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ABSTRACT
With recent advances in modelling stars using high-precision asteroseismology, the systematic effects associated with our
assumptions of stellar helium abundance (Y) and the mixing-length theory parameter (αMLT) are becoming more important.
We apply a new method to improve the inference of stellar parameters for a sample of Kepler dwarfs and subgiants across a
narrow mass range (0.8 < M < 1.2 M�). In this method, we include a statistical treatment of Y and the αMLT. We develop a
hierarchical Bayesian model to encode information about the distribution of Y and αMLT in the population, fitting a linear helium
enrichment law including an intrinsic spread around this relation and normal distribution in αMLT. We test various levels of
pooling parameters, with and without solar data as a calibrator. When including the Sun as a star, we find the gradient for the
enrichment law, �Y/�Z = 1.05+0.28

−0.25 and the mean αMLT in the population, μα = 1.90+0.10
−0.09. While accounting for the uncertainty

in Y and αMLT, we are still able to report statistical uncertainties of 2.5 per cent in mass, 1.2 per cent in radius, and 12 per cent
in age. Our method can also be applied to larger samples that will lead to improved constraints on both the population level
inference and the star-by-star fundamental parameters.
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1 IN T RO D U C T I O N

The inference of stellar ages, masses, and radii has improved through
the use of asteroseismology in recent years (e.g. see the review
by Chaplin & Miglio 2013). Measuring the oscillation modes in
stars using photometric time series data, from missions such as
CoRoT (Baglin et al. 2006), Kepler (Borucki et al. 2010), and TESS
(Ricker et al. 2015), has given us new insights into the structure and
evolution of stars (Garcı́a & Ballot 2019). Recent examples include
a deeper understanding of stellar structure (Verma et al. 2017),
chronology of a Milky Way merger (Chaplin et al. 2020), and clas-
sifying exoplanetary systems (Huber et al. 2019; Tayar et al. 2020).
Several studies used grids of stellar models with constraints from
asteroseismology to produce catalogues of precise stellar parameters
(Pinsonneault et al. 2014; Silva Aguirre et al. 2017). However,
with increasing precision on fundamental parameters inferred from
stellar models with asteroseismology, extra care should be taken to
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ensure that we are accounting for uncertainty in our choice of stellar
physics.

Typically, stars are modelled on a star-by-star basis with estimates
of stellar properties including some assumptions handled by simple
scaling relations and solar calibrations. For instance, a helium (Y)
to heavy-element (Z) enrichment ratio (�Y/�Z) and mixing-length
theory parameter (αMLT) are often assumed. However, there has
been little effort to account for the population distribution of such
quantities. Assuming values for Y and αMLT can result in inaccurate
inference and systematics on the inferred stellar parameters (Valle
et al. 2015). Independently modelling Y and αMLT can also be com-
putationally demanding and requires high-precision observations in
order to return meaningful stellar properties.

In this work, we apply the method of Davies et al. (in preparation)
to determine stellar properties for a sample of Kepler dwarfs and
subgiants using a hierarchical Bayesian model (HBM). With an
HBM, we introduce population-level distributions for Y and αMLT

to encode prior information throughout the sample. We will show
that when an HBM is used, we can increase the precision of
inferred masses, radii, and ages despite increasing the number of
free parameters.
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The use of HBMs has been demonstrated in other areas of
astrophysics to reduce individual parameter uncertainties by
encoding prior information about the distribution of the parameter
in a population. For example, HBMs have been used with data
from Gaia, improving distance measures (Leistedt & Hogg
2017; Anderson et al. 2018) and calibrating the red clump as a
standard candle (Hawkins et al. 2017; Chan & Bovy 2020) using
asteroseismology (Hall et al. 2019). In other instances, HBMs have
been used to infer binary-star and exoplanet eccentricities (Hogg,
Myers & Bovy 2010), obliquity of transit systems (Morton & Winn
2014), stellar inclination with asteroseismology (Campante et al.
2016; Kuszlewicz et al. 2019), and the age–metallicity relation of
the solar neighbourhood (Feuillet et al. 2016).

To describe the distribution of Y in this work, we assume a linear
helium enrichment law characterized by freely varied population
parameters: the gradient given by �Y/�Z, the primordial helium
abundance at Z = 0 (YP) and an intrinsic spread in helium (σ Y). There
have been many studies to determine a linear enrichment law, from
modelling eclipsing binaries (Ribas et al. 2000) to spectroscopy of
galactic HII regions (Balser 2006). Values of �Y/�Z have also been
determined for samples of main sequence (MS) stars (Casagrande
et al. 2007), open clusters (Brogaard et al. 2012), and more recently
with asteroseismology using individual oscillation frequencies (Silva
Aguirre et al. 2017) and the glitch due to the second helium ionization
zone (Verma et al. 2019). In these studies, the value of the enrichment
ratio was typically inferred to be 1 � �Y/�Z � 3. However, helium
enrichment is unlikely to be exactly linear with metallicity and may
depend on other chemical abundances (West & Heger 2013) or the
location of the star in the Milky Way (Frebel 2010). Therefore, we
account for some deviation from the linear law by introducing σ Y.
Moreover, our method may be adapted to different helium enrichment
priors in future work.

The widely used mixing-length theory (MLT) of convec-
tion, parametrized by αMLT, has been tested throughout the
Hertzsprung–Russell (HR) diagram with 3D hydrodynamical sim-
ulations (Trampedach et al. 2014; Magic, Weiss & Asplund 2015)
and asteroseismology (Tayar et al. 2017; Viani et al. 2018; Li et al.
2018) with values in the range 0.8 � αMLT/αMLT,� � 1.2, where
αMLT,� is the value calibrated to the Sun. However, in many grids of
stellar models, a constant value calibrated to reproduce the Sun is
assumed. This can lead to systematic uncertainties in stellar ages due
to the effects of variable mixing depending on the mixing length. The
MLT approximates convective mixing and thus we expect the value
of αMLT to vary from star to star due to various effects, from changes
in chemical composition to other sources of mixing described poorly
by MLT. The investigation of more complex αMLT distributions is
beyond the scope of this work. Instead, we experiment with two prior
assumptions for αMLT in the population. The first assumes αMLT is
normally distributed in our sample with a spread (σα) to account for
the aforementioned variation in αMLT. The second assumes αMLT is
constant throughout the sample.

Our HBM requires a way to map from the stellar initial (or
bulk) properties to predict observables. We can achieve this with
a large grid of stellar evolutionary models. However, a discrete grid
can produce inaccurate posterior distributions, limited to the grid
resolution. Increasing the resolution is computationally demanding,
especially when scaling to higher input dimensions. One solution is to
interpolate the stellar models, as is common in the isochrone-fitting
method (see e.g. Berger et al. 2020). However, interpolation can
become computationally expensive at high input dimensions and grid
size, and evaluating the likelihood using modern Bayesian sampling
techniques is slow. Therefore, we use machine learning to map stellar
model inputs to observables to provide a fast way to sample the

HBM. In this work, we train an artificial neural network (ANN) on
a large grid of stellar models. There have been similar applications
of ANNs in asteroseismology (Verma et al. 2016; Bellinger et al.
2016; Hon, Stello & Yu 2017, 2018; Hendriks & Aerts 2019) but not
yet in the context of an HBM. Using the machine learning speed-up,
we demonstrate a scalable method for obtaining fundamental stellar
parameters.

In Section 2, we describe the data for the sample of 81 Kepler
dwarfs and subgiants studied in this work. We then present the
methods in Section 3 for which we produced a large grid of stellar
evolutionary models to use as training data for an ANN. We use the
ANN as an emulator in a series of statistical models described in
Section 3.2 to model the sample and present our results in Section 4.
Finally, in Section 5, we discuss the results from each model and
compare them to results for the sample of stars in the literature.

2 DATA

For this study, we selected the sample of 415 stars from the first
APOKASC catalogue of dwarfs and subgiants (Serenelli et al. 2017,
hereafter S17). This sample provides an extensive set of dwarfs and
subgiant stars with asteroseismic detections observed by the Kepler
mission. S17 used grid-based modelling to determine the ages (τ ),
masses (M), radii (R), and surface gravity (log g) of stars in the
sample, using global asteroseismic parameters, effective temperature
(Teff), and metallicity ([M/H]) as inputs.

Using five independent pipelines, S17 determined values for global
asteroseismic parameters – the large frequency separation �ν and
the frequency at maximum power, νmax with median uncertainties
of 1.7 per cent and 4 per cent, respectively. We chose to adopt
the �ν determined in their work as inputs for our method. They
also used [M/H] published in Data Release 13 (DR13; Albareti
et al. 2017) of the APOGEE stellar abundances pipeline (ASPCAP;
Garcı́a Pérez et al. 2016) with uncertainties of 0.1 dex. For their
preferred set of results, they adopted Teff from the Sloan Digital Sky
Survey (SDSS) griz-band photometry (Pinsonneault et al. 2012) with
a median uncertainty of 70 K.

We removed more evolved stars from the APOKASC sample by
cutting those with log g < 3.8 dex. We then kept stars within 1σ of
−0.5 < [M/H] < 0.5 dex to remove metal-poor and -rich stars. Main
sequence stars with M � 1.2 M� are understood to have a convective,
hydrogen-burning core, with some dependence on the chemical
composition and choice of stellar physics (Appourchaux et al. 2015).
Stellar models with a convective core require the treatment of extra
stellar physics such as overshooting, which is beyond the scope of
this work. Therefore, we keep only stars with masses within 1σ of
0.8 to 1.2 M� from the preferred set of results of S17.

Following cuts to the sample, we adopted updated ASPCAP
spectroscopic metallicities, [M/H], from Data Release 14 (DR14;
Blanton et al. 2017) which had a median uncertainty of 0.07 dex.
We also chose to adopt Teff from the same catalogue to be internally
consistent. We note that our chosen effective temperature scale is
offset from the photometric temperature scale of S17 by approxi-
mately −170 K, with a dispersion of ∼120 K corresponding to typical
uncertainties on the individual temperatures. The median uncertainty
in our adopted ASPCAP Teff was 125 K.

To provide a means of calculating luminosities, we used Gaia Data
Release 2 (DR2) parallaxes (Gaia Collaboration et al. 2016, 2018).
We cross-matched the remaining sample with the DR2 catalogue,
taking the nearest neighbours within a 4 arcsec radius. Although
DR2 parallaxes have improved upon the DR1 values at the time of
S17, there was still evidence for a zero-point offset (Lindegren et al.
2018). We adopted a global offset of 0.05 mas, in the sense that DR2
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Table 1. The observables and their respective uncertainties for 5 stars in the sample of 81 stars.
The whole table is available as supplementary material.

Name Teff (K) L (L�) �ν (μHz) [M/H]surf (dex)

KIC10079226 5929 ± 125 1.571 ± 0.049 116.04 ± 0.73 0.159 ± 0.074
KIC10215584 5667 ± 119 1.637 ± 0.063 115.16 ± 2.83 0.043 ± 0.069
KIC10319352 5456 ± 107 1.848 ± 0.056 78.75 ± 1.73 0.265 ± 0.065
KIC10322381 6147 ± 149 2.445 ± 0.079 86.64 ± 6.57 − 0.317 ± 0.079
KIC10417911 5628 ± 110 3.408 ± 0.115 56.14 ± 2.10 0.336 ± 0.068

Figure 1. The luminosity, L against effective temperature, Teff of the sample
of 81 Kepler dwarfs, and subgiants studied in this work. Each stars is
coloured according to metallicity. The grey lines depict evolutionary tracks
with [M/H]init = 0.0 dex, Yinit = 0.28, and αMLT = 1.9 for different stellar
masses. The current position of the Sun is shown by the � symbol.

parallaxes were underestimated, representative of values obtained
in the literature using Kepler field stars (see e.g. Hall et al. 2019;
Zinn et al. 2019a) and through other methods (see e.g. Riess et al.
2018; Chan & Bovy 2020). We then cross-matched our sample with
the Two-Micron All Sky Survey (2MASS; Skrutskie et al. 2006) to
obtain KS-band (2.16μm) photometry.

We determined luminosities, L for the sample using the direct
method of ISOCLASSIFY (Huber et al. 2017; Berger et al. 2020) with
KS-band photometry, Gaia DR2 parallaxes, ASPCAP [M/H] and Teff,
and asteroseismic log g as inputs. This involved computing absolute
KS-band magnitudes using the Gaia DR2 parallaxes and extinctions
determined by the 3D galactic reddening maps of Green et al. (2018).
We determined absolute bolometric magnitudes by interpolating the
MIST bolometric correction tables as a function of Teff, log g and
[M/H] (Choi et al. 2016; Dotter 2016). We adopted the uncertainty
of 0.02 mag assumed by ISOCLASSIFY for both the extinctions and
bolometric corrections, corresponding to typical systematic errors in
extinction maps and bolometric fluxes (e.g. Zinn et al. 2019b; Tayar
et al. 2020). We obtained luminosities for the sample with a median
uncertainty of 3.4 per cent.

The final sample comprised 81 stars for which we had complete
data for Teff, [M/H], �ν, and L to use as inputs for our stellar
modelling method (see Table 1). In Fig. 1, we show the HR diagram
for the sample plot in context with a series of stellar evolutionary
tracks at solar metallicity.

3 ME T H O D S

First, we used a stellar evolutionary code to compute a grid of models
to predict observable quantities (see Section 3.1). Subsequently, we

Table 2. Stellar model grid parameters for train and test data sets. Ntrack are
the numbers of stellar evolutionary tracks for each dimension of the grid,
multiplied to a total of 17 220 tracks.

Stellar model grid
Input parameter Range Increment Ntrack

M (M�) 0.80–1.20 0.01 41
[M/H]init (dex) −0.5–0.2/0.25–0.5 0.1/0.05 14
Yinit 0.24–0.32 0.02 5
αmlt 1.5–2.5 0.2 6

Total 17 220

trained an ANN on the grid of stellar models to map input parameters
to output observables (see Appendix A for further details). We
then constructed three Bayesian models in Section 3.2, which each
sampled the trained ANN to estimate stellar fundamental parameters
as described in Section 3.4. Evaluation of the ANN gradient is
required during training. Consequently, estimating the gradient of
the model likelihood is fast and simple when the observables are
generated by an ANN. Hence, we open up the possibility of using
a Hamiltonian Monte Carlo (HMC) algorithm – for example, using
the No-U-Turn Sampler (NUTS; Hoffman & Gelman 2014) – which
requires the gradient to sample the model posterior. Once we had
tested the accuracy of the model on a sample of synthetic stars, we
evaluated each model on the subset of the APOKASC catalogue
selected in Section 2.

3.1 Grid of stellar models

We built a stellar model grid to use in training the ANN. The grid
includes four independent model inputs: stellar mass (M), initial
helium fraction (Yinit), initial metallicity ([M/H]init), and the mixing-
length parameter (αMLT). Ranges and grid steps of the four model
inputs are summarized in Table 2. We increased the resolution at
higher [M/H] to give a more consistent resolution in Zinit which
we used as an ANN input in Appendix A. We computed each
stellar evolutionary track from the Hayashi line to the base of red-
giant branch defined here by log g = 3.6 dex. We also computed
an additional set of evolutionary tracks, with input values chosen
randomly within the range of the regular grid, to use when testing
the accuracy of the ANN.

3.1.1 Stellar models and input physics

We used Modules for Experiments in Stellar Astrophysics (MESA,
version 12115) to establish a grid of stellar models. MESA is an
open-source stellar evolution package that is undergoing active
development. Descriptions of input physics and numerical methods
can be found in Paxton et al. (2011, 2013, 2015, 2018, 2019). We
adopted the solar chemical mixture, (Z/X)� = 0.0181, provided
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by Asplund et al. (2009). The initial chemical composition was
calculated by

log(Zinit/Xinit) = log(Z/X)� + [M/H]init. (1)

We used the MESA ρ − T tables based on the 2005 update of
OPAL EOS tables (Rogers & Nayfonov 2002) and OPAL opacity
supplemented by low-temperature opacity (Ferguson et al. 2005).
The grey Eddington T − τ relation is used to determine boundary
conditions for modelling the atmosphere. The MLT of convection was
implemented, where αMLT = 	MLT/Hp is the mixing-length parameter.
We also applied the MESA predictive mixing scheme (Paxton et al.
2018, 2019) in the model computation.

Atomic diffusion of helium and heavy elements was also taken
into account. MESA calculates particle diffusion and gravitational
settling by solving Burger’s equations using the method and diffusion
coefficients of Thoul, Bahcall & Loeb (1994). We considered eight
elements (1H, 3He, 4He, 12C, 14N, 16O, 20Ne, and 24Mg) for diffusion
calculations, and had the charge calculated by the MESA ionization
module, which estimates the typical ionic charge as a function of T,
ρ, and free electrons per nucleon from Paquette et al. (1986).

3.1.2 Oscillation models and asteroseismic quantities

Theoretical stellar oscillations were calculated with the GYRE code
(version 5.1), which was developed by Townsend & Teitler (2013).
We computed radial modes (for 	 = 0) for 42 radial orders by
solving the adiabatic stellar pulsation equations with the structural
models generated by MESA. We determined the asteroseismic large
separation (�ν) for each model with theoretical radial modes to
avoid the systematic offset of the scaling relation. We derived �ν

with the approach given by White et al. (2011), which is a weighted
least-squares fit to the radial frequencies as a function of n.

We chose to ignore the well known, yet poorly characterized
impact of modelled oscillation mode inaccuracies in the near-surface
region of the star (Kjeldsen, Bedding & Christensen-Dalsgaard 2008;
Ball & Gizon 2014; Sonoi et al. 2015). This typically presents
only a small effect compared to observational uncertainties when
considering the average large frequency spacing, �ν. Additionally,
there may be further inaccuracies in the modelled �ν because of
variations in p mode frequencies with stellar activity (Chaplin et al.
2007; Garcı́a et al. 2010; Kiefer et al. 2017). Therefore, a thorough
treatment of systematic uncertainties in �ν is instead left to future
work (Carboneau et al. in preparation).

3.2 Statistical models

We devised three Bayesian models, each with varying levels of
parameter sharing (pooling) between stars in the population. Initially,
we tested the models and demonstrated reduction of statistical
uncertainties in the stellar fundamental parameters by analysing a
random sample of 100 synthetic stars modelled using MESA. Then,
we applied the models to the sample of stars in Table 1 (with and
without solar data for two of the models) and compared the results
with that of S17.

Our first model was equivalent to modelling each star individually
and featured no pooling; henceforth, we refer to it as the no-pooled
(NP) model (see Section 3.2.1). We then derived two hierarchical
Bayesian models (HBMs) which use population-level parameters
to describe their distribution in the sample. Both of these models
partially pooled helium using a linear enrichment law. We drew the
initial helium fraction for each star from a normal distribution with

a mean described by the enrichment law and standard deviation
representing its spread. Similarly, we partially-pooled the MLT
parameter, αMLT in one model, whereas we maximally pooled αMLT

in the other, such that it assumes the same value for the entire sample.
Hence, we refer to the former as the partial-pooled (PP) model and
the latter as the max-pooled (MP) model, described in Sections 3.2.2
and 3.2.3, respectively.

3.2.1 No-pooled model

First, we constructed a model comprising independent parameters
corresponding to the ANN inputs θ i = {fevol,i ,Mi, αMLT,i , Yi , Zi}
for a given star, i. The parameter fevol,i describes the evolutionary
stage of the ith star (see equation A4 in the Appendix). Using Bayes’
theorem, the posterior probability density function (PDF) of the
model parameters given a set of observed data, d i , is

p(θ i |d i) ∝ p(θ i) p(di |θ i) , (2)

where p(θ i) is the prior PDF of the model parameters and p(d i |θ i)
is the likelihood of observing the data given the model.

We chose weakly informative, bounded priors for the independent
parameters, restricting them to their respective ranges in the ANN
training data. Although the neural network is able to make predictions
outside the training data range, these have not been tested and may be
unreliable. Therefore, we used a beta distribution with α = β = 1.2
as the prior PDF on the independent parameters, transformed such
that the probability is null outside the chosen range,

p(θ i) ∝
Nθ∏
k=1

B
(
θ̃k,i |1.2, 1.2

)
, (3)

where the beta distribution is defined as,

B(x|α, β) = x α−1(1 − x)β−1∫ 1
0 uα−1(1 − u)β−1du

. (4)

and,

θ̃k,i = θk,i − θk,min

θk,max − θk,min
, (5)

is the transformed parameter where θ k,min and θ k,max are the upper and
lower bounds for each parameter. The beta distribution was preferred
over a bounded uniform distribution because our sampler evaluates
the gradient of the posterior and is thus sensitive to discontinuities
(see e.g. Fig. B1 in the Appendix).

Using notation which represents a given random variable x ∼ q
as equivalent to being drawn from a probability distribution p(x) ∝
q(x) where q(x) is a non-normalized probability density function, we
may write the priors for θ i as

fevol,i ∼ 0.01 + 1.99 · B(1.2, 1.2),

Mi ∼ 0.8 + 0.4 · B(1.2, 1.2),

αMLT,i ∼ 1.5 + B(1.2, 1.2),

Yinit,i ∼ 0.24 + 0.08 · B(1.2, 1.2),

Zinit,i ∼ 0.005 + 0.035 · B(1.2, 1.2),

where each beta distribution is scaled to cover the boundaries of the
grid of stellar models computed in Section 3.1.

We made predictions for each star using the trained ANN,
{log(τ )i , Teff,i , Ri,�νi, [M/H]surf,i} = f ANN(θ i), from which we
derived the luminosity, Li using the Stefan–Boltzmann law. Out of
the model parameters, those which may be observed are denoted by
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Figure 2. A probabilistic graphical model (PGM) of the partially pooled
(PP) hierarchical model. Nodes outside of the grey rectangle represent the
hyperparameters in the model. Nodes inside the grey rectangle represent
individual stellar parameters. Dark grey nodes represent observables that
each have their respective observational uncertainties given by the solid
black nodes. The direction of the arrows represents the dependencies in the
generative model.

μi = f (θ i). Therefore, we write the likelihood that we observe any
d i with known uncertainty, σ i given our model as

p(di |θ i) =
Nobs∏
k=1

1

σk,i

√
2π

exp

[
− (dk,i − μk,i)2

2σ 2
k,i

]
, (6)

where Nobs is the number of observed variables. We chose to use
observed Teff, L, �ν, and [M/H] collated for our sample as described
in Section 2.

It follows that the posterior PDF for a population of Nstars stars for
the NP model is

p(�|D) =
Nstars∏
i=1

p(θ i |d i), (7)

where � is the matrix of model parameters and D is the matrix
of observables. A probabilistic graphical model (PGM) of the NP
model can be seen inside the grey box of Fig. 2, without the arrow
connecting Zinit to Yinit. We ignore the nodes outside the box because
these correspond the PP model described next.

3.2.2 Partial-pooled model

Sharing or pooling parameters between stars in a population can
improve the uncertainties on stellar fundamentals by encoding our
prior knowledge of their distribution in a population. We constructed
a hierarchical model, which builds upon the NP model by introducing
population-level hyperparameters. Specifically, we chose to describe
initial helium and αMLT by partially pooling them.

We constructed the PP model such that each of the initial helium,
Y init and MLT parameter, αMLT are drawn from a common distribution

characterized by the set of hyperparameters, φ. Thus, Bayes’ theorem
becomes

p(φ, �|D) ∝ p(φ) p(Y init,αMLT|φ) p( f evol, M, Z) p(D|�), (8)

where � is the same as in the NP model, i.e. each object-level
parameter, θ j = {θj,i}Nstars

i=1 , and φ = {�Y/�Z, YP , σY , μα, σα}. The
hyperparameters for Y init comprise the helium enrichment ratio
(�Y/�Z), primordial helium abundance fraction (YP), and the spread
in helium (σ Y). The remaining hyperparameters for αMLT comprise
the mean (μα) and spread, (σα).

We assumed the initial helium and the mixing-length parameter are
each drawn from a normal distribution characterized by a population
mean and standard deviation. The probability of Y init and αMLT given
φ is

p(Y init, αMLT|φ) = p(Y init|μY , σY ) p(αMLT|μα, σα), (9)

where μY and is the mean initial helium fraction as described by the
linear helium enrichment law,

μY = YP + �Y

�Z
Zinit. (10)

Therefore, we may write the prior PDF of initial helium, given its
population-level hyperparameters as

p(Y init|Zinit, �Y/�Z, YP , σY ) =
Nstars∏
i=1

N(Yinit,i |μY,i , σY ). (11)

Similarly, for the second component of equation (9), we chose
to partially pool αMLT. We assume that convection in stars of a
similar mass, evolutionary stage, and area of the HR diagram may
be approximated using a similar value of αMLT, but the accuracy of
the MLT may vary from star to star. Given the small range of our
sample, any such variation will be absorbed by the spread parameter,
σα . Therefore, we decided to describe the prior on αMLT as

p(αMLT|μα, σα) =
Nstars∏
i=1

N(αMLT,i |μα, σα). (12)

We gave all of the hyperparameters weakly informative priors,
with the exception of YP for which we adopt a recent measurement
of the primordial helium abundance from big bang nucleosynthesis
(BBN) as the mean (Pitrou et al. 2018), with a standard deviation
representative of the range of values in the literature (Aver, Olive
& Skillman 2015; Peimbert, Peimbert & Luridiana 2016; Cooke &
Fumagalli 2018). Hence, we assumed priors on the hyperparameters
as follows:

�Y/�Z ∼ 4.0 · B(1.2, 1.2),

YP ∼ N(0.247, 0.001),

σY ∼ lnN(0.01, 1.0),

μα ∼ 1.5 + B(1.2, 1.2),

σα ∼ lnN(0.1, 1.0),

where x ∼ lnN(m, σ ) represents a random variable drawn from the
lognormal distribution,

lnN(x|m, σ ) = 1

xσ
√

2π
exp

[
− ln(x/m)2

2σ 2

]
. (13)

We produced a PGM for the model, depicted in Fig. 2. The
hyperparameters are shown outside of the grey box containing the
individual stellar parameters to represent the hierarchical aspect of
the model.
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Table 3. Solar input data. The references correspond to the central values and
the uncertainties are chosen to either be representative of the ANN accuracy
or the spread of values in the literature (see the text for details).

Input Value Reference

M (M�) 1.000 ± 0.001 –
τ (Gyr) 4.6 ± 0.1 Connelly et al. (2012)
Teff (K) 5777 ± 20 Scott et al. (2015)
R (R�) 1.000 ± 0.001 –
L (L�) 1.00 ± 0.01 –
�ν (μHz) 135.1 ± 0.2 Huber et al. (2011)
[M/H]surf ( dex) 0.00 ± 0.01 Asplund et al. (2009)

3.2.3 Max-pooled model

We built another hierarchical model similar to the PP model except
that αMLT is max-pooled (MP). In this model, we assumed that αMLT

must be the same value for every star in the sample, but still allowed
it to freely vary on a population-level. Thus the hyperparameters are
now, φ = {�Y/�Z, YP , σY , αMLT}. The posterior distribution of the
model takes the same form as in equation (8) except that the MLT
parameter for the ith star is

αMLT,i = αMLT, (14)

where

αMLT ∼ 1.5 + B(1.2, 1.2), (15)

chosen such that αMLT is confined to the boundaries of the grid of
stellar models (1.5 < αMLT < 2.5).

3.3 The Sun as a star

Pooling parameters in an HBM allow us to use the Sun as a calibrator
in a unique way. Rather than calibrating our model physics to the Sun
and then assuming the calibrated parameters across our sample, we
can include the Sun as a part of the same population as our sample of
stars. If we assume Yinit and αMLT for the Sun are a part of the same
prior distribution as for the rest of the sample, then we can simply
add solar observables to our model inputs.

For both the PP and MP models, we iterated with and without data
for the Sun included in the population, referred to as PPS and MPS,
respectively. We adopted the solar data in Table 3 with uncertainties
conservatively limited to the accuracy of the ANN for R, L, and
representative of variation in the literature for Teff. We also adopted
�ν = 135.1 ± 0.2μHz with a central value from Huber et al. (2011)
and a standard deviation representative of variations in measurements
of the solar �ν (Broomhall et al. 2011).

3.4 Sampling

We obtained results for each of the models described above by
sampling their posterior distributions, using a Markov chain Monte
Carlo (MCMC) algorithm. In particular, we used the NUTS algorithm
implemented in TENSORFLOW PROBABILITY (TFP; Abadi et al. 2016;
Dillon et al. 2017).1 For each model, we produced 20 000 samples
split across 10 MCMC chains and computed summary statistics
for the marginalized posteriors of each parameter in the model.
We removed stars with problems during tuning using the Gelman-
Rubin diagnostic (r̂; Gelman & Rubin 1992). We used results from

1We interacted with TFP using the now deprecated PYMC4 package,
developed as a successor to PYMC3 (Salvatier, Wiecki & Fonnesbeck 2016).

each model once r̂ < 1.04 for all parameters, indicating good model
convergence.

Initially, we created a random synthetic population of stars using
MESA to test the ability of the method to recover stellar properties
according to our choice of model physics and population priors.
We tested the NP, PP, and MP models. Since our sample was
fictitious, it would not have been appropriate to include real solar
data. We summarize the results for the synthetic stellar parameters
and hyperparameters in Appendix C. We found that the models were
able to recover the true synthetic properties accurately, with increased
precision when pooling parameters.

Once we had tested the method on synthetic stars, we obtained
results for the sample of 81 dwarfs and subgiants described in
Section 2. Here, we included the PPS and MPS to test the effects
of adding the Sun as a star in our population. For the purpose of
comparison, we fit the hyperparameters of the PP model (�Y/�Z,
YP, σ Y, μα , σα) to the results from the NP model.

Since our initial sample was chosen based on masses from S17,
we expected some stars to lie outside (or near the boundary) of
the observational parameter space provided by our grid of stellar
models. We used an initial run of the NP model to catch and remove
these stars. During the initial run, we dropped 16 of the 81 stars
from the sample. Of the removed stars, we found the posteriors
in M for 6 skewed towards the prior upper mass limit of 1.2 M�.
The remaining 10 removed stars suffered poor convergence during
sampling (r̂ >> 1.04) which could be because of poor step-size
tuning and sampling at the prior boundary.

Out of the remaining 65 stars with results from the NP model,
2 stars were dropped from the PP model. A consequence of
partially pooling parameters is that a population spread, σ allows
for individual parameters to vary outside of the prior range given
to the population mean, μ. In this case, individual stellar αMLT was
allowed to vary outside the range for which the ANN was valid if σα

was large. The two removed stars happened to have high likelihoods
outside of the valid αMLT range. We found that removing the same two
stars from the other models made negligible difference to the results,
so we leave a solution to this problem to future work. Naturally, we
did not see the same issue in the MP model, so we proceeded with
modelling the same 65 stars as with the NP model.

4 R ESULTS

In this section, we present the results for each of the NP, PP, and
MP models with the sample of 81 APOKASC dwarfs and subgiants
as inputs. We also present the results for the PPS and MPS models
which include the Sun as a star in the population. First, we show the
reduction in age, mass, and radius uncertainty with the addition
of pooling in Section 4.1. We then show the results for model
hyperparameters in Section 4.2, where we infer the initial helium
abundance and mixing-length parameter distribution in the sample.

4.1 Stellar parameter results

In Table 4, we present results for the 65 APOKASC stars from the
NP model. Running the NP model with synthetic stars resulted in
unreliable uncertainties (see Appendix C). This was because the
boundary of the priors in Yinit and αMLT truncated the posterior
distribution leading to underestimated uncertainties and skewing
their posterior means towards the centre of their priors. Therefore,
we present the NP results only for comparison purposes, but we
exclude them from further discussion. In Tables 5 and 6, we present
the results for the 63 stars from the PP and PPS model, respectively.
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Table 4. The median of the marginalized posterior samples for each parameter output by the NP model, with their respective upper and lower 68 per cent
credible intervals. The full table is available as supplementary material.

Name fevol M (M�) αMLT Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

KIC10079226 0.44+0.16
−0.20 1.14+0.04

−0.04 2.07+0.26
−0.30 0.28+0.02

−0.02 0.021+0.003
−0.003 2.5+1.2

−1.3 5990+51
−52 1.16+0.01

−0.02 116.0+0.7
−0.7 0.16+0.07

−0.07

KIC10215584 0.50+0.21
−0.21 1.13+0.04

−0.05 1.92+0.33
−0.26 0.27+0.02

−0.02 0.018+0.002
−0.002 2.9+1.6

−1.3 5949+64
−65 1.18+0.02

−0.02 112.5+2.6
−2.6 0.08+0.06

−0.06

KIC10319352 1.51+0.15
−0.28 1.09+0.05

−0.05 1.87+0.33
−0.23 0.28+0.03

−0.02 0.028+0.004
−0.003 9.6+1.7

−1.5 5507+57
−56 1.49+0.03

−0.03 78.6+1.6
−1.6 0.28+0.06

−0.06

KIC10322381 0.98+0.23
−0.28 1.07+0.07

−0.07 2.04+0.29
−0.31 0.28+0.02

−0.02 0.010+0.002
−0.002 4.7+1.5

−1.7 6132+94
−94 1.39+0.05

−0.04 85.6+4.9
−4.6 −0.30+0.07

−0.08

KIC10732098 1.60+0.14
−0.19 1.12+0.04

−0.05 1.86+0.33
−0.23 0.28+0.02

−0.02 0.017+0.002
−0.002 6.7+0.8

−0.8 5720+67
−66 1.77+0.04

−0.04 62.1+1.8
−1.7 0.06+0.07

−0.07

Table 5. The same as Table 4, but for the PP model.

Name fevol M (M�) αMLT Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

KIC10079226 0.22+0.10
−0.09 1.16+0.02

−0.03 1.75+0.11
−0.09 0.28+0.01

−0.01 0.020+0.003
−0.002 1.2+0.6

−0.5 5962+44
−42 1.17+0.01

−0.01 115.9+0.7
−0.7 0.15+0.07

−0.07

KIC10215584 0.37+0.15
−0.13 1.14+0.03

−0.03 1.74+0.10
−0.09 0.27+0.01

−0.01 0.018+0.002
−0.002 2.1+1.0

−0.8 5941+57
−56 1.18+0.02

−0.02 112.5+2.6
−2.7 0.07+0.07

−0.07

KIC10319352 1.41+0.11
−0.27 1.08+0.03

−0.03 1.73+0.10
−0.09 0.29+0.02

−0.01 0.028+0.004
−0.004 8.6+1.1

−1.0 5512+45
−46 1.49+0.02

−0.02 78.6+1.6
−1.6 0.28+0.06

−0.07

KIC10322381 0.78+0.23
−0.19 1.14+0.03

−0.06 1.75+0.10
−0.09 0.26+0.01

−0.01 0.011+0.002
−0.002 3.6+1.7

−1.1 6081+95
−92 1.41+0.05

−0.05 86.2+4.8
−5.2 −0.31+0.07

−0.07

KIC10732098 1.50+0.13
−0.14 1.14+0.03

−0.04 1.74+0.10
−0.09 0.28+0.01

−0.01 0.018+0.002
−0.002 6.4+0.6

−0.6 5701+59
−58 1.78+0.03

−0.03 62.2+1.7
−1.7 0.06+0.06

−0.06

Table 6. The same as Table 4, but for the PPS model.

Name fevol M (M�) αMLT Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

KIC10079226 0.35+0.11
−0.12 1.17+0.02

−0.03 1.95+0.14
−0.15 0.27+0.01

−0.01 0.020+0.003
−0.002 2.1+0.8

−0.8 5962+44
−43 1.17+0.01

−0.01 116.0+0.7
−0.7 0.15+0.06

−0.07

KIC10215584 0.47+0.16
−0.16 1.14+0.03

−0.03 1.90+0.15
−0.17 0.27+0.01

−0.01 0.018+0.002
−0.002 2.7+1.2

−1.1 5943+56
−58 1.18+0.02

−0.02 112.6+2.6
−2.6 0.07+0.06

−0.07

KIC10319352 1.51+0.10
−0.22 1.09+0.03

−0.03 1.88+0.16
−0.16 0.28+0.01

−0.01 0.028+0.004
−0.004 9.6+1.1

−1.2 5507+47
−48 1.49+0.02

−0.02 78.6+1.6
−1.6 0.28+0.06

−0.06

KIC10322381 0.89+0.21
−0.22 1.12+0.05

−0.06 1.93+0.15
−0.16 0.26+0.01

−0.01 0.010+0.002
−0.002 4.3+1.7

−1.2 6093+92
−89 1.41+0.04

−0.04 86.1+5.0
−4.9 −0.31+0.07

−0.08

KIC10732098 1.60+0.11
−0.14 1.14+0.03

−0.04 1.90+0.15
−0.17 0.27+0.01

−0.01 0.017+0.002
−0.002 6.9+0.6

−0.6 5704+62
−61 1.78+0.04

−0.03 62.2+1.8
−1.7 0.06+0.06

−0.06

In Tables 7 and 8, we also present results for the 65 stars from the
MP and MPS models, respectively. We note that for the MP models,
there is no column for αMLT because this parameter is the same across
the population and hence is given in Section 4.2.

4.2 Population parameter results

We obtained values for the hyperparameters for each of the models
and present them in Table 9 along with their upper and lower 68 per
cent credible regions. We omit the results for YP because its posterior
is the same as the prior, YP = 0.247 ± 0.001 for all the models. We fit
the same hyperparameters from the PP model to the NP model results
for Yinit, Zinit, and αMLT for the purpose of comparison. However, the
NP model results suffer from boundary effects that make the resulting
fit unreliable, pushing the population mean to the centre of the priors
and underestimating the uncertainties. We leave the NP results here
only for completeness.

Fig. 3 shows the joint and marginal distributions (corner plot)
output by the PP and PPS model. We see an anticorrelation between
�Y/�Z and μα , expected due to the degeneracy between the two
parameters in the stellar evolutionary models. In Fig. 4, we also
show the corner plot for the MP and MPS model output. Similarly,
we see an anticorrelation between �Y/�Z and αMLT.

We present the helium enrichment relation resulting from the PPS
model in Fig. 5. In this figure, we plot the individual results for Yinit

and Zinit for each of the stars from the NP and PPS models. This is
an example of shrinkage in the HBM; the estimates for individual
stellar parameters move towards the mean of the population when
they are pooled.

5 D ISCUSSION

So far, we have shown that we can add parameters to stellar models
without sacrificing statistical uncertainties through the application
of an HBM. We freed the Yinit and αMLT using pooling to encode
our prior knowledge of their distribution in the population. We also
tested the impact of including the Sun as a star in our population. We
first discuss the impact of pooling and our choice of population
priors for Yinit and αMLT in Sections 5.1 and 5.2. To assess the
accuracy of our model with respect to the literature, we compare
our results to those of S17 in Section 5.3. We found good agreement
between this work and their results, despite some differences in
observables and stellar model physics which we discuss further.
Then, we discuss sources of systematic uncertainties in Section 5.4.
Although we have accounted for uncertainties in Sections 5.1 and
5.2 in our model, there are still differences between stellar mod-
elling codes and other model physics which should be considered.
Finally, in Section 5.5, we highlight a possible outlier in our data
set.

5.1 Helium enrichment

We found the value for the helium enrichment ratio, �Y/�Z to be
the same in both the PP and MP models, �Y/�Z = 1.6+0.5

−0.4. This is
consistent with values of ∼1.4 in the literature (when heavy element
diffusion is included) albeit obtained through different methods: e.g.
measuring the metallicity and helium abundance of an open cluster
and comparing with the primordial helium abundance (Brogaard et al.
2012), and fitting to helium abundances determined for Kepler field
stars using asteroseismology (Verma et al. 2019).
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Table 7. The same as Table 4, but for the MP model.

Name fevol M (M�) Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

KIC10079226 0.20+0.08
−0.08 1.17+0.02

−0.03 0.28+0.01
−0.01 0.019+0.003

−0.002 1.1+0.5
−0.4 5961+42

−41 1.17+0.01
−0.01 115.9+0.7

−0.7 0.15+0.06
−0.07

KIC10215584 0.36+0.14
−0.13 1.14+0.03

−0.03 0.27+0.01
−0.01 0.018+0.002

−0.002 2.0+0.9
−0.8 5941+57

−57 1.18+0.02
−0.02 112.5+2.6

−2.7 0.07+0.06
−0.07

KIC10319352 1.41+0.10
−0.25 1.08+0.03

−0.03 0.29+0.02
−0.01 0.028+0.004

−0.004 8.6+1.0
−0.9 5512+44

−45 1.49+0.02
−0.02 78.6+1.7

−1.6 0.28+0.06
−0.07

KIC10322381 0.77+0.23
−0.19 1.14+0.04

−0.06 0.27+0.01
−0.01 0.011+0.002

−0.002 3.5+1.6
−1.0 6076+96

−91 1.41+0.05
−0.05 86.1+4.7

−5.3 −0.32+0.07
−0.07

KIC10732098 1.50+0.13
−0.13 1.14+0.03

−0.04 0.28+0.01
−0.01 0.018+0.002

−0.002 6.4+0.6
−0.6 5702+56

−58 1.78+0.03
−0.03 62.2+1.7

−1.7 0.06+0.06
−0.06

Table 8. The same as Table 4, but for the MPS model.

Name fevol M (M�) Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

KIC10079226 0.44+0.07
−0.06 1.16+0.02

−0.03 0.26+0.01
−0.01 0.021+0.003

−0.002 2.7+0.5
−0.4 5965+40

−40 1.17+0.01
−0.01 116.0+0.7

−0.7 0.15+0.06
−0.06

KIC10215584 0.59+0.11
−0.13 1.13+0.03

−0.03 0.26+0.01
−0.01 0.018+0.002

−0.002 3.6+0.9
−0.9 5952+55

−56 1.18+0.02
−0.02 112.7+2.7

−2.7 0.08+0.06
−0.07

KIC10319352 1.61+0.04
−0.06 1.08+0.03

−0.03 0.27+0.01
−0.01 0.028+0.004

−0.003 10.8+0.7
−0.8 5516+46

−47 1.49+0.02
−0.02 78.6+1.7

−1.6 0.28+0.07
−0.06

KIC10322381 0.98+0.19
−0.20 1.10+0.06

−0.05 0.26+0.01
−0.01 0.010+0.002

−0.001 5.1+1.3
−1.5 6106+94

−80 1.40+0.04
−0.04 85.8+5.6

−4.3 −0.30+0.08
−0.08

KIC10732098 1.69+0.06
−0.09 1.14+0.03

−0.04 0.26+0.01
−0.01 0.017+0.002

−0.002 7.4+0.5
−0.5 5715+61

−61 1.77+0.04
−0.03 62.3+1.8

−1.8 0.07+0.06
−0.07

Table 9. Hyperparameter results for each model with the omission of YP.

Model �Y/�Z σ Y μα σα αmlt

NP 1.69+0.21
−0.21 0.0074+0.0026

−0.0022 1.954+0.040
−0.041 0.065+0.030

−0.024 –

PP 1.60+0.45
−0.42 0.0051+0.0045

−0.0027 1.742+0.081
−0.070 0.056+0.051

−0.030 –

PPS 1.05+0.28
−0.25 0.0045+0.0038

−0.0023 1.900+0.095
−0.088 0.133+0.057

−0.047 –

MP 1.60+0.45
−0.42 0.0051+0.0044

−0.0027 – – 1.728+0.077
−0.066

MPS 0.76+0.24
−0.27 0.0049+0.0039

−0.0025 – – 2.088+0.031
−0.029

When we added the Sun to the pooled models, PPS and MPS,
obtained �Y/�Z up to 2σ lower than the models without the
Sun. In both models, the resulting �Y/�Z of approximately 0.8–
1.0 was consistent with the initial helium fraction expected from
solar models with our choice of Asplund et al. (2009) abundances
(Serenelli & Basu 2010). However, such solar models have been
shown to not recover helioseismic measurements of helium in the
Sun (Basu & Antia 2004; Serenelli et al. 2009; Villante et al.
2014). Solar models with the older Grevesse & Sauval (1998)
abundances typically yield higher helium fractions more in-line with
helioseismology. The �Y/�Z from the PP and MP models are higher
than those including the Sun. We could extend our model to include
asteroseismic indicators of helium to improve the uncertainties on Y
and test whether this difference becomes more significant.

Our models assumed a prior of YP = 0.247 ± 0.001 for the
primordial helium fraction that dominated its posterior. This was
a sensible assumption to make when using a linear enrichment law,
because measurements of the primordial helium correspond to the
abundance at the epoch of BBN according to current cosmological
theory (Cyburt et al. 2016). However, if we used a less informative
prior for YP we might yield more uncertain results, or even a different
value for YP. In previous work fitting a linear enrichment law, some
results for YP suggested a value below the BBN value (Casagrande
et al. 2007; Silva Aguirre et al. 2017). It is more probable that the
assumption of a linear enrichment law is inaccurate than a sample
of stars could contradict independent YP from cosmology. We justify
our prior on YP as in-line with the assumption of a linear enrichment
law, but highlight the need to investigate other ways of describing
helium in a population of stars.

5.2 Mixing-length theory

To a greater degree than chemical composition, the best-fitting αMLT

depends on the choice of model physics and stellar modelling code.
The MLT is an approximation of convection which is often calibrated
to the Sun and then assumed for all stars in a model. However,
studies of 3D hydrodynamical simulations suggest that the degree to
which αMLT approximates convection varies across the HR diagram
(Magic et al. 2015) and this is confirmed when modelling stars with
asteroseismology (Tayar et al. 2017).

The PP model (without the Sun) favoured a mean mixing-length
parameter of μα � 1.7. Whereas, the PPS model yielded a higher
value of μα � 1.9 by ∼2σ . We found this was attributed to the
addition of the Sun. The individual solar results for the PPS model
yielded a value of αMLT� = 2.12 ± 0.03 which was considerably
higher than the αMLT obtained for the other stars in the sample
(see Appendix D). This result agrees with the 3D simulations (e.g.
Trampedach et al. 2014), which predict lower αMLT for stars with
lower Teff and higher log g. However, the solar value also exceeds
the reference solar calibrated values of ≈1.92 for the same stellar
evolution code (Paxton et al. 2011). This is caused by the differences
in adopted solar mixture, atmospheric boundary conditions and
the treatment of convective mixing between this work and typical
reference values.

Despite the difference in μα , the resulting spread in mixing-length
for the PPS model σα ≈ 0.13 was double that of the PP model to
cope with the high solar value. This implies that a large population
spread in αMLT could explain the difference we see. In other words,
if we assume that the best-fitting αMLT is normally distributed in our
population, then the Sun lies within 2σ of the mean, among 95 per
cent of all stars in the population.

There are a few prior studies which look at the spread in αMLT

for a population of stars, typically by fitting αMLT as a function
of [M/H], Teff, and log g (e.g. Bonaca et al. 2012; Viani et al.
2018). For example, results from Viani et al. (2018) for stellar
models including diffusion, predict αMLT in the range of 1.5–2.3
across our sample. This dispersion would be more compatible with
the larger spread obtained by our PPS model. However, in future
work we should further investigate how αMLT varies with stellar
parameters, as our assumption of a normal distribution may not be
accurate.
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Figure 3. Corner plots showing the joint and marginalized sampled posterior distributions for the hyperparameters for the PP (left) and PPS (right) models.
The vertical dashed lines give the 16th, 50th, and 84th percentiles.

Figure 4. The same as Fig. 3 but for the MP (left) and MPS (right) models.

We found a greater difference in αMLT between the models with and
without the Sun when we max-pooled αMLT. The MP models yielded
a global αMLT in-line with μα from the PP model. However, when we
added the Sun, the model yielded αMLT ≈ 2.1 which is in common
with the solar results (see Appendix D). This had a similar affect as
assuming a solar calibrated value, because the model favoured fitting
to data with the best observational precision. The change in αMLT

between the MP and MPS models resulted in a mean difference of
∼20 per cent between the individual stellar ages. This is an example
of how adopting a solar calibrated value can bias stellar ages. We
argue that carefully including the Sun as a part of the population with

an intrinsic spread is a better way to calibrate the stellar models than
assuming as solar αMLT across the sample.

In all observables except for L, the Sun is near the centre of our
distribution of stars. However, we found no relationship between L
and αMLT in both our NP and PP models. A possible explanation
for the difference in αMLT with and without the Sun could be
some systematic offset in our observational data for the sample.
Here, we point to our choice of spectroscopic Teff which typically
underestimates Teff compared to photometric scales, as noted in
S17. We ran a solar model with an additional parameter, �Teff

= Teff,obs − Teff, which represents a bias in the observed effective
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Figure 5. The results for initial helium fraction (Yinit) against initial heavy-
element fraction (Zinit) for each star from the PPS model are shown by the
black markers. The mean helium enrichment, μY = YP + (�Y/�Z)Zinit with
its 68 per cent credible interval are shown in blue by a solid line and shaded
region, respectively. The population spread, μY ± σ Y and its 68 per cent
credible interval are shown in orange by a dashed line and shaded region,
respectively. The individual results from the NP model are shown by the light
grey markers.

temperature. The estimated covariance between �Teff and αMLT was
0.452 K2 (with a correlation of 0.517). Therefore, underestimating
Teff by about 100 K could underestimate αMLT by about 0.1. If we
extend this result to the other stars in the sample, the lower αMLT

obtained without including the Sun as a star could be caused by
underestimating Teff relative to the Sun. Alternatively, the αMLT of the
Sun could have been higher than the rest of the sample to compensate
for neglecting additional sources of mixing required to reproduce
the higher precision solar observables. A deeper quantification of
systematic uncertainties is left to future work.

5.3 Comparison with APOKASC results

Before we compare our results to S17, we should highlight some
key differences between our data and methodology. The results
from S17 were determined using a grid-based-modelling technique,
which estimates the likelihood across a dense grid of stellar models.
They used results from several pipelines to estimate the systematic
uncertainties. For the central values of their results, they used the
Bayesian stellar algorithm (BASTA; Silva Aguirre et al. 2015) using
a grid computed with GARSTEC (Weiss & Schlattl 2008). Their
choice of stellar physics was similar to this work, except for two
major differences.

Firstly, the results of S17 were determined using stellar models
calculated without heavy-element diffusion. The inclusion of dif-
fusion when modelling the Sun has been commonplace over the
last few decades, with good agreement between models and helio-
seismic observations (Christensen-Dalsgaard, Proffitt & Thompson
1993; Bahcall, Pinsonneault & Wasserburg 1995). More recent
work explored the diffusion in cluster stars (Korn et al. 2007;
Önehag, Gustafsson & Korn 2014) and another demonstrated the
impact of including diffusion on stellar ages (Dotter et al. 2017).
Our stellar models were computed with heavy-element diffusion.
Recently, work by Nsamba et al. (2018) on a similar sample of stars
showed, on average, models without diffusion compared to those

2αMLT is dimensionless, hence the units of covariance are K.

including diffusion can lead to underestimated radii and masses, and
overestimated ages by 1, 3, and 16 per cent, respectively.

Secondly, our choice of Asplund et al. (2009) solar chemical
mixture differs from the Grevesse & Sauval (1998) mixtures adopted
by S17. The former leads to a solar heavy-element to hydrogen
ratio of (Z/X)� = 0.0181, and the latter, (Z/X)� = 0.0230. Typically,
Grevesse & Sauval (1998) abundances are favoured in asteroseismic
modelling because they are better able to reproduce measurements of
helium in the Sun from helioseismology (Serenelli et al. 2009). An
effect of using the Asplund et al. (2009) abundances is that it favours
lower Zinit for a given [M/H]surf. As a result, models using Grevesse &
Sauval (1998) abundances on average underestimate radii and mass
compared to those without by about 1 and 0.5 per cent, respectively
(Nsamba et al. 2018).

Although updated, much of our observable data is comparable
to that of S17, with the exception of Teff. The preferred results
from S17 were determined using a photometric Teff scale which
we found to be on average ∼170 K greater than our spectroscopic
scale from DR14. In S17, they saw a similar offset between the
DR13 Teff available at the time. They found a median difference in
mass, radius, and age of approximately −6, −2, and +35 per cent,
respectively, with results from the photometric Teff scale subtracted
from the spectroscopic scale.

In Fig. 6, we compare our statistical uncertainties for M, R, and
τ with those for the equivalent stars from S17. We found that
the NP model yielded comparable uncertainties to S17 but note
that these are likely underestimated due the influence of the prior
boundaries for Yinit and αMLT. We expected larger uncertainties
because we included additional free parameters (Yinit and αMLT)
over the work of S17. However, when we treat these parameters
hierarchically, we saw a reduction in uncertainties from all of
the pooled models. This is because our prior assumptions about
the population allows for the sharing of information between
the stars. This uncertainty reduction scales with the number of
stars in our sample, demonstrated by the results for the synthetic
stars in Fig. C1. Thus, hierarchically modelling our population
resulted in improved statistical uncertainties in stellar fundamental
parameters.

In the following subsection, we compare the results between our
PPS model with that of S17 for mass, radius, and age with reference
to Fig. 7. We preferred the PPS model for comparison because it
utilized the high-precision data available for the Sun as a star to help
calibrate the sample, while partially pooling both Yinit and αMLT to
allow for small variations within the population.

5.3.1 Mass, radius, and age

In the left-hand panel of Fig. 7, we compare the masses obtained
by the PPS model with S17 and found a dispersion of around 2 per
cent. Our masses were on average 1 per cent above the results from
S17. Although we might expect the lower Teff scale in this work to
underestimate the mass, we attribute this overall effect to our choice
of stellar model physics. As previously discussed, the use of Asplund
et al. (2009) solar abundances and heavy-element diffusion has the
cumulative effect of overestimating stellar masses compared to the
physics adopted by S17. We also found that the results from all the
pooled models returned similar masses, with or without the Sun.

In the central panel of Fig. 7, we show that our radii are similar
to S17 with a spread of 1 per cent. We also found radii on average 1
per cent greater than the APOKASC results. Similarly to with mass,
this contradicts what would be expected from a lower Teff scale and
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Figure 6. Kernel density estimates (KDEs) of the distribution of statistical uncertainties in the results from each model compared with those of (S17) for the
sample of APOKASC dwarfs and subgiants.

Figure 7. The mean and standard deviation in age, mass, and radius results from the PPS model compared with the results (using the photometric temperature
scale) from S17.

could also be explained by model physics. Our radii also varied little
between models with and without the Sun.

Our ages were also consistent with those from S17. The right-most
panel of Fig. 7 shows the spread in the relative age differences to be
about 18 per cent, slightly underestimated by 4 per cent. We would
expect the lower Teff scale to overestimate the ages as found in S17,
but instead they are comparable. However, as discussed previously,
including diffusion has been shown to reduce age estimates compared
to those without. Since we have included diffusion, this could explain
the similar ages despite the difference in Teff scale.

Including the Sun in our pooled models affected the resulting ages
more than mass and radius. Including the Sun typically overestimated
the ages compared to models without the Sun. This is expected given
the higher αMLT for the models including solar data, because a larger
mixing-length leads to more efficient nuclear burning and more time
spent during the MS phase.

5.4 Systematic uncertainties

We have already accounted for systematics due to the choice of
helium enrichment and mixing-length parameter by marginalizing
over their uncertainties assuming their population distributions.
However, there are other model physics which we have not freely
varied, including diffusion and choice of solar mixture. Although our
method can be adapted to different stellar evolutionary codes and
choice of physics, an in-depth analysis of systematic uncertainties is
left to future work.

In previous work studying stars in the APOKASC sample, several
pipelines used a range of stellar evolutionary codes and model

physics are employed to evaluate systematic uncertainties from the
models (Serenelli et al. 2017; Silva Aguirre et al. 2017). Using a
hierarchical model in this work enabled us to reduce median statistic
uncertainties to 2.5 per cent in mass, 1.2 per cent in radius, and 12 per
cent in age. The systematic uncertainty analysis of S17 found median
systematic uncertainties of 3, 1, and 13 per cent in mass, radius,
and age respectively. Reducing statistical uncertainties highlights
the importance of understanding systematics uncertainties.

Other systematics could arise from observational data. For exam-
ple, we chose the ASPCAP DR14 Teff scale which was systematically
lower than the photometric scale of choice in S17. However, our
method was still able to recover similar masses, radii, and ages.
This could be explained by our choice of stellar model physics, as
discussed previously.

5.5 Outliers

We identified KIC 9025370 as a possible outlier. Consistent across
all our models, its output effective temperature, Teff = 5934 ± 50 K
was about 4σ greater than its observed Teff, and its modelled L
was about 2σ dimmer than its observed luminosity. Only �ν and
[M/H]surf were consistent between modelled and observed values.
The difference was also apparent in our comparison of ages with S17
where we obtained an age of 1.5+0.7

−0.6 Gyr compared to their value of
7.0+2.0

−1.6 Gyr.
KIC 9025370 turned out to be a double-lined spectroscopic binary

(Nissen et al. 2017), discovered after S17 and hence included in the
original sample. The higher observed luminosity from ISOCLASSIFY

and inconsistent spectroscopic Teff compared with our model poste-
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riors were compatible with a spectroscopic binary. We calculated a
photometric Teff using the IRFM method (Casagrande et al. 2010)
with the available 2MASS photometry for the target and obtained
Teff = 5983 ± 120 K, more consistent with our modelled effective
temperature and inconsistent with its spectroscopic Teff. Thus, our
inferred Teff was within the dispersion between different observed
Teff scales. Running the model without KIC 9025370 did not affect
the resulting inferred hyperparameters, demonstrating the robustness
of our model. Therefore, we present KIC 9025370 in our results but
suggest that further investigation should be carried out.

6 C O N C L U S I O N

We have shown that modelling Yinit and αMLT to improve inference
of fundamental parameters can be done through the use of an
HBM, whilst still improving statistical uncertainties. Our results
were in good agreement with S17 with small changes in mass
and radii expected from our choice of model physics and updated
observables. Taking our partially-pooled model including the Sun
(PPS) as our preferred set of results, we obtained median statistical
uncertainties on M, R, and τ of 2.5, 1.2, and 12 per cent, respectively.
Furthermore, we demonstrated that the uncertainties reduced with
increasing sample size in a population of synthetic stars, giving
scope to further improve our inference on larger sample sizes
from TESS.

We found that the gradient, �Y/�Z, of the linear helium en-
richment law ranged from 0.8 to 1.6 depending on the level of
parameter pooling and the inclusion of the Sun in our sample,
with �Y/�Z = 1.1+0.3

−0.3 from our preferred PPS model. Consistent
across our models was the spread in initial helium about the
enrichment law, σY = 0.005+0.004

−0.003. The mean αMLT in the population
was μα = 1.90+0.10

−0.09 for the PPS model, with values from 1.7 to 2.1
depending on the level of pooling and whether or not solar data was
included. We also found the spread in αMLT doubled to σα = 0.13+0.06

−0.05

to account for the addition of the Sun in our sample. We conclude
that there are still discrepancies between the best-fitting αMLT in
our population and that of the Sun which need to be investigated
further. Perhaps, the addition of asteroseismic signatures of helium
abundance (see e.g. Verma et al. 2017) would improve our constraints
on Yinit and thus reduce star-by-star uncertainties in αMLT.

Using HBMs has allowed us to introduce more free parameters
without sacrificing statistical uncertainties. We used an ANN to
approximate stellar models, a method which can be extended to
higher input dimensions with little impact on training and evaluation
time. Our model also scales well with the number of stars, making
use of GPU parallel processing when sampling the posterior.

As shown in tests with synthetic stars (Appendix C) and apparent
in Fig. 6, increasing the number of stars decreases the statistical
uncertainties when parameters are pooled. The theoretical limit to
this improvement is

√
N1/N2 for two populations of size N1 and

N2. For example, if we increase our sample to 300 stars, we would
expect the uncertainties to reduce by up to a factor of 2. Naturally,
the uncertainty is still limited by observational precision. However,
hierarchical modelling as demonstrated in this work, allows us to get
the most out of our data and paves the way for a data-driven analysis
of model systematics.

Including all-sky data from TESS and in anticipation of PLATO
(Rauer et al. 2014) we can expect our sample size of asteroseismic
dwarfs and subgiants only to increase. There is also scope to extend
our grid of models to include red giants, for which there are vast cata-
logues of stars already studied with Kepler (Pinsonneault et al. 2018).
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Table 1. The observables and their respective uncertainties for 10
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parameter output by the NP model, with their respective upper and
lower 68 per cent credible intervals.
Table 5. The same as Table 4, but for the PP model.
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Table 8. The same as Table 4, but for the MPS model.

Please note: Oxford University Press is not responsible for the content
or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.

APPE N D IX A : A RTIFICIAL N EURAL
N E T WO R K

Once we constructed our grid of models, we needed a way in which
we could continuously sample the grid for use in our statistical
model. We opted to train an ANN. The ANN is advantageous over
interpolation because it scales well with dimensionality, training
and evaluation is fast, and gradient evaluation is easy due to its
roots in linear algebra (Haykin 2007). We trained an ANN on the
data generated by the grid of stellar models to map fundamentals to
observables. First, we split the grid into a train and validation data set
for tuning the ANN, as described in Appendix A1. We then tested a
multitude of ANN configurations and training data inputs, repeatedly
evaluating them with the validation data set in Appendix A2. In
Appendix A3, we reserved a set of randomly generated, off-grid
stellar models as our final test data set to evaluate the approximation
ability of the best-performing ANN independently from our train and
validation data. Here, we briefly describe the theory and motivation
behind the ANN.

An ANN is a network of artificial neurons which each transform
some input vector, x based on trainable weights, w and a bias, b. The
weights are represented by the connections between neurons and the
bias is a unique scalar associated with each neuron. A multi-layered
ANN is where neurons are arranged into a series of layers such that
any neuron in layer j − 1 is connected to at least one of the neurons
in layer j.

In this work, we considered a fully connected ANN, where each
neuron in layer j − 1 is connected to every neuron in layer j. The
output of the k-th neuron in layer j is,

xj,k = fj (wj,k · xj−1 + bj,k), (A1)

where fj is the activation function for the j-th layer, wj,k , are the
weights connecting all the neurons in layer j − 1 to the current
neuron, and bj, k is the bias. This generalizes such that the output of
the jth layer is

xj = fj (W j · xj−1 + bj ), (A2)

where W j is the matrix of weights leading to all neurons in the jth
layer. For a regression ANN, we typically have a linear activation
function applied to the final output layer. Layers of neurons between
the input and output layers are called hidden layers. Therefore, the
output of a network of H hidden layers with initial input X is

Ỹ = WH · fH−1(. . . f1(W 1 · f0(W 0 · X + b0) + b1)) + bH . (A3)

We also restricted our configuration to an ANN with the same number
of neurons, N in each hidden layer. Hereafter, we refer to our choice
of neurons per layer, N, and hidden layers, H, as the architecture (see
Fig. A1).

To fit the ANN, we used a set of training data, Dtrain = {Xi , Yi}Ntrain
i=1 ,

comprising Ntrain input–output pairs. We split the training data
into pseudo-random batches, Dbatch, because this has been shown
to improve ANN stability and computational efficiency (Masters
& Luschi 2018). The set of predictions made for each batch is
evaluated using a loss function which primarily comprises an error
function, E(Dbatch), to quantify the difference between the training

Figure A1. An artificial neural network comprising H hidden layers with N
neurons per layer. Arrows connecting the nodes represent tunable weights.

data outputs (Y) and predictions (Ỹ). We also considered an additional
term to the loss called regularization which helps reduce over-fitting
(Goodfellow, Bengio & Courville 2016). During fitting, the weights
are updated after each batch using an algorithm called the optimizer,
back-propagating the error with the goal of minimizing the loss such
that Ỹ ≈ Y (see e.g. Rumelhart, Hinton & Williams 1986).

We trained the ANN using TENSORFLOW (Abadi et al. 2016). We
varied the architecture, number of batches, choice of loss function,
optimizer, and regularization during the optimization phase. For each
set of ANN parameters, we initialized the ANN with a random set
of weights and biases and minimized the loss over a given number
of epochs. An epoch is defined as one iteration through the entire
training data set, Dtrain. We tracked the loss for each ANN, using
an independent validation data set to determine the most effective
choice of ANN parameters (see Appendix A2).

A1 Train, validation, and test data

We built the train and validation data sets from the outputs of the grid
of stellar models in Section 3.1. This included the input parameters:
M, αMLT, Yinit, and the initial heavy-elements fraction, Zinit. We
also included the Teff, log g, �ν, stellar age (τ ), radius (R), surface
metallicity ([M/H]surf), and other chemical composition information
generated by the models. We determined the fractional MS lifetime,
fMS = τ /τMS, of each evolutionary track by taking τMS as the age
when the central hydrogen fraction, Xc < 0.01. We then cut data
where fMS < 0.01 to remove points on the grid prior to the MS.
Once we had refined the data from the grid of models, we randomly
sampled 7.736 × 106 points to use as the training data set, with
the remaining ∼2 × 106 points given to the validation data set. We
varied our choice of ANN input and output parameters among those
available in the data set during tuning (see Appendix A2).

Additionally, we produced a test data set of ∼2 × 106 stellar
models evolved using MESA. Values for the initial M, [M/H], Y, and
αMLT were chosen randomly within the range of grid parameters
described in Table 2 such that they spanned the breadth of the grid
in an unbiased manner. We prepared this data set in the same way
as the training set, but also constrained it to τ < 15 Gyr because we
consider ages above ∼15 Gyr unphysical and such points are sparse
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Table A1. The median, μ1/2 and standard deviation, σ for each parameter in the training data, used to standardize the data set.

Input Output
fevol M (M�) αMLT Yinit Zinit log (τ /Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

μ1/2 0.865 1.000 1.900 0.280 0.017 0.790 5566.772 1.224 100.720 0.081
σ 0.651 0.118 0.338 0.028 0.011 0.467 601.172 0.503 42.582 0.361

Figure A2. The MAE as a function of epochs for the train and validation
data sets.

in the training data. The test dataset was set aside and evaluated on
the final ANN.

A2 Tuning

We trained an ANN to reproduce stellar observables according to our
choice of physics with greater accuracy than typical observational
precisions. We experimented with a variety of ANN parameter
choices, such as the architecture, activation function, optimization
algorithm, and loss function. We tuned the ANN parameters by
varying them in both a grid-based and heuristic approach, each time
evaluating the accuracy using the validation data set.

During initial tuning, we found that having stellar age as an
input was unstable, because it varied heavily with the other input
parameters. We mitigated this by introducing an input to describe the
fraction of time a star had spent in a given evolutionary phase, fevol,

fevol =
{

fMS, fMS ≤ 1
1 + τ − τMS

τend − τMS
, fMS > 1, (A4)

where τ end is the age of the star at the end of the track,

fMS = τ

τMS
, (A5)

and τMS is the MS lifetime. A star with 0.01 < fevol ≤ 1.0 is in its MS
phase, burning hydrogen in its core, and 1.0 < fevol ≤ 2.0 has left the
MS. Consequently, fevol gives the ANN information about the internal
state of the star which affects the output observables. Otherwise, fevol

has little physical meaning, although it could be interpreted as a
measure of the evolutionary phase of the star.

We also observed that the ANN trained poorly in areas with a high
rate of change in observables, likely because of poor grid coverage in
those areas. To bias training to such areas, we calculated the gradient
in Teff and log g between each point for each stellar evolutionary track
and used them as optional weights to the loss during tuning. These
weights multiplied the difference between the ANN prediction and
the training data in our chosen loss function.

After preliminary tuning, we chose the ANN input and out-
put parameters to be X = {fevol,M, αMLT, Yinit, Zinit} and Y =
{log(τ ), Teff, R,�ν, [M/H]surf} respectively. A generalized form of
our neural network is depicted in Fig. A1. The inputs corresponded
to initial conditions in the stellar modelling code and the outputs
corresponded to surface conditions throughout the lifetime of the
star, with the exception of age which is mapped from fevol.

We standardized the training data set by subtracting the median,
μ1/2 and dividing by the standard deviation, σ for each input and
output parameter. We found that the ANN performed better when the
training data was scaled in this way as opposed to no scaling at all.
We present the parameters used to standardize the training data set
in Table A1.

We found that the optimal choice of architecture (N and H) varied
depending on our choice of other ANN parameters. Therefore, each
time we explored a new parameter, we trained an ANN with a grid
of (N, H) ranging from (32, 2) to (512, 10).

We evaluated the performance of three activation functions: the
hyperbolic-tangent, the rectified linear unit (ReLU; Hahnloser et al.
2000; Glorot, Bordes & Bengio 2011) and the exponential linear unit
(ELU; Clevert, Unterthiner & Hochreiter 2015). Although the ReLU
activation function out-performed the other two in speed and accu-
racy, the resulting ANN output was not smooth. The discontinuity
in the ReLU function, f(x) = max (0, x) in turn caused the output
to be discontinuous. This made the ANN difficult to sample for our
choice of statistical model (see Section 3.2). Out of the remaining
activation functions, ELU performed the best, providing a smooth
output which was well suited to our probabilistic sampling methods.

We compared the performance of two optimizers: Adam (Kingma
& Ba 2014) and stochastic gradient descent (SGD; see e.g. Ruder
2016) with and without momentum (Qian 1999). Both optimizers
required a choice of learning rate which determined the rate at which
the weights were adjusted during training. We found that Adam
performed well but the validation loss was noisy as a function of
epochs as it struggled to converge. The SGD optimizer was less noisy
than Adam, but it was difficult to tune the learning rate. However,
SGD with momentum allowed for more adaptive weight updates and
out-performed the other configurations.

There are several ways to reduce overfitting, from minimizing the
complexity of the architecture, to increasing the size and coverage
of the training data setz. One alternative is to introduce weight
regularization. So-called L2 regularization adds a term, ∼λk

∑
i w2

i,k

to the loss function for a given hidden layer, k which acts to keep
the weights small. We varied the magnitude of λk and found that if
it was too large it would dominate the loss function, but if it was too
small then performance on the validation data set was poorer.

We compared the choice of two error functions: mean-squared
error (MSE) and mean absolute error (MAE). The former is widely
used among ANNs because it is more sensitive to large errors.
However, we tracked both metrics regardless of which was added
to the loss function and found that MAE converged faster. Although
MAE is less effective at large errors, we found that these were
typically at the edges of the grid and the accuracy was good enough
everywhere else.
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Figure A3. Left: The rolling error between a given parameter in the test data set (Y) and the ANN prediction for that parameter (˜Y) where δY = ˜Y − Y. Right:
A kernel density estimate (KDE) of the error and a normal distribution centred on the median, μ1/2 with an estimator for the standard deviation from the median
absolute deviation, σMAD.

Table A2. The median error, μ1/2, and median absolute deviation of the error, σMAD = 1.4826 · median(|E(Y) − μ1/2|),
for a given ANN output parameter, Y from the test data set. The error, E(Y), is given in the table header, where δY = ˜Y − Y.

Error δτ/τ (%) δTeff (K) δR/R (%) δL/L (%) δ�ν (μHz) δ[M/H]surf (dex)

μ1/2 − 0.012 0.070 − 0.011 0.053 0.00022 0.00010
σMAD 0.123 0.941 0.045 0.099 0.06341 0.00035

After extensive tuning, we opted for an ANN with N = 128 neurons
in each of H = 6 hidden layers. Each of the hidden layers used an ELU
activation function and L2 weight regularization with λ = 1 × 10−6.
We trained the ANN for 50 000 epochs with a 500 training data
batches each containing 15 472 input–output pairs. To fit the ANN,
we used an SGD optimizer with an initial learning rate of 1 × 10−4

and momentum of 0.999 with an MAE loss function. Training took
∼48 h on an NVidia Tesla V100 graphics processing unit (GPU). In
Fig. A2, we show the training and validation MAE as a function of
epochs for the final ANN configuration. The training and validation
loss were comparable throughout training.

A3 Testing

The test data set contained ∼2 × 106 stellar models evolved in the
same way as the training data set, but with initial conditions chosen
randomly across the range of the grid. We made predictions for
the test data set, deriving luminosity from the output radius and
effective temperature, using the final trained ANN as described
in Appendix A2. We then evaluated the accuracy of the ANN by
taking the difference between the test truth and ANN prediction,
xtrue − xpred.

We found good agreement between the test data set and ANN
predictions, within typical observational uncertainties. We noted that
the largest errors lay at the boundaries of the training data and in
areas sparsely populated by the grid. This is apparent in Fig. A3
where we plot the test error against each parameter. For example, the
spread in error increases for [M/H]surf < −0.5 where training data is
sparse at the edge of the grid. However, the accuracy is very good
within the observed range covered by our sample of 81 dwarfs and
subgiants. Hence, we chose the median absolute deviation (MAD)
as an estimator of the spread in error because it is less sensitive to
large errors at the grid boundary than the standard deviation.

To represent the accuracy of the ANN, we present the median,
μ1/2 and MAD estimator, σ MAD = 1.4826 · median(|E(x) − μ1/2|)
of the error (E(x)) in Table A2. The median is close to zero for all
parameters, showing little systematic bias in the ANN. The MAD
is also lower than observational uncertainties quoted in Section 2.
The spread in error for �ν of 0.06μHz is comparable to a small
number of observations with the best signal-to-noise ratio. However,
the error in �ν predictions is also comparable to other systematic
uncertainties in �ν discussed in Section 3.1.2. Therefore, a robust
model which takes account of systematic uncertainties pertaining to
�ν, including those from the ANN, will be explored in future work
(Carboneau et al. in preparation).
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APPEN D IX B: PRIOR DISTRIBU TIONS

We chose a transformed beta distribution (see equation 4) as the prior
for the non-pooled stellar parameters as an alternative to a uniform
distribution. Fig. B1 shows the beta distribution compared with a
uniform distribution for some parameter x from 0 to 1. We found that
the continuously differentiable nature of the beta distribution was
preferred by the NUTS over the uniform distribution.

Figure B1. A beta distribution (B) with α = β = 1.2 for some parameter x
and a uniform distribution (U) from 0 to 1.

APPENDI X C : THE SYNTHETI C POPULATIO N

In this section, we present the results for the NP, PP, and MP models
run on a synthetic sample of 100 stars with the following initial
conditions. We randomly generated initial M and [M/H]init uniformly.
We drew initial values for Yinit from a normal distribution centred on
the helium-enrichment law from equation (10) with �Y/�Z = 1.8
and YP = 0.247, and scaled by σ Y = 0.008. We also generated initial
values for αMLT from a normal distribution centred on μα = 2.0 and
scaled by σα = 0.08.

We evolved the synthetic stars to randomly chosen ages using
MESA. We then took the output τ , Teff, L, �ν, and [M/H]surf from the
models and used these as true values for each of the stars. We added
random noise to the observed quantities centred on the true values
with a standard deviation of 2.2 per cent in Teff, 3.5 per cent in L,
0.9μHz in �ν, and 0.07 dex in [M/H]surf chosen to be representative
of the APOKASC sample.

C1 Stellar parameters

We found that the NP model recovered the true values for the
individual stellar parameters, but the uncertainties were unreliable.
The observational quantities alone were not good enough to constrain
Yinit and αMLT. As a result, their distributions were truncated at
the bounds of their priors. These boundary effects skewed the
marginalized posterior means for Yinit and αMLT towards the centre
of the prior (0.28 and 2.0, respectively).

The PP model recovered true values for the synthetic stars with
more reliable uncertainty than the NP model. The addition of pooling
Yinit and αMLT between the stars improved their uncertainty that
reduced the effects of the prior as seen in the NP model. We found
little difference between the results of the PP and MP models.

We reran the PP model with 10 and 50 stars chosen randomly from
the sample of synthetic stars. In Fig. C1, we show the uncertainties in
the several parameters from the results of each of the models. For the
two pooled parameters, Yinit and αMLT, the uncertainty reduction due
to pooling is most obvious. We see the PP model repeatedly improves
on the uncertainties from the NP model when Nstars is increased.

In Fig. C1, we also see a similar reduction in uncertainty for τ , M,
and R, with all models improve upon the NP model. However, we
do not see the same effect in Zinit for which the uncertainty appears
dominated by observations of [M/H]surf .

C2 Population parameters

In Fig. C2, we see that the PP model also recovers the hyperparameter
truths well, with some noise due to random realization error. Fitting
the model this way has the added benefit over the NP model of
improving the inference of the individual stellar parameters, as shown
in the previous two sections. We also found that when we ran the PP
model with 10 and 50 stars, the uncertainties on the hyperparameters
also shrank with increasing Nstars.

Fig. C3 shows the hyperparameter results for the MP model. Here,
αMLT was assumed to be the same for all stars. This model also
recovers the true hyperparameters for helium well, and the assumed
value for αMLT is within uncertainty of the true μα .
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Figure C1. Kernel density estimates (KDEs) of the distributions of statistical uncertainties from each model for the sample of synthetic stars. The PP model
was run with 10, 50, and 100 stars and is denoted PP10, PP50, and PP100, respectively. The NP and MP models were both run with the full set of 100 stars.

Figure C2. Corner plot showing the marginalized and joint posterior
distributions between the PP model hyperparameters for 100 synthetic stars.
The true values are shown by the blue lines. Figure C3. The same as Fig. C2 but for the MP model.

MNRAS 505, 2427–2446 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2427/6275720 by guest on 09 April 2024



Hierarchically modelling many stars 2445

APPEN D IX D : THE SUN A S A STAR

Our model consistently recovers the Sun when modelled in each of
the NP, PP, and MP models. In Table D1, we present the results for
the Sun as a star from the NP model to show what we obtain without
the influence of any other stars in the sample. We show the marginal
and joint posterior distributions for the solar parameters from the NP
model in the corner plot in Fig. D1.

We found some differences between αMLT from our solar model
and solar calibrations in the literature produced using MESA with
similar input physics. For example, the solar calibration in Stan-
cliffe et al. (2016) using Asplund et al. (2009) abundances yields

compatible initial abundances, Zinit = 0.0149 and Yinit = 0.266 but
αMLT = 1.783 which differs from our results by about 10-σ . This is
likely because of a few differences in observed values used for the
calibration. Stancliffe et al. (2016) used observed helium abundance
and convection zone depth measurements from helioseismology.
Furthermore, solar calibrations typically include convective envelope
overshooting. Presuming overshooting increases mixing in the star,
we might expect a lower αMLT to compensate this. Therefore, we
stress that the addition of the Sun as a star in our model is with the
assumption of our choice of input physics.
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Table D1. Solar results from the NP model. The second column shows the median marginalized posterior samples for each parameter with their respective
upper and lower 68 per cent credible intervals.

fevol M (M�) αMLT Yinit Zinit τ (Gyr) Teff (K) R (R�) �ν (μHz) [M/H]surf (dex)

0.517+0.009
−0.008 1.000+0.001

−0.001 2.12+0.03
−0.03 0.262+0.002

−0.002 0.0150+0.0003
−0.0003 4.6+0.1

−0.1 5777+12
−12 1.001+0.001

−0.001 135.37+0.14
−0.14 0.00+0.01

−0.01

Figure D1. A corner plot showing the sampled marginal and joint posterior distributions for the Sun as a part of the NP model.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 505, 2427–2446 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2427/6275720 by guest on 09 April 2024


