stellar background only. One common method is to approximate the
stellar variability by spline fitting with spacing of nodes on a time-
scale that is larger than the transit duration (Vanderburg & Johnson
2014), and then subtract it from the time series. A matched filter
with a flat noise power spectrum is then performed to find the planet
candidates. Another approximation for the stellar variability is to take
a moving median across bins that are longer than a typical transit
duration (Foreman-Mackey et al. 2016). Wavelet-based methods
for the planet search (Tenenbaum et al. 2012) similarly assume a
separation of the time-scale between the planet duration and the star
variability. In Fig. 5, we show that our method has significantly
lower false positive rate than the spline fitting and the moving
median.

Next, we add outliers to the background. Here, we use our
best performed matched filter method to address the impact of
noise outliers only. A standard practice (Jenkins et al. 2017) is to
introduce a cut-off on the outliers such that all points with a flux
deviation from the mean larger than a cut-off are discarded from the
series, here chosen to be 7σ . This is problematic for the negative
outliers because the excluded points may be from a planet signal.
In contrast, Gaussianization fully preserves the planet signatures.
However, even in the absence of this problem, such as in Fig. 5,
cut-off method is not as good as the Gaussianization, because it
must be made in the region where the Gaussian distribution is
negligible, whereas Gaussianization also operates in the region below
7σ , where both the outlier distribution and the Gaussian distribution
are important. Gaussianization procedure is optimal noise outlier
suppression method by construction, and this is reflected in the
reduced false positive rate.

We note that positive outliers can produce false positive events in
the presence of the stellar variation because the effective template is
positive in some regions; see Fig. 2. Positive outliers in the Kepler
data are more prominent than the negative outliers, which makes this
effect comparable to the false positives from the negative outliers.
This is not an artefact of match filtering with the stellar variability,
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Figure 5. Expected maximal SNR event in the background-only simulation as a function of the maximal period T, scanning over a period from 3 d to T.
Maximum SNR event in the search at each upper limit T is computed for 30 noise realizations. We show the median over the realizations (50 per cent have
higher false positive SNR). Left-hand panel (a): Here, the background is a Gaussian, correlated noise with a power spectrum taken from the Kepler 90 (example
of a realization of such noise is shown in blue in Fig. 4). We show different methods to the planet search: Moving median (orange) eliminates star flux by a
moving median, and spline (red) does this with a spline interpolation. They both eliminate the estimated stellar flux and proceed by using a matched filter with
a flat noise power spectrum. GMF (blue) proposed in this paper does not eliminate the stellar flux but treats it as a correlated component of the noise. GMF has
significantly lower median SNR of false events. Right-hand panel (b): Non-Gaussian outliers are added to the time series (example of a realization is shown in
red in Fig. 4). We show the case where outliers are not accounted for (red), a cut-off of positive outliers (dark brown), a cut-off of all outliers (light brown), and
the Gaussianization (blue). In all cases, we use our frequency-dependent match filter that performed best in the case (a). Gaussianization has the lowest SNR of
the false positive events, so it has the lowest false positive rate at a given SNR.

and standard Kepler pipeline also encounters this problem (Jenkins
et al. 2017).

The baseline methods in the literature use outlier removal at 12.3σ

(Jenkins et al. 2017), which would fall between the 7σ rejection and
no rejection in the right-hand side of Fig. 5.

As a result, we expect the median of a false positive to be around 6–
7 for the lower periods below 50 d, increasing to 7–12 for the longer
periods. Kepler threshold of 7.1 (Jenkins et al. 2017) may give a low
false positive rate for the shorter periods if spline or wavelets are used,
but for the longer periods it may not be sufficiently conservative, as
we expect many false positives with SNR > 7. In contrast, our GMF
method achieves a median false positive SNR of 5.3 even at long
periods: This can lead to a dramatic difference in the efficiency of
planet detections, especially for Earth-like planets in the habitable
zone with periods longer than 200 d. At the equal false positive rate,
we expect GMF to be sensitive to up to 30 per cent lower transit
amplitudes.

5.2 Planet parameters

To explore the accuracy of the planet parameter estimates, we
inject a planet transit signature with a known SNR0 into the stellar
background and test GMF capability to reproduce the injected
parameters of the planet: period, phase, transit duration, and am-
plitude. We test our method against the more sophisticated methods
Fourier GP (Robnik & Seljak 2020) and Celerite GP (Foreman-
Mackey et al. 2017), which are computationally too expensive for
a planet search, as they need a good initial guess of the planets’
parameters. The Fourier GP method is argued to be optimal under
the assumption of Gaussian stellar variability, so comparing GMF

against these methods is informative on the (sub)optimality of
GMF.

We show in Fig. 6 that GMF is as good in reproducing the param-
eters of a planet as the Fourier GP, and is significantly better than the
spline fitting, both in terms of bias and variance. The errors equal
those of Fourier GP, which is near-optimal. We also show that the
matched filter correctly predicts the errors on the planet’s parameters.
Covariance matrix of the planet’s parameters is calculated as an
inverse of the Hessian of the −log p, and this analytical method
matches the variance obtained from the simulations well. Note the
ease of estimating the covariance matrix compared to the GP methods
where a marginalization over the stellar parameters is required.

There is good agreement between GMF and Fourier GP. This
shows that GMF can be used for the full analysis, not only for
the initial detection analysis, as it gives optimal results on all the
parameters of interest.

We also test GMF’s performance in different stellar backgrounds,
to show that it is a general method that can be applied to any star. We
take a selection of Kepler’s targets and perform the planet search as
described in Section 4. We retrieve the known planets and subtract
them from the data. We then inject a planet in the data and test GMF’s
ability to extract its parameters. Results are shown in Fig. 7. GMF
performs well on all tested stars, despite their qualitatively different
behaviour.

5.3 Analysing real planets

We have applied the GMF to the planet search in several Kepler’s
targets and have retrieved all officially confirmed planets. We show
the results for the Kepler 90 system in Table 1 for the large planets
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Figure 6. Parameters obtained by the matched filter are compared to the known value of the injected synthetic planets’ parameters, as a function of the injected
SNR0 in the range of 6–100. Upper row shows the expected value of the ratio A/A0 averaged over 30 randomly chosen planet phases to reveal possible bias.
Second row shows the variance of A. Three choices for the period of the injected planet are chosen resembling the known planets Kepler 90c, Kepler 90d, and
Kepler 90g. The last two rows show the bias and variance of the other three parameters: period, phase, and transit duration. In all figures, a dotted envelope is a
GMF prediction of the error as computed from the Hessian at the SNR peak. It matches well the variances from the simulations. Matched filter is compared to
the Fourier GP and to the spline fitting, showing that is as accurate as FGP and significantly better than the spline fitting in both bias and variance.

where each transit is identified individually, and in Table 2 for the
smaller planets that are folded over their period. In this paper, we do
not consider the proposed Kepler 90i (Shallue & Vanderburg 2018),
which is close to the detection threshold, and requires a more careful
analysis of the look-elsewhere effect (Bayer & Seljak 2020), which
we will pursue elsewhere. Transit time is defined as the time at the
centre of the transit measured relative to the beginning of the Kepler’s

measurements in Kepler 90, which is HJD - 2454833 + 131.5124 d.
Phase is defined as the transit time of the first observed transit.

We compare these results to those of Fourier GP. We again confirm
a perfect agreement between the GMF and the Fourier GP on
estimated SNR; see Table 2. GMF can be used not only as a planet
search algorithm, but can also replace expensive GP-based analysis
methods such as Fourier GP or Celerite.
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Figure 7. We test GMF on a variety of stellar backgrounds. The upper left plot shows the power spectra of the analysed stars. Note the large differences in
the stellar power spectra; for example, Kepler 7515679 (green) has a power spectrum amplitude that ranges over four orders of magnitude across the range
of frequencies shown, while the power spectrum of Kepler 5022828 (red) spans only two orders of magnitude. Upper right plot shows a segment of Kepler’s
measurements for those stars. Time is measured relative to the beginning of Kepler’s measurement for that star. Very red spectra (large power at low frequencies
compared to the high frequencies), for example Kepler 7515679, are seen as a strongly correlated stellar flux on the time-scales shown. We take Kepler’s
measurements, find planets, and eliminate them. We then inject a synthetic planet with a period 30 d in the stellar flux and test GMF’s ability to extract the
injected planet’s amplitude A0. Lower left plot shows the expected value of the ratio A/A0 averaged over 30 randomly chosen planet phases as a function of the
injected planet’s SNR0 in the range of 6–100. Lower right plot shows the variance of A. A dotted envelope is a GMF prediction of the error as computed from
the Hessian at the SNR peak. It matches well the variances from the simulations. GMF is performing well, regardless of the stellar background.

Table 1. Individual transits of the large planets of Kepler 90 (90g and 90h) for GMF, both transit time, transit duration, and the estimated error. Results from
the Fourier GP (Robnik & Seljak 2020) are also shown relative to GMF, but the two are not completely comparable, because FGP results also account for the
non-uniformity of Kepler data point measurements, which is an effect of the order of the error of the parameter. As a consequence, for both transit time and
transit duration the agreement between GMF and FGP can be a factor of 2 larger than the estimated GMF errors. Note that for the transit time a typical difference
between the two is of the order of 3 min, while the data are given in 29.4 min intervals.

Planet SNR Transit time (d) Transit duration (h) FGP transit time (d) FGP transit duration (h)

h 108.1 8.964 22 ± 0.0006 13.341 ± 0.029 0.0018 0.06
g 53.9 15.5869 ± 0.0011 11.392 ± 0.055 0.0018 0.07
g 53.9 226.0428 ± 0.0011 11.349 ± 0.054 − 0.002 0.02
h 109.7 340.607 74 ± 0.0007 13.462 ± 0.034 0.0005 − 0.11
g 53.6 436.7707 ± 0.0011 11.432 ± 0.055 0.0025 0.04
g 53.5 857.96 ± 0.0012 11.621 ± 0.059 0.0051 − 0.0
g 55.4 1068.5496 ± 0.0025 11.5 ± 0.12 0.0045 0.01
g 52.8 1280.221 ± 0.0012 11.676 ± 0.06 0.0062 − 0.04
h 105.9 1335.3784 ± 0.000 58 13.297 ± 0.028 0.0026 0.06

6 C O N C L U S I O N S

In this paper, we propose a method for planet detection in transit
data, which is based on matched filter technique, combined with
the Gaussianization method for the noise outliers, which we call
Gaussianized matched filter (GMF). We show that GMF significantly

outperforms standard baselines in terms of reducing the false positive
rate: While standard methods give median false positive signal to
noise as high as 8, the corresponding number for GMF is 5.3. Since
the number of false positives explodes exponentially at lower SNR
values, this could enable a significantly lower false positive rate of
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Table 2. Joint transits of the small Kepler 90 planets from GMF method. We also show SNR of Fourier GP, which agrees well with the SNR of GMF.

Planet SNR Period (d) Phase (d) Transit duration (h) FGP SNR

d 27.0 59.736 88 ± 0.000 28 27.4461 ± 0.003 8.003 ± 0.097 29.6
e 23.1 91.9401 ± 0.000 42 2.7822 ± 0.0037 8.96 ± 0.12 23.5
f 17.9 124.915 ± 0.0013 123.1868 ± 0.0075 10.08 ± 0.18 16.6
c 16.2 8.719 734 ± 2.9e-05 8.0097 ± 0.002 3.831 ± 0.092 15.8
b 15.4 7.008 546 ± 3.2e-05 6.1096 ± 0.0033 4.32 ± 0.13 15.5

faint planets, especially for Earth-like planets in the habitable zone.
Alternatively, at the equal false positive rate we expect GMF to detect
planets with up to 30 per cent lower transit amplitudes.

A procedure for GMF planet search can be summarized as follows:

(i) Gaussianize the data by remapping the outliers.
(ii) Calculate the noise power spectrum and use it in inverse noise

weighting in the convolution of the data with the transit profile
Fourier transform.

(iii) Search over the time of transit and transit duration to find the
individual transits of the big planets.

(iv) Search over the period, phase, and transit duration for the
small planets.

The method eliminates outlier false positives and stellar variability
positives that in the standard Kepler pipeline need to be eliminated in
the post-processing phase using RoboVetter (Thompson et al. 2018).
Further false positives that need to be considered are binary stars
(Foreman-Mackey et al. 2016) and off-target false positives, and we
plan to address these elsewhere.

A remarkable feature of the GMF method is that it can be used
not only for the initial planet detection but also for the final planet
parameter analysis. By comparison against the state-of-the-art GP
methods on both simulations and real data, we observe that GMF
achieves near-optimal results on amplitude, period, phase, and transit
time. Moreover, a simple analytic Laplace approximation of the
Hessian gives reliable error estimates on these parameters. Thus,
GMF may be not only the fastest method to detect planets, with the
lowest false positive rate, but also the most accurate method to extract
their parameters.

GMF provides parameter estimates and their errors as a com-
pressed summary statistic, from which one can form a likelihood
that one can use for the more involved inverse problems, where
optimization or Markov chain Monte Carlo analysis is needed to
find the solution. One such example is a transit timing variation
(TTV) analysis (Liang, Robnik & Seljak 2020), where transit times
and transit durations and their errors from the GMF analysis of
individual transits in Table 1 have been used to form a data likelihood.
This enabled a subsequent inverse problem analysis that identified
the models that can explain TTVs. In this example, this led to a
determination of all of the orbital parameters and the masses of
Kepler 90g and h, and the discovery of Kepler 90g as a superpuff.
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