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ABSTRACT
We quantify two main pathways through which baryonic physics biases cluster count cosmology. We create mock cluster samples
that reproduce the baryon content inferred from X-ray observations. We link clusters to their counterparts in a dark matter-only
universe, whose abundances can be predicted robustly, by assuming the dark matter density profile is not significantly affected
by baryons. We derive weak lensing halo masses and infer the best-fitting cosmological parameters �m, S8 = σ 8(�m/0.3)0.2,
and w0 from the mock cluster sample. We find that because of the need to accommodate the change in the density profile due
to the ejection of baryons, weak lensing mass calibrations are only unbiased if the concentration is left free when fitting the
reduced shear with NFW profiles. However, even unbiased total mass estimates give rise to biased cosmological parameters if
the measured mass functions are compared with predictions from dark matter-only simulations. This bias dominates for haloes
with m500c < 1014.5 h−1 M�. For a stage IV-like cluster survey without mass estimation uncertainties, an area ≈ 15 000 deg2

and a constant mass cut of m200m,min = 1014 h−1 M�, the biases are −11 ± 1 per cent in �m, −3.29 ± 0.04 per cent in S8, and
9 ± 1.5 per cent in w0. The statistical significance of the baryonic bias depends on how accurately the actual uncertainty on
individual cluster mass estimates is known. We suggest that rather than the total halo mass, the (re-scaled) dark matter mass
inferred from the combination of weak lensing and observations of the hot gas, should be used for cluster count cosmology.

Key words: gravitational lensing: weak – surveys – galaxies: clusters: general – cosmological parameters – large-scale structure
of Universe – cosmology: observations – cosmology: theory.

1 IN T RO D U C T I O N

Clusters of galaxies are sensitive probes of structure formation in a
universe where structure forms hierarchically, because they are still
actively forming. Their abundance in a given volume as a function
of mass and redshift contains a wealth of information about the
formation history of the Universe, i.e. its total amount of matter, how
clustered it is, and how its accelerated expansion changed in time (e.g.
Allen, Evrard & Mantz 2011). The fact that the cluster abundance
drops exponentially with increasing mass enables precise constraints
on the underlying cosmology, but it also necessitates accurate mass
calibrations (e.g. Evrard 1989; Bahcall, Fan & Cen 1997).

Linking observed cluster number counts to the theoretical ex-
pectation for a given cosmology requires a well-defined cluster
selection function and an accurately calibrated mass–observable
relation. These requirements are not independent, as Mantz (2019)
illustrated how the selection function also plays an important role in
constraining the assumed scaling relations between the observable
mass proxy and the true mass near the survey mass limit. All
current abundance studies account for these effects in their analysis
(Mantz et al. 2010; de Haan et al. 2016; Bocquet et al. 2019; DES
Collaboration et al. 2020). While the cluster selection function is
a crucial part of the cosmological analysis, it also depends on the
cluster detection method and is thus survey-specific. Here, we will

� E-mail: debackere@strw.leidenuniv.nl

assume that the completeness of the sample can be modelled perfectly
and focus solely on the calibration of the mass–observable relation.

To convert the observed cluster mass proxy, e.g. the Sunyaev–
Zel’dovich (SZ) detection significance, into a mass, we need the
mass–observable scaling relation. The mass–observable relation
cannot be predicted robustly from first principles, since it relies
on complex galaxy formation physics. Calibrating this scaling
relation requires unbiased mass estimates for a subset of the cluster
sample. Consequently, it is generally calibrated using weak lensing
observations as they probe the total matter content of the cluster (e.g.
Von der Linden et al. 2014a,b; Hoekstra et al. 2015; Schrabback et al.
2018; Dietrich et al. 2019; McClintock et al. 2019a).

Köhlinger, Hoekstra & Eriksen (2015) have shown the dramatic
reduction in the statistical uncertainties and systematic errors in
cluster mass estimates from an idealized weak lensing analysis due
to the expected increase in area and background galaxy number
density of stage IV-like surveys such as Euclid1 and the Rubin
Observatory Legacy Survey of Space and Time (LSST) .2 However,
the accuracy of weak lensing mass calibrations remains an open
question, especially in the presence of baryons. Bahé, Mccarthy
& King (2012) investigated the mass bias inferred from weak
lensing observations in dark matter-only (DMO, i.e. gravity-only)
simulations, finding cluster masses to be biased low by ≈ 5 per cent

1https://www.euclid-ec.org
2https://www.lsst.org/
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due to deviations of the cluster density profile from the assumed
Navarro–Frenk–White (NFW; see Navarro, Frenk & White 1996)
shape in the cluster outskirts. Similarly, Henson et al. (2017) found
a bias of up to ≈ 10 per cent in hydrodynamical simulations. The
main conclusion from these studies is that we need to correct weak
lensing-derived masses for the lack of spherical symmetry of the
observed halo using virtual observations of simulated haloes (see
e.g. Dietrich et al. 2019). Lee et al. (2018) used hydrodynamical
simulations to show that while these effects are certainly important,
the coherent suppression of the inner halo density profile due to
baryonic physics also matters. The impact of this effect on cluster
number count cosmology has not been isolated so far.

Simulations indicate that baryons significantly change the density
profiles of haloes when comparing them to their matched DMO
counterparts (e.g. van Daalen et al. 2014; Velliscig et al. 2014; Lee
et al. 2018). In hydrodynamical simulations, baryonic effects lower
the halo mass, m200c, at the � 5 (1) per cent level for cluster-sized
haloes with m200c > 1014 (1014.5) h−1 M� compared to the same halo
mass in a gravity-only simulation,3 m200c, dmo. (e.g. Sawala et al. 2013;
Cui, Borgani & Murante 2014; Martizzi et al. 2014; Velliscig et al.
2014; Bocquet et al. 2016; Castro et al. 2020). Hence, we should not
expect cluster density profiles to follow the NFW shape, especially
since baryons are preferentially ejected outside r ≈ r500c, where
weak lensing observations reach their optimal signal-to-noise ratio.
Balaguera-Antolı́nez & Porciani (2013) have investigated the impact
of the halo mass change due to baryons on cluster count cosmology,
but they did not include the effect of weak lensing mass calibrations.
To isolate the effect of the change in the halo density profile due
to baryons, we generated idealized, spherical clusters that consist of
dark matter and hot gas that reproduces the observed cluster X-ray
emission, thus bypassing the large inherent uncertainties associated
with the assumed subgrid models in hydrodynamical simulations.
These models allow us to study the bias in the inferred halo masses for
a standard, mock weak lensing analysis that assumes NFW density
profiles.

With the cluster masses determined, the number counts as a
function of mass and redshift need to be linked to the underlying
cosmology. Generally, the cosmology-dependence of the halo mass
function is taken from N-body (i.e. gravity-only) simulations due
to the need to simulate large volumes to obtain complete samples
of clusters at high masses for a range of cosmologies and because
of the large uncertainties associated with baryonic physics. Hence,
the aforementioned change in halo density profile also complicates
the link between observed haloes and their DMO equivalents whose
abundance we can predict robustly (e.g. Cui et al. 2014; Cusworth
et al. 2014; Velliscig et al. 2014). Since stage IV-like surveys will
reliably detect clusters down to halo masses of m500c ≈ 1014 h−1 M�,
this disconnect between observed and DMO haloes will need to be
taken into account in their cosmological analyses.

In this paper, we investigate the impact of baryonic effects
on cluster number count cosmology. We build a self-consistent,
phenomenological model that links idealized clusters whose baryon
content matches that inferred from X-ray observations, to their DMO
equivalents (Section 2). Our linking method relies on the assumption
that the cluster dark matter profile does not change significantly due
to the presence of baryons. Then, we determine the cluster masses

3We define the spherical overdensity masses as the mass contained inside
the radii r�c, r�m that enclose an average density of 〈ρ〉 = �ρcrit(z), 〈ρ〉 =
��mρcrit(z), respectively, where ρcrit(z) = 3H2(z)/(8πG). That is, m�c =
4/3π�ρcrit(z)r3

�c and m�m(z) = 4/3π��mρcrit(z)r3
�m.

from mock weak lensing observations assuming NFW profiles with
either fixed or free concentration–mass relations (Section 3). We
show how the resulting mass biases impact cosmological parameters
for different surveys in Section 4. In Section 5, we explore the
performance of aperture masses, which do not depend as sensitively
on the halo density profile. The change in the inner density profile
due to baryonic effects affects aperture masses less strongly than
deprojected masses, resulting in a closer, but still not perfect,
correspondence to the equivalent DMO halo masses. We compare
our findings to the literature in Section 6 and conclude in Section 7.

2 H A LO MA SS MO D EL

We construct an idealized model for the halo matter content as a
function of halo mass that incorporates observations for the baryonic
component. We modify the model used in our previous work, where
we used a halo model to study the impact of baryonic physics on
the matter power spectrum (Debackere, Schaye & Hoekstra 2020).
The goal here is to obtain halo density profiles that reproduce the
observed hot gas density profiles from galaxy clusters while at the
same time constraining their abundance through the mass of their
equivalent DMO halo and the halo mass function calibrated with
DMO simulations. This will allow us to self-consistently study the
impact of baryonic physics on cluster number count cosmology.

2.1 Linking observed and DMO haloes

In short, a halo contains dark matter and baryons. In this paper, we
assume that the latter consists entirely of hot gas, and we ignore
the stars since they contribute only a small fraction (≈ 1 per cent) of
the total mass and since the satellite component, which dominates
the stellar mass, approximately follows an NFW density profile,
similarly to the dark matter (see e.g. van der Burg et al. 2015). The
main assumption required to link observed haloes to their equivalent
DMO haloes is that the presence of baryons does not significantly
affect the bulk of the dark matter. If this is the case, the dark matter
of the observed halo will follow the density profile of the equivalent
DMO halo, but with a lower normalization, i.e.

mdmo(<r) = mdm(<r)

1 − �b/�m
. (1)

We can convert the observationally inferred total halo mass m(< r) to
the DM mass at the same radius using the observed baryon fraction
fbar(r)

mdm(<r) = (1 − fbar(r))m(<r) . (2)

Imposing an NFW profile so that

mdmo(<r; c(m200m,dmo, z)) = 4π

r∫
0

ρNFW(r; c(m200m,dmo, z))r2dr , (3)

and combining equations (1) and (2), yields

mdmo(<r; c(m200m,dmo, z)) = 1 − fbar(r)

1 − �b/�m
m(<r) . (4)

These relations fully determine the dark matter density profile and
the equivalent DMO halo corresponding to the observed halo relying
solely on the observed baryon fraction, the inferred total halo mass,
and an assumed density profile for the DMO halo. We adopt an
NFW density profile (Navarro et al. 1996) for the equivalent DMO
halo and the median concentration–mass relation, c(m200m, dmo, z),
for relaxed haloes without scatter of Correa et al. (2015). Brown
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et al. (2020) have shown that this relation accurately predicts the
concentration of simulated DMO haloes in observationally allowed
�CDM cosmologies. Explicitly, we assume that the dark matter of
the observed halo has the same scale radius as the equivalent DMO
halo, but a density that is a factor of 1 − �b/�m lower.

Equation (1) will not hold in detail since the dark matter does
react to the presence of baryons (e.g. Gnedin et al. 2004; Duffy
et al. 2010; Schaller et al. 2015). However, in the OWLS (Schaye
et al. 2010) and cosmo-OWLS simulations (Le Brun et al. 2014),
the dark matter mass enclosed within r200c increases by < 1 per cent
due to contraction for all halo masses that we include in our analysis
(Velliscig et al. 2014). Hence, by not accounting for the contraction of
the dark matter, we may overestimate the true equivalent DMO halo
mass by up to ≈ 1 per cent, since mdm(< r)/mdmo(< r) > 1 − �b/�m.
However, this effect will be smaller than the bias due to missing
baryons for the abundant low-mass clusters (m500c � 1014.5 h−1 M�)
that are missing a significant fraction of the cosmic baryons.

2.2 Including observations of baryons

To determine the baryonic component of our model, we only require
a fit to the hot gas density profiles inferred from the observed X-ray
surface brightness of galaxy clusters. For a detailed description of
how the X-ray surface brightness is converted into the density profile,
we refer to Section 3 of Debackere et al. (2020). In short, the X-ray
surface brightness is fit with a spherically symmetric, collisionally
ionized electron plasma of temperature T and metallicity Z. Assuming
mass abundances for hydrogen, helium and metals, we then convert
the electron number density into a mass density profile. The halo
masses for each cluster can then be determined from the hot gas
density and temperature profiles under the assumption of hydrostatic
equilibrium. We use observations from the Representative XMM–
Newton Cluster Structure Survey (REXCESS; Böhringer et al. 2007)
because the clusters constitute a local, high-quality, and volume-
limited sample, representative of the local X-ray cluster population.
Since the survey is not flux-limited, the sample suffers less from
the well-known cool-core bias for X-ray cluster samples (Chon &
Böhringer 2017). However, the dynamical state of REXCESS clus-
ters still differs from that of SZ selected samples (which suffer less
from biases due to their approximate mass selection, see e.g. Rossetti
et al. 2016). We evolve the inferred density profiles self-similarly
to extrapolate to higher redshifts. In self-similar evolution, density
profiles evolve with redshift as ρ(z) ∝ E2(z) = �m(1 + z)3 + ��

(Kaiser 1986). Consequently, masses defined with respect to the
critical density of the Universe remain constant. In the top panel
of Fig. 1, we show the median of the m500c-binned observed hot gas
density profiles, ρgas(r|m, z= 0.43), evolved self-similarly to z= 0.43
(the mean redshift of both the SPT and DES calibration samples, see
Dietrich et al. 2019 and DES Collaboration et al. 2020, respectively),
and the 16th and 84th percentile range from the REXCESS data of
Croston et al. (2008).

Our procedure for obtaining the gas density profiles and corre-
sponding cluster masses, relies on a couple of assumptions that we
now justify. First, in linking the gas density profiles inferred from X-
ray observations to the cluster masses, we have assumed hydrostatic
equilibrium. This assumption implies that our resulting masses are
lower limits on the true cluster masses since observations and simula-
tions suggest that halo masses inferred from X-ray observations and
hydrostatic equilibrium are underestimated by ≈ 15 − 30 per cent
(e.g. Mahdavi et al. 2013; Von der Linden et al. 2014b; Hoekstra
et al. 2015; Medezinski et al. 2018; Barnes et al. 2020; Herbonnet
et al. 2020). Looking at equation (4), the mass ratio m(< r)/mdmo(<

Figure 1. Top panel: the median hot gas density profiles, evolved self-
similarly to z = 0.43, with their 16th and 84th percentile scatter for the halo
mass-binned density profiles from Croston et al. (2008) (coloured circles). We
also show the model gas density profiles inferred from fitting the halo baryon
fractions (coloured lines). Bottom panel: the ratio between the observed hot
gas density profiles and our best-fitting model. We recover the observed
profile at the ≈ 5 per cent level for most of the radial range, which is well
within the scatter of the object-to-object scatter for individual mass bins.

r), whose bias we want to study, depends inversely on the inferred
dark matter fraction at r, 1 − fbar(r). If the observed cluster were not in
hydrostatic equilibrium, the fixed overdensity radius would increase
along with the halo mass. If the halo baryon fraction increases with
radius outside r500c (which is a valid assumption, see e.g. Vikhlinin
et al. 2006), the resulting enclosed baryon fraction would be higher
than the one derived assuming hydrostatic equilibrium. In this case,
the true mass ratio between the observed halo and its corresponding
DMO halo, m(< r)/mdmo(< r), would be lower than our value inferred
assuming hydrostatic equilibrium. Hence, our model provides an
upper bound to the minimum possible mass ratio bias in equation (4)
due to missing baryons.

Secondly, we have assumed that the hot gas density profiles evolve
self-similarly with redshift. There is observational evidence that the
redshift scaling of the cluster hot outer gas density profile is indeed
close to self-similar (e.g. McDonald et al. 2017).

2.3 Fitting the gas density profiles

In Debackere et al. (2020), we constructed halo density profiles by
fitting beta profiles to the galaxy cluster gas density profiles inferred
from the observed X-ray emission. While this is certainly a valid
approach, we take a different route here. In our previous work, we
had to enforce steeper slopes for the observationally unconstrained
outer hot gas density profile so that haloes did not exceed the cosmic
baryon fraction. However, while this fine-tuning process ensures that
the halo baryon fraction reaches the cosmic value at a fixed radius,

MNRAS 505, 593–609 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/1/593/6273168 by guest on 10 April 2024



596 S. N. B. Debackere, J. Schaye and H. Hoekstra

Figure 2. Top panel: The enclosed baryon fraction as a function of radius for
the median, mass-binned hot gas density profiles, evolved self-similarly to z

= 0.43, including their 16th and 84th percentile scatter from Croston et al.
(2008) (coloured circles). The dark matter mass is obtained by subtracting the
gas mass from the inferred total halo mass. We assume the dark matter follows
an NFW profile with a scale radius determined by the equivalent DMO halo
that accounts for all cosmic baryons within r500c, i.e. mdmo(< r500c) = 1/(1
− �b/�m)mdm(< r500c). Our best-fitting model assuming equation (7) is
shown as the coloured lines. Bottom panel: The ratio between the inferred
enclosed baryon fraction from X-ray observations and our best-fitting model.
We recover the correct baryon fractions at the ≈ 5 per cent level for all radii
and halo masses, which is well within the scatter of the object-to-object scatter
for individual mass bins.

it then gradually declines further out. Since we wish to ensure that
the halo baryon fraction converges to the cosmic value in the halo
outskirts, we decided not to fit the gas density profile, but the halo
baryon fraction instead

fbar(r|m, z) = mbar(<r|m, z)

mbar(<r|m, z) + mdm(<r|m, z)
, (5)

where mbar(< r|m, z) and mdm(< r|m, z) are the enclosed baryonic
and dark matter mass within r for a halo of mass m at redshift z,
respectively. We can enforce the convergence to the cosmic baryon
fraction in the halo outskirts by choosing a functional form for fbar(r)
that asymptotes to �b/�m.

We construct the enclosed baryon fraction profiles from the
observed gas density profiles ρgas(r|m, z) from the REXCESS data
of Croston et al. (2008). For each cluster, we determine the dark
matter mass at r500c using equation (2) and the NFW scale radius by
solving equation (4), assuming the hot gas accounts for all the halo
baryons. Then, we obtain fbar(r|m, z) from equation (5). We show
the halo baryon fraction inferred from the observations, also evolved
self-similarly to z = 0.43, in the top panel of Fig. 2.

The baryonic density profiles can be recovered by taking the
derivative of the enclosed baryonic mass profile (we drop the m

and z dependence)

ρbar(r) = 1

4πr2

dmbar(<r)

dr

= 1

4πr2

d

dr

(
fbar(r)

1 − fbar(r)
mdm(<r)

)

= f ′
bar(r)mdm(<r)

4πr2(1 − fbar(r))2
+ fbar(r)

1 − fbar(r)
ρdm(r) , (6)

where
′ ≡ d/dr. For outer boundary conditions limr → ∞fbar(r) =

�b/�m and limr→∞ f ′
bar(r) = 0, it is clear that the baryonic density

profile will follow the dark matter in the halo outskirts. In fact, the
total matter profile, ρbar + ρdm, will approach the equivalent DMO
halo profile, since ρdm(r) = (1 − �b/�m)ρdmo(r). This is exactly
what is found in simulations when comparing the halo-matter cross-
correlation (which traces the average halo density profile for a given
mass) between DMO and hydrodynamical simulations (van Daalen
et al. 2014).

In this paper, we will assume the baryon fraction goes to zero
at small radii for simplicity. Different functional behaviours, for
instance including a central increase in the baryon fraction that
captures the stellar contribution, are also possible. However, we
are interested in studying the change in the cluster weak lensing
signal due to the inclusion of baryons. Since the lensing analysis
usually excludes the central regions, and the central galaxy would
only contribute � 1 per cent of the total halo mass (see e.g. Zu
& Mandelbaum 2015), we can safely neglect its contribution. We
assume the profile

fbar(r|m, z) = �b/�m

2

(
1 + tanh

(
log10 r − log10 rt(m, z)

α(m, z)

))
, (7)

which gives

f ′
bar(r|m, z) = �b/�m

2 ln(10)α(m, z)r
cosh−2

(
log10(r/rt(m, z))

α(m, z)

)
, (8)

where rt(m, z) determines where the increase in the baryon fraction
turns over and α(m, z) sets the sharpness of the turnover (α � 1 is
smooth, α  1 is sharp). We show the best-fitting fbar(r|m, z) profiles
to the REXCESS data, assuming equations (6), (7), and (8), in the
top panel of Fig. 2. In the bottom panel of Fig. 2, we show the ratio
of our model to the observations. We are able to capture the observed
behaviour at the ≈ 5 per cent level for all halo masses and over most
of the radial range. This accuracy is well within the observed scatter
of the individual gas density profiles. The benefit of fitting the halo
baryon fraction instead of the gas density, is that the outer baryonic
density automatically traces the dark matter, while accounting for all
of the cosmic baryons.

To extrapolate our model beyond the observed cluster masses and
redshifts, we scale the density profiles self-similarly and fit rt(m, z)
and α(m, z), opting for the following (m, z) dependencies

log10(rt/rx)(mx, z) = r̃(z)(log10 mx − m̃(z)), (9)

α(mx, z) = α̃(z)(log10 mx − μ̃(z)) , (10)

where [r̃(z), m̃(z), α̃(z), μ̃(z)] are free fitting parameters at 10 red-
shift bins z ∈ [0.1, 2] (we interpolate for intermediate values of z)
and mx is the chosen halo mass definition, m500c in our case. The
chosen linear behaviour captures the average mass dependence of
the fit parameters quite well, as we show in Appendix A.

We stress that the assumed functional form for fbar(r|m, z) im-
plicitly fixes the gas density profile in the halo outskirts. To account
for different outer gas density profiles, we also fit the halo baryon
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Figure 3. The REXCESS X-ray hydrostatic gas fractions as a function of
halo mass from Croston et al. (2008). The median fbar(< xr500c)−m500c

relations (thick, coloured lines) and the 16th to 84th percentile ranges (shaded
regions) from our model fits to the inferred radial gas fractions of the observed
density profiles are shown. We also show the extrapolated enclosed gas
fractions at larger radii than observed.

fractions inferred from the 16th and 84th percentiles of the hot
gas density profiles in Fig. 1. To ensure that these fits bracket the
median profile results for all masses and redshifts, we fix α(m, z)
to the best-fitting behaviour of the median profiles, and leave rt(m,
z) free to vary. These different profile behaviours can quantify the
effect of higher and lower outer gas densities, which are difficult
to constrain observationally, on the inferred halo masses from weak
lensing observations.

We show the halo baryon fractions as a function of mass and
for different outer radii, in Fig. 3. We also show the gas fractions
at r500c inferred from the REXCESS data. Our model closely
reproduces the median behaviour. The fits to the 16th and 84th
percentiles of the hot gas density profiles capture the full range of the
observational uncertainty. Hence, our model is fully representative
of the REXCESS galaxy cluster population.

As a consequence of our chosen functional form for the radial
profile of the halo baryon fraction, equation (7), haloes with masses
m500c � 1015 h−1 M� contain the cosmic baryon fraction within r500c.
In simulations, however, halo baryon fractions might exceed the
cosmic value at r500c for these massive haloes since their strong
potential wells prevent the ejected baryons from leaving the halo
(see e.g. fig. A1 of Velliscig et al. 2014 or fig. 2 of Lee et al.
2018). The REXCESS clusters are not massive enough to observe
this behaviour. Moreover, even if this were the case, the lower mass
haloes most tightly constrain the shape and normalization of the halo
mass function since they are more abundant.

Another possibly important effect is that at radii larger than r500c

the hot gas pressure might prevent further infall of cosmic baryons,
lowering the asymptotic baryon fraction below the cosmic value.
Our mock weak lensing observations are performed at scales ≈r500c

for the most massive haloes, and should not be significantly affected
by the gas distribution in the halo outskirts. Our profiles assume

that the baryon fraction asymptotes to the universal fraction. If the
baryon fraction at large radii were smaller than assumed, then the
true halo mass, m200m, true, would be lower than our model prediction.
In that case, the ratio m200m, true/m200m, dmo would be smaller than what
we find, since the linked DMO halo mass would remain the same.
Hence, our model provides an upper limit to the true mass ratio and,
consequently, a lower limit on the bias in the measured cosmological
parameters from cluster counts. We stress that equation (5) would be
able to capture these behaviours if an appropriate functional form is
chosen.

In conclusion, our model accurately captures the baryonic content
of the average cluster population, since we fit it to the median halo
mass-binned gas density profiles inferred from cluster X-ray surface
brightness profiles. This also justifies our assumption of spherical
symmetry, since deviations due to the presence of substructure or
triaxiality of individual haloes average out in a stacked analysis if
the cluster selection is unbiased. In Section 3, we will use our model
to compare the halo masses inferred from a mock weak lensing
analysis to the true halo masses.

3 MOCK O BSERVATIONA L A NA LY SIS

Mass calibrations of observed samples of clusters are carried out
for a subset of the sample for which weak lensing observations
are available or follow-up observations are made (e.g. Applegate
et al. 2014; Hoekstra et al. 2015; Schrabback et al. 2018; Dietrich
et al. 2019). Different groups use different assumptions to derive
weak lensing masses. To minimize the statistical noise in the mass
determination of individual clusters due to the degeneracy between
mass and concentration (see e.g. Hoekstra et al. 2011), one generally
assumes a fixed concentration (as in Applegate et al. 2014; Von
der Linden et al. 2014a) or a concentration–mass relation from
simulations (as in Hoekstra et al. 2015; Schrabback et al. 2018;
Dietrich et al. 2019). The weak lensing derived halo masses are then
used to calibrate a scaling relation between a survey observable mass
proxy and the weak lensing-derived halo mass.

Using our idealized halo model described in Section 2, we can
generate mock weak lensing observables for clusters with realistic
baryonic density profiles. We investigate how accurately the afore-
mentioned weak lensing derived halo mass recovers the true halo
mass in the presence of baryons and how the best-fitting mass from
the mock weak lensing observations compares to the mass of the same
halo in a gravity-only universe, for which we can reliably predict
the abundance. The mismatch between these masses determines the
bias in the cosmological parameters inferred from a cluster count
cosmological analysis as we will perform in Section 4.

The observable of interest for weak lensing is the reduced shear

gT(θ ) = γT(θ )

1 − κ(θ )
, (11)

where κ(θ ) = (θ )/crit is the convergence, γ T(θ ) is the tangential
shear, and crit is the critical surface mass density, defined as

crit = c2

4πG
1

βDl
, (12)

where Dl and β = max(0, Dls/Ds) are the angular diameter distance
between the observer and the lens, and the lensing efficiency for a
source at a distance Ds from the observer and a distance Dls behind the
lens (which is negative for sources in front of the lens), respectively.

For clusters, generally κ ≈ γ T ≈ 0.01−0.1 at the scales probed
with weak lensing observations (0.5 � R � 5 h−1 Mpc). Assuming
a cosmological model, the angular position, θ , can be converted into
a projected physical distance, R, using the observed angular diameter
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distance, D, as θ = R/D. The tangential shear is given by

γT(R|m, z) = ̄(<R|m, z) − (R|m, z)

crit
, (13)

where (R|m, z) is the projected surface mass density profile for a
halo with mass m at redshift z

(R|m, z) = ∫ ∞
−∞ ρ(R, l|m, z)dl

= 2
∫ ∞

R
dr ρ(r|m, z) r√

r2−R2
, (14)

which we compute with a Gauss–Jacobi quadrature to ensure con-
vergence in the presence of the singularity at r = R, and ̄(<R|m, z)
is the mean enclosed surface mass density inside R

̄(<R|m, z) = 2

R2

∫ R

0
dR′ R′(R′|m, z) . (15)

The halo model described in Section 2 enters in equations (14)
and (15) through the total density profile

ρ(r|m, z) = ρdm(r|m, z) + ρbar(r|m, z) . (16)

Here, we obtain the normalization of the dark matter NFW density
profile, ρdm, by taking the halo mass at r500c and correcting it for
the gas fraction inferred from observations of the X-ray surface
brightness profiles of the REXCESS clusters (equation 2). We assume
that the dark matter has the same NFW scale radius as the equivalent
DMO halo, which can be derived by combining equations (1) and (3).
The baryonic density profile, ρbar, is obtained by fitting equation (7)
to the radial baryon fraction profiles inferred from observations.

We show the reduced shear profiles for different halo mass bins in
the top panel of Fig. 4. We have assumed a mean lensing efficiency
〈β〉 = 0.5 in equation (12) (in agreement with the SPT calibration
sample; Dietrich et al. 2019) to generate observations in 10 radial
bins between 0.75 and 2.5 h−1 Mpc at z = 0.43, similar to the mean
redshift of the calibration samples for SPT and DES with 〈z〉 = 0.42
and 0.45, respectively (Dietrich et al. 2019; DES Collaboration et al.
2020). The observational uncertainty in the reduced shear due to
the intrinsic galaxy shape noise for each bin Ri with bin size �Ri

decreases with the total number of galaxies in the bin, and is taken
to be

σ 2
obs = σ 2

gal

2πn̄Ri�Ri

, (17)

with the intrinsic galaxy shape noise σ gal = 0.25 (e.g. Hoekstra,
Franx & Kuijken 2000), and the mean background galaxy number
density n̄ = 10 arcmin−2 (similar to Dietrich et al. 2019). In a stacked
analysis the shape noise would decrease by a factor of

√
N , where

N is the number of clusters in the stack. However, this would not
affect our best-fitting models since we do not include scatter in
the mock observational data. Our mock observations are overly
optimistic in this sense. However, given enough clusters, the derived
mass–observable relation should converge to the one we find. We
choose radial bins within the range 0.75 < Ri/(h−1 Mpc) < 2.5
corresponding to angular sizes 3.2 <θ /arcmin < 10.7 at z= 0.43 for a
Planck Collaboration VI (2020) cosmology (similar to Dietrich et al.
2019). The inner radius corresponds to ≈ 1.6 (0.5) r500c(z = 0.43)
for haloes of masses m500c = 1014 (1015.5) h−1 M�. At smaller scales,
cluster miscentring and contamination become important. At larger
scales, the large-scale structure contributions to the surface mass
density become important. For different redshifts, we scale the radial
range of the observations by (1 + z)−1, i.e. Ri(z) = 1.43/(1 + z)Ri(z
= 0.43), to ensure that we are not greatly exceeding r500c(z) in the
fitting range.

Figure 4. Top panel: the reduced shear profiles for different halo mass bins
(different colours) at z = 0.43. The mock observations with uncertainties
for a single halo set by an intrinsic galaxy shape noise of σ gal = 0.25
and mean background galaxy density of n̄ = 10 arcmin−2 are shown on top
of the underlying true density profile (coloured dots and solid lines). The
green shaded region indicates the fitting range for the mock weak lensing
observations. The coloured arrows in the bottom panel indicate r500c for the
different halo mass bins. The best-fitting NFW profiles with fixed (free) scale
radius, rs, are also shown as dashed lines (dotted lines). Bottom panel: the
ratio of the best-fitting NFW profiles to the true profiles. Leaving the NFW
scale radius free results in accurate fits to the true profiles. Fixing the scale
radius to a concentration–mass relation for DMO haloes overestimates the
signal in the core, where baryons are missing, and underestimates the signal
in the outskirts. The mismatch decreases with increasing halo mass as more
massive haloes have higher baryon fractions within the fitting range.

The dashed lines in Fig. 4 indicate the best-fitting NFW profile
to the observed data points, assuming the median Correa et al.
(2015) concentration–mass relation. We also show the resulting
NFW profile when leaving the scale radius, rs, free as the dotted
lines. Observationally, they would be difficult to distinguish from
the true profile because the difference due to baryons is negligible
compared to the shape noise of an individual cluster. The lower
panel of Fig. 4 shows the ratio between the best-fitting NFW reduced
shear profiles and the true profiles. Clearly, with currently attainable
source background densities, we cannot discern the true reduced
shear profile from the best-fitting NFW profiles, which would require
per cent level precision for the shear measurements. We have checked
that even a stage IV-like survey with n̄ = 30 arcmin−2 could only
observe the difference between the true density profile and the NFW
fit with fixed concentration–mass relation at the ≈ 2 σ level in a stack
of O(104) clusters with m500c > 1014h−1 M�.

We obtain deprojected enclosed total halo mass profiles mNFW(<
r) from the best-fitting NFW density profiles to the reduced shear. We
show the ratio between the NFW reconstructed enclosed halo mass
with fixed and free scale radius, rs, and the true halo mass in Fig. 5 for
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Figure 5. The ratio of the 3D enclosed total mass recovered from the best-
fitting NFW profiles to the reduced shear with fixed and free scale radius, rs,
to the true mass profile (dashed and dotted lines, respectively) for haloes of
different masses at z = 0.43. The green, shaded region indicates the radial
range for the fit. The overdensity radii r500c corresponding to the true density
profiles are indicated with arrows. Fixing the concentration–mass relation
of the NFW profile consistently overestimates (underestimates) the inner
(outer) halo mass, where the baryonic mass is lower (higher) than the NFW
prediction. Leaving the concentration of the NFW profile free removes the
underestimation of the outer halo mass.

haloes with masses m500c = 1014, 1014.5, 1015, 1015.5 h−1 M�. The
results of both fitting methods are generally within ≈ 5 per cent of the
true enclosed mass profiles for all halo masses we show. However,
fixing the concentration–mass relation of the NFW density results in
substantially more biased halo mass estimates. The best-fitting NFW
profile is determined by the fitting range of the observations and
minimizes the χ2 error by balancing the over and underestimation
of the true profile, as can be seen in the bottom panel of Fig. 4.
Since feedback processes redistribute the baryons to larger scales,
the best-fitting NFW profiles consistently overestimate the halo
mass internal to the minimum radius of the fit. Moreover, since the
NFW profile cannot capture the more rapidly increasing baryonic
mass towards the halo outskirts, the outer halo mass is consistently
underestimated. This behaviour is general: the inner radius of the
observational fitting range approximately determines the physical
scale at which the inferred total deprojected halo masses are unbiased.
For radii progressively smaller (larger) than the inner fitting radius,
total deprojected masses are overestimated (underestimated) with
increasing amplitude.

This bias can be reduced, however, by leaving the NFW scale
radius as a free parameter. The inner halo mass will still be biased,
but the extra freedom allows for practically unbiased outer halo mass
estimates (see Fig. 5). This behaviour is clearly visible in the top
panel of Fig. 6, where we show the ratio m200m, NFW/m200m, true for
both fitting methods. The bottom panel of Fig. 6 shows how rs needs
to increase with respect to the true value to capture the less centrally
concentrated halo baryons. However, this is not possible when fixing
the concentration–mass relation, resulting in overestimated (under-
estimated) masses when r200m,true � (�)1 h−1 Mpc (at ≈ 1 h−1 Mpc
and z = 0.43, the enclosed mass estimates are unbiased for our chosen
fitting range, this corresponds to m500c ≈ 1014.1 h−1 M�).

Figure 6. Top panel: the ratio of the 3D enclosed total overdensity mass,
m200m, NFW, inferred from the best-fitting NFW profiles to the reduced shear,
to the true halo mass m200m, true as a function of m500c. The dashed and
dotted lines show the mass ratio m200m, NFW/m200m, true for the best-fitting
NFW density profiles with fixed and free scale radius for a fitting range of
Rfit = [0.75 − 2.5] h−1 Mpc, respectively. Fixing the scale radius results in
biased estimates for m200m, true, leaving the scale radius free removes this
bias. Middle panel: the ratio of the inferred halo mass m200m, NFW to the
equivalent dark matter-only halo mass m200m, dmo as a function of m500c. The
resulting mass ratios are biased for both mass determination methods, since
the missing halo baryons bias m200m, true with respect to m200m, dmo. Bottom
panel: the ratio of the scale radius of the best-fitting NFW profile to the
true dark matter-only NFW scale radius rs, dmo. Leaving the scale radius free
results in larger values, since the baryons are less centrally concentrated than
the dark matter.

The halo mass m200m, NFW from the best-fitting NFW density profile
can be used to obtain unbiased estimates of the true halo mass
m200m, true if the concentration–mass relation is left free. However,
for cluster abundance studies, the mass of interest is not m200m, true

of the observed halo, but the halo mass of the equivalent DMO
halo, m200m, dmo. All calibrated fitting functions and emulators of
the halo mass function are obtained from DMO simulations (e.g.
Tinker et al. 2008; Nishimichi et al. 2019; McClintock et al. 2019b;
Bocquet et al. 2020), since the matter distribution in hydrodynamical
simulations depends sensitively on the assumed ‘subgrid’ physics
recipes required to model the complex galaxy formation processes
(e.g. Velliscig et al. 2014).

We show the ratio m200m, NFW/m200m, dmo as a function of halo mass
m500c in the middle panel of Fig. 6. We do not show the ratio
m200m, true/m200m, dmo for the actual halo mass since it matches the
relation for the best-fitting NFW density profile with a free scale
radius (shown as the dotted line) almost exactly (the halo mass
m200m, NFW is nearly unbiased when the NFW scale radius is left
free). The suppression of the true halo mass with respect to the
equivalent DMO halo stems from the missing halo baryons within
r200m, true. Fixing the concentration–mass relation of the NFW density
profile (shown as the dashed line) results in biases similar to leaving
the NFW scale radius free, except for the small modulation due
to the mass bias in m200m, NFW with respect to m200m, true (see the
top panel of Fig. 6). As mentioned earlier, this bias stems from
the chosen radial fitting range for the weak lensing observations.
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Decreasing (increasing) the inner fitting radius shifts the crossover
between over and underestimated m200m, true to lower (higher) halo
masses and changes the overall amplitude of the bias. Remarkably,
for low-mass haloes (m500c � 1014.1 h−1 M�), the overestimation of
m200m, true when fixing the concentration–mass relation results in a
less biased estimate of m200m, dmo. However, we would preferably not
rely on more biased estimates of the true halo mass to obtain less
biased cosmological parameters.

We find a slightly stronger suppression in the ratio
m200m, true/m200m, dmo in our model compared to cosmo-OWLS (for
rs free we find > 1 per cent suppression for m500c � 1015 h−1 M�
compared to m500c � 1014.5 h−1 M� in Velliscig et al. 2014). The
reason for this is two-fold. First, we do not include a stellar
component in our model. Since stars are more centrally concentrated
than the hot gas, the NFW fits in cosmo-OWLS perform slightly
better in the inner regions, capturing an extra ≈ 1 per cent of the total
halo mass there and reducing the mass ratio bias. Secondly, in cosmo-
OWLS contraction of the dark matter component due to the baryons
at these halo masses slightly reduces the bias since more dark matter
mass is included in the central regions than we are accounting for
in equation (1). However, for m500c � 1014 h−1 M�, the dark matter
contraction increases the enclosed halo mass ratio mdm(< r)/mdmo(<
r) in equation (1) by only � 1 per cent (see fig. 3 of Velliscig et al.
2014). For m500c � 1014 h−1 M�, the dark matter actually slightly
expands, lowering the dark matter mass and increasing the bias.

We decided not to include a stellar component or dark matter con-
traction to keep our model simple. Moreover, when investigating the
impact of the halo mass determination on the inferred cosmological
parameters, lower mass haloes with m500c � 1014.5 h−1 M� dominate
the signal since they are significantly more abundant and hence the
fit is more sensitive to any bias in this mass range. At low masses, all
the aforementioned effects are clearly much less important than the
change in halo mass due to the missing halo gas. Hence, we conclude
that our model provides a reasonable estimate of the halo mass bias
induced by the change in halo density profiles due to the presence of
baryons.

4 IN F L U E N C E O N C O S M O L O G I C A L
PARAMETER ESTIMATION

In this section, we will investigate how the bias in the halo masses
inferred from mock weak lensing observations that we derived in
Section 3, biases the measurement of cosmological parameters from
a number count analysis of a mock cluster sample.

4.1 Mock cluster sample generation

We create a cluster sample by drawing (log10m200m, z) pairs from the
Poisson distribution with mean number density

dN (m, z; C)

d log10 m dz
= �survey

dVc(z;C)
dzd�

dn(m,z;C)
d log10 m dz

, (18)

with the halo mass function dn/d log10 m dz of Tinker et al.
(2008) and the comoving volume Vc(z) for a Planck Collabo-
ration VI (2020) cosmology with C ≡ {�m, �b, ��, σ8, ns, h} =
{0.315, 0.049, 0.685, 0.811, 0.965, 0.674}. The sky area, �survey,
depends on the specific survey. We use the CCL4 library to calculate
the halo mass function (Chisari et al. 2019). We draw samples
from the non-homogeneous Poisson distribution by thinning the

4https://github.com/LSSTDESC/CCL

homogeneous expectation on a grid of (log10m200m, z) bins following
the method of Lewis & Shedler (1979).

Since the Tinker et al. (2008) mass function was calibrated on
DMO simulations, the resulting mock cluster sample corresponds
to a universe that contains only dark matter. As we have shown in
Section 3, however, there is a mismatch between the true halo mass,
m200m, true, and the mass of the equivalent DMO halo, m200m, dmo, due
to the ejection of baryons (see the middle panel of Fig. 6). Moreover,
the halo masses inferred from mock weak lensing observations,
m200m, NFW, can be biased with respect to the true halo mass (see
the top panel of Fig. 6). If these baryonic biases are not taken into
account in the cluster count analysis, the measured cosmological
parameters will be biased.

For each DMO halo in the cluster sample, we determine the
biased halo mass estimate of the corresponding halo with baryons,
m200m, NFW(m200m, dmo, z), inferred from the NFW fits to the mock
weak lensing observations with either a fixed or free scale radius
in Section 3. We interpolate the relation between the mass of
the halo including baryons and the mass of its equivalent DMO
halo, m500c(m200m, dmo, z), from our halo model and determine the
corresponding mass ratio m200m, NFW/m200m, dmo (see the middle panel
of Fig. 6 for the ratio at z = 0.43). We will investigate how
severely this baryonic mass bias affects the measured cosmological
parameters for stage III and stage IV-like surveys in Sections 4.2
and 4.3, respectively.

We start with a best-case scenario, where we have assumed
a one-to-one mapping between the observable mass proxy (e.g.
the SZ detection significance) and the halo masses inferred from
weak lensing, i.e. we neglect the measurement uncertainties in
the mass estimation of individual clusters (we consider a more
realistic scenario in Section 4.3). This allows us to take the weak
lensing inferred halo masses as the starting point of our analysis.
When connecting haloes to their DMO equivalents, we also do not
account for the intrinsic scatter due to the differing mass distributions
of individual haloes that arise from their unique mass accretion
histories. We assign the weak lensing inferred halo masses to the
DMO haloes without scatter. This is consistent with our choice in
Section 2.3, where we fit to the median halo mass-binned cluster
population of REXCESS, neglecting differences between individual
clusters in each mass bin.

Ignoring the mass estimation uncertainty and the intrinsic scatter
in the halo population would bias the observable–mass relation in
an observed cluster sample due to the preferential scatter of more
abundant low-mass haloes into higher mass bins. Hence, in a full
cosmological analysis, converting the observable to the true halo
mass requires the inclusion of the mass estimation uncertainty, and
the intrinsic scatter in the halo population, while accounting for the
change in abundance of clusters as a function of mass and redshift.
This involves a joint fit to the abundance and the observable–mass
relation of the cluster sample as a function of cosmology (see e.g.
Bocquet et al. 2019). In the more realistic scenario in Section 4.3,
we will implicitly assume that the scatter is constrained by the
cluster abundances, so that the precision of cosmological parameter
estimation is not significantly affected by not performing such a joint
analysis.

4.2 Stage III-like survey

For a stage III-like cluster survey (e.g. SPT or DES; Bocquet et al.
2019 and DES Collaboration et al. 2020, respectively), we set the
survey area to �survey = 2500 deg2 to generate the cluster sample
using equation (18).
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Figure 7. The distribution of the maximum a-posteriori probabilities in
(�m, S8 = σ 8(�m/0.3)0.2, w0) for 1000 independent stage III-like cluster
abundance surveys. Dashed contours show the results for a halo sample with
no mass bias. Blue (orange) contours include a mass bias due to an NFW fit to
mock weak lensing observations of the reduced shear, with a fixed (free) scale
radius, rs. Neither �m nor w0 are significantly biased due to baryonic effects.
Relative constraints on S8, however, are biased by −0.023+0.007

−0.008 (≈ 3 σ ) for
both fixed and free scale radii in the NFW fit.

We want to quantify the statistical bias and uncertainty of the
cosmological parameters due to the baryonic halo mass bias. Hence,
we generate 1000 independent cluster samples and fit the Maximum
A-posteriori Probabilities (MAPs) of the posterior distribution for
each of the halo samples. We follow Cash (1979) and de Haan et al.
(2016) and obtain the posterior distribution for the cosmological
parameters C = {�m, σ8, w0} by sampling the Poisson likelihood,
which is given up to a constant by

lnL ∝ 2

(∑
i

ln
dN (mi, zi ; C)

dm dz
−

∫
dm dz

dN (m, z; C)

dm dz

)
, (19)

where i runs over the individual clusters in the sample and the integral
is performed between (zmin = 0.25, m200m,min = 1014.5 h−1 M�) and
(zmax = 2, m200m,max = 1016 h−1 M�). The lower bounds are set by
the sample selection and the upper bounds are chosen high enough
that the integral approaches the limit for z, m → ∞. We assume
flat prior distributions �m ∼ U(0.1, 0.6), σ 8 ∼ U(0.5, 1.1), and w0

∼ U(−1.5, −0.5), where U(a, b) indicates the uniform distribution
between a and b. We fix the remaining cosmological parameters to
the assumed Planck Collaboration VI (2020) values.

We show the resulting distribution of MAPs in (�m, S8 =
σ 8(�m/0.3)0.2, w0) for each of the different observational mass
inferences in Fig. 7. The dashed contours show the unbiased halo
sample. For this unbiased sample, all cosmological parameters are
unbiased and we find relative uncertainties of ≈ ±10 per cent in
�m, ≈ ±0.7 per cent in S8, and ≈ ±16 per cent in w0 for a current
stage III-like cluster survey. The quoted precision of all parameters
underestimates the true uncertainty, since we have performed an
idealized analysis that does not include observational uncertainties
or intrinsic scatter in the derived halo masses, as mentioned before.
However, as we have already shown in Fig. 6, the inferred halo

Table 1. Inferred median bias and 16th–84th percentile statistical un-
certainties of the individual best-fitting cosmological parameters for the
different mass determination for a stage III-like survey with survey
area �survey = 2500 deg2 and limiting redshift and halo mass (zmin =
0.25, zmax = 2,m200m,min = 1014.5 h−1 M�). The columns correspond to
cosmological parameters inferred from cluster samples with halo masses
inferred from weak lensing fits with (a) fixed and (b) free NFW scale radii,
and (c) the true cluster masses.

(a) NFW rs fixed (b) NFW rs free (c) True

��m/�m −0.06+0.12
−0.10 −0.09+0.11

−0.09 0.02+0.11
−0.10

�S8/S8 −0.023+0.007
−0.008 −0.023+0.007

−0.008 0.001+0.005
−0.007

�w0/w0 0.02+0.19
−0.16 0.09+0.18

−0.18 −0.03+0.16
−0.16

masses are biased with respect to the equivalent DMO halo mass due
to the missing halo baryons. Hence, NFW inferred halo masses with
fixed and free scale radii (blue and orange contours, respectively)
are both predominantly biased in S8, with a median bias and 16th–
84th percentile uncertainties of �S8/S8 = −0.023+0.007

−0.008, where the
negative value indicates that S8 is underestimated. Neither �m nor w0

show a significant bias for the different mass determination methods.
We list the cosmological parameter constraints for both methods in
Table 1.

The shifts in the cosmological parameters can be understood in the
following way. At a given redshift and for a fixed number count, the
mass bias results in an underestimation of the true halo mass. Hence,
the number of clusters assigned to the inferred halo mass is lower
than it should be, since the number density of clusters increases
with decreasing mass. This underestimation is then explained by
decreasing the amount of structure in the Universe, assuming that we
are unaware of any mass bias.

In summary, current stage III-like cluster abundance surveys with
ideal mass estimations would find a biased cosmology (mainly in S8)
due to the mismatch between m200m, true and m200m, dmo. However, due
to the uncertainties induced by the mass estimation, which are larger
than the statistical uncertainty of our idealized survey, the baryonic
mass bias is currently not highly significant. As a reference, the cur-
rent quoted uncertainties for SPT (DES; Bocquet et al. 2019 and DES
Collaboration et al. 2020, respectively) are ±17 (17) per cent in �m,
±3 (6) per cent in S8 (with S8 definitions differing from ours for both
SPT and DES), and ±26 (−) per cent in w0 (DES does not constrain
w0), respectively. These values exceed our statistical uncertainties
of ±10 per cent, ±0.7 per cent, and ±16 per cent, respectively. The
baryonic bias in the cosmological parameters that our model predicts
corresponds to a statistical significance of 0.5 σ (0.5 σ ) in �m, 0.8 σ

(0.4 σ ) in S8, 0.3 σ (−) in w0 for the precision of SPT (DES). In
Section 4.3, we show that the precision of the inferred cosmological
parameters is set by the accuracy with which the uncertainty in
the mass estimation is known. The mass estimation uncertainty is
strongly degenerate with S8 and imposing an uninformative prior on
the uncertainty of individual cluster masses results in a significant
decrease in the precision of the constraint on S8, in line with the
comparison to SPT and DES.

4.3 Stage IV-like survey

For a stage IV-like survey such as Euclid, the survey area increases
dramatically to �survey = 15000 deg2. These surveys will generally
rely on observed galaxy overdensities to detect clusters and will,
consequently, have more complex selection functions that depend on
the magnitude limit of the survey (see e.g. Sartoris et al. 2016). We
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take a simple mass cut of m200m,min = 1014 h−1 M� and redshift cuts
of zmin = 0.1 and zmax = 2. Due to the increase in survey area and the
decrease in m200m, min, the total number of clusters increases by about
two orders of magnitude compared with a stage III-like survey. The
Poisson likelihood in equation (19) becomes intractable, especially
if different mass calibrations are to be included, such as in de Haan
et al. (2016). We therefore switch to the Gaussian likelihood for bins
where the number of observed clusters, Nobs(mi, zj) > 10

lnL ∝
∑
mi ,zj

− (Nobs(mi ,zj )−N(mi ,zj ;C))2

2N(mi ,zj ;C) (20)

− ln N(mi ,zj ;C)
2 ,

and we use the Poisson likelihood for the other bins

lnL ∝
∑
mi ,zj

Nobs(mi, zj ) ln N (mi, zj ; C) − N (mi, zj ; C)

− ln Nobs(mi, zj )! , (21)

where (mi, zj) run over the logarithmic bins in m200m and the linear
bins in z, respectively. We transition at the value Nobs(mi, zj) =
10 since equation (20) is biased with respect to equation (21) by a
factor of 1 + O(N−1/2

obs ), as worked out by Cash (1979). The Gaussian
likelihood makes it easier to include contributions from the sample
variance, which will also need to be included for the lower mass
haloes probed by stage IV-like surveys (Hu & Kravtsov 2003). We
have neglected the sample covariance in generating our halo sample
and, hence, we do not include it in our likelihood analysis. We include
the Poisson likelihood for the bins with low number counts since the
Gaussian likelihood cannot properly account for the discreteness of
the number count data, biasing the cosmological parameter estimates,
as we show in Appendix B. In a more realistic setting, the sample
variance should be included in the cluster catalogue generation and
the cluster number count analysis. For stage IV-like surveys with
low limiting masses, the sample variance can dominate the shot
noise, increasing the uncertainty on the cluster number density, which
reduces the bias for the bins with low number counts. We choose 40
equally spaced bins between log10 m200m,min/(h−1 M�) = 14.0 and
the highest halo mass present in each cluster sample. For the redshift,
we take 8 equally spaced bins for z ∈ [0.1, 2]. We assume the same
priors as we did in Section 4.2.

We show the resulting distribution of MAPs for the stage IV-
like survey in Fig. 8. The relative uncertainties for the unbiased
sample shrink to ≈ ±1.0 per cent in �m, ≈ ±0.04 per cent in S8,
and ≈ ±1.5 per cent in w0 for a stage IV-like cluster survey. Again,
we stress that we underestimate the true uncertainty, since we do not
include any mass calibration uncertainties. However, in our idealized
analysis, the bias from ignoring baryonic effects in the NFW inferred
halo masses becomes catastrophic for S8, both for fixed and free scale
radii. Moreover, we also find very significant biases of up to 13 σ in
�m and up to 6 σ in w0 (for the exact values, see Table 2).

However, the statistical precision of the cosmological parameters
is overly optimistic since we neglect any uncertainty on the individual
cluster masses inferred, resulting in extremely significant biases due
to baryonic effects. For stage IV-like surveys, the amplitude of the
mean observable–mass relation can reach per cent level accuracy
due to the large number of clusters detected (see e.g. Köhlinger et al.
2015). However, the mass of an individual cluster derived from the
survey observable mass proxy will still have an uncertainty. For an
observable with a scatter of ±20 per cent in the distribution P (m|O)
of the true total halo mass, m, given the observable, O (similarly to
the richness, see e.g. Rykoff & Rozo 2014; Mantz et al. 2016; Sereno

Figure 8. The distribution of the maximum a-posteriori probabilities in
(�m, S8 = σ 8(�m/0.3)0.2, w0) for 1000 independent stage IV-like cluster
abundance surveys. Dashed contours show the results for a halo sample with
no mass bias. Blue (orange) contours include a mass bias due to an NFW fit to
mock weak lensing observations of the reduced shear, with a fixed (free) scale
radius, rs. Relative constraints on S8 are very highly biased for both NFW
fitting methods to the cluster density profiles including baryons. Similarly,
�m and w0 are biased by up to 13 σ and 6 σ , respectively.

et al. 2020), we expect an uncertainty of ±20 per cent on the inferred
masses of an unbiased cluster sample.

In our idealized setting, we know the true underlying halo
masses. We mimic the uncertainty by adding a lognormal scatter of
±20 per cent to the true halo masses of the unbiased cluster samples
and to the weak lensing inferred halo masses of the biased cluster
samples. We modify equation (18) to include an unknown mass
uncertainty σlog10 m for each mass bin i, following Lima & Hu (2005)

dNi(m, z; C)

d log10 m dz
= 1

2

dN (m, z; C)

d log10 m dz
(erfc(xi) − erfc(xi+1)), (22)

where

xi = log10 mobs
i − log10 m√
2σ 2

log10 m

, (23)

with i and i + 1 the edges of mass bin i. Adding the observational
uncertainty will result in haloes scattering to different mass bins,
with each bin gaining relatively more low-mass haloes due to their
higher abundance. We assume a uniform distribution for the mass
uncertainty with σlog10 m ∼ U (log10 1.001, log10 2). In practice, we
will have some prior knowledge of the mass uncertainty of indi-
vidual clusters. We quantify this effect by including a cosmological
analysis with a marginalization over the mass uncertainty distribution
σlog10 m ∼ N (log10 1.2, log10 1.02), corresponding to the case where
the mass uncertainty is known to within 2 per cent.

We show the resulting MAPs for the 1000 cluster samples with
both an uninformative prior (dark contours) and a marginalization
(light contours) over the individual cluster mass uncertainty in Fig. 9.
For the former case, we show the posterior constraints on σ ln m

(which equals σlog10 m/ log10 e, and approximately corresponds to the
per cent error on the halo mass). In the uninformative case, the mass
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Table 2. Inferred median bias and 16th–84th percentile statistical uncertainties of the individual best-fitting cosmological parameters for the different mass
determination methods for a stage IV-like survey with �survey = 15000 deg2 and (zmin = 0.1, zmax = 2,m200m,min = 1014 h−1 M�). The rows show cosmological
parameters inferred from cluster samples with halo masses inferred from weak lensing fits with fixed or free NFW scale radii, and the true cluster masses. The
columns show the results for samples with (a) ideal mass determinations, a mass uncertainty of ±20 per cent either (b) marginalized over σ ln m ∼ N(ln 1.2,
ln 1.02), or (c) included with a uniform prior σ ln m ∼ U(ln 1.001, ln 2) in the cosmological parameter estimation.

Mass uncertainty [per cent] (a) ideal [0] (b) marg. [±20] (c) uniform [±20]

NFW rs fixed ��m/�m −0.078+0.009
−0.008 −0.077+0.009

−0.008 −0.055+0.010
−0.009

�S8/S8 −0.0291+0.0004
−0.0004 −0.0297+0.0004

−0.0004 −0.047+0.004
−0.004

�w0/w0 0.055+0.014
−0.015 0.047+0.013

−0.014 0.055+0.013
−0.014

NFW rs free ��m/�m −0.113+0.009
−0.008 −0.112+0.009

−0.009 −0.076+0.010
−0.009

�S8/S8 −0.0329+0.0004
−0.0004 −0.0337+0.0004

−0.0004 −0.066+0.004
−0.004

�w0/w0 0.091+0.014
−0.015 0.089+0.014

−0.015 0.100+0.014
−0.016

True ��m/�m −0.0+0.009
−0.008 −0.001+0.009

−0.008 0.003+0.010
−0.008

�S8/S8 0.0+0.0003
−0.0004 −0.0002+0.0004

−0.0004 0.001+0.003
−0.003

�w0/w0 0.001+0.011
−0.014 0.002+0.012

−0.013 0.002+0.012
−0.013

uncertainty is strongly degenerate with S8, since an overestimate
(underestimate) of the true uncertainty would result in more (less)
haloes predicted to scatter into higher mass bins. At fixed observed
number count N(mi, zj), this effect is compensated by decreasing
(increasing) S8.

Compared to cluster samples with unbiased masses and no mass
estimation uncertainty, we find that the figure of merit (which we
take as the inverse of the area enclosed by 95 per cent of the surveys)
for cluster samples with unbiased masses and no prior knowledge of
the cluster mass uncertainty of ±20 per cent (dark, dashed contours),
decreases by factors of 7.1, 1.4, and 7.6 in the (�m, S8), (�m, w0), and
(S8, w0) planes, respectively. Similarly, the 1D marginalized regions
containing 68 per cent of the surveys increase by factors of 1.05, 7.7,
and 1.02 for �m, S8, and w0, respectively. However, with accurate
prior knowledge of the individual cluster mass estimation uncertainty
(light, dashed contours), the inferred cosmological parameters and
their precision are fully consistent with the ideal mass estimation
case. This can be seen by comparing the dashed and light dashed
contours from Figs 8 and 9, respectively, or by comparing the
cosmological parameter constraints in columns (a) and (b) for the
true halo masses in Table 2.

We find similar results when comparing the cluster samples
that include a baryonic bias and an uncertainty in the halo mass
determination to samples that include the baryonic bias but no mass
estimation uncertainty. In the case of the uniform prior on σ ln m

(dark, coloured contours), the figure of merit in the (�m, S8), (�m,
w0) and (S8, w0) planes for a weak lensing fit with free (fixed)
NFW scale radius, decreases by factors of 11.2 (9.8), 1.7 (1.5), and
9.6 (8.9), respectively. Similarly, the 1D marginalized regions for
�m, S8, and w0 containing 68 per cent of the surveys, increase by
factors of 1.1 (1.1), 10.1 (9.4), and 1 (0.9), respectively. However, if
the mass uncertainty is known to within 2 per cent (light, coloured
contours), then the ideal case is recovered nearly identically. This
can be seen by comparing the coloured and light coloured contours
from Figs 8 and 9, respectively, or by comparing the cosmological
parameter constraints in columns (a) and (b) for the NFW fits with
fixed and free scale radii in Table 2. We note that the distribution
of the MAPs for the cluster samples with a baryonic mass bias do
not match between the informative and uninformative cases. This is
because the halo number counts calculated with equation (22) do not
account for the mass-dependent baryonic bias. Hence, when leaving
the mass uncertainty as a free parameter, a more likely solution is
found by significantly increasing its value from the actual uncertainty,

Figure 9. The marginalized maximum a-posteriori probability density func-
tions for �m, S8 = σ 8(�m/0.3)0.2, w0, and σ ln m for 1000 independent stage
IV-like cluster abundance surveys with an uncertainty of ±20 per cent on the
individual cluster masses, assuming a mixed Gaussian-Poisson likelihood.
Dashed contours show the results for a halo sample with no mass bias. Blue
(orange) contours include a mass bias due to an NFW fit to mock weak
lensing observations of the reduced shear, with a fixed (free) scale radius,
rs. Dark contours also sample the individual cluster mass uncertainty σ ln m,
whereas light contours have marginalized over a Gaussian distribution σ ln m

∼ N(ln 1.2, ln 1.02). Due to the preferential scatter of low-mass haloes into
higher mass bins, an underestimate (overestimate) of σ ln m for a fixed true
value of σ ln m = ln 1.02, results in an overestimate (underestimate) of S8.
Marginalizing over the mass uncertainty recovers the constraints obtained
without mass uncertainty nearly identically.

resulting in a decrease in S8. This does not happen for the cluster
samples without a mass bias.

Any bias in the cosmological parameters can be reduced at the ex-
pense of a larger uncertainty by increasing the mass cut of the cluster
sample. We show the marginalized 1D probability density functions
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Figure 10. The marginalized maximum a-posteriori probability density
functions for �m, S8 = σ 8(�m/0.3)0.2 and w0 for 1000 independent stage
IV-like cluster abundance surveys with different mass cuts m200m, min and
perfect mass determinations. Gray PDFs show the results for a halo sample
with no mass bias. Blue (orange) PDFs include a mass bias due to baryonic
effects resulting from an NFW fit to mock weak lensing observations of the
reduced shear, with a fixed (free) scale radius, rs. The bias in S8 is reduced
by a factor of ≈8 if the mass cut is increased from m200m,min = 1014 h−1 M�
to 1014.5 h−1 M�, but is still highly significant, while the bias in �m and w0

is reduced to within 2.5σ .

for the cosmological parameters for cluster samples without mass
uncertainties using different limiting masses in Fig. 10. Increasing
the mass cut from m200m,min = 1014 h−1 M� to 1014.5 h−1 M� reduces
the bias in S8 by a factor ≈8 to 10 σ , while the bias in �m and w0

is reduced to within 2.5 σ . However, this increase in the mass cut
comes at the expense of a large increase of the statistical errors.

In reality, there will be extra uncertainties due to the photometric
redshift estimation of the clusters and the lensed source galaxies,
which will scatter clusters between redshift and mass bins. Moreover,
the mass uncertainty is a combination of observational systematic un-
certainties that evolve differently with mass and redshift (Köhlinger
et al. 2015). We have shown that the precision of the inferred
cosmological parameters will ultimately be set by the accuracy
with which the mass uncertainty of individual cluster masses can be
determined. The accuracy of the inferred cosmological parameters
will depend on how accurately the bias between the inferred halo
masses and the equivalent DMO halo masses can be determined.

Our results clearly indicate the need for more advanced mass
inference methods from weak lensing observations and a better
calibration between the observed and theoretical halo masses. Under
our assumption that the dark matter distribution is not significantly
affected by the presence of baryons, it is possible to obtain unbiased
halo mass estimates. This suggests that combining measurements
of the total and baryonic halo mass, through, e.g. combined weak
lensing and X-ray or SZ observations, respectively, would provide
significantly less biased mass estimates of the dark matter mass and
hence, after scaling by the universal baryon fraction, of the equivalent
DMO halo. In Section 5, we explore the possibility of using aperture
masses, which are less sensitive to the assumed halo density profile.

5 A PERTURE MASSES

In Section 3, we found that we cannot infer unbiased equivalent DMO
halo masses from mock weak lensing observations, even when the
inferred total halo mass is unbiased. This follows from the deviation
of the baryonic component from the assumed NFW density profile
and the fact that the baryon fraction is smaller than the universal
value in the radial range of the weak lensing observations.

It might be necessary to rethink how we link observed haloes to
the theoretical halo mass function, since this is the main baryonic
uncertainty. Preferably, the inferred halo masses should differ as little

as possible from their equivalent DMO haloes. It has been shown by
Herbonnet et al. (2020) that projected halo masses derived from a
weak lensing analysis capture the true projected halo mass more
accurately than deprojected methods can. The aperture mass is a
powerful tool, because it can be computed directly from the data
under minimal assumptions about the halo density profile (see e.g.
Clowe et al. 1998; Hoekstra et al. 2015). Moreover, we would expect
the mass enclosed in a sufficiently large aperture to converge to the
equivalent DMO halo mass as long as a larger fraction of the cosmic
baryons is included for a larger aperture.

We have performed aperture mass measurements of our mock
weak lensing data in the following way. First, we convert the reduced
shear to the tangential shear, assuming the best-fitting NFW density
profile with a fixed or free scale radius, to compute κNFW(R)

γT(R) = (1 − κNFW(R))gT(R) . (24)

Here, the difference between κNFW(R) and the true convergence is
� 2 per cent over the radial range of the observations, resulting in
negligible error due to the wrong density profile assumption. Then,
we compute the aperture mass using the statistic introduced by Clowe
et al. (1998)

ζc(R1) = κ̄(R<R1) − κ̄(R2 < R ≤ Rmax)

= 2

R2∫
R1

〈γT〉d ln R + 2

1 − R2
2/R

2
max

Rmax∫
R2

〈γT〉d ln R , (25)

where 〈γ T〉 is the azimuthally averaged tangential shear, for which
we use the tangential shear from equation (24), derived from mock
weak lensing observations of the reduced shear. The aperture mass
is then given by

M(R<R1) = πR2crit(ζc(R1) + κ̄(R2 < R ≤ Rmax)) , (26)

where we can use the best-fitting NFW profile to determine κ̄(R2 <

R ≤ Rmax), which is a small correction that again differs negligibly
from the true convergence profile due to the NFW assumption. The
aperture masses inferred from the above equations recover the true
projected halo mass at sub-per cent accuracy over the entire mass
range, as we show in the top panel of Fig. 11. Aperture masses are,
thus, a very accurate measure of the true enclosed halo mass, more
so due to the fact that they depend so little on assumptions about the
underlying true density profile.

However, the problem of linking the observed haloes to their
equivalent DMO counterparts still remains, although it is slightly
alleviated. In the bottom panel of Fig. 11, we show the ratio of the
aperture masses from mock weak lensing observations within a fixed
aperture of R < 1.5 h−1 Mpc to the mass of the equivalent DMO halo
within the same aperture. We choose this aperture size since it is
within the range of our mock weak lensing observations in Section 3
and it is larger than the fixed overdensity radius r200m for haloes with
m500c < 1014.5 h−1 M�, for which r200m(z = 0.43) ≈ 1.3 h−1 Mpc,
resulting in a larger fraction of the universal baryons within it
for these abundant haloes. We choose the outer annulus for the
correction factor in equation (25) between R2 = 2.4 h−1 Mpc and
Rmax = 2.5 h−1 Mpc such that the NFW correction term is small
compared to ζ c. Aperture masses perform better at recovering the
mass of the linked DMO halo than the deprojected NFW masses
in Section 3 as long as R1 � r200m, i.e. for all haloes with m500c �
4 × 1014 h−1 M� at z = 0.43, as can be seen from the comparison
of the coloured dashed and dotted lines with the grey lines in the
bottom panel of Fig. 11. This follows from the fact that the halo
baryon fractions converge to the cosmic value in the cluster outskirts.
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Figure 11. Top panel: the ratio of the total aperture mass within R <

1.5 h−1 Mpc derived from mock weak lensing observations, to the true
aperture mass. The coloured, dashed and dotted lines show the ratio of the
aperture masses inferred for the best-fitting NFW density profiles, with fixed
and free scale radius, respectively, to the true aperture mass using the statistic
from equation (26). The grey dashed and dotted lines show the ratio of the
measured and true deprojected masses, m200m, NFW/m200m, true, for the same
NFW fits. For the aperture masses, there is practically no difference between
using a fixed or free NFW scale radius, indicating insensitivity to the assumed
density profile. The derived aperture mass is within 1 per cent of the true
aperture mass for all halo masses. Bottom panel: the ratio of the total aperture
mass within R < 1.5 h−1 Mpc derived from mock weak lensing observations,
to the same aperture mass of the equivalent DMO halo. Line styles are the
same as in the top panel. The ratio of the true to the equivalent DMO halo
aperture mass is shown as the solid, black line. The aperture masses are less
biased with respect to the equivalent DMO mass than the deprojected masses,
m200m, which are shown as the grey lines.

This is one of our main conclusions: to link observed haloes to their
DMO equivalents, we need to make sure that we are accounting
for the ejected baryons. Otherwise, any mass estimate, while not
necessarily biased with respect to the true halo mass, will be biased
with respect to the equivalent DMO halo mass. It is this latter bias
that is fatal for accurate cluster cosmology.

The fact that the statistic in equation (26) is practically unbiased
with respect to the true aperture mass, regardless of the assumed den-
sity profile, makes it an appealing alternative to the deprojected mass
determination methods. The problem of calibrating the observed halo
masses to their equivalent DMO counterparts, while alleviated, still
remains. Since there are so far no theoretical calibrations for the
halo aperture mass function, we do not check the performance of the
aperture mass determinations for cluster cosmology.

6 D ISCUSSION

We have introduced a phenomenological model that reproduces the
baryon content inferred from the X-ray surface brightness profiles of
the average observed cluster population in the REXCESS survey. We
have shown how we can include observed baryonic density profiles in
a halo model, while ensuring that the halo baryon fraction converges
to the cosmic value in the halo outskirts, by fitting the inferred radial
halo baryon fraction with the correct asymptotic value. By assuming

that baryons do not significantly alter the distribution of the dark
matter, we were able to link observed haloes to their equivalent haloes
in a DMO universe, which allowed us to predict their number density.
Then, we performed mock weak lensing observations to quantify the
effect of the changing halo density profile due to the ejection of
baryons on the inferred halo masses. Finally, we investigated the
bias due to baryons in the measured cosmological parameters from a
number count analysis of a mock cluster sample with masses inferred
from weak lensing observations. We have justified that our simplifi-
cations result in robust lower bounds on the amplitude of the shift due
to baryons of both cluster masses and cosmological parameters from
an idealized cluster count cosmology analysis. The survey-specific
systematic uncertainties set the statistical significance of these shifts.
We have shown that the baryonic bias in the cosmological parameters
is highly significant even when not including prior knowledge of the
uncertainty in the cluster mass inferred from an observable mass
proxy. Now we situate our results in the wider context of the
literature.

Balaguera-Antolı́nez & Porciani (2013) studied the effect of
baryons on the cosmological parameters inferred from cluster counts.
They used the observed baryon fractions of clusters to infer their
equivalent DMO halo masses, similarly to our method. They also find
significant biases in the inferred cosmological parameters, mainly a
strong suppression in �m and a slight increase in σ 8 (the exact bias
in σ 8 depends on their chosen cluster baryon fraction relation). The
amplitude and direction of the bias differ from ours as Balaguera-
Antolı́nez & Porciani (2013) use a single, smaller mock cluster
sample (≈2.8 × 104 clusters compared to ≈1.7 × 105) that spans a
lower redshift range and they did not include the effect of baryons
on the cluster weak lensing mass determinations.

Previously, weak lensing mass determinations have been studied
in both DMO (e.g. Bahé et al. 2012) and hydrodynamical simulations
(e.g. Henson et al. 2017; Lee et al. 2018). While Bahé et al.
(2012) and Henson et al. (2017) find different values for the mass
bias, i.e. ≈ 5 and ≈ 10 per cent, respectively, they both conclude
that these biases result from fitting complex, asymmetric clusters
with idealized NFW profiles. (Importantly, these analyses leave the
concentration free, which is not the case in most observational
analyses.) If this is the case, then we could reduce the weak
lensing mass bias by performing a stacked analysis, if we have
an unbiased cluster sample. Or, since Henson et al. (2017) find a
similar bias at fixed halo mass for haloes in both hydrodynamical
and DMO simulations (see the top panel of their fig. 11), it seems
feasible to model the mass bias due to triaxiality, substructures, and
departures from the NFW shape, by performing mock observations
of DMO haloes (as in e.g. Dietrich et al. 2019). However, we have
shown, as has also been pointed out by Lee et al. (2018), that
the distribution of observed cluster baryons implies an intrinsic
difference in the density profiles between observed clusters and
their DMO equivalents that cannot be captured when assuming a
fixed concentration–mass relation. Hence, the inferred halo masses
would still be biased, even when accounting for the bias due to halo
asymmetry. We found that leaving the concentration of the haloes
free mitigates this baryonic mass bias, as was also shown in Lee
et al. (2018). However, we showed that the bias in the measured
cosmological parameters from a cluster count analysis actually
increases when leaving the concentration–mass relation free in the
weak lensing analysis. This is because low-mass cluster masses are
overestimated when fixing the concentration–mass relation, which
compensates for some of the missing baryons and thus reduces the
bias with respect to the equivalent DMO halo mass for these abundant
clusters.
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For cluster cosmology, the vital part is then linking these inferred
cluster masses to the equivalent DMO haloes whose number counts
we can predict, as argued by Cui et al. (2014), Cusworth et al.
(2014), and Velliscig et al. (2014). In the cosmo-OWLS simulations,
Velliscig et al. (2014) found differences of � 1 per cent between
cluster masses in the hydrodynamical and DMO simulations for
clusters with m500c � 1014.5 h−1 M�. In our model, we only find
such small biases for haloes with masses m500c � 1015 h−1 M�. As
discussed previously, if we optimistically assume that the predictions
from cosmo-OWLS are correct, then this difference could be due
to our neglect of the back-reaction of the baryons on the dark
matter, and the stellar component. However, for low-mass haloes
(m500c � 1014.5 h−1 M�), which will dominate the signal for stage
IV-like surveys, these effects are negligible compared to the mass
suppression due to the missing baryons.

Using the Magneticum simulation set, Bocquet et al. (2016) and
Castro et al. (2020) studied the change in the halo mass function
due to baryons and its impact on cluster cosmology. Bocquet et al.
(2016) performed a cluster count analysis using halo mass functions
calibrated on DMO simulations, to measure the cosmological param-
eters from a cluster sample generated from the halo mass function
of their hydrodynamical simulation. They did not find significant
biases for stage III-like surveys, but their shifts in �m and S8 for
an eROSITA-like survey are qualitatively similar to our stage IV-
like survey predictions. The difference for the stage III-like surveys
could be caused by a smaller mismatch between the halo masses
in their hydrodynamical and DMO simulations than we infer from
observations.

Castro et al. (2020) made Fisher forecasts for a joint cluster
number count and clustering analysis of a Euclid-like survey using
the baryonic and DMO halo mass functions in the Magneticum
simulations. They confirmed that correcting for the baryonic mass
bias brings the different halo mass functions into closer agreement.
However, they find less significant baryonic mass suppression than
we do. The resulting biases in the cosmological parameters are
significantly smaller than what we find. This difference is most
likely caused by both the lower baryonic mass suppression in
Magneticum and a different sample selection. We have chosen a
minimum redshift zmin = 0.1 and a constant limiting mass cut
of m200m,min = 1014 h−1 M�, whereas Castro et al. (2020) use zmin

= 0.2 and a redshift-dependent mass threshold varying around
m200c,min ≈ 1014 h−1 M� within 0.1 dex (see their fig. 13). Conse-
quently, our sample includes more low-mass clusters which increases
the statistical significance of the bias (as we show in Fig. 10).

An important difference between our work and previous work is
that we have used a phenomenological model that reproduces the
observed baryon content of clusters. Hence, we do not suffer from
the uncertainty related to the assumed subgrid models in hydrody-
namical simulations. We only rely on the fact that hydrodynamical
simulations imply that the baryonic mass suppression of matched
haloes explains the difference between their halo mass function and
that derived from DMO simulations. All in all, even though the exact
value of the baryonic mass bias between observed and equivalent
DMO halo masses, and, consequently, the halo mass function, can
differ by up to a few per cent depending on which simulations or
observations are used, the general behaviour is the same and implies
the need to account for baryonic effects in cluster count cosmology.

7 C O N C L U S I O N S

We set out to investigate the implications for cluster count cosmology
of the disconnect between the robust theoretical understanding of

cluster-sized (m500c > 1014 h−1 M�) dark matter-only haloes and the
observed cluster population, an issue which was pointed out by Cui
et al. (2014), Cusworth et al. (2014), and Velliscig et al. (2014).
They found that in hydrodynamical simulations, there is a significant
mismatch between the enclosed halo masses at fixed radius that is
determined by the halo baryon fraction. We study how the change in
the halo density profiles due to the observed distribution of baryons
affects the estimated masses from mock weak lensing observations
and the resulting cosmological parameters from a cluster number
count analysis.

Our model relies on X-ray observations from the REXCESS data
(Croston et al. 2008) to constrain the baryonic density profile of
cluster-mass haloes. Under the assumption that the dark matter
density profile does not change significantly in the presence of
baryons, we can link observed haloes to their DMO equivalents.
The distribution of a fraction of the DMO halo mass, i.e. the
cosmic baryon fraction, will change in the observed halo. Once this
link has been established, we can study the change resulting from
this baryonic mass bias in cosmological parameters inferred from
a number count analysis. We showed that the currently standard
weak lensing mass calibrations that assume NFW density profiles
and a fixed concentration–mass relation from DMO simulations, are
inherently biased for cluster-mass haloes. Fixing the concentration
of the halo results in underestimated halo masses since baryons
are ejected beyond the typical radial range that the weak lensing
observations are sensitive to. The density profile is fit out to radii
where baryons are missing and is not flexible enough to capture the
increase in baryonic mass towards larger radii. However, we showed
that there is enough freedom in the NFW density profile to provide
unbiased halo mass estimates if the concentration is left free (see
Fig. 5), in agreement with Lee et al. (2018).

However, even unbiased total halo masses result in biased cos-
mological parameter estimates because of the mismatch between the
observed haloes and their DMO equivalents due to ejected baryons
(see the middle panel of Fig. 6). This is the dominant baryonic
bias. A fiducial weak lensing analysis with fixed concentration–mass
relation for a stage IV-like survey would result in highly significantly
biased estimates of the cosmological parameters, underestimating
�m and S8 by up to 9 σ and 76 σ , respectively, and overestimating
w0 by 3.5 σ (see Fig. 8 and Table 2 for the exact values of the
bias). Although leaving the concentration–mass relation free in
the weak lensing analysis decreases the bias in the total mass, it
actually increases the bias in the cosmological parameters to 13 σ ,
82 σ , and 6 σ , respectively. This is because the masses of low-
mass clusters are overestimated when fixing the concentration–mass
relation, which results in a smaller bias compared to the equivalent
DMO mass.

We showed that including a constant uncertainty of ±20 per cent
in the individual, unbiased cluster masses only reduces the precision
of the inferred cosmological parameters if the mass uncertainty itself
is not accurately determined. An uninformative prior on the mass
uncertainty decreases the precision of �m, S8, and w0 by factors
of 1.05, 7.8, and 1.02, respectively. However, assuming the mass
uncertainty of individual clusters is known to within ±2 per cent
results in constraints that are nearly identical to those derived from
ideal cluster masses (see Fig. 9 and Table 2).

The picture changes slightly for cluster samples that include
the baryonic mass bias. To quantify how neglecting the baryonic
mass bias affects the inferred cosmological parameters, we do not
account for the mass-dependent baryonic bias when fitting the cluster
number counts. Since the model without prior knowledge of the mass
uncertainty can vary the mass uncertainty as well as the cosmological
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parameters, the best-fitting parameters differ between the cases
with and without prior knowledge of the mass uncertainty. The
uninformative prior on the mass uncertainty decreases the precision
of �m, S8, and w0 by factors of up to 1.1, 10.7, and 1.02, respectively.
Knowing the mass uncertainty to within ±2 per cent again results in
constraints that cannot be distinguished from those derived from
ideal cluster masses (see Fig. 9 and Table 2). The baryonic bias
is, thus, highly statistically significant, even in the presence of
mass estimation uncertainties. The accuracy of the cosmological
parameters inferred from cluster number counts depends on how
accurately inferred halo masses can be linked to their equivalent
DMO halo masses. The precision of the cosmological parameter
estimates is determined by how accurately the individual cluster
mass estimation uncertainty is known.

For stage III-like surveys and assuming a fixed (free)
concentration–mass relation, we found biases of ≈ 0.6 σ (0.9 σ ),
3 σ (3 σ ), and 0.1 σ (0.5 σ ) in �m, S8, and w0, respectively, again,
assuming ideal cluster mass estimations (see Fig. 7 and Table 1).
However, we stressed that the uncertainties induced by the mass
estimation for current stage III-like surveys exceed the statistical
uncertainty of our idealized survey.

We also measured aperture masses, since they are expected to
provide less biased estimates of the total projected mass than
deprojected mass estimates, independently of the assumed density
profile of the cluster (see the top panel of Fig. 11) and they are
more closely related to the actual weak lensing observable (e.g.
Clowe et al. 1998; Herbonnet et al. 2020). However, even though
it is slightly alleviated, the problem of linking observed haloes to
their DMO equivalents remains (see the middle panel of Fig. 11).
We expect the total projected mass to approach the projected DMO
mass at large radii (van Daalen et al. 2014). One problem is that
correlated large-scale structure becomes important near the cluster
virial radius (e.g. Oguri & Hamana 2011), which requires accurate
modelling of the cluster-mass halo bias. We did not include this effect
in our model. Using aperture mass estimates would also require a
recalibration of halo mass function predictions to this observable.

Any attempt to use clusters for cosmology will need to include a
robust method for linking observed haloes to their DMO equivalents.
A joint approach, combining weak lensing observations with, for
example, hot gas density profiles from from X-ray telescopes like
eROSITA – and, in the future, Athena – and/or SZ observations
would allow the reconstruction of the cluster dark matter mass, which
has already been shown to be much less biased with respect to the
equivalent DMO halo mass (Velliscig et al. 2014). This is an essential
avenue to be explored. If we cannot robustly establish the link to
DMO haloes, we cannot obtain unbiased cosmological parameters.
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APPENDIX A : MODEL FITS

Fig. A1 shows the best-fitting rt(m500c, z) and α(m500c, z) for the radial
baryon fraction fits (equation 7) to each cluster in the REXCESS data,
self-similarly scaled to the indicated redshifts. We also show the
results for the binned clusters as the black lines, and the best-fitting
linear relations, following equations (9) and (10), as the coloured
lines. Most of the clusters are described quite well by the best-fitting

Figure A1. The best-fitting log10(rt/r500c) and α values for the REXCESS
clusters, self-similarly rescaled to different redshifts (coloured points), their
median, mass-binned values (black lines), and the best-fitting linear relations
from equations (9) and (10) (coloured lines). The median relation is captured
well with the linear model for each redshift. There are some outliers (red
outlined markers), whose density profiles are shown in Fig. A2.

Figure A2. Top panel: the density profiles of the clusters that are outliers
to our best-fitting relations for log10(rt/r500c) and α. Bottom panel: the ratio
between the observed hot gas density profiles and our best-fitting model. The
outliers cannot be accurately described by our simple monotonic increase in
the baryon fraction because they have a high density core.

relations. In Fig. A2, we show the outliers (marked in red in Fig. A1)
with |�log10(rt/r500c)/log10(rt/r500c)| > 1.5 and |�α/α| > 1.5. All
these clusters have a high central density core that cannot be captured
by our monotonic relation for the baryon fraction (equation 7). These
clusters would be better described by, for example, a double beta
profile fit. However, these are only 6 out of the total of 31 clusters,
spanning the entire mass range. Hence, they do not bias the median
mass-binned cluster profiles.

A P P E N D I X B: MI X E D L I K E L I H O O D

In Fig. B1, we show the difference in cosmological parameter
constraints for a stage IV-like cluster abundance survey when using
a pure Gaussian likelihood, i.e. equation (20), versus the mixed
Gaussian-Poisson likelihood that uses equation (21) for bins with
Nobs(mi, zj) < 10. The Gaussian likelihood cannot deal with the
discreteness of the number counts at high redshift and high halo
masses. The absence of clusters in these bins pushes the theoretical
prediction of the halo mass function towards lower values in
the Gaussian likelihood. Meanwhile, the number counts for low-
mass haloes, which are more abundant and thus better described
by the Gaussian likelihood, need to remain the same. For the
mass cut m200m,min = 1014 h−1 M�, the lower number counts for
high-mass haloes are achieved by decreasing w0 and increasing
�m in such a way that the decrease in number counts for low-
mass haloes due to w0 is offset by the increase due to �m. S8

seems unaffected by the choice in likelihood. The mixed Gaussian-
Poisson likelihood results in unbiased cosmological parameter
estimates.
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Figure B1. The marginalized maximum a-posteriori probability density
functions for �m, S8 = σ 8(�m/0.3)0.2 and w0 for 1000 independent stage
IV-like cluster abundance surveys assuming a Gaussian likelihood (lightly
shaded contours), or a mixed Gaussian-Poisson likelihood (darkly shaded
contours). Gray PDFs show the results for a halo sample with no mass bias.
Blue (orange) PDFs include a mass bias due to an NFW fit with a fixed (free)
scale radius, rs. The Gaussian likelihood biases �m (w0) towards higher
(lower) values.
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