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ABSTRACT
We present a model for the halo–mass correlation function that explicitly incorporates halo exclusion and allows for a redefinition
of the halo boundary in a flexible way. We assume that haloes trace mass in a way that can be described using a single scale-
independent bias parameter. However, our model exhibits scale-dependent biasing due to the impact of halo-exclusion, the use
of a ‘soft’ (i.e. not infinitely sharp) halo boundary, and differences in the one halo term contributions to ξ hm and ξmm. These
features naturally lead us to a redefinition of the halo boundary that lies at the ‘by eye’ transition radius from the one-halo to the
two-halo term in the halo–mass correlation function. When adopting our proposed definition, our model succeeds in describing
the halo–mass correlation function with ≈ 2 per cent residuals over the radial range 0.1 h−1 Mpc < r < 80 h−1 Mpc, and for
halo masses in the range 1013 h−1 M� < M < 1015 h−1 M�. Our proposed halo boundary is related to the splashback radius by
a roughly constant multiplicative factor. Taking the 87 percentile as reference we find rt/Rsp ≈ 1.3. Surprisingly, our proposed
definition results in halo abundances that are well described by the Press–Schechter mass function with δsc = 1.449 ± 0.004.
The clustering bias parameter is offset from the standard background-split prediction by ≈ 10 per cent–15 per cent. This level
of agreement is comparable to that achieved with more standard halo definitions.
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1 IN T RO D U C T I O N

The halo model is a powerful formalism for studying the statistical
properties of the dark matter and galaxy density fields. In the halo
model, the abundance and distribution of galaxies and clusters are
linked to the abundance and distribution of dark matter haloes
(Cooray & Sheth 2002). The halo model makes several key assump-
tions. First, it assumes all the matter in the Universe is contained in
haloes. This means that the distribution of matter in the Universe can
be described by specifying the abundance and distribution of haloes,
as well as the mass distribution within these haloes. These statistics
are described by the halo mass function dn/dm, the halo bias b(m),
and the halo density profile u(r|m). Predicting these halo properties
requires large computer simulations that map the matter distribution
of the Universe. The output of the simulations is then analysed using
a halo finder.

Every halo finding algorithm makes two critical yet relatively
arbitrary choices. The first has received plenty of attention, and is
the definition of halo mass. Halo mass is typically defined as the
mass enclosed within some specific spherical aperture, chosen such
that the mean density of the halo within that sphere is equal to
some factor of either the critical density or the mass density of the
Universe. Spherical overdensity definitions come with a number of

� E-mail: rgarciamar@email.arizona.edu

issues, such as pseudo-evolution of halo radius and mass (Diemer,
More & Kravtsov 2013a; Diemer, Kravtsov & More 2013b). Recent
studies have looked into more physically motivated halo boundaries,
such as the splashback radius (Diemer & Kravtsov 2014; More,
Diemer & Kravtsov 2015). The splashback radius is defined as the
radius at which accreted matter reaches its first orbital apocentre after
turnaround. This choice of radius solves the issue of pseudo-evolution
and cleanly separates infalling material from matter orbiting in
the halo. However, other definitions are also commonly used (e.g.
friends-of-friends) (see e.g. Knebe et al. 2013). For this reason, one
can find calibrations of the halo mass function for multiple definitions
(e.g. Tinker et al. 2008; Bhattacharya et al. 2011; McClintock et al.
2019).

The second arbitrary choice is how a halo finding algorithm
decides which structures are parent haloes, and which are sub-haloes
that ‘belong’ to a larger halo. We refer to the criteria for categorizing
structures as parent haloes versus sub-haloes as percolation or halo
exclusion criteria. There is currently no standard percolation scheme,
with different halo finders applying different halo exclusion criteria
when constructing halo catalogues. The choice of percolation can
impact the halo–mass correlation function by up to ≈ 30 per cent
(Garcı́a & Rozo 2019).

The simplest commonly used form of a halo-model description of
the halo–mass correlation function ignores both halo boundaries and
halo exclusion. One writes ξhm(r) = ξ 1h

hm(r) + ξ 2h
hm(r) where the first

and second term are referred to as the 1-halo and the 2-halo term,
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respectively (see e.g. Cooray & Sheth 2002). These two components
are usually modelled independently. The one-halo term is described
by a halo profile u(r|m), usually an NFW or Einasto profile (Einasto
1965; Navarro, Frenk & White 1997). The two-halo term is modelled
by assuming a scale-independent halo bias, where the bias can be
defined relative to either the mass correlation function or the linear
correlation function. These assumptions result in biases as large as
≈ 20 per cent at translinear scales (Hayashi & White 2008). More
recent efforts have introduced scale dependence of the halo bias,
allowing for more accurate modelling of the trans-linear regime (van
den Bosch et al. 2013).

The fact that parent haloes do not reside inside other parent
haloes has important consequences for modelling the trans-linear
regime (Sheth & Lemson 1999). Previous studies have incorporated
halo exclusion effects into the modelling of the halo distribution
in a variety of ways. Smith, Scoccimarro & Sheth (2007), Smith,
Desjacques & Marian (2011), and Baldauf et al. (2013) approach
halo exclusion by imposing a hard-sphere constraint in the halo–halo
correlation function. Philcox, Spergel & Villaescusa-Navarro (2020)
addresses halo exclusion in a similar way and incorporates it into the
halo covariance. Valageas & Nishimichi (2011a, b) introduced halo
exclusion in a Lagrangian framework via a perturbative approach.
Unlike the hard-sphere approaches above, our analysis will allow for
a ‘soft’ halo exclusion, in which haloes can partially overlap in a way
that enables self-consistent mass definitions.

In this paper, we incorporate both halo edges and halo exclusion
into the modelling of the halo–mass correlation function. We demon-
strate that by explicitly introducing these two components into the
model we achieve much better accuracy from small to large scales
for a wide range of halo masses. We emphasize that our model
does not require any scale-dependent clustering biases, beyond those
brought about because of halo exclusion effects. To achieve good
agreement with simulations, our model requires that we redefine
halo boundaries. It is this boundary redefinition that is the most
important novel aspect of our analysis. Indeed, we show that there is
a unique halo radius and mass power-law relation R(M) that ensures
consistency between the halo catalogue and our model.

2 A H A L O M O D E L FO R T H E H A L O – M A S S
C O R R E L AT I O N FU N C T I O N

2.1 The standard approach

We begin with a brief review of the formalism detailed in Cooray &
Sheth (2002), as it forms the basis for our model. Let �xi be the position
of the ith halo in the Universe. If all mass is contained within haloes,
then the mass density of the Universe can be written as

ρm(�x) =
∑

i

miu(�x − �xi |mi), (1)

where u(r|m) is the halo profile, and mi is the mass of the ith halo.
Likewise, given a halo selection function φ(m) (i.e. φ(m) = 1 when
m ∈ [m − �m, m + �m] and 0 otherwise) the corresponding halo
density field is

n(�x) =
∑

i

δ(�x − �xi)φ(mi). (2)

Given these two fields, the halo–mass correlation function is

ξhm(|�x − �x ′|) = 1

n̄ρ̄m
〈n(�x)ρm(�x ′)〉 − 1, (3)

where 〈···〉 denotes ensemble averaging. We can plug in the ex-
pressions for each density field into 3, and predict the two-point
correlation function in therms of the halo density profile, the halo
mass function, and the clustering of haloes. One has then

〈n(�x)ρm(�x ′)〉 =
〈∑

i

∑
j

mjφ(mi)δ(�x − �xi)u(�x ′ − �xj |mj )
〉

=
〈∑

i

miφ(mi)δ(�x − �xi)u(�x ′ − �xi |mi)
〉

+
〈∑

i

∑
j 
=i

mjφ(mi)δ(�x − �xi)u(�x ′ − �xj |mj )
〉

. (4)

The average over the ensemble has been separated into two parts:
one that accounts for the correlation between a halo and the mass
contained within it, and one that accounts for the correlation between
a halo, and mass that belongs to other haloes. We treat each in turn.
We have

1st term =
〈∑

i

miφ(mi)δ(�x − �xi)u(�x ′ − �xi |mi)
〉

=
〈∫

dm
∑

i

miφ(mi)δ(�x − �xi)

×u(�x ′ − �xi |mi)δ(m − mi)
〉

=
∫

dm mφ(m)u(�x ′ − �x|m)
〈∑

i

δ(�x − �xi)δ(m − mi)
〉

. (5)

The remaining expectation value corresponds to the mean number of
haloes per unit volume per unit mass, that is, the halo mass function,

dn

dm
=

〈∑
i

δ(�x − �xi)δ(m − mi)
〉
. (6)

Plugging the mass function into the 1st term and integrating over a
narrow mass selection function we arrive at

1st term =
∫

dm
dn

dm
mφ(m)u(�x ′ − �x|m)

= n̄mu(�x ′ − �x|m). (7)

This is the so-called one halo term of the halo–mass correlation
function.

Now, let’s look at the second term,

2nd term =
〈∑

i

∑
j 
=i

mjφ(mi)δ(�x − �xi)u(�x ′ − �xj |mj )
〉

=
∫

dmdm′d�̃x m′φ(m)u(�x ′ − �̃x|m′)

×
〈∑

i

∑
j 
=i

δ(�x − �xi)δ(m − mi)δ(�̃x − �xj )δ(m′ − mj )
〉

=
∫

dmdm′d�̃x m′φ(m)u(�x ′ − �̃x|m′)

× dn

dm

dn

dm′ [1 + ξhh(�x − �̃x|m, m′)]. (8)

Haloes are biased tracer of the matter density field. At scales much
larger than the size of haloes ξ hh(r|m, m

′
) = b(m)b(m

′
)ξL(r)

ξhh(�x − �̃x|m,m′) = b(m)b(m′)ξL(�x − �̃x) (9)
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It follows that

2nd term = n̄ρ̄m + n̄b(m)
∫

dm′ dn

dm′ m
′b(m′)

×
∫

d�̃x u(�x ′ − �̃x|m′)ξL(�x − �̃x). (10)

At large scales, the details of the halo profile become unimportant,
and the haloes themselves can be approximated as point masses, so
that u(�x) ≈ δ(�x). With this approximation, and the identity,∫

dm′ dn

dm′ m
′b(m′) = 1 , (11)

the 2nd term becomes

2nd term = n̄ρ̄m + n̄ρ̄mb(m)ξL(�x − �x ′) . (12)

Getting everything together, the product becomes

〈n(�x)ρm(�x ′)〉 = n̄mu(�x ′ − �x|m) + n̄ρ̄m(1 + b(m)ξL(�x − �x ′)) . (13)

The halo–mass correlation function is

ξhm(r|m) = m
ρ̄m

u(r|m) + b(m)ξL(r), (14)

where r = |�x − �x ′|. The first term is known as the one-halo term,
ξ 1h

hm, and accounts for the mass within a single halo. The second term
is known as the two-halo term, ξ 2h

hm, and accounts for the mass across
different haloes.

2.2 Incorporating halo exclusion

In the standard approach, we assumed that〈∑
i

∑
j 
=i

δ(�x − �xi)δ(m − mi)δ(�̃x − �xj )δ(m′ − mj )
〉

= dn

dm

dn

dm′ [1 + b(m)b(m′)ξL(�x − �̃x)]. (15)

This is true at large scales, because haloes never overlap. This is not
the case at small scales. We introduce a halo exclusion function
E(�xi − �xj |mi,mj ) which is zero when haloes overlap, and one
otherwise. This halo exclusion function multiplies the entire 2nd

term, so that equation (8) now becomes

2nd =
∫

dmdm′d�̃x m′φ(m)u(�x ′ − �̃x|m′)

× dn

dm

dn

dm′ [1 + b(m)b(m′)ξL(�x − �̃x)]E(�x − �̃x|m,m′). (16)

For a narrow selection function, we get

2nd =
∫

dm′ n̄
dn

dm′ m
′
∫

d�̃x u(�x ′ − �̃x|m′)

×[1 + b(m)b(m′)ξL(�x − �̃x)]E(�x − �̃x|m, m′). (17)

The integral over all space is a convolution of the density profile and
the 2-halo term with exclusion.

2nd =
∫

dm′ n̄
dn

dm′ m
′(u ∗ E)(�x − �x ′|m, m′)

+
∫

dm′ n̄
dn

dm′ m
′b(m)b(m′)(u ∗ EξL)(�x − �̃x). (18)

To make further progress, we must specify a halo exclusion function.
We assume halo exclusion happens when haloes are separated by a
distance r ≤ re(m, m

′
), where re is the halo exclusion radius. Note that

the halo exclusion radius depends on the masses m and m
′
of the two

haloes under consideration. With this definition, the halo exclusion

function takes the form

E(r|m,m′) = 1 − θ (re(m, m′) − r), (19)

where θ is the Heaviside step function. We can set upper and lower
bounds for the exclusion radius. For the lower bound, the exclusion
radius must be larger than the radius of either of the two haloes. For
the upper bound, we use a hard sphere model.

max{rt(m), rt(m
′)} < re(m, m′) < rt(m) + rt(m

′). (20)

In the above expression, rt(m) is the radius of a halo of mass m.
Inserting (19) into our previous expressions we find

2nd =
∫

dm′ n̄
dn

dm′ m
′[u ∗ (1 − θe)](r)

+
∫

dm′ n̄
dn

dm′ m
′b(m)b(m′)[u ∗ (1 − θe)ξL](r). (21)

= n̄ρ̄m

[
1 −

∫
dm′ dn

dm′
m′

ρ̄m
(u ∗ θe)(r)

]

+n̄ρ̄mb(m)

[∫
dm′ dn

dm′
m′

ρ̄m
b(m′)[u ∗ (1 − θe)ξL](r)

]
. (22)

The halo–mass correlation function becomes

ξhm(r|m) = m

ρ̄m
u(r|m) −

∫
dm′ dn

dm′
m′

ρ̄m
θe(r|m,m′)

+b(m)
∫

dm′ dn

dm′
m′

ρ̄m
b(m′)[u ∗ (1 − θe)ξL](r). (23)

Note that this model for the halo–mass correlation function explicitly
incorporates halo exclusion in a flexible way, in the sense that the
model can be used with any definition for a halo boundary and with
any choice of halo percolation.

We can further simplify this expression by using the same
approximation as in the standard case, i.e. at large scales the mass
profile becomes unimportant, and we can set u(�x) ≈ δ(�x). With this
approximation, the above expression simplifies to

ξhm(r|m) = m

ρ̄m
u(r|m) + b(m)ξL(r)

−
∫

dm′ dn

dm′
m′

ρ̄m
θe(r|m,m′)

−b(m)ξL(r)
∫

dm′ dn

dm′
m′

ρ̄m
b(m′)θe(r|m,m′). (24)

We wish to incorporate into our model the fact that spherical
overdensity halo finders define sharp halo edges such that the mass
interior to the halo radius belongs to the halo, while mass exterior to
the halo radius does not. This in turn implies that a self-consistent
model of the halo–mass correlation function ought to truncate the
halo term at the halo boundary. With this truncation in mind, the
matter density field can be written as

ρm(�x) =
∑

i

miu(�x − �xi |mi)θ (r|rt(m)), (25)

where θ (r|rt(m)) = 1 when r < rt(m) and 0 otherwise. This imposes a
sharp cut in the halo density profile of one halo. In practice, however,
we expect that the halo–mass correlation function will exhibit some
effective finite width in the radial direction. For instance, we know
haloes are triaxial, so even if a halo is defined using a spherical
overdensity, we expect ‘nature’ would prefer a triaxial definition. A
triaxial halo definition would ‘spread out’ the halo boundary across a
range of radial scales, naturally leading to a soft truncation of the one-
halo term. In short, we expect a soft truncation will produce better
results than an infinitely sharp truncation. Of course, this implies that
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our model is not entirely consistent with the sharp radial cut imposed
by halo finders. We consider this a small price to pay for better
precision in our model. Moreover, one could imagine modifying halo
finders in order to implement a soft truncation, thereby mimicking
our model for the halo–mass correlation function. Indeed, this is how
some cluster finders work (e.g. redMaPPer Rykoff et al. 2012). We
will leave the task of exploring such modifications of halo finders to
future work.

For the above reasons, we choose to model the truncation using
the complementary error function centred at the halo edge rt(m) with
width �rt(m).

θt(r|m) = 1

2
erfc

(
r − rt√

2�rt

)
. (26)

Upon including this halo truncation term, the halo–mass correlation
function can be written as

ξhm(r|m) = m

ρ̄m
u(r|m)θt(r|m) + b(m)ξL(r)

−
∫

dm′ dn

dm′
m′

ρ̄m
θ (r|re(m, m′))

−b(m)ξL(r)
∫

dm′ dn

dm′
m′

ρ̄m
b(m′)θ (r|re(m,m′)). (27)

This final expression can still be interpreted in a similar fashion as
the standard halo model. It has a one-halo term that accounts for the
matter that is contained within the halo boundary, and has a two-halo
term that takes into account matter in the rest of the haloes. The
difference is that there are correction terms due to halo exclusion.
These correction terms can be interpreted as the mass that would
have been there in other haloes, were it not for the exclusion volume
associated with more massive haloes. Note this ‘excluded mass’ is
comprised of both the excluded mass in the mean, and the ‘extra’
excluded mass due to halo-mass clustering. The final expressions for
the 1-halo and 2-halo terms are

ξ 1h
hm(r|m) = m

ρ̄m
u(r|m)θt(r|m) −

∫
dm′ dn

dm′
m′

ρ̄m
θ (r|re(m,m′))

−b(m)ξL(r)
∫

dm′ dn

dm′
m′

ρ̄m
b(m′)θ (r|re(m,m′)). (28)

ξ 2h
hm(r|m) = b(m)ξL(r). (29)

Note we have associated the correction terms with the one-halo
term since these represent excluded mass in the vicinity of the
halo, i.e. the excluded mass moves in space as one moves haloes in
space.

2.3 Refining the two-halo term

In all of the above we have assumed that ξ hh = b(m)b(m
′
)ξL. This

is true at very large scales but not at small scales. If haloes trace
matter, then as we move towards non-linear scales, we should expect
ξL will need to be replaced the matter–matter correlation function
ξmm. However, the latter correlation function has a strong 1-halo
contribution at small scales. Clearly, linear biasing cannot hold in
this regime. The best we could hope for is linear bias relative to the
2-halo term of the matter correlation function, ξ 2h

mm = ξmm − ξ 1h
mm.

This raises the obvious question: how can we remove the 1-halo
term of the matter correlation function?

While we cannot give a definitive answer a priori, it is clear what
‘removing the 1-halo term’ must do to the matter correlation function:
it must suppress correlations at small scales. This leads us to adopt a

two-halo term for the matter–matter correlation function of the form
given by

ξ 2h
mm = ξmm × (1 − θt(reff, �eff )). (30)

In this expression, θ t is again a smooth truncation function of the
form given by equation (26). The radius reff sets the scale at which
ξmm transitions from the 1-halo term to the 2-halo term, while �eff

determines how quickly this transition occurs.
With these modifications, our final expression for the halo–matter

correlation function is

ξhm(r|m) = ξ 1h
hm(r|m) + ξ 2h

hm(r|m) (31)

ξ 1h
hm(r|m) = m

ρ̄m
u(r|m)θt(r|m)

−
∫

dm′ dn

dm′
m′

ρ̄m
θ (r|re(m,m′))

−b(m)ξ 2h
mm(r)

∫
dm′ dn

dm′
m′

ρ̄m
b(m′)θ (r|re(m, m′)) (32)

ξ 2h
hm(r|m) = b(m)ξ 2h

mm(r) (33)

We briefly discuss how the expressions written above compare with
the expressions for the halo matter correlation function in van den
Bosch et al. (2013). In their approach, the first term in equation (32)
is ξ 1h

hm, while the rest of the terms in that equation are accounted
for in their two-halo term. The two-halo term that they consider
includes radial dependence of the halo bias, halo exclusion, and uses
the non-linear matter correlation function. In our case, we consider a
simple linear bias relative to ξ 2h

mm instead. Thus there is considerable
simplicity in the expressions we have derived. In Section 3, we will fit
the halo matter correlation function with the results from numerical
simulations. For the routinely used halo-mass definition M200m, the
model of van den Bosch et al. (2013) performs well while our model
performs poorly. As we show below, however, if the halo definitions
are made consistent with our formalism – a step that requires fairly
simple and straightforward tweaks to the halo finding algorithms –
the simpler expressions in our model can describe the halo-mass
correlation function with even greater accuracy than that achieved
by van den Bosch et al. (2013). In particular, we argue that the
complications regarding the radial dependence of the halo bias can
be solved by a simple redefinition of the halo boundary, coupled
with the use of the 2-halo term of the non-linear matter correlation
function.

Similar arguments can be made with regards to perturbative
approaches aimed at modelling non-linear biasing in translinear
scales (e.g. Smith et al. 2011; Philcox et al. 2020). Our model
demonstrates that the introduction of perturbative non-linear bias
parameters is unnecessary for describing the clustering of mass
around haloes, provided one adopts an appropriate halo boundary,
and that one adequately models the impact of halo-exclusion in the
data.

2.4 High mass limit

The most massive haloes are much bigger than the rest of their neigh-
bours (m > >m

′
). Consequently, rt(m) > >rt(m

′
). This condition,

along with the inequality (20) implies that,

re(m,m′) ≈ rt(m). (34)
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Setting the exclusion radius to the halo radius of the more massive
halo leads to

ξhm(r|m) =
[

m

ρ̄m
u(r|m) − 1

]
θt(r|m)

+b(m)ξ 2h
mm(r)[1 − θt(r|m)], (35)

which is equivalent to

ξhm(r|m) =
⎧⎨
⎩

m

ρ̄m
u(r|m) − 1 r ≤ rt(m)

b(m)ξ 2h
mm(r) r ≥ rt(m)

. (36)

If instead of the truncated matter–matter correlation function, we use
the linear correlation function ξL the model turns to

ξhm(r|m) =
⎧⎨
⎩

m

ρ̄m
u(r|m) − 1 r ≤ rt(m)

b(m)ξL(r) r ≥ rt(m)
. (37)

Note that if rt(m) is not known a priori, one can use the fact that ξ hm

is continuous to determine rt(m). That is, our formalism has allowed
us to derive from first principles the model proposed by Hayashi &
White (2008).

2.5 Halo density profile

We assume that dark matter haloes are spheres whose normalized
density distribution is given by the Einasto profile

u(r|m) = ρs

m
exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (38)

where rs is the scale radius, ρs the density at rs, and α is the
shape parameter. In the following, we use a more convenient
parametrization via the mass and concentration and a mass definition.
For a particular mass definition, say M200m, the concentration is given
by c = R200m/rs, and the density ρs is obtained by the normalization
of u(r|m). This parametrization is

u(r|M) = αc3( 2
α

)3/α

3
(3/α)M
exp

{
− 2

α

(
rc

R(M)

)α}
, (39)

where R(M) is the mass contained within the radius R that defines the
boundary of the halo. We use the COLOSSUS (Diemer 2018) python
package to compute the Einasto profile.

2.6 Simplifying the halo exclusion terms

The fact that the exclusion terms are integrals over an infinite mass
range poses a problem. With the simulation we are using we simply
do not know the halo mass function for M < 1012h−1 M�. Moreover,
lowering this mass limit requires using smaller boxes, which in
turn looses larger modes. In short, a brute-force approach to this
problem appears unpalatable. While in principle one could attempt
performing these integrals over infinite mass range by truncating
at the lower mass limit and including an additive term (Schmidt
2016), the redefinition of the halo boundary means that we do not
truly know the halo mass function until we find a consistent R(M)
relation. Consequently, this ‘trick’ is not available to us. Despite these
limitations, we can take advantage of the fact that the corrections due
to halo exclusion are integrals over the halo mass function. Adopting
the normalization condition that all mass is contained within haloes,
we can think of the mass function (1/ρ̄m)mdn/dm as a probability
distribution. Consequently, the mass integrals can all be thought
of as expectation values. We assume that the average value of a
function f over the probability distribution (1/ρ̄m)mdn/dm can be

approximated as the function f evaluated at some input parameter m0

where we expect m0 ≈ 〈m〉.
Using this approximation, the corrections due to halo exclusion

are simplified and the correlation function can be written as

ξhm(r|m) = m

ρ̄m
u(r|m)θt(r|m) + b(m)ξ 2h

mm(r)

−θ (r|re(m,mb)) − b(m)ξ 2h
mm(r)θ (r|re(ma,m

′)), (40)

where ma and mb are the values of halo mass which approximate
the expectation value of the exclusion functions over all halo
masses. There are two parameters since the exclusion function is
weighted differently in each exclusion term. Note in particular that
the parameter ma arises from the exclusion function integral that
includes a bias weighting of the haloes, so we should expect ma >

mb due to the steep dependence of the halo bias at high masses.
Our approach here again differs from that of van den Bosch

et al. (2013), who split the mass integrals into two, and then
simplified using the integral conditions. Nevertheless, they must still
perform integrals over mass, which our model does away through
the introduction of the ma and mb parameters.

2.7 Model parameters

Our final model for the halo–mass correlation function depends on
several model parameters, namely:

(i) concentration c
(ii) Einasto parameter α

(iii) halo bias b
(iv) truncation parameters of ξ 2h

mm: reff, �eff

(v) effective masses for halo exclusion corrections ma, mb

There are additional ‘parameters’ in our fits, namely

(i) the halo mass m,
(ii) the halo radius rt.

The mass m governs the amplitude of the 1-halo term in our fit,
while the radius rt sets the boundary of the halo. In principle, these
parameters should not be fit parameters. For instance, when using an
overdensity criterion � when defining halo masses, a self-consistent
model should have M� as the mass parameter governing the 1-halo
amplitude. Likewise, one should set the radius rt = R�.

As we will see, in practice, using commonly used fixed overdensity
criteria results in poor fits to the data. This allows us to ask the
question: is the simulation data well fit with some other halo mass
m and halo radius rt? In this case, we can use our halo model with
m and rt as fit parameters to learn about what the mass and radius
of the haloes should have been. When doing so, our fits rely on nine
parameters for a single mass bin. However, we can vastly reduce this
parameter space by enforcing simple power-law scalings of many
of our parameters with halo mass. Additionally, the one-halo term
that we subtract from the matter–matter correlation function must be
independent of mass. Thus, the parameters reff and �eff have to be
shared across all halo mass bins. This forces us to simultaneously fit
the model across all available halo masses.

We assume that the halo radius, concentration, the shape param-
eter, and the effective masses can be parametrized as power laws of
halo mass. That is

rt = rp

(
m

mp1

)β

(41)

c = cp

(
m

mp2

)γ

(42)
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1200 R. Garcia et al.

Table 1. Model parameters. The limits in square brackets indicate flat priors.

Parameter Description Prior

log10mk Halo mass [11.0, 16.0]
bk Halo bias [0, ∞]
rp Halo radius pivot [0, ∞]
β Halo radius power [0, ∞]
cp Concentration pivot [0, ∞]
γ Concentration power [ − ∞, 0]
αp Shape parameter pivot [ − ∞, ∞]
δ Shape parameter power [0, ∞]
map Halo exclusion pivot [0, ∞]
A Halo exclusion power [0, ∞]
mbp Halo exclusion pivot [0, ∞]
B Halo exclusion power [0, ∞]
� Width of truncation for one-halo term [0, ∞]
�e Width of truncation for exclusion terms [0, ∞]
reff Truncation radius of ξmm [0, ∞]
�eff Truncation width of ξmm [0, ∞]

α = αp

(
m

mp3

)δ

(43)

ma = map

(
m

mp4

)A

(44)

mb = mbp

(
m

mp5

)B

, (45)

where we fit for the amplitudes and exponents in these relations. We
select the pivot values mp1 = mp3 = 2 × 1014, mp2 = 7 × 1014, mp4 =
mp5 = 2 × 1012 which are typical values of halo mass in our halo
catalogue. The above selection of pivot points roughly decorrelates
the slope and amplitude parameters, and was obtained through trial
and error.

The likelihood of the halo-mass correlation function for haloes in
the kth mass bin is

lnLk = lnL(ξhm(r|mk)|θ ) ∝ − 1
2 D�

k C−1
ξhm

Dk (46)

where θ = (m, b, rp, β, cp, γ , αp, δ, map, A, mbp, B, reff, �eff)
is the vector of model parameters, Dk = ξ data

hm − ξmodel
hm and Cξhm is

the covariance matrix of ξ data
hm . We are looking to fit for all mass

bins simultaneously since the parameters reff and �eff are shared
across all halo mass bins. To maintain the jackknife covariance
matrix well-conditioned, we ignore the covariance across mass bins.
We emphasize that while this assumption will impact the width of
the posterior distribution in our analysis, we expect its impact on
the precision of the best-fitting model will be minimal. With this
assumption, the total likelihood is given by

lnL({ξhm(r|mk)}N
k=1|θ ) ∝ ∑

k lnLk. (47)

The priors on the parameters are shown in Table 1. The likelihood is
sampled using the python package EMCEE (Foreman-Mackey et al.
2013). The total number of parameters for 12 mass bins is 38 (i.e. just
over 3 parameters per correlation function). We use 152 walkers with
50 000 steps each and discard the first 5000 steps of each walker. The
chains of each walker become uncorrelated after 400 steps, ensuring
a minimum of 17 000 independent samples.

3 R ESULTS

3.1 The halo-mass correlation function

We measure the halo-mass correlation function using a cosmological
N-body simulation similar to those used in the Aemulus project
(DeRose et al. 2019). It is run with the publicly available code
GADGET2 (Springel 2005). The simulation is a periodic box of size
1050 h−1 Mpc with 14003 particles. The cosmology is h = 0.6704,

m = 0.318, 
� = 0.682, 
b = 0.049, σ 8 = 0.835, ns = 0.962.
The particle mass is 3.7275 × 1010 h−1 M� and the force softening
scale is 20 h−1kpc. Haloes were found using the publicly available
ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013) with a
spherical overdensity of � = 200. ROCKSTAR uses an adaptive
friends-of-friends algorithm in 6D phase space to identify dark
matter structures. These structures are classified as parent haloes or
subhaloes using a soft-sphere halo exclusion scheme: two structures
are considered to be in the same parent halo if their separation is less
than the radius of the larger structure.

We attempt to fit the halo-mass correlation function data with
our halo model. The left-hand panel of Fig. 1 shows the halo-mass
correlation function for haloes of mass M = [1, 2] × 1013 h−1 M�,
where mass is defined using an overdensity criterion � = 200 relative
to the mean density of the Universe. In this fit, we have forced
the mass parameter in our halo model to be equal to the mass of
the haloes. Likewise, we have forced the truncation parameter rt to
coincide with R200m, the radius of the haloes. The latter is shown as a
vertical line in the plot, which is left of the ‘valley’ between the two
bumps in the data, which one might expect to correspond to the one
and two halo terms. Unsurprisingly, the fit to the data is poor despite
the model having seven free parameters.

We now test how well our model works if we let the mass and
radius parameters in the halo model be free. This, of course, results
in a model that is inconsistent with the halo definitions employed
in the creation of the halo catalogue. We will address this point
momentarily. For now, let us simply consider how our model fits the
data when we let m and rt float.

The right-hand panel in Fig. 1 shows our best-fitting model for
the halo-mass correlation function when allowing the mass and
truncation radius parameters to float. We see that our halo model
now provides an excellent description of the data, and that the best-
fitting truncation radius rt (shown as a vertical line) falls close to
the ‘by-eye’ transition between the 1- and 2-halo bumps of the halo-
mass correlation function. In other words, the simulation data clearly
suggests that the halo boundary should extend further out than R200m,
and should be set by rt instead.

These results suggest how to address the lack of consistency
between the model parameters m and rt, and the mass and halo
boundary used to define the haloes in the first place. We consider an
iterative approach to halo finding which proceeds as follows. We start
by assuming that haloes are defined in iteration i via a radius–mass
relation Ri(M). For instance, in iteration i = 1, this relation corre-
sponds to the fixed overdensity criterion, 3M/4πR1(M)3 = �ρ̄m.
Given the relation Ri(M), we perform the following operations:

(i) We generate a halo catalogue using Ri(M) to define the
boundaries of haloes and to enforce halo exclusion.

(ii) We measure the halo–matter correlation functions for haloes
in fixed mass bins.

(iii) We fit the resulting halo–mass correlation function letting the
mass m and radius rt parameters float. These new estimates define
the radius–mass relation Ri + 1(M).
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Redefining the halo boundary 1201

Figure 1. The halo-mass correlation function and model predictions using different choices of halo radius, and letting the amplitude of the one-halo term be
given by the mass contained within the aperture used to define haloes. Left-hand panel: Best-fitting model using R200m as the halo boundary and exclusion radius.
Right-hand panel: Best-fitting model using our self-consistent halo boundary (1 + �)rt obtained through iteratively applying our model to the simulations. We
plot the halo boundary (1 + �)rt instead of rt because the halo profile does not end at rt, it is smoothly truncated with a complementary error function of width
�. Error bars are jackknife. Our halo model provides an accurate description of the simulation data provided the halo boundary is properly defined.

The procedure is then iterated until convergence is achieved, that
is, we iterate until Ri + 1(M) = Ri(M). In practice, we find that
R(M) converges to within ≈ 1 per cent by the end of the second
iteration, and it is converged to 0.01 per cent in ≈5 iterations. Our
fully converged radius–mass relation takes the form

rt(m) = rp

(
m

mp

)β

, (48)

where we select the pivot value mp = 2 × 1014h−1 M�, and
the converged parameters are rp = 1.558 ± 0.001h−1 Mpc, β =
0.200 ± 0.001. This relation can be recast as a mass-dependent
overdensity criterion,

�(M) = 3m3β
p

4πρr3
p

M1−3β . (49)

We emphasize that once convergence is achieved, the halo mass and
radius should no longer be considered fit parameters. That is, when
adopting the halo mass definition described in equation (48), the
parameters m and rt in the halo model are given precisely by the
mass and radius used to define the haloes.

Fig. 2 shows a comparison between the halo–matter correlations
measured in the simulation to our best-fitting model after conver-
gence is achieved. The model performs well in a wide range of halo
masses and scales. It achieves 2 per cent accuracy for haloes of mass
1013 h−1 M� from 0.2 to 60 h−1 Mpc. Larger halo masses exhibit
larger (∼ 10 per cent) deviations, though these are consistent with
noise as estimated using jackknife resampling. In other words, our
simulation box is not sufficiently large for us to give a robust estimate
of the precision of our model at high halo masses. Likewise, the
Press–Schechter fit presented here has only been validated for haloes
with mass M ≥ 1013 M�. We will provide improved calibrations of
the precision of our model in future work.

3.2 Is rt related to the splashback radius?

We have seen that our analysis naturally leads us to redefine halo
boundaries. Recently, the so-called splashback radius has been pro-
posed as a physical halo boundary (Diemer & Kravtsov 2014; More

et al. 2015). We compare the halo radius we derive to the splashback
radius as defined using the SPARTA algorithm (Diemer 2017; Diemer
et al. 2017). SPARTA tracks the orbits of all particles in a halo and
measures the location of the first apocentre of all particles. The
splashback radius of a halo is defined as the smoothed average of the
apocentre radii of a fraction of the particles. Common choices are the
75th and 87th percentiles, which roughly match the splashback radius
defined as the steepest point of the logarithmic slope of the spherically
averaged density profile (More et al. 2015), and as the radius of the
sphere with volume equal to the splashback shell of a halo, as first
introduced in the code SHELLFISH (Mansfield, Kravtsov & Diemer
2017), respectively. When computing the splashback radius of a halo
in the simulation, we rely on the M200m mass of the halo as measured
in the simulation.

Fig. 3 shows the ratio rt/Rsp for several splashback definitions,
specifically the median, 75th and 87th percentiles. For each mass
bin, the splashback radius is the average Rsp of all haloes in that
bin, as estimated from the M200m masses of the haloes using the
SPARTA code (Diemer 2017). We see that these ratios are roughly
constant throughout the mass range [1013, 1015] h−1 M�. Taking the
87 percentile splashback radius as our reference, we find that rt/Rsp ≈
1.3. This value is close to but somewhat smaller than the edge radius
Redge/Rsp ≈ 1.55 identified in Aung et al. (2021). It is interesting
that both the edge radius and the radius rt defined here are roughly
constant factors of the splashback radius, and that they are both
somewhat larger than the splashback radius. We leave a detailed
analysis of how these two different radial scales are related to future
work.

As we move to smaller masses, the ratio rt/Rsp grows. We caution,
however, the splashback radii measured at low masses as estimated
from SPARTA are likely biased for our halo population, with the bias
almost certainly increasing with decreasing mass. To see this, recall
that SPARTA was calibrated using parent haloes identified with the
ROCKSTAR halo finder using R200m as the halo radius. Since our
halo boundary is significantly larger than R200m, a low-mass halo
neighbouring a high mass haloes will become a substructure of the
high mass halo upon applying our new halo definition. These ‘haloes’
currently contribute to the estimates in SPARTA, but are not included
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Figure 2. The halo–mass correlation function for haloes of different masses, as labelled. Top row: Halo–matter correlation functions. Bottom row: Fractional
difference between the model and the measurement. Error bars are jackknife. The vertical dashed lines corresponds to rt(1 + �).

Figure 3. Ratio between our proposed halo boundary rt and the splashback
radii from the SPARTA algorithm for a variety of percentiles of the apocentre
distribution of dark matter particles. The ratio seems to be roughly constant.
We believe that for the halo population we identified the SPARTA estimates
of the splashback radius becomes increasingly biased as we move to lower
masses. See the text for further details.

in our analysis as parent haloes due to the change in percolation
in our halo catalogue. In other words, the halo population in which
SPARTA was calibrated does not match our halo population, except
at the very highest masses. This implies that a proper comparison
of the splashback radius to our proposed halo boundary rt requires
recalibration of the particle orbits based on the haloes identified by
our algorithm only. We defer this recalibration to future work.

In short, we believe that splashback radii, the halo edge proposed in
Aung et al. (2021), and the truncation radius we identified as naturally
arising from the halo–mass correlation function are all related, though
exactly what this relation is remains unclear. Clarifying the relation
between these radii is an ongoing work.

3.3 The halo mass function

The change in halo definition we suggest directly impacts the halo–
mass function. We measured the halo–mass function of the final halo
catalogue produced by our iterative algorithm. The extended Press–
Schechter formalism (Press & Schechter 1974) leads to a theoretical
prediction of the halo–mass function of the form

dn

dm
= f (σ )

ρ̄m

m

d ln σ−1

dm
, (50)

where f(σ ) is some function, and σ (M) is the variance of the linear
density field over an aperture rt(M). Press and Schechter (Press &
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Redefining the halo boundary 1203

Figure 4. Left-hand panel: The halo mass function in the simulation using our proposed halo definition (blue points with error bars) and the best-fitting
Press–Schechter mass function (orange line). The Tinker et al. (2008) mass function (green line) is shown for reference. Halo mass functions plotted as a
function of peak height ν. Error bars are jackknife. Right-hand panel: Residuals between the simulation data and the best-fitting Press–Schechter model. The
horizontal dashed lines correspond to 5 per cent deviations.

Schechter 1974) derived a first expression for f(σ ) on the basis of the
spherical collapse model. The Press–Schechter multiplicity function
f(σ ) is given by

f (σ ) =
√

2

π

δsc

σ
exp

[
− δ2

sc

2σ 2

]
, (51)

where δsc is the critical density required for spherical collapse. At
z = 0, and assuming a matter density 
m = 1, one finds δsc = 1.686.
The quantity ν ≡ δsc/σ (M) is typically referred to as the peak height.

As shown in Fig. 4, we find that the Press–Schechter mass function
gives an excellent fit (∼ 5 per cent precision) to the mass function
of our final halo catalogue, provided we fit for the value of δsc.
The posterior on the critical density for collapse δsc from our best-
fitting Press–Schechter model is δsc = 1.449 ± 0.004. We note
that the fidelity of our fit is not simply a consequence of the mass
range sampled by the simulation: Press–Schecther fails to provide a
reasonable fit to the halo–mass function in the simulation when using
M200m as the halo mass. In this light, the excellent agreement between
the simulation and the Press–Schechter mass function is surprising,
as our analysis did not make any assumptions about halo abundances.
Rather, it relied exclusively on features in the halo–mass correlation
function to motivate the redefinition of halo boundaries. However, the
best-fitting critical threshold for collapse δsc is significantly smaller
than expected (e.g. Pace, Meyer & Bartelmann 2017). Whether this
specific value can be predicted theoretically remains to be seen.

3.4 Halo bias and the peak-background split

We have shown that the theory of spherical collapse can accurately
predict the halo–mass function in a simulation, provided we use the
correct halo definition and fit for the value of the critical overdensity.
In this section, we test whether the peak-background split model of
halo bias provides an equally accurate description of our data. The
peak-background split predicts the bias as a function of peak height
is given by (Cole & Kaiser 1989; Mo & White 1996)

bPB(ν) = 1 + ν2 − 1

δsc
. (52)

We calculated the halo bias using the previous equation, where ν

is the peak height as defined in the previous section. Fig. 5 shows

a comparison between the halo bias as measured using the halo–
mass correlation function, and the halo bias derived from the peak
background split. The orange band shows the prediction based on
our Press–Schechter fit to the halo–mass function. We see the peak-
background split model is roughly ∼ 10 per cent − 15 per cent)
consistent with the data, a level of accuracy comparable to the
performance of the peak background split for other halo–mass
definitions (e.g. Tinker et al. 2010; Hoffmann, Bel & Gaztañaga
2015; Desjacques, Jeong & Schmidt 2018). However, the predicted
bias is clearly too high. We fit our data with a bias of the form derived
from the peak-background split, but allow δsc to vary independently,
finding δsc = 1.375 ± 0.012. This model can describe our data with
≈ 5 per cent accuracy, though the residuals clearly exhibit structure
as a function of peak height. Note than when evaluating the bias
model in equation (52), we vary δsc both in the denominator and in
the definition of the peak height ν. This is obviously inconsistent with
the fit from the halo–mass function, but can be thought of simply as
a useful empirical fitting function.

The excursion set peaks formalism of Paranjape, Sheth & Des-
jacques (2013) has succeeded in presenting a framework capable of
jointly fitting the abundance and bias functions of dark matter haloes
within the context of the peak-background split hypothesis. Critical
to this success is the adoption of a mass-dependent stochastic barrier
for collapse. Testing whether or not this formalism can successfully
account for the discrepancy between our bias measurements and
the peak-background split prediction is beyond the scope of this
work.

4 SU M M A RY A N D C O N C L U S I O N S

We presented a model for the halo–mass correlation function that
assumes a scale-independent bias and explicitly incorporates halo
edges and halo exclusion. We emphasize that all the qualitative
features in our model are well motivated a priori. The specific
parametrizations used to implement these features are arbitrary (e.g.
one could replace complementary error functions by Fermi–Dirac
functions), but their qualitative form are not. Importantly, our model
contains a single scale-independent bias parameter. The ratio of ξ hm

to ξmm does have a scale dependence, but this scale dependence is
entirely accounted for by the modifications to the naive halo model
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Figure 5. The halo bias measured from the ratio of the halo–mass and mass–mass correlation functions and the prediction from the peak-background split
approach. Left-hand panel: The halo bias measured from fitting the halo–mass correlation function is shown in blue. The halo bias calculated using peak-
background split prediction with δsc the best-fitting value from the halo mass function fit is shown in orange. The green curve shows the peak-background split
fit where we vary δsc. Right-hand panel: Fractional difference with respect to the halo bias b = ξhm/ξmm.

due to softly truncated halo profiles, halo exclusion, and the different
one-halo terms of ξ hm and ξmm.

Our main findings can be summarized as follows:

(i) We derived the model proposed by Hayashi & White (2008)
from first principles, and showed that this model is the high mass
limit of a halo model that self-consistently incorporates halo edges
and halo exclusion.

(ii) Halo exclusion introduces corrections in the halo–mass corre-
lation function at the translinear regime.

(iii) In our model, there is a unique radius–mass power-law
relation that can be used to define haloes for which our model
provides an accurate (≈ 2 per cent) description of the halo–mass
correlation function across a wide range of scales.

(iv) The halo radius identified in our analysis is located at the ‘by
eye’ transition from the one-halo term to the two-halo term.

(v) The halo radius identified in this paper and the splashback
radius (calibrated with R200m haloes) are related by a roughly constant
multiplicative factor. However, the exact relation between these two
scales, and the edge radius advocated by Aung et al. (2020), remains
unclear, and is the focus of ongoing work.

(vi) The mass function of haloes defined using the halo radius
identified in this work is well described by the Press–Schechter
formula, though the best-fitting value for the critical density for
spherical collapse δsc (δsc = 1.449 ± 0.004) is below its expected
value δsc ≈ 1.686.

(vii) The halo bias predictions from the peak-background split
approach are not consistent with the halo bias measured from the
simulation, exhibiting 10 per cent to 15 per cent offsets depend
on halo mass. These differences are comparable to the deviations
from the peak-background split prediction for more traditional fixed-
overdensity halo definitions. Remarkably, however, if we indepen-
dently fit for δsc in the halo bias expression derived from the peak-
background split, we find that a model with δsc = 1.375 ± 0.012 can
describe our data with ≈ 5 per cent accuracy.

It is very encouraging that multiple lines of evidence are now
pointing towards the existence of a true halo boundary that extends
well beyond R200m, even if the precise relation between these works
is still unclear. Encouragingly, we have shown that defining haloes

using our proposed halo boundary significantly simplifies the halo
model while improving accuracy. When coupled with new insights
into the halo model, we may soon arrive at a complete theory of
large-scale structure capable of describing observations at all scales,
with the necessary precision required to make full use of upcoming
photometric and spectroscopic surveys.

Our long-term goal is to develop this theoretical framework to
the point which we can use it to perform cosmological analyses
of galaxy clustering down to small scales. Doing so will require
calibrating the model as a function of redshift and cosmology. These
calibrations necessitate intensive simulation efforts, and building
emulators that interpolate our model parameters across cosmology
and redshift. Further, we must adequately characterize the precision
of the resulting emulators. We will pursue this calibration, along with
further theoretical improvements to our model, in future work.

This type of analytic approach may appear quaint given the
existence of emulators and simulation-rescaling techniques capable
of making high accuracy predictions (Nishimichi et al. 2019; Angulo
et al. 2020). Moreover, given that our model needs to be calibrated in
simulations, one may wonder why should not we skip the modelling
part and let machine learning methods characterize the theory
directly. In this context, we believe there remains significant value
to the insights gained from our analytic treatment. To paraphrase
Eugene Wigner, it is nice that computers can understand the problem,
but we would like to understand it too.
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Stücker J., 2020, preprint (arXiv:2004.06245)

Aung H., Nagai D., Rozo E., Garcia R., 2021, MNRAS, 502, 1041
Baldauf T., Seljak U., Smith R. E., Hamaus N., Desjacques V., 2013,

Phys. Rev. D, 88, 083507
Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, ApJ, 762, 109
Bhattacharya S., Heitmann K., White M., Lukić Z., Wagner C., Habib S.,
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