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2INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3Sub-Department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH, UK

Accepted 2021 May 5. Received 2021 May 3; in original form 2021 February 25

ABSTRACT
Both classical and relativistic weak-field and slow-motion perturbations to planetary orbits can be treated as perturbative
corrections to the Keplerian model. In particular, tidal forces and General Relativity (GR) induce small precession rates of the
apsidal line. Accurate measurements of these effects in transiting exoplanets could be used to test GR and to gain information
about the planetary interiors. Unfortunately, models for transiting planets have a high degree of degeneracy in the orbital
parameters that, combined to the uncertainties of photometric transit observations, results in large errors on the determinations
of the argument of periastron and precludes a direct evaluation of the apsidal line precession. Moreover, tidal and GR precession
time-scales are many order of magnitudes larger than orbital periods, so that on the observational time-spans required to cumulate
a precession signal enough strong to be detected, even small systematic errors in transit ephemerides add up to cancel out the
tiny variations due to precession. Here we present a more feasible solution to detect tidal and GR precession rates through
the observation of variations of the time interval (�τ ) between primary and secondary transits of hot Jupiters and propose the
most promising target for such detection, WASP-14 b. For this planet we expect a cumulated �τ ≈ −250 s, due to tidal and
relativistic precession, since its first photometric observations.
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1 IN T RO D U C T I O N

Since the first exoplanet detection (Mayor & Queloz 1995), a rich va-
riety of planets orbiting solar-like stars has been discovered. Among
this yield, transiting hot Jupiters (HJs) with short orbital periods
and relatively high eccentricity offer the possibility to test General
Relativity1 (GR) through timing variations of transit observables
caused by both GR-induced precession of their periastrons (Jordán
& Bakos 2008; Pál & Kocsis 2008; Iorio 2011a,b, 2016) and by
oblateness (Iorio 2011a, 2016). Given the relatively small entity of
GR precession rates, a long time-span between the first and the last
photometric observations of these planets is required to access the
precision level needed by such measurement (Jordán & Bakos 2008),
which is now available for a considerable number of transiting HJs.

The major obstacle in determining the periastron precession is the
high uncertainty usually associated with the value of the argument of
periastron, which excludes the feasibility of measuring the precession
rate from the inferred values of orbital parameters. However, a timing
variation in the epoch of transits and occultations, or in the transit
duration (Iorio 2011b, I11 hereafter), can be used to detect GR
precession rates if the observed planet has sufficiently short period
and large orbital eccentricity. Since orbital precession is a cumulative
effect, shorter periods lead to more orbits cumulated in the same
time-span, hence HJs are inherently favoured. However, planets with
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longer periods are more likely to have large eccentricities, as we will
discuss in Section 2, and recently this motivated attempts (Blanchet,
Hébrard & Larrouturou 2019) to detect GR precession also in planets
with orbital period �100 d.

2 PRECESSI ON EFFECTS O N TI MI NG O F
TRANSI TI NG EXOPLANETS

A single exoplanet orbiting a solar-like star can be treated as a weak
field approximation of Einstein’s field equations of GR (Miralda-
Escudé 2002; Pál & Kocsis 2008). Their solution for closed orbits
leads to a prograde precession of the argument of periastron (ω). Over
an orbital period P, the precession angle �ωP is given by (Weinberg
1972; Misner, Thorne & Wheeler 1973):

�ωP = 6π

a(1 − e2)

GM

c2
, (1)

where e is the orbital eccentricity, a is the semimajor axis of the
planetary orbit and M is the total mass of the planetary system, given
by the sum of the mass of the star M� and the mass of the planet Mp,

M = M� + Mp. (2)

On short time-scales (∼10 yr) and for a two-body system we consider
the orbital parameters as constant quantities, so that also �ωP and
P are constant. In this case ω varies linearly with time, because its
time derivative

ω̇ = �ωP

P
(3)
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does not change. Integrating equation (3) over time we get

ω(t) = ω0 + ω̇(t − t0), (4)

where t0 is a reference time at which ω(t0) = ω0. The time-scale of
GR precession is typically extremely long. Let us consider a slightly
eccentric (e = 0.1) planet in a close-in (P = 2 d) orbit around
a Sun-like star (M� = 1 M�): the GR precession rate amounts to
∼3.5 × 10−11 rad per orbit, which means that a complete precession
requires ∼1 Gyr. From the Kepler’s third law

a3n2 = GM, (5)

where n = 2π /P is the mean motion of the planet, we can write the
semimajor axis of the planetary orbit as

a =
(

GM

n2

)1/3

. (6)

Substituting equation (6) in equation (1) leads to

ω̇ = 3n5/3

(1 − e2)c2
(GM)2/3. (7)

We used the Kepler’s third law under the assumption that the time-
scale of our observational time-span is smaller than the time-scale
of variations in the values of the orbital parameters due to classical
effects. Among such variations, eccentricity damping is known to be
the most effective mechanism acting on short-period planets (Rasio
& Ford 1996), but over ∼10 yr the effects of circularization are
negligible, since its time-scale is (Goldreich & Soter 1966; Husnoo
et al. 2011)

ė

e
= − P

21π

(
Qp

k2,p

)(
Mp

MJ

)(
a

Rp

)5

≈ 5 × 107yr (8)

for a typical HJ, where Qp is the dissipation function and k2,p is the
Love number of the planet. Another possible source of variations for
the orbital period is the Applegate effect (Applegate 1992), due to
changes in the quadrupole moment of a magnetically active parent
star. However, Watson & Marsh (2010) estimated a variation ranging
from ∼0.1 s to a few seconds, with an 11 yr modulation, for a
typical HJ. Given the orders of magnitude of both the expected
precession rate and its uncertainty, that we will discuss in Section 3,
we can safely ignore the Applegate effect in the computation of our
estimates. The Love number is a key parameter of the planetary tidal
response to an outer gravitational potential and it is the main one in
the computation of precession due to Newtonian sources (Cowling
1938; Murray & Dermott 2000). Equation (7) expresses the rate
of precession as a function of the stellar and planetary masses. A
measure of ω̇ can be used both to test GR with exoplanets and to probe
the mass of the star and the planet without relying on stellar models.
However, measuring the argument of periastron with the accuracy
and precision required is a daunting task. A small eccentricity (e <

0.1) means that the Keplerian model is highly degenerate in ω, and
unfortunately this is the common case with close-in planets, because
of the eccentricity damping due to tidal forces. Radial Velocity (RV)
measurements alone typically do not allow us to pin down ω with
the required precision and accuracy. On the other hand, GR effects
are best observable for close-in orbits. In this work we show how
to achieve a good trade-off between these two needs, by addressing
the effects of precession on a particular transit observable and by
proposing an appropriate target.

Figure 1. Variation of τ (dashed–dotted line) in units of the orbital period for
different values of the eccentricity. The time interval between the transit and
the occultation of the planet is exactly half of the orbital period for circular
orbits. As the eccentricity grows, τ oscillates between a minimum (dashed
line) and a maximum value (solid line) due to the degeneracy in ω.

2.1 Effects of precession on the interval between primary and
secondary transits

Pál & Kocsis (2008) and I11 derived the equations for the effect
of GR and classical precession on the observables of the transit
method GR precession directly affects the argument of periastron ω.
In our approach we considered how transit observables are sensible
to variations of ω. Usually the values of ω from orbital solutions
derived modelling the photometry of transits have large uncertainties.
The observations of secondary eclipses (or occultations) allow us to
remove the degeneracy in ω, which can be fitted within a narrow
range of probable values. The formal expression for the time interval
τ between the mid-transit time of the primary and the secondary
eclipses has been derived in the context of binary stars (Dong, Katz
& Socrates 2013) and it is given by

τ = P

π

[
arccos

(
e cos ω√

1 − e2 sin2 ω

)
− e

√
1 − e2 cos ω

1 − e2 sin2 ω

]
, (9)

which is accurate up to a term proportional to e cot2 i (Sterne 1940;
Jordán & Bakos 2008). For a few degrees deviation from i = 90◦

and small eccentricities (e � 0.1), the additional term to equation (9)
is smaller than ∼ 10−3 τ (Sterne 1940) and does not vary with time.
So in this work it will be neglected. As we can see in Figs 1 and
2, τ /P grows monotonically with the orbit eccentricity and has a
maximum for ω = 180◦. Thus the feasibility of a measurement of
τ is determined not only by the shape of the orbit of the planet, but
also by its orientation in space with respect to the line of sight of the
observer. Such considerations play a fundamental role in the choice
of an appropriate target for the methods we are proposing in this
work and will be discussed in Section 3.

However, before assessing the details of the τ measurements, we
shall expose the link between the precession rates expressed as time
variation of ω, and the time variation of τ . To see how ω̇ and τ are
linked, let us consider equation (9). The second factor on the right-
hand side of this equation is a function of e and ω only, and we shall
call it g(e, ω), so that

τ = P

π
g(e, ω). (10)

As we mentioned in Section 1, for small time-scales P and e can
be considered constant, while ω varies linearly. If we consider two
reference times, t1 and t2, the variation of τ during the time-span of
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Figure 2. τ is a function of the argument of planetary periastron ω, here
computed using P = 2 d and e = 0.1. τ has a maximum for ω = 180◦
and a minimum around 0◦. The method presented in this work relies on the
variation of τ with time, that is with ω = ω(t), so the most favourable cases
are the ones where the time derivative of τ is larger (planets with ω around
90◦ and 270◦).

photometric observations �t = t2 − t1 (with t2 > t1) is

�τ = P

π
[g(e, ω(t2)) − g(e, ω(t1))]. (11)

Measuring such quantity is a good choice to assess the importance
of variations in ω due to precession. It involves a differential
measurement and not an absolute one, and it does not depend upon
the extent of the observational time-span, as it would be if we wanted
to measure a cumulated variation of the mid-transit ephemeris. With
our choice of observables, the uncertainty in the measurements only
depends upon the uncertainties on the transit and secondary eclipses
photometry at the time they are observed.

Since we are interested in the τ dependency of equation (7), let us
take the time derivative of equation (10),

τ̇ = P

π
ġ = P

π

∂g

∂ω
ω̇, (12)

where we assumed both e and P constant. Equation (12) can be
reversed into

ω̇ = π

P

(
∂g

∂ω

)−1

τ̇ . (13)

The partial derivative of g(e, ω) with respect to ω is quite intricate,
but it can be easily expressed if we expand ∂g/∂ω in powers of e. To
the third order we have

∂g

∂ω
= 2e sin ω + O(e3), (14)

and consequently

τ̇ = P

π
2e sin ω ω̇. (15)

In our scenario, ω̇ and τ̇ are constant quantities, so we can derive
the expected variation of τ simply integrating equation (15) over the
observational time-span �t,

�τ = 2

π
P ω̇ �t e sin ω. (16)

2.2 GR precession rate

In order to evaluate the �τ variation we need to compare theoretical
predictions from GR to the photometric observations, so we need

to express the ω̇ of equation (7) as a function of τ̇ , which can
be easily done using equation (13) and its approximation given by
the expansion that led us to equation (15). Therefore, we begin by
substituting equation (13) into equation (7). We obtain

GM = c3

12π
√

6
(1 − e2)3/2

[
τ̇

∂g/∂ω

]3/2

P , (17)

which allows us to write a second-order approximated form of
equation (17) as

M = c3

48π
√

3G

(
1 − e2

e

)3/2 (
τ̇

sin ω

)3/2

P . (18)

Equation (18) gives the mass of the planetary system as a function
of both primary and secondary transit observables. As we assumed,
during a time-span �t ∼ 10 yr, the time derivative τ̇ is constant and
therefore can be computed using

τ̇ = �τ

�t
. (19)

In this case equation (18) is equivalent, up to a second-order
approximation in e, to

M = 0.176M� ×
(

P

d

)(
�τ

min

)3/2 (
�t

yr

)−3/2

(e sin ω)−3/2. (20)

If we reverse equation (18) to express, again to the second order in
orbital eccentricity, the expected GR variation of τ , in seconds, given
the mass of the planetary system, we get

�τGR = 191s ×
(

M

M�

)2/3 (
P

d

)−2/3 (
�t

yr

)
e sin ω. (21)

2.3 Tidal and rotational precession rates

I11 considered among the sources of precession: (1) the effects of
tidal bulges, both on the planet and on the star; (2) the effects of
planetary and stellar oblateness (non-zero J2 coefficients); (3) the
relativistic effect of stellar angular momentum (the Lense–Thirring
effect); (4) the presence of another orbiting body. In I11 scenario,
i.e. a Jupiter-mass planet orbiting a Sun-like star with e = 0.07 and
a = 0.04 au, the GR effects and the tidal forces acting on the planet
are the major factors contributing to the total orbital precession. All
other effects are at least one order of magnitude smaller (see equation
72 in I11), with the possible exception of a third body orbiting the
barycentre of the system. The effect of the latter factor strongly
depends on the orbital configuration and the mass of the third body
and it can vary by orders of magnitudes.

The Lense–Thirring precession has been estimated by I11 to
produce an effect on �τ 4 orders of magnitude smaller than the
GR effect. As we will show in Section 3, the GR effect on �τ for
the HJ that we propose as an appropriate target is of the order of
the hundreds of seconds. Consequently, according to I11, the Lense–
Thirring effect in our case would account for a variation of just a
few tens of milliseconds. Since the uncertainties on the values of
orbital and physical parameters of the planetary system result in an
uncertainty of ≈50 s on the final �τ estimate, we decided to ignore
the Lense–Thirring effect in the computation of our estimate of �τ .

Stellar oblateness effect on �τ , that is the effect of the quadrupole
moment due to the non-zero J2 coefficient of the star, is at most
2 orders of magnitude smaller than the GR effect. For our target,
this translates into a few second variation of �τ . Moreover, the �τ

variation induced by such effect is proportional to

3 + 5 cos 2�� (22)
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(equation 65 of I11), where �� is the inclination of the orbit with
respect to the equatorial plane of the star, so the magnitude of this
effect has a maximum for �� = 0◦ and a minimum for �� = 90◦.
For our proposed target, �� = 33◦ ± 7◦ (Johnson et al. 2009), so
the stellar quadrupole effect is ∼ 60 per cent of its maximum value,
and it likely accounts for a ∼1 s variation of �τ . As for the Lense–
Thirring precession, the uncertainties in the case of our target put the
stellar quadrupole effect of �τ beyond the threshold for detection,
and therefore it has been excluded from our computations.

Tidal forces are symmetrical to the orbital plane and they raise a
bulge on the surface of planets. The only non-vanishing component
is the radial one (Murray & Dermott 2000) and perturbation theory
for close-in binaries (Cowling 1938) gives the expression for the
associated acceleration along the radial direction,

a
tid,p
R = −

(
M�

Mp

)
3k2pR

5
pGM

r7
. (23)

Such radial acceleration depends on how the planetary interiors react
to the potential and they are the source of the tidal bulge on the
planetary surface. The information about the internal structure of the
planet is encapsulated in the parameter k2p, the second Love number,
which is the ratio between the second order of the potential induced
by the tidal deformation (Ragozzine & Wolf 2009) and the second
order of the external potential applied to the planet (V app

2 ). So if we
have

k2,p ≡ V ind
2

V
app

2

(24)

then, following Murray & Dermott (2000) and Ragozzine & Wolf
(2009), we can express k2,p as a function of the J2,p moment as

k2,pV
app

2 = −J2,p
GMp

Rp
P2(cos θ ), (25)

where θ is the planetary colatitude and P2 is the second order
Legendre polynomial. The applied potential (V app

2 ) has a centrifugal
component due to planetary rotation,

V2,r = 
2R3
p

GMp
, (26)

where 
 is the rotational angular frequency, and a tidal component
due to the stellar gravity

V2,t = −3

(
Rp

r

)3 (
M�

Mp

)
. (27)

If there is no obliquity, which means θ = 0 and consequently
P2(cos θ ) = -1/2, then equation (25) can be rearranged to give a
convenient expression for J2,p,

J2,p = k2,p

3

(
V2,r − V2,t

2

)
. (28)

Since V2,t is a function of the relative distance between the star
and the planet and consequently of time, then also J2,p for eccentric
planets is a function of time. Short-period massive planets are likely
tidally locked (Guillot et al. 1996; Murray & Dermott 2000), so in
equation (26) the angular frequency of the planetary rotation is equal
to its mean motion,


 = n, (29)

and then, by Kepler’s Third Law, as expressed in equation (5), we
obtain

V
app

2 =
(

Rp

a

)3 (
M� + Mp

M�

)
. (30)

Since M� 	 Mp, we can approximate equation (30) to

V2,r ≈ −3V2,t, (31)

which along with equation (25) gives

J2,p = 5

6
k2,p

(
M�

Mp

)(
Rp

a

)3

. (32)

This is a simple relation between two parameters, J2,p and k2,p, which
hides the complex behaviour of planetary interiors subject to external
potentials. The second Love number would be zero if all the mass
was concentrated in the core, and solar-like stars, that have relatively
massive cores, are expected to have k2,p ∼ 0.03 (Claret 1995). A
fairly good model for a cold giant planet is a polytrope with n = 1
and it would have k2,p = 0.52 (Kopal 1959), while a uniform sphere
would have k2,p = 3/2 (Murray & Dermott 2000). In fact, Jupiter and
Saturn show respectively k2,p = 0.49 and 0.32, marking with a ∼0.1
the difference between a less and a more massive core. Now that we
have defined the role of the internal structure in tidal and rotational
potentials, we can use results from binary stars theory (Sterne 1939)
to write the tidal precession rate,

ω̇tid,p = 15

2
k2,p

(
Rp

a

)5
M�

Mp
nf2(e), (33)

and the rotational precession rate,

ω̇rot,p = 1

2
k2,p

(
Rp

a

)5

2a3

GMp
ng2(e), (34)

where f2(e) and g2(e) are polynomial functions of the orbital
eccentricity, as function of stellar and orbital parameters. If we use
the hypothesis of tidally locked planets that led to equation (29), in
the above equations, we note that ω̇rot,p and ω̇tid,p differ only by a
factor proportional to the ratio

g2(e)

f2(e)
≈ 1 − 3

2
e2, (35)

at the second order approximation in e. We can combine equation (34)
and equation (33) into a single definition of a dynamical precession
rate,

ω̇dyn,p = ω̇tid,p + ω̇rot,p =
(

1 + 1

15

g2(e)

f2(e)

)
ω̇tid,p. (36)

To the second order in eccentricity, such dynamical precession rates
can be written as

ω̇dyn,p =
(

16

15
− 1

10
e2

)
ω̇tid,p. (37)

Substituting the precession rate ω̇dyn,p in equation (15) we get the
expected value of τ̇ due to planetary rotation and tidal forces,

τ̇dyn = 32

15π
e sin ω P ω̇tid,p + O(e2), (38)

and as a function of orbit and planet parameters

τ̇dyn = 32e sin ω k2,p

(
Rp

a

)5
M�

Mp
. (39)

Finally, the time-integrated value �τ , as given by equation (16), is

�τdyn = 1.01 · 109s ×
(

Rp

a

)5 (
M�

Mp

)(
�t

yr

)
e sin ω k2,p. (40)

Combining equation (16) and equation (40) we obtain the total effect
of the precession rate on the time-integrated value:

�τtot = �τGR + �τdyn. (41)
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Figure 3. Known transiting planets (source: TEPCAT on 2020/10/01,
Southworth 2011) as a function of their orbital period and eccentricity; the V
magnitude of the host star is colour-coded as a transparency mask, while the
planetary mass is proportional to the area of each point. WASP-14 b (labelled)
clearly stands out as one of the most eccentric HJs hosted by a bright star.

Finally, we have obtained in equation (41) a quantity, �τ tot, which
is a function of GR precession rate and it is the observable that
astronomers can measure from the photometry of planetary transit
and secondary eclipses.

3 THE CASE O F WASP-14 B

From what we demonstrated in the previous Section, an ideal case to
test the effects of GR precession is a massive transiting exoplanet in a
close-in, eccentric orbit. While hundreds of HJs have been discovered
(Dawson & Johnson 2018), most of them have non-detectable or
very small eccentricities, due to a well-known circularization process
driven by tidal forces, as mentioned in Section 2.3; only a small
fraction of HJs have e > 0.05. An additional constraint is that the
host star has to be bright enough to enable high-precision follow-up
observations. This is particularly true for the timing of the secondary
eclipse (usually carried out in the near-infrared region), which in turn
should be deep enough to mitigate the impact of systematic errors
on the photometric measurements.

When comparing the distribution in eccentricity, orbital period and
magnitude of all the known HJs (Fig. 3), and the planets with the
deepest secondary eclipse and the highest expected �τ (Table 2),
WASP-14 b clearly stands out as one of the most favourable targets
for our study. Also, the orientation of the orbit of WASP-14 b seem
to be favourable for a measurement of the GR �τ , as we can see
from Fig. 4.

In what follows we will focus on WASP-14 b as a possible
application to test our model.

WASP-14 b is a transiting, massive HJ (Joshi et al. 2009) with
Mp = 7.76 ± 0.47 MJ (Wong et al. 2015). Its orbit is slightly
eccentric, with e = 0.0830+0.0029

−0.0030 (Wong et al. 2015), and close-
in, since P = 2.24376524 ± 4.4x10−7 d (Wong et al. 2015) around
a bright F5 star with V = 9.7, K = 8.6 and M� = 1.35 ± 0.12
M� (Southworth 2012). See Table 1 for a summary of the orbital
and physical properties of the WASP-14 system. WASP-14 b is a
well-studied planet, both with transit photometry (Joshi et al. 2009)
and with the RV method (Husnoo et al. 2011; Joshi et al. 2009).
Transit time variation (TTV) analysis showed no evidence for any

Figure 4. The expected �τ variation due to GR for WASP-14 b, expressed
as a function of orbit eccentricity and argument of periastron over a 12 yr
observational time-span is ∼126 s.

other planet in the system (Raetz et al. 2015) and the observations of
secondary eclipses made it possible to measure the orbital parameter
values with great accuracy and precision (Blecic et al. 2013). Among
HJs with detected secondary eclipses (Garhart et al. 2020), WASP-14
b has one the deepest ones, ∼1900 ppm at 3.6 μm and ∼2400 ppm
at 4.5 μm (Wong et al. 2015). Luckily, there is an extensive record of
publicly available high-quality photometric observations of WASP-
14 b relevant to our study, including:

(i) Two high-precision transit light curves at epoch 2008.0 (Joshi
et al. 2009) and 2009.5 (Johnson et al. 2009), gathered respectively
with the RISE instrument in the R+V wide band and with the UH-
2.2m telescope in the r

′
band. These two observations, combined, set

a first epoch for the transit time with an accuracy of about 20 s. Other
more recent transit light curves from Raetz et al. (2015) pinpoint the
T0 with a similar level of precision at epoch ∼2012.0;

(ii) Three secondary transits gathered with Spitzer at 3.6, 4.5, and
8 μm, respectively (Blecic et al. 2013), in 2009 and 2010. When
combined, those observations constrain the timing of the occultation
with a precision of ∼40 s around epoch 2010.0. Even better, the
Spitzer phase curves published by Wong et al. (2015) includes two
full eclipses at 3.6 μm and two at 4.5 μm, which can be combined into
a single point at epoch 2012.4 with ∼35 s of precision. The same
data also include two primary transits (one in each filter) further
constraining the transit timing at the ∼15 s level around the same
epoch.

With these premises, WASP-14 b is then one of the best candidates
for a detection of GR precession by measuring the variation �τ

as described in the previous sections. In order to get a realistic
estimate of the expected �τ , we considered an observational time-
span of 12 yr and the parameter values derived by Joshi et al. (2009),
Husnoo et al. (2011), Southworth (2012), Blecic et al. (2013), Raetz
et al. (2015), and Fontanive et al. (2019). From equation (21) and
equation (40) we get

�τGR = (−126.2 ± 9.0) s (42)

and

�τdyn = (−262 ± 97) s × k2,p, (43)

where the uncertainties have been estimated with Monte Carlo (MC)
simulations. The only unspecified parameter in the above equations
is the planet Love number k2,p. We expect (Bodenheimer, Lin &
Mardling 2001; Ragozzine & Wolf 2009) a tidally locked HJ to have
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Table 1. A summary of the orbital and physical properties of the WASP-14 system, from its discovery paper (Joshi et al. 2009), from the most recent
homogeneous analysis of transiting giant planets (Bonomo et al. 2017), and from Wong et al. (2015), where the authors analysed the thermal phase curves and
the occultations of the planet and which we used as reference in this work, with the exception of the stellar mass. The stellar mass of WASP-14 has been taken
from Southworth (2012), a homogeneous study of 38 transiting planets where the author reviewed the limb darkening coefficients taking into account the effects
of non-zero orbital eccentricity and possible contamination light.

Parameter Symbol (unit) Value from Bonomo et al. (2017) Value from Joshi et al. (2009) Value from Wong et al. (2015)

Orbital period P (d) 2.2437661 ± 1.1x10−6 2.243752 ± 1.0x10−5 2.24376524 ± 4.4x10−7

Orbital semi-major axis a (au) 0.0358+0.0013
−0.0012 0.036 ± 0.001 0.0371 ± 0.0011

Orbital eccentricity e 0.0782+0.0012
−0.0014 0.091 ± 0.003 0.0830+0.0030

−0.0029

Orbital inclination i (◦) – 84.32+0.67
−0.57 84.63 ± 0.24

Argument of periastron ω (◦) 251.61 ± 0.41 253.371+0.693
−0.678 252.67+0.77

−0.70

Planet mass MP (MJup) 7.22+0.50
−0.49 7.34+0.51

−0.50 7.76 ± 0.47

Planet radius RP (RJup) 14.36+0.84
−0.92 14.36+0.84

−0.92 13.69 ± 0.46

Stellar mass M� (M�) 1.21+0.12
−0.13 1.21+0.13

−0.12 –

Stellar radius R� (R�) 1.306+0.066
−0.073 – 1.306 ± 0.073

Transit duration T14 (h) – 3.06+0.0672
−0.0744 –

k2,p between ∼0.1 and ∼0.6, so we draw samples from a uniform
distribution with those limits,

k2,p ∼ U(0.1, 0.6), (44)

and again via an MC simulation estimated an expected �τ and its
uncertainty,

�τtot = (−218 ± 53) s. (45)

However, a more informative prior on k2,p can be constructed if
we assume that the most probable value for the Love number of
an HJ is the same value a n = 1 polytrope would require. As we
mentioned in Section 2.3, Kopal (1959) derived k2 = 0.52 for such
a model, and in our Solar system the difference between gaseous
planets with relatively less or more massive cores is reflected by a
∼0.1 variation in the Love number value. With this information we
conducted another MC simulation using as prior on k2,p the normal
distribution

k2,p ∼ N (μ = 0.5, σ = 0.1). (46)

In this scenario (see Fig. 5), the expected value for �τ is

�τtot = −253+63
−45 s, (47)

where we considered a 1σ interval centred on the median of the
posterior distribution for �τ tot.

The stellar system of WASP-14 is known to host a star, WASP-
14B, certainly associated with the main component (Ngo et al. 2015;
Fontanive et al. 2019) and another, more distant star, WASP-14C,
whose membership of the system has been recently inferred from
parallactic properties (Lindegren et al. 2018; Fontanive et al. 2019).
WASP-14B is a 0.33 ± 0.04 M� stellar companion at a separation
of 300 ± 20 AU (Ngo et al. 2015), while WASP-14C is a K5 V
star with MC = 0.280 ± 0.016 M� at a projected separation of
∼1900 AU (Fontanive et al. 2019). Both the companions of WASP-
14A are unlikely to have played any role in the formation and
evolution of WASP-14 b (Fontanive et al. 2019). Nonetheless they
may, in principle, cause a slight variation in the precession rates
from the values derived in this work. Assuming circular orbits about
the barycentre of the system, WASP-14B has an orbital period of
≈4000 yr and WASP-14C has an orbital period of ≈52 900 yr, which
are, respectively, ∼106 and ∼107 times longer than the orbital period
of the planet. During the 10 yr observational time-span their angular
positions, as seen by the planet, have been almost fixed, since they are

Figure 5. Joint probability density for �τ and k2,p if the latter is assumed to
follow a normal distribution with μ = 0.5 and σ = 0.1.

at most ∼8 arcmin for WASP-14B and ∼4 arcmin for WASP-14C.
The effective impact of the two stellar companions of WASP-14A on
the precession rate of WASP-14 b depends upon their gravitational
potential at the planet position and it is a complex function of both
the distance of the two stars from the planet and the orientations
of the spins and the orbital planes of all the bodies involved (Iorio
2011b). Such potentials are in the form (Hogg, Quinlan & Tremaine
1991)

VX = GMX

2r3
X

[
r2 − 3(r · lX)

]
, (48)

where X is the distant orbiting body (the B and C components of
WASP-14 in our case), rX is the distance between the planet and the
distant orbiting body, lX is the vector pointing from the planet to the
distant orbiting body, and r is the distance between the barycentre of
the system and the planet. Since this potential scales with the third
power of the distance of the two minor stellar companions of WASP-
14A and that, during the observational time-span, such distance can
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Table 2. The best candidates for detecting the GR precession rate in eccentric HJ with a well-defined secondary eclipse. The
second column (T) contains the length of the observational time-span for each target; the third column lists an approximate
computation (ignoring uncertainties) of the expected total �τ , based upon the best values of their masses and orbital parameters,
to give a grasp of the magnitude of the effect; the fourth and the fifth columns give the depths of the secondary eclipses in two
wavelengths (3.6 μm and 4.5 μm) from Garhart et al. (2020); the depth 4.5 μm of the secondary eclipse of XO-3 b is from
Wong et al. (2014); the sixth columns contains the visual magnitudes of the parent stars.

Name T (y) |�τGR| (s) ED 3.6 μm (ppm) ED 4.5 μm (ppm) V (mag) References

WASP-14 b 12 130 1816 ± 67 2161 ± 88 9.75 Joshi et al. (2009)
HAT-P-33 b 14 220 1603 ± 127 1835 ± 199 11.89 Hartman et al. (2011)
HAT-P-30 b 11 40 988 ± 168 1057 ± 145 10.42 Johnson et al. (2011)
KELT-2A b 9 50 650 ± 38 678 ± 47 8.77 Beatty et al. (2012)
XO-3 b b 8 50 – 1580 ± 36 9.8 Wong et al. (2014)

be considered constant. Given the 50 per cent uncertainty on the
predicted value of �τ , we can then safely ignore the perturbations
of WASP-14B and C on the orbit of WASP-14 b. So the prediction
of equation (45) still holds valid.

Is such a timing drift (�τ ∼ 4 min) detectable in the near future?
We showed above that archival data of WASP-14 b constrain the
timing of both the primary transit and occultation to better than 20 s
and 40 s (respectively) at epoch 2009.0 and 2010.0, thus observations
with a similar or better precision at any time of the future will be able
to detect the drift with a >5 σ significance. As for the primary transit,
the TESS satellite (Ricker et al. 2014) is going to observe WASP-14
for the first time during its Sector 50 (i.e. from 2022 March 26 to April
22); by examining the actual photometric performances of TESS on
two already observed HJs with a similar orbital period, depth and
magnitude (WASP-95b and WASP-111b) we estimate that the TESS
light curve will deliver a timing error of <20 s at epoch 2022.3. Even
without TESS, light curves gathered from medium-sized, ground-
based facilities could be equally effective in constraining the second
epoch, since timing errors of <30 s are routinely achieved on targets
with similar characteristics (Nascimbeni et al. 2011).

As for the occultation, the second epoch has to rely on space-
based instruments in the NIR/MIR spectral region, the only capable
of timing the ∼1900 ppm eclipse with the required precision. After
the retirement of Spitzer, the first viable option is with JWST
(Beichman et al. 2014): a single occultation observed with the
NIRSpec instrument will be able to constrain its timing to better
than a few seconds, at epoch >2022.5 (that is, after the foreseen
start of JWST cycle 1). Indeed, the full-phase observation of WASP-
14 b with NIRSpec was once considered as a Science Operations
Design Reference Mission (SODRM) program, but eventually not
included in any ERS (Early Release Science; Bean et al. 2018)
or GTO program. It is likely, however, that it will be included
as an ordinary program during the first cycles, either to study its
atmosphere or specifically to detect the GR effect through a dedicated
proposal. A second option is with ARIEL (Tinetti et al. 2018), with
an expected launch date in 2029; WASP-14 b is already included in
the Mission Reference Sample (Zingales et al. 2018) in Tier 3 (the
most intensively monitored sample), specifically to gather repeated
observations of its occultations. Also in this case, the expected timing
error will be better than a few seconds, and at an even more distant
epoch (>20 yr) after the first epoch set by Blecic et al. 2013 with
Spitzer.

4 C O N C L U S I O N S A N D D I S C U S S I O N

In this work we have presented a convenient way to detect the GR
precession rate of transiting HJs with a secondary eclipse sufficiently

deep to measure with high precision (�1 min) the time interval
between the mid-time of the primary transit and the mid-time of the
occultation. Our method is based on measuring the above-mentioned
time interval, �τ , which is a differential measurement and thus it is
not affected by the accumulation of uncertainty in determining the
epochs of these events. We also accounted for the tidal and rotational
effects, as they are, among the classical sources of precession, the
ones with the greatest rates, comparable with the GR precession rate.

In order to test our method, we propose the HJ WASP-14 b as the
most promising target for future observations. We demonstrated that
it is possible to detect GR precession rates already with current space
(TESS) and ground-based facilities and also with future space-based
missions (JWST and ARIEL). We derived an expected �τ ∼ 4 min,
including both GR and classical effects, for WASP-14 b, considering
an observational time-span of 12 yr. This time-span corresponds to
the time elapsed since the first photometric observations of WASP-14
and the present year. However, we also provide a way of computing
the expected �τ as a function of an arbitrary observational time-span.
Since GR precession is a cumulative effect, a longer observational
time-span will lead to more accurate measurements of �τ .

In this perspective, future IR observations and especially high
precision space-based observations (JWST) of WASP-14 b and of
the other targets listed in Table 2 will be of great importance because
they will make it possible to test the predictions of GR in the field of
exoplanets with a growing level of accuracy.
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