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ABSTRACT

Bayesian model comparison frameworks can be used when fitting models to data in order to infer the appropriate model
complexity in a data-driven manner. We aim to use them to detect the correct number of major episodes of star formation from
the analysis of the spectral energy distributions (SEDs) of galaxies, modelled after 3D-HST galaxies at z ~ 1. Starting from the
published stellar population properties of these galaxies, we use kernel density estimates to build multivariate input parameter
distributions to obtain realistic simulations. We create simulated sets of spectra of varying degrees of complexity (identified
by the number of parameters), and derive SED fitting results and pieces of evidence for pairs of nested models, including the
correct model as well as more simplistic ones, using the BAGPIPES codebase with nested sampling algorithm MULTINEST. We
then ask the question: is it true — as expected in Bayesian model comparison frameworks — that the correct model has larger
evidence? Our results indicate that the ratio of pieces of evidence (the Bayes factor) is able to identify the correct underlying
model in the vast majority of cases. The quality of the results improves primarily as a function of the total S/N in the SED. We
also compare the Bayes factors obtained using the evidence to those obtained via the Savage—Dickey density ratio (SDDR), an
analytic approximation that can be calculated using samples from regular Markov Chain Monte Carlo methods. We show that

the SDDR ratio can satisfactorily replace a full evidence calculation provided that the sampling density is sufficient.
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1 INTRODUCTION

The spectral energy distribution (SED) of a galaxy encodes a
vast amount of information about the galaxy’s physical properties.
Complex processes such as the formation and the evolution of stars
and the chemical composition of the interstellar medium between the
stars dominate the emission from different parts of the electromag-
netic spectrum. These processes are often highly interdependent,
making it difficult to isolate the contribution of each component
separately (e.g. McKee & Ostriker 2007; Walcher et al. 2011; Conroy
2013).

Past and ongoing photometric and spectroscopic surveys, such as
SDSS (York et al. 2000), COSMOS (Scoville et al. 2007), 2MASS
(Skrutskie et al. 2006), UltraVISTA (McCracken et al. 2012),
CANDELS (Grogin et al. 2011), and 3D-HST (Skelton et al. 2014)
provide measurements from the ultraviolet to infrared wavelengths
in a range of redshifts for millions of galaxies. To interpret these
data, a variety of models to describe these physical processes and
their interplay have been developed in the past two decades. With
the improvement in data quality and volume, models have grown
increasingly sophisticated.

Among the many components of these models there are, for
example, the initial stellar mass function (IMF), the star formation
history (SFH), the dust attenuation law, the chemical enrichment
history, and assumptions about the underlying stellar population
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models. In particular, the SFH of a galaxy has received a great
deal of attention because it provides important insights on which
mechanisms dominate galaxy formation and evolution.

The method of SED fitting compares libraries of models to
spectro-photometric data to derive physical properties of interest.
Techniques such as x? fitting have historically been used to iden-
tify a best-fitting model and estimate parameters (Arnouts et al.
1999; Bolzonella, Miralles & Pell6 2000). More recently, Bayesian
methods employing Markov chain Monte Carlo (MCMC) sampling
algorithms have been employed to better constrain the correlated
parameter spaces of galaxy models and analyse posterior probability
distributions for parameter inference (e.g. Acquaviva, Gawiser &
Guaita 2011).

Bayesian model comparison is a statistical technique aimed at
determining the optimal model complexity that is warranted by the
data. Despite being used widely in other fields of astronomy, for
example, in the context of cosmological model selection (Mukherjee,
Parkinson & Liddle 2006; Shaw, Bridges & Hobson 2007; Trotta
2007, 2008), it has seldom been applied to SED fitting thus far.
Han & Han (2012) used MULTINEST to calculate and compare the
Bayesian evidence from the SED models for hyperluminous infrared
galaxies; the same authors used the evidence to compare two popular
stellar population synthesis models in Han & Han (2014, 2018).
Dries, Trager & Koopmans (2016) and Dries et al. (2018) used
Bayesian evidence in a hierarchical setting to compare the prior
spaces for several choices of IMFs. Salmon et al. (2016) used
Bayesian evidence to test dust laws on a sample of galaxies in
CANDELS.
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One of the crucial issues in SED fitting is that galaxies are
extremely complicated objects, and modelling them with a few
parameters is a necessary but a very crude simplification. Until
recently, galaxies have typically been described as combinations
of simple stellar population models of fixed metallicity and stellar
ages. The process of stellar assembly was often described using
the exponentially declining (7) model, which assumes that galaxies
form stars at a declining rate, parametrized by the half-time 7, and
the attenuation due to dust was often described by a one parameter
‘screen’ model (e.g. Calzetti et al. 2000). However, more recently, it
has been become clear that these extremely simplified assumptions
are unable to capture the complexity of galaxies’ behaviors, and
also cause biases in the determination of the physical properties of
galaxies. In particular, it has been shown that wrongly reconstructed
SFHs introduce noticeable biases in many parameters that are usually
estimated through SED fitting, such as stellar masses, stellar age
indicators, dust content, and redshift (e.g. Mobasher et al. 2015;
Pacifici et al. 2015; Iyer & Gawiser 2017; Leja et al. 2017). In
Acquaviva, Raichoor & Gawiser (2015), we evaluated the impact
of different sources of non-algorithmic systematics on the recovered
SED fitting parameters and concluded that a wrong SFH is the most
harmful. Similarly, Iyer & Gawiser (2017) and Carnall et al. (2018)
found that fitting the SFH using single stellar populations and simple
functional forms (e.g. exponentially declining or constant models)
leads to abias of up to 70 per centin the recovered physical properties
of the galaxies.

Progress in the modelling of stellar populations has been more
promising, with several groups developing sophisticated algorithms
used to generate and fit simulated spectra in the ultraviolet-through-
infrared range with increased flexibility (da Cunha, Charlot & Elbaz
2008; Conroy, Gunn & White 2009; Chevallard & Charlot 2016;
Leja et al. 2017; Carnall et al. 2018; Iyer et al. 2019). This means
that we are now technically able to explore much larger parameter
spaces, but are subject to the curse of dimensionality: the process
of SED fitting might take a much longer time, which does not suit
large upcoming surveys, and/or the data might not be high enough
quality to resolve the many degeneracies inherent to models with a
large number of parameters.

For these reasons, in this paper we set out to determine whether
Bayesian model selection can be used to infer from the data what is
the true model complexity. Because the choice of SFH is crucial to
this issue, our first exploratory question is as follows: are we able
to successfully detect the correct number of major episodes of star
formation, which is an index of model complexity, by comparing
the evidence values of the different models? We will use simulated
spectro-photometric data to answer this question under different
assumptions, and then validate the method.

While in principle the Bayesian model comparison method is ap-
plicable to models that can occupy different prior spaces, in practice
the relevant calculations depend on both the volume occupied by
the likelihood and the volume occupied by priors. As a result, it is
difficult to disentangle the contribution of the data and the priors
to the model comparison. For this reason, we use nested models:
a hierarchical setting where we compare a more complicated N +
k parameter model to a simpler N parameter model. Comparison
between these two models is achieved by the use of the Bayes factor,
which is simply the ratio of the Bayesian pieces of evidence for
each respective model. The mechanics of the Bayes factor can be
interpreted as the factor by which the model space shrinks when
the data arrive and will only favour a model with more parameters
when the data warrant the additional complexity (e.g. MacKay
2003).
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This paper is organized as follows. In Section 2, we describe the
data, inferred parameters, and noise profile used to construct our
mock data. This includes a novel use of kernel density estimation
to derive realistic multivariate distributions for the parameter space,
as well as the error structure. We then review the SED fitting code
BAGPIPES, which is used to generate a realistic galaxy catalogue
and to fit the models. We make a number of assumptions about the
SFH, IMF, and dust law used for the galaxy population and define
the prior space used. In Section 3, we review Bayesian inference
methods and summarize MULTINEST, the sampling algorithm used
for both parameter estimation and evidence calculation. In Section 4,
we define the SDDR ratio, discuss its expected range of applicability,
and compare the two approaches used to calculate the Bayes factor.
In Section 5, we describe the simulated scenarios that we explore,
which includes analysing combinations of various design points to
assess the effectiveness of the Bayes factor as a model comparison
tool, and discuss our results. Our conclusions are summarized in
Section 7.

2 DATA

We apply our methodology to simulated galaxies modelled after
those in the CANDELS GOODS-South field from v4.1 of the 3D-
HST catalogue; this ensures that we employ realistic distributions
for input parameters and observational errors. The main catalogue
consists of ultraviolet to mid-infrared wavelength measurements of
50507 galaxies, and it includes fitted stellar population parameters
obtained through FAST (Kriek et al. 2009).
We select objects according to the following criteria:

(i) Objects with the use_phot flag set to 1. This is defined as an
object not classified as a star or close to a bright star, is well exposed
on the F125W and F160W bands, has an S/N > 3 in F160W, and has
both a reasonable photometric redshift fit and a reasonable stellar
population fit according to the EAZY/FAST codes.

(ii) Objects with the z_peak flag between 0.9 and 1.1, which is
defined as the peak of the photometric redshift distribution according
to the EAZY code.

The above criteria results in a reference catalogue of 4567 galaxies;
we use a total of 23 bands for each galaxy. The parameter values
for this sample estimated by FAST and reported by the 3D-HST
collaboration are used as the basis for the kernel density estimation
of the input parameter space. We also use kernel density estimation
methods for creation of the mock catalogue error structure, as
described in Section 2.1 below.

2.1 Kernel density estimation

In order to generate a realistic parameter space for SED fitting, we
choose to leverage kernel density estimates (KDEs) of the fitted
stellar population parameters from FAST, which include stellar mass,
stellar age, dust extinction, photometric redshift, and the time-scale
of star formation (7), as the FAST code assumes an exponentially
declining model. Since these parameters were fitted on a grid of
possible values, there are gaps in the fits that limit the precision of the
estimated values. However, our multivariate KDE approach allows
us to build a realistic population of parameter values on a continuum
while correctly capturing the correlations among the parameters.
KDE is a non-parametric data smoothing technique that uses a
bandwidth parameter to approximate the probability distribution
function of a data sample. We use the k-nearest neighbour (kNN)
density estimator in scikit -learn (Pedregosaetal. 2011), where
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Figure 1. The distributions of the FAST parameter values from 4567 galaxies
in the GOODS-S field of the 3D-HST catalogue are represented by the blue
histograms. The marginalized KDE of each parameter distribution from the
multivariate KDE are represented by the orange lines. A bandwidth of 0.0861
is used for the multivariate KDE therefore the marginalized KDEs also have
a bandwidth of 0.0861. Note that both the histograms and the marginalized
KDEs are normalized.

for a given point x, the multivariate kNN density estimator estimates
the density by (Tran, Wehrens & Buydens 2006)

A 1 " x—X,-
fkm<x)=m21<( I ) )

i=1

where Vi(x) = cdr,‘! (x) is the volume of the d-dimensional sphere,
rkd (x) is the Euclidean distance from x to the kth nearest neighbour
(in other words, the radius of the sphere), and ¢, is the constant
factor applied (i.e. c; =2,¢0 =7, ¢3 = 47”, etc.). Also, K(-) is a
multivariate kernel, and H is a vector of bandwidths 4, which are
all equal in this case. The generalized Euclidean distance metric is

given by

»
Z(Xik =X 2
k=1

We use a multivariate standard normal kernel, given by

YSXN\ o um (_ (= X)) (x — X,-))
K <7H ) = (2m) exp 20 . 3)

This kernel is chosen as it has the desirable properties of being
symmetric and unimodal. Several of the parameter distributions
reported by FAST are also approximately lognormal, making this
kernel suitable for density estimation.

The bandwidth plays a crucial role in determining the bias—
variance relationship of the resulting distribution. A larger bandwidth
results in a smoother distribution with less variance and more bias,
whereas a smaller bandwidth results in a less smooth distribution with
more variance and less bias. The bandwidth parameter is chosen using
a grid-based search with five-fold cross-validation. Outliers above the
99.5 percentile in the right tail of each FAST parameter distribution
are removed so as not to overestimate the tails of the KDEs. The
total log-likelihood of the data in each test set is calculated for each
bandwidth, and the bandwidth is chosen according to the largest mean
log-likelihood. Marginalized distributions for each parameter in the
multivariate KDE are shown in Fig. 1. The agreement between the
histograms of estimated parameters and the probability distributions
derived from the KDE is very good; furthermore, this method
preserves all the correlations between different parameters, ensuring
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Figure 2. A selection of the distributions of the observational errors from
4567 galaxies in the GOODS-S field of the 3D-HST catalogue are represented
by the blue histograms. The marginal KDE of each distribution from the
multivariate KDE are represented by the orange lines. Each KDE has a
bandwidth chosen by five-fold cross-validation.

that the input parameter space of our simulated galaxies is fully
realistic.

Similarly, we create KDEs of the distributions of observational
errors. However, these are not treated in a multivariate way since
errors are assumed to be independent across observations. As with
the multivariate parameter KDE, values above the 99.5 percentile are
removed before each error KDE is constructed. These are shown in
Fig. 2.

2.2 Generating mock data

Armed with our realistic multivariate distribution of galaxy prop-
erties, we are now ready to generate our mock catalogues. We use
version 0.7.9 of BAGPIPES (Carnall et al. 2018), a modern SED fitting
code that we chose for its sophistication in modelling galaxies and
its ability to infer parameters using nested sampling, which will be
crucial for the evidence calculations in model comparison.

In recent years more complex parametric models, such as the
delayed exponentially declining tau model with additional stochastic
bursts of star formation, have emerged as a more realistic alternative
to the exponentially declining tau model (see e.g. Leja et al. 2019
and references therein).

For our main mode of star formation, we use the delayed exponen-
tially declining tau model, defined as (Gavazzi et al. 2002; Behroozi,
Conroy & Wechsler 2010; Lee et al. 2010)

SFRyctayed (7, f0, T) 0 (£ — fg) ™ 7, )

where 7 is the age of the universe at observation, 7 is the time of the
onset of star formation, and t is the width of the SFH.

Random samples from the multivariate KDE based on the FAST pa-
rameter distributions (described in Section 2.1) are used as parameter
inputs for a delayed tau model.

When present, a second stellar population (burst) is modelled
as a simple delta function in time, with parameters burst age and
mass formed in the burst. In this case, we uniformly sample a burst
mass of 10-90 percent of the total mass (effectively splitting the
randomly drawn stellar mass sample from the multivariate KDE into
two components), and we uniformly sample the random burst age
between 0.05 and 0.90 Gyr.

We assume a Calzetti (Calzetti et al. 2000) dust law, parametrized
by the attenuation in the V'band (A, ), with an additional multiplicative

MNRAS 502, 3993-4008 (2021)
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Table 1. BAGPIPES parameter inputs used to generate mock data catalogue.
Parameters denoted by ‘KDE’ are drawn from a multivariate input distribution
obtained by using kernel density estimation. For stellar mass, ‘KDEsxrandom’
indicates that the total mass is obtained through the KDE method, and the
mass of the secondary population is obtained as a uniform random number
in the (0.1, 0.9) interval.

BAGPIPES parameter Value Range

Global components

redshift KDE 0.9-1.1

t_-bc 0.01

Dust components

law Calzetti

Ay KDE 0-3.0

n 2.0

Nebular components

logU -3.0

SFH components

log1o(massgelayed r) KDEsrandom 6.5-12.5 M/Mg
log1o(masspyrst) KDEs*random 6.5-12.5 M/Mg
Metallicity 0.02

logio(agedelayed r) KDE 7.7-9.7 Gyr
Agepurst Random 0.10-0.90 Gyr
logo(7) KDE 7.0-10.0 Gyr

factor n for stars in birth clouds of age < 0.01 Gyr. We set the
ionization parameter log;o U for the nebular component to —3.0, and
we assume a Kroupa & Boily (2002) IME.

A summary of all the BAGPIPES parameter inputs is provided in
Table 1.

2.3 Mock data versus 3D-HST data

‘We next compare the distribution of observational fluxes in several
bands generated from BAGPIPES using an exponentially declining (7)
SFH model with input parameters log;o(mass), age, t, A,, and z
sampled from the multivariate KDE in Section 2.1 with that of the
observational flux values in several bands of the 3D-HST catalogue
from redshift range 0.9 < z < 1.1. The r SFH model in BAGPIPES
was chosen because it was also the model used to fit the observations
by FAST, and since the multivariate KDE of the parameter space
was based on these FAST values, comparison of these distributions
acts as an important validation step. The flux values in the 3D-HST
catalogue are scaled to an AB magnitude zero-point of 25.0, so a
scaling factor of 100#44 = 0.3631 was employed before comparing it
to the BAGPIPES generated flux values, which are in microjanskys
(1Jy). Fig. 3 shows that the BAGPIPES forward model is able to
generate generally realistic 3D-HST observational flux values at the
population level. Table 2 provides summary statistics on the flux
distribution in each band; some differences can be attributed to the
different IMF used by the two approaches (Kroupa and Chabrier,
respectively).

3 BAYESIAN PARAMETER ESTIMATION AND
MODEL EVIDENCE CALCULATION

3.1 Bayesian inference

The goal of our analysis, which is carried out within the realm of
Bayesian statistics, is to find the right balance between keeping the
model simple and providing a good fit to the data, a concept often
known as Occam’s razor. Quantitatively, this translates into applying
the model comparison formalism. The evidence (the denominator

MNRAS 502, 3993-4008 (2021)

in Bayes theorem, sometimes also called marginal likelihood) is
sensitive to not only the complexity of the parameter and prior space,
but also the quality of the fit. Therefore, it can be used as a model
comparison tool: models that have larger evidence are preferable, not
because they necessarily fit the data better, but because they strike
the right balance between complexity and accuracy.

The hypothesis we test in the paper is whether the evidence (or
more accurately, the ratio of the evidence of two models, called the
Bayes factor) can be successfully used to ‘recognize’, in a purely
data-driven manner, the correct model. To this end, we generate
simulated data for a five-parameter or six-parameter model (the
‘correct model” in the remainder of the paper), and then we ask: if
we were to fit the data with the correct model (five or six parameters,
respectively) or a more simplistic model (four or five parameters),
would the Bayes factor favour the more complex model? Would we be
able to recognize the ‘true’ complexity using the Bayes factor? If our
tests are successful, this indicates a possible path to derive the ‘true’
model complexity from the data, giving us a way to discriminate
between useful, meaningful parameters, and ‘noisy’ ones that add
complexity without sufficiently improving the quality of the fit.

We start with estimation of the posterior distribution given a model
M, its parameters ®, and a set of data D. We follow the notational
convention of Speagle (2020). We use Bayes Rule:

P(OID. M) = P(D|O, M)P(G)lM)7 5)
P(DIM)

where P(D|©®, M) is the likelihood of the data given the parameters

in the model, P(®|M) is the prior for the parameters, and

P(D|M)=/ P(D|O,M)P(OM) dO (6)
Oq

is the marginal likelihood, also known as the evidence, integrated over
the entire parameter space 2. Rewriting Bayes Rule using shorthand
notation, we have

L(Om)7(Om)

P(Oy) = B @)

for a given model M, where
Zm = / L(Om)7(On) dO. (®)
Oq

The evidence Zy can therefore be understood simply as the
likelihood space multiplied by the prior space integrated over the
entire parameter space.

3.2 Nested sampling

Numerous MCMC methods have been been used to successfully gen-
erate samples and their associated weights for posterior estimation.
However, when the posterior is multimodal or there are significant
parameter degeneracies, traditional MCMC methods often struggle
due to algorithmic limitations, computational expense, or both.
Moreover, calculating evidence to a sufficient degree of accuracy
using MCMC methods is often challenging if not impossible (e.g.
Feroz & Hobson 2008).

Nested sampling is an alternative to MCMC sampling developed
by Skilling (2006) that can perform both accurate evidence calcula-
tion and effective posterior estimation while avoiding the issues noted
above. It harnesses the relationship between the likelihood and prior,
and samples from the prior space subject to ever-increasing lower
bounds on the likelihood. Each successful iteration of the nested
sampling algorithm results in an estimate of the remaining prior ‘vol-
ume’ as well as a likelihood evaluation, which are used to calculate
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Figure 3. The blue histogram represents the distribution of observed flux values for each band in the reference 3D-HST sample described in the text. The orange
histogram represents the distribution of flux values for each band in our simulated catalogue, obtained using BAGPIPES to generate the photometry.

a fraction of the total evidence, and by extension a posterior sample.
This process creates nested ‘shells’ of iso-likelihood contours, hence
the name. BAGPIPES use the PYTHON wrapper PYMULTINEST (Buchner
2016) to utilize the sampling routines in MULTINEST.
To start, we can rewrite equation (8) as
Z =/ P(D|®)P(O®) dO =/ L(O)r(0)dO. 9)
0q Oq
The estimate of equation (9) is simply its expected value. Note that
in mathematical statistics, for a positive random variable, the area
above a cumulative distribution function (CDF) and below 1 is the

expected value. In other words, if the probability density function
(PDF) of X is f and the CDF of X is F, then

EX)= / (1= F(x))dx = / xf(x)dx. (10)
0 0
Furthermore, let the CDF of L(®) = X above be defined as
F(\) E/ 7(0)dO, (11)
L(©)<i

so estimating equation (9) is equivalent to estimating fooo(l —
F(x))dx, where F is defined in equation (11).

Then, if we define the prior volume X as dX = 7(©)d®, such
that

X(k):l—F(A):/

L(©®)>1

7(0)dO 12)

(noting the change in equality in the integration bounds) then
equation (9) is equal to fooo X(A)dx. Lastly, inverting X(1) and

evaluating the integral of the inverse from O to 1, we have

1 1
/ X Ya) = / L(®)r(0©)dO = / L(X)dx, (13)
0 0q 0
where L(X), the inverse of equation (12), is a monotonically de-
creasing function of X. Thus, the evidence integral can be written
as
1
Z = / L(X)dx, (14)
0

and its calculation is recast from a difficult multidimensional inte-
gration over @ to an easier 1D integration over X.

The next step in evidence calculation involves computing the

likelihoods L; = L(X;), where X; decreases as i =0, 1,2, ..., M
so that
O<Xy<...<Xp <X <Xo=1. (15)
The evidence is then found using quadrature as

M
Z=> LO)w;, (16)

i=1

where w; = %(X,-_l — X,+1) (Feroz, Hobson & Bridges 2009).

3.3 Calculating the evidence

The process of calculating the evidence involves several steps. First,
N ‘live’ points are sampled from the prior space and corresponding
likelihoods are calculated for each live point. The likelihoods are then

MNRAS 502, 3993-4008 (2021)
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Table 2. Median values and representativepercentiles, in each band, for the
reference 3D-HST sample at z ~ 1 described in the text and the simulated
galaxies generated by BAGPIPES using the KDE distributions from Section 2.1.
We find good agreement between the observed and simulated catalogue in all
bands. Some residual differences can be attributed to the different IMF used
by the two approaches (Kroupa and Chabrier, respectively).

Band Median 16% 84%

Usp.ust 0.0488 0.0127 0.2200
Ugp 0.0434 0.0097 0.2070
R3p.gst 0.0572 0.0155 0.2929
Rpp 0.0557 0.0147 0.3005
U383p_gst 0.0842 0.0230 0.2872
U38pp 0.0438 0.0097 0.2081
Bisp.ast 0.0539 0.0140 0.2320
Bgp 0.0440 0.0100 0.2163
Vap.usr 0.0571 0.0149 0.2569
Vgp 0.0463 0.0111 0.2330
Resp.pst 0.0643 0.0174 0.3104
Regp 0.0540 0.0144 0.2879
Iap.ust 0.1894 0.0494 0.8176
Igp 0.1132 0.0349 0.6181
F435Wsp_gst 0.0552 0.0194 0.2222
F435Wgp 0.0445 0.0100 0.2156
F775Wip.yst 0.0582 0.0207 0.2589
F775Wgp 0.0489 0.0126 0.2546
F606W3p_gsr 0.0920 0.0325 0.4542
F606Wgp 0.0914 0.0260 0.4962
F814W3p_yst 0.1231 0.0411 0.6331
F814Wgp 0.1189 0.0369 0.6470
F850LP3p.yst 0.1031 0.0354 0.5044
F850LPgp 0.0993 0.0293 0.5400
F140W3p_yst 0.1668 0.0551 0.8863
F140Wgp 0.1580 0.0491 0.9222
F125W3p_yst 0.1606 0.0553 0.8934
F125Wgp 0.1527 0.0472 0.8806
F160W3p_yst 0.1701 0.0622 0.9500
F160Wgp 0.1512 0.0485 0.8965
J3p-HST 0.1757 0.0456 0.9135
Jgp 0.1523 0.0465 0.8834
Hap_ust 0.2362 0.0609 1.0381
Hgp 0.1554 0.0499 0.9346
Kssp.pgst 0.2822 0.0715 1.4908
Ksgp 0.1740 0.0562 1.0789
tenisJ3p.gsT 0.1907 0.0439 1.0315
tenisJgp 0.1539 0.0473 0.9146
tenisK3p_gs7 0.2265 0.0537 1.4288
tenisKgp 0.1739 0.0562 1.0794
IRAC13p_gsr 0.3669 0.0708 2.1866
IRAClgp 0.1886 0.0590 1.1943
IRAC23p_gst 0.2908 0.0518 1.7301
IRAC2gp 0.1426 0.0441 0.9038
IRAC33p._gsr 0.5486 0.1055 2.5733
IRAC3gp 0.1003 0.0306 0.6496

ordered Ly, L1, ..., Ly, where L is the smallest likelihood value.
We will assume henceforth that the prior volume at this point in the
sampling is X¢ = 1 (i.e. the unit hypercube). Next, Ly is removed
from the set of live points and becomes a ‘dead’ point. A new point
is then drawn from the prior space, and if its likelihood value is
greater than new smallest likelihood value (i.e. Lnew > Lo, ), itis
added to the pool of live points. If, on the other hand, the new point’s
likelihood value is less than the new smallest likelihood value (i.e.
Lnew < Lo, then it is discarded and added to the pool of ‘dead’
points. At each new live point (each ‘successful’ iteration), a new
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iso-likelihood contour is defined with which to constrain future live
points, the prior space X shrinks, and the evidence value increases.

Nested sampling is therefore a form of rejection sampling, and
indeed the biggest challenge in nested sampling is sampling a new
point from the prior space to be added to the pool of live points subject
to the constraint Lpe, > Lo, . The trick is to find a way to both
efficiently sample from the prior volume defined in equation (18)
and also to fully explore the likelihood space while satisfying this
constraint.

3.4 Posterior estimation

If we are interested in posterior samples, we use the dead points from
the nested sampling process (the points with the lowest likelihood
values). This is written as

L(®)w;
7
where Z and w; are given in equation (16). One can then construct

relevant marginal distributions and descriptive statistics such as
means and percentile values.

p(@;) = an

3.5 Parameter estimation in SED fitting using MULTINEST

We now return to our simulated data, where we used samples from
the KDEs of the parameter space inferred by FAST for the 3D-HST
catalogue as inputs to our galaxy catalogues.

For the purposes of realistic Bayesian model fitting and parameter
estimation, we include noise, modelled after the 3D-HST catalogue,
in the simulated observations created in Section 2. This is achieved
by sampling from the KDE of the observational error in each band
and randomly adding or subtracting the sampled amount to/from the
corresponding observational flux. The minimum KDE error sample
values are restricted to each of the minimum observational error
values of the 23 bands from the selection of 4567 galaxies, and
the maximum KDE error sample values are restricted to the 95th
percentile of the KDE errors.

The original prior configuration is shown in Table 7. We note that
age prior is adaptive, in the sense that the upper bound is restricted
to be no larger than the age of the universe at the relevant redshift.

4 BAYES FACTORS IN MODEL COMPARISON

4.1 Calculating evidence

We can use the evidence values of a given pair of models, along
with prior beliefs about the models, to calculate the Bayes factor. We
have

Zv= PMDM) = / P(D|O,M)P(OM) dO, (18)
Oq
where Zy;, is the evidence and r (M;) is the prior belief for M;, i = (0,
1). Henceforth, we will assume 7 (My) = 7w (M) = %, so the Bayes
factor is
_ P(DMy) _ Zw,
PDM,) Zy,

Interpretation of the Bayes factor can be done through the Jeffreys’
scale, which is an empirically calibrated scale (adapted from Jeffreys
1998 and Trotta 2017). Small absolute values of By; between model
M) and model M; indicate that the data and prior structure do not
prefer either model. Large negative values express a preference for
the M model (in our formalism, the simpler model), large positive
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Table 3. This table shows the parameter fits for Scenario 1, which includes fits and summary statistics for both the five parameter values (the first value in a
given column) and four-parameter model (the second value in a given column).

Parameter % of objects % of objects Median Scatter OLF
in 68% region in 95% region bias

0x Masspurst 63 88 0.01 0.06 0.0
Noise reduction Agedelayed v 63/45 89/69 0.00/-0.01 0.05/0.06 0.00/0.00
Massgelayed r 56/30 86/53 —0.01/0.02 0.06/0.04 0.00/0.01
T 66/46 90/69 0.04/0.01 0.09/0.11 0.09/0.11
A, 62/60 89/85 0.00/0.01 0.13/0.14 0.12/0.17

5% Masspurst 47 74 0.00 0.05 0.00
Noise reduction Agedelayed « 56/20 83/36 0.00/—0.03 0.04/0.05 0.01/0.00
Massgelayed ¢ 50/12 77/24 0.00/0.02 0.04/0.02 0.00/0.00
T 50/17 81/36 0.02/—-0.05 0.08/0.09 0.07/0.04
Ay 63/48 87/70 0.00/0.00 0.10/0.12 0.08/0.13

10x Masspurst 44 73 0.00 0.04 0.00
Noise reduction Agedelayed v 50/12 76/24 0.00/—0.03 0.03/0.05 0.01/0.00
Massgelayed r 46/7 76/14 0.00/0.01 0.03/0.01 0.00/0.00
T 48/12 79/25 0.01/-0.06 0.07/0.08 0.05/0.01
Ay 62/42 86/59 0.00/0.00 0.08/0.11 0.06/0.14

20x Masspurst 45 71 0.00 0.03 0.00
Noise reduction Agedelayed « 49/9 74/15 0.00/-0.03 0.03/0.04 0.01/0.00
Massgelayed ¢ 46/3 74/8 0.00/0.01 0.02/0.01 0.00/0.00
T 45/9 76/18 0.00/—0.06 0.06/0.07 0.03/0.00
Ay 62/32 87/47 0.00/0.01 0.07/0.11 0.04/0.15

Table 4. This table shows the parameter fits for Scenario 2, which includes fits and summary statistics for both the six-parameter values (the first value in a
given column) and five-parameter model (the second value in a given column).

Parameter % of objects % of objects Median Scatter OLF
in 68% region in 95% region bias
Agepurst 66 95 0.02 0.03 0.02
0x Masspurst 73/55 94/78 0.03/—0.01 0.06/0.07 0.00/0.00
Noise reduction Agedelayed v 69/61 93/85 —0.01/0.01 0.05/0.05 0.00/0.01
MasSdelayed r 69/56 92/79 —0.02/0.00 0.05/0.06 0.00/0.00
T 65/62 90/84 0.05/0.03 0.09/0.09 0.12/0.08
Ay 64/61 87/86 0.00/0.01 0.14/0.15 0.13/0.17
Agepurst 56 88 0.01 0.03 0.00
5x% Masspyrst 62/34 87/53 0.02/—0.05 0.05/0.08 0.00/0.00
Noise reduction Agedelayed r 59/36 87/62 0.00/0.00 0.04/0.05 0.00/0.01
MasSdelayed r 62/35 86/55 —0.01/0.01 0.04/0.03 0.00/0.00
T 60/39 87/64 0.03/0.00 0.08/0.09 0.06/0.06
Ay 56/54 84/78 0.00/0.00 0.11/0.12 0.08/0.13
Agepurst 57 87 0.01 0.03 0.00
10x Masspyrst 55122 84/37 0.01/—0.07 0.05/0.08 0.00/0.00
Noise reduction Agedelayed r 55/25 85/50 0.00/0.00 0.04/0.04 0.00/0.01
MasSdelayed r 56/26 85/44 0.00/0.01 0.04/0.02 0.00/0.00
T 53/27 84/52 0.02/—-0.01 0.07/0.08 0.05/0.05
Ay 56/50 84/74 0.00/0.00 0.10/0.11 0.08/0.11
Agepurst 59 87 0.01 0.03 0.00
20x Masspurst 50/14 82/24 0.00/—0.10 0.05/0.08 0.00/0.00
Noise reduction Agedelayed v 53/21 81/37 0.00/0.00 0.04/0.04 0.01/0.01
MasSdelayed r 53/16 83/27 0.00/0.01 0.03/0.02 0.00/0.00
T 49/19 82/35 0.01/—-0.01 0.07/0.07 0.04/0.03
Ay 55/45 80/67 0.00/0.00 0.09/0.10 0.06/0.10
values denote a preference for the M; model (in our formalism, the Verdinelli & Wasserman 1995) and was first introduced for use in a
more complex model). The reference threshold values we use are cosmological context by Trotta (2007). Given an N parameter model
listed in Table 8. M, (where N > 2) with free parameters @ = 0, ..., 6y and a nested
N — 1 parameter model M, with free parameters 04, ..., 6y _ and

fixed 6y = 6,, the SDDR can be calculated using equation (19) by

4.2 Bayes factors in Savage-Dickey density ratio
The Savage—Dickey density ratio (SDDR) is an analytical approach By = P@®|D, My) (20)
to calculating Bayes factors for model selection (Dickey 1971, 7@ M) g0,
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Table 5. This table shows the parameter fits for Scenario 3, which includes fits and summary statistics for both the six-parameter values (the first value in a

given column) and four-parameter model (the second value in a given column).

Parameter % of objects % of objects Median Scatter OLF
in 68% region in 95% region bias

Ageburst 66 95 0.02 0.03 0.02

0x Masspurst 73 94 0.03 0.06 0.00
Noise reduction Agedelayed v 69/46 93/73 —0.01/0.00 0.05/0.06 0.00/0.01
Massgelayed ¢ 69/56 92/79 —0.02/0.02 0.05/0.04 0.00/0.01
T 65/49 90/74 0.05/0.03 0.09/0.10 0.12/0.11
A, 64/63 87/87 0.00/0.01 0.14/0.14 0.13/0.16

Agepurst 56 88 0.01 0.03 0.00

5% Masspurst 62 87 0.02 0.05 0.00
Noise reduction Agedelayed v 59/28 87/49 0.00/0.00 0.04/0.05 0.00/0.00
Massgelayed ¢ 62/15 86/32 —0.01/0.02 0.04/0.01 0.00/0.00
T 60/28 87/50 0.03/0.01 0.08/0.09 0.06/0.05
A, 56/51 84/75 0.00/0.00 0.11/0.12 0.08/0.13

Ageburst 57 87 0.01 0.03 0.00

10x Masspurst 55 84 0.01 0.05 0.00
Noise reduction Agedelayed v 55/19 85/39 0.00/0.00 0.04/0.04 0.00/0.00
MasSdelayed ¢ 56/9 85/18 0.00/0.02 0.04/0.01 0.00/0.00
T 53/21 84/41 0.02/-0.01 0.07/0.07 0.05/0.04
A, 56/49 84/70 0.00/0.00 0.10/0.11 0.08/0.12

Agepurst 59 87 0.01 0.03 0.00

20% Masspurst 50 82 0.00 0.05 0.00
Noise reduction Agedelayed v 53/16 81/30 0.00/0.00 0.04/0.03 0.01/0.00
Massgelayed ¢ 53/6 83/11 0.00/0.02 0.03/0.01 0.00/0.00
T 49/15 82/28 0.01/-0.02 0.07/0.07 0.04/0.02
Ay 55/43 80/65 0.00/0.00 0.09/0.10 0.06/0.12

Evaluation of the SDDR therefore requires estimation of the PDF
for both the marginalized posterior and the prior of 6 y to calculate the
height of the densities at 6,. Logspline density estimation (Stone &
Koo 1986), in which the logarithm of a PDF is modelled using
polynomial spline, has been found to perform well for estimation of
the SDDR under general conditions (Wagenmakers et al. 2010) and
tends to outperform kernel-based density estimation (Wetzels et al.
2009). We will use the R package 1ogspline (Stone et al. 1997)
to calculate the logspline density estimates in order to derive the
SDDR.

The SDDR requires that the two competing models M, and M,
are nested and that the priors are separable, i.e.

m(0|M) = 7 (6, |My) T (621M)) ... 7Oy My). (20

In addition, the prior for the fitted parameters of M; should
equal the prior for the fitted parameters under M, in order for
M, to reduce to M,. Importantly, in order to effectively calculate
the SDDR, a sufficient number of posterior samples are needed
in the neighbourhood of 6,. We emphasize that, depending on the
dimensionality of the SED model being fit, the number of samples
and coverage of the posterior space scales with the number of live
points used in MULTINEST. To obtain sufficient coverage of posterior
samples, we choose 1500 live points. The sampling efficiency in
MULTINEST is inversely proportional to the enlargement factor of
the volume of the ellipsoid region. A greater enlargement factor
therefore explores more completely the likelihood space. As we are
interested in not only accurate evidence values but also accurate
posterior estimates, we use a sampling efficiency of 0.25 instead of
the default 0.3 in MULTINEST.

We note that the Bayes factor is effectively the height of the
posterior density of 6y divided by the height of the prior density
of Oy evaluated at 6,, the choice of prior has a great impact
upon the derivation of the SDDR. This caveat notwithstanding, the
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computational resources needed to calculate the SDDR are minimal,
so it is an appealing alternative to a nested sampling approach to
calculating Bayes factors.

5 RESULTS

We analyse different simulations scenarios in order to assess, on one
hand, the impact of incorrect assumptions on the derived physical
parameters, and on the other, the reliability of the Bayes factor as a
tool to empirically discern the model complexity from the data. While
the latter is inherently new to this paper, the former is a necessary
validation step for the SED-fitting process.

Our simulations involve the following approaches. In all cases, we
begin by assuming a noise profile matching the one of the 3D-HST
galaxies described earlier in paper. Since we found in our preliminary
studies that S/N was the main factor driving the effectiveness of
the Bayes factor, we then reduce the noise (maintaining the same
profile) of the mock galaxy catalogue by factors of 5, 10, and 20.
The input parameters for the simulations are the same throughout
this process to ensure a fair comparison in the presence of modelling
systematics.

5.1 How many stellar populations?

In choosing our set of simulations, we are motivated by the question
‘can we detect multiple major episodes of star formation?’. In fact,
many physically motivated models of star formation, including semi-
analytic models and hydrodynamical simulations (e.g. Genel et al.
2014; Somerville & Davé 2015; Pillepich et al. 2018), show that the
stellar assembly of galaxies might be well described by a ‘smooth’
component, describing the process of star formation in isolation, and
a stochastic component, driven by interactive events such as mergers
and winds. We describe each scenario in detail below.
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Figure 4. The black circles represent the input versus median posterior parameter values for the five-parameter model in Scenario 1. The black vertical lines
represent the 16-84 per cent credible intervals the parameters for the same model. The red triangles, on the other hand, are the input versus median posterior
parameter values for the four-parameter model in Scenario 1. The red vertical lines represent the 16—84 per cent credible intervals the parameters for the same

model.

(i) Scenario 1: In our first test, we generate models using a
five-parameter model, with a ‘main’ stellar population component
described by a delayed t model, with parameters stellar age,
stellar mass, 7, and dust attenuation, and an additional recent burst
component of star formation with age = 0.1 Gyr and variable stellar
mass. We then perform parameter fits and evidence calculation both
with a five-parameter model (M for the purposes of Bayesian model
comparison) with the parameters listed above, and a four-parameter
model where the burst mass is fixed at log;0M/M; = 6.5. In practice,
the latter corresponds to a one-component stellar population, because
the median mass for the entire sample is log,0M/Mg =~ 8.4 and so
the burst mass contribution to the total mass is at the per cent level,
but we can not simply set the mass in the burst to zero because that
would not be part of the prior parameter space in the higher model,
which is a necessary condition of nested models. These conditions
aim to answer the question: ‘Can we detect a recent burst of star
formation?’

(ii) Scenario 2: In our second test, we generate models using a
six parameter model, where the ‘main’ stellar population component
is still described by a delayed t model, with parameters stellar
age, stellar mass, 7, and dust attenuation, and an additional burst
component of star formation with variable age (between 0.05 and
0.9 Gyr) and variable stellar mass. We then perform parameter fits
and evidence calculation both with a six parameter model (M, for
the purposes of Bayesian model comparison) with the parameters
listed above, and a five-parameter model where we vary the stellar
mass, but fix the burst age at 0.1 Gyr. These conditions aim to answer
the question: “What happens if we incorrectly estimate the age of a
secondary burst of star formation?’

(iii) Scenario 3: Our third test involves generating models using
the same six parameter model as in Scenario 2, and a four-parameter
model where the burst age is fixed at 0.1 Gyr and the burst mass
is fixed at log;¢M/Ms = 6.75. These conditions aim to answer
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Figure 5. The blue histograms represent the distribution of cases in which the Bayes factor incorrectly prefers the simpler model (In By; < —1), and the red
histograms represent the distribution of cases in which the Bayes factor correctly prefers the more complex model (In By > 1). We show results for Scenarios
1-3 at each noise level, as a function of the total S/N of each SED. The total S/N is the sum of every band’s photometric flux measurement divided by its 1o
error measurement. The dotted vertical line represents the median value for each distribution. The S/N of each SED is an important factor in determining the
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Figure 7. The black circles represent the input versus median posterior parameter values for the five-parameter model in Scenario 1. The black vertical lines
represent the 16-84 per cent credible intervals the parameters for the same model. The red triangles, on the other hand, are the input versus median posterior
parameter values for the five-parameter model in Scenario 4. The red vertical lines represent the 16—84 per cent credible intervals the parameters for the same

model.

the question: ‘Can we detect a secondary burst component of star
formation, independent of age?’

(iv) Scenario 4: Our fourth and last test attempts to test the impact
of priors, in which we employ the same model as in Scenario 1
but with linear rather than log), priors on stellar age, t, and dust
attenuation parameters.

5.2 Posterior fits

For scenarios 1-3, which involve different input parameter and fit
parameters structure, we report the results of the parameter estimation
procedure through a series of summary statistics for the parameter
fits in Tables 3, 4, and 5 following the conventions of Acquaviva et al.
(2015). For each parameter, we report the mean bias and scatter, as
well as the fraction of outliers (defined as the percentage of objects for
which the input and estimated values differ at more than 15 per cent
level). Furthermore, in order to assess the accuracy of the reported

posteriors, we report the fraction of objects for which the input values
lie within the reported 68 per cent and 95 per cent intervals.

For Scenario 1, we also show a set of scatter plots, displaying the
input (true) values versus estimated values; results from the more
complicated model are shown in black, and from the simpler model
in red, in Fig. 4. The behaviour of Scenarios 2 and 3 follow a very
similar pattern.

Our results indicate that in all scenarios, the posterior width is
underestimated when the simpler model is used. This becomes more
stringent as the noise level is reduced: in the four-parameter model
(and at a modest level, even in the five-parameter model) of Scenario
1, the size of the uncertainties, i.e. width of the posteriors, are very
severely underestimated at the greatest amount of noise reduction.

In Scenarios 1-3, the bias, scatter, and outlier fraction for the
simpler and more complicated models are comparable. They are
generally present at the few per cent level. Scenario 4 parameter fits
are noteworthy for the significant outlier fraction for both v and A,
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Table 6. This table shows the parameter fits for Scenario 1 versus Scenario 4, which includes fits and summary statistics for both the five-parameter values with
logjo priors (the first value in a given column) and five-parameter model with linear priors (the second value in a given column).

Parameter % of objects % of objects Median Scatter OLF
in 68% region in 95% region bias

0x Masspurst 63/54 88/78 0.01/0.01 0.06/0.06 0.00/0.01
Noise reduction Agedelayed r 63/36 89/70 0.00/0.04 0.05/0.06 0.00/0.06
Massgelayed ¢ 56/56 86/79 —0.01/0.00 0.06/0.06 0.00/0.01
T 66/7 90/20 0.04/0.16 0.09/0.10 0.09/0.55
A, 62/28 89/48 0.00/0.05 0.13/0.14 0.12/0.37
5% Masspurst 47127 74/53 0.00/0.01 0.05/0.04 0.00/0.00
Noise reduction Agedelayed v 56/26 83/52 0.00/0.03 0.04/0.05 0.01/0.05
Massgelayed ¢ 50/37 77/64 0.00/—0.01 0.04/0.04 0.00/0.00
T 50/9 81/20 0.02/0.15 0.08/0.1 0.07/0.49
A, 63/24 87/52 0.00/0.03 0.10/0.11 0.08/0.30
10x Masspurst 44/22 73/38 0.00/0.01 0.04/0.04 0.00/0.00
Noise reduction Agedelayed r 50/21 76/38 0.00/0.03 0.03/0.05 0.01/0.05
MasSdelayed « 46/32 76/56 0.00/0.00 0.03/0.04 0.00/0.00
T 48/11 79/21 0.01/0.14 0.07/0.11 0.05/0.44
Ay 62/24 86/51 0.00/0.02 0.08/0.10 0.06/0.25
20x Masspurst 45/22 71/38 0.00/0.01 0.03/0.04 0.00/0.00
Noise reduction Agedelayed v 49/21 74/39 0.00/0.03 0.03/0.05 0.01/0.05
Massgelayed ¢ 46/33 74/56 0.00/0.00 0.02/0.04 0.00/0.00
T 45/9 76/21 0.00/0.14 0.06/0.11 0.03/0.44
A, 62/32 87/50 0.00/0.02 0.07/0.10 0.04/0.25

parameters, and significant bias in T compared to those parameters
Scenarios 1-3. Due to this, evidence values derived from Scenario 4
should not be considered reliable.

5.3 Bayes factors and model comparison

We can now turn to the analysis of the Bayes factors, i.e. the natural
log ratio of pieces of evidence of the more complex (correct) versus
simpler (incorrect) model for the three scenarios; our results are
shown in Fig. 8. Each set of multihistograms (column) shows the
Bayes factor; the columns are organized according to the Jeffrey scale
described in Table 8. The leftmost column displays cases in which
the simpler model is preferred with moderate confidence (—2.5 <
InBy; < —1), and moving to the right, we find inconclusive cases,
and cases in which the more complex model is preferred with weak,
moderate, and high confidence, respectively.

In an ideal case, the Bayes factor would always prefer the more
complex model since we know that this is the correct underlying
model; however, the most crucial issue is whether the Bayes factor
can actually be misleading, preferring the simpler (incorrect) model
with high confidence.

In Scenario 1, at the 3D-HST noise level, we see that the Bayes
factor is indecisive in the majority of cases (56 per cent of the total),
and is able to ‘pick’ the more complex model with high confidence
(In By; > 2.5) only in 15 per cent of the cases. Importantly, though,
there are only a handful of failing cases (~ 6 per cent of the total, not
shown) in which the Bayes factor strongly prefers the simpler model,
and a fraction of cases (16 per cent of the total) in which the Bayes
factors indicates a moderate preference for the simpler model. As the
noise level is reduced, however, the predictive power of the evidence
increases, and the Bayes factor indicates a strong preference for the
more complex model in the majority of cases (57 per cent for a noise
reduction of 10, and 69 per cent for a noise reduction of 20). We note
that the latter constraints could also easily be recast as a condition on
stellar mass of galaxies within the 3D-HST survey at z ~ 1; roughly
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speaking, the Bayes factor favours the more complex model with
high confidence for galaxies with a stellar mass = 2.5 x 10° Mg,

In Scenario 2, we observe that the Bayes factor remains a fair
estimator of the preferred model, with no cases where the Bayes
factor strongly favours for the simpler model, and a small fraction
(12 per cent of the total) of failures, in which the simpler model is
weakly favoured. Similar to scenario 1, at the 3D-HST noise level
the Bayes factor is largely indecisive, but becomes more and more
able to select the six-parameter model with confidence as the noise
is reduced, with a strong preference for the more complex model for
27 per cent and 36 per cent of galaxies in the case of a 10x and 20 x
noise reduction, respectively.

In Scenario 3, the failures tend to disappear more quickly as S/N
increases, but otherwise we observe a similar trend as in Scenario 2
in the Bayes factor’s ability to select the more complex six-parameter
model as the noise is reduced. At the 3D-HST noise level, the Bayes
factor fails only 14 per cent of the time, in which the simpler model
is weakly favoured. At the 10x and 20x noise reduction, the Bayes
factor strongly prefers the more complex model 22 per cent and
35 per cent, respectively.

Our results indicate that even in the presence of modelling
systematics, the Bayes factor is a fairly reliable indicator of model
complexity, and is able to detect a secondary episode of star formation
in the vast majority of cases, especially at high S/N.

5.4 Investigating failures

We now attempt to investigate of the ‘failures’ of the Bayes factor
(i.e. when the Bayes factor incorrectly prefers the simpler model,
or In By; < —1) as a tool to discern model complexity. We would
like to understand, if possible, what factors may contribute to skew
the evidence toward the simpler (incorrect) model, resulting in the
simpler model being strongly or moderately preferred. We consider
two possible explanations: the S/N ratio of each individual spectrum,
which we expect to be important given the improvement seen at the
population level with increasing S/N, and the age separation between
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Figure 8. The top bar chart (Scenario 1) shows the Bayes factor for data simulated using a five-parameter model (delayed T component + recent burst) and
fitted with a four-parameter model (delayed T component), as described in the text. The middle bar chart (Scenario 2) shows the Bayes factor for data simulated
using a six-parameter model (delayed T component + burst of varying mass/age) and fitted with a five-parameter model (delayed t component + recent burst).
The bottom bar chart (Scenario 3) shows the Bayes factor for data simulated using a six-parameter model (delayed t component + burst of varying mass/age)
and fitted with a four-parameter model (delayed T component). The horizontal axis show the distribution of the Bayes Factor for different S/N ratios, grouped
according to the criteria of the Jeffrey Scale. From left to right, the ‘columns’ indicate that the BF moderately prefers the simpler model, is indecisive, moderately
prefers the more complex model, decisively prefers the more complex model. In all scenarios, the Bayes Factor ‘fails” (prefers the simpler model) in a minority

of cases, especially at high S/N.

the main and the secondary population. The rationale for the latter is
that if the two population have similar ages, they effectively act as
a single population, and in this sense the single-population model is
still — in practical if not formal terms — the correct choice.

InFig. 5, we plot the distribution of cases in which the Bayes factor
incorrectly prefers the simpler model (In By; < —1) and those is in
which the Bayes factor correctly prefers the more complex model
(In By; > 1), for each scenarios and noise level, as a function of the
total S/N of each SED.

Scenarios 1 and 3 both show a significantly higher median total
S/N for the succeeding cases in comparison to the failing cases,
indicating that S/N is probably the main driver of the expected
performance of the method. This is encouraging because Scenarios
1 and 3 correspond to a practical situation in which we are trying
to detect a secondary population (recent, in Scenario 1, and of any
age, for Scenario 2) by comparing a two-population fit with a single-

population fit. From this plot, as well as the results presented in
Section 5.3, we can conclude that for sufficiently deep photometry,
the Bayes factor is a reliable indicator of model complexity in the
vast majority of cases.

The situation is not the same for Scenario 2, in which we attempt
to fit two-population SEDs by fixing the age of the secondary
population, and varying its mass. In this case, we see that the SED’s
total S/N is less correlated with the distribution of failing cases.
This happens possibly because of increased degeneracies between
the simpler (five-parameter) model and the more complex (six-
parameter) model for this scenario, which make it harder to isolate
one single discriminating factor. We note that this Scenario is the
least akin to a physical situation in which we would want to use the
Bayes factor as a discriminating tool for model complexity.

A similar trend can be seen when we plot the same histograms of
failing and succeeding cases as a function of age separation between
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Figure 9. The top bar chart (Scenario 1) shows the Bayes factor for data simulated using a five-parameter model (delayed t component + recent burst) and
fitted with a four-parameter model (delayed T component). The bottom bar chart (Scenario 4) shows the Bayes factor for the same parameter space, but when
uniform priors in Ay, Agedelayed > and T and are used, instead of uniform priors in the logarithm of the same variables, like in Scenario 1. Notation is the same
as Fig. 8. Despite the strong decay in the quality of parameter estimates observed in Scenario 4 (see Table 6), the Bayes factor remains reliable as a model

complexity selection tool.

the main (delayed r SFH) component and the secondary (burst)
component. Age separation here is defined as the time between the
onset of star formation in the delayed r SFH and the burst component.
In Fig. 6, Scenarios 1 and 3 show a significant difference in the
median age separation for the failing versus succeeding cases at each
noise level; as expected, the Bayes factor is less able to pick the
correct model if the age separation between the two components is
small because they effectively ‘become one’. Conversely, in Scenario
2 there is little difference in the median age separation for these two
cases.

5.5 Design space and impact of priors

One often neglected issue in Bayesian parameter estimation is the
role that the choice of priors plays in determining the final results.
We are interested in the recovery of physical parameters, as well as
in how the choice of priors correlates with the reliability of the Bayes
factor as a model selection tool.

We show a preliminary example (Scenario 4). We begin by
comparing two five-parameter models: one analogue to the one
described in Scenario 1, and one in which we employ a uniform
prior in the age, T parameter, and dust parameter A, of the main
stellar population. We note that since the multivariate input parameter
distributions are derived directly from the data (as opposed to being
generated from a prior distribution), this test should be effective at
determining which priors are preferable at a general level.

Fig. 7 and Table 6 show that the set of priors from Scenario 1 are
highly preferable to the ones used here. The decay in the quality of the
fits is evident, with the emergence of significant biases in some of the
affected parameters, such as A, and t, which also present very large
outlier fractions, of the order of 20-30 and 50 per cent, respectively.
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Our recommendation from this simple test is that uniform priors in
log(A,) and log(7) should be used.

In Fig. 9, we show the Bayes factor from the comparison of a
five-parameter model, described in Scenario 1 above, and a five-
parameter model in which the priors are uniform in age, t, and A,,
as opposed as in logo.

The main result from this test is that at the 3D-HST noise level,
priors play an important role in determining the Bayes factor, and
the results obtained by using the uniform priors from Scenario 4
are not trustworthy in a higher number of cases. On the other hand,
as the noise is reduced, the contribution of the data to the marginal
likelihood increases, and the Bayes factor remains a reliable estimator
of model complexity.

6 EVIDENCE VERSUS SAVAGE-DICKEY
DENSITY RATIO

Our last novel result comes from the comparison of the Bayes
factor evaluated through the SDDR versus through the evidence.
As mentioned above, the SDDR can be easily obtained by ordinary
MCMC sampling, as opposed to the evidence calculation that
requires expensive ad hoc methods such as nested sampling.

Table 9 provides a measure of the linear correlation between the
natural log of the Bayes factor derived from the SDDR and the
natural log of the Bayes factor derived from nested sampling in
Scenarios 1-2 at each noise level. Scenario 3 is not included because
it involves comparison of a six- and four-parameter model, and the
SDDR method is valid only with N versus N — 1 model scenarios.
Scenario 4 is also not included because the poor posterior fits in
Section 3.4 indicate that the evidence calculations are not reliable
for model comparison. The first column (1) refers to the Pearson
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Table 7. Parameter priors used for SED fitting in Scenarios 1, 2, and 3. We note that the
prior used for the mass variables is effectively a uniform prior in log;o M/Mg.

Parameter Prior Units Sampling
Ay (0.0001, 3.0) Magnitudes Uniform in logjg
age (0.05, ageuniv) Gyr Uniform in log;o
burst age (0.05, 0.90) Gyr Uniform
T (0.01, 10.0) Gyr Uniform in log;o
logio, Mass (6.5, 12.5) MM Uniform
logio, Burst mass (6.5,12.5) MIM, Uniform

Table 8. Bayes factors are used to compare the evidence of two competing
models My and M. The table includes rule-of-thumb threshold values known
as Jeffreys” Scale, and the probability column is in reference to posterior
probabilities of the model that is favoured.

|In By | Odds Probability Strength of evidence
<1.0 <3:1 <0.750 Inconclusive

1.0 ~3:1 0.750 Weak evidence

2.5 ~12:1 0.923 Moderate evidence
5.0 ~150: 1 0.993 Strong evidence

Table 9. poa1 refers to the Pearson correlation coefficient derived from the
Bayes factor calculated using either nested sampling or the SDDR, from
the full set of 500 models. pgp refers to the Pearson correlation coefficient
calculated using only a subset of models that have at least 1% of their samples
within 0.25 x 10° solar masses of 6,. Numbers with s indicate that a single
outlier was removed to calculate pgyp.

Protal Psub Models Median post

(Psub) samps (Osub)
0.770 0.963 392 953
Scenario 1 0.739 0.944 255 953
Noise levels 0.779 0.952 186 1069
0.757 0.932 139 1000
0.761 0.928 472 1138
Scenario 2 0.838 0.889x 409 1109
Noise levels 0.717 0.892:x% 373 1267
0.783 0.907 330 1321

correlation coefficient calculated before any requirement is made on
the number of samples near Oy, so it includes all 500 models for
each scenario at each noise level. The second column (pgy) lists the
Pearson correlation coefficient calculated when considering on only
models that have at least 1 per cent of their samples within 0.25 x 10°
solar masses of 6,. The third column lists the resulting number of
models considered due to this requirement, and the fourth column
lists the median number of posterior samples used to calculate pgp.

These results show a high degree of correlation between the SDDR
and nested sampling methods of Bayes factor computation, as long
as the region of the posteriors where 6, is evaluated are sufficiently
well sampled. They suggest that with dense sampling of the tails of
the posterior and when the other conditions for the applicability of
the SDDR approximation hold — most notably nested models — the
SDDR can be successfully used as a proxy for the full calculation
stemming from the evidence.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have explored several simulated scenarios in order
to establish whether Bayesian model comparison can be relied upon
as a method to estimate the ‘true’ model complexity afforded by the
data. Our main conclusions are the following:

(i) The Bayes factor is a promising tool to evaluate model
complexity. In all the scenarios we have explored, the Bayes factor is
able to select the correct model with high confidence in the majority
of cases, particularly at high S/N, while it ‘fails’, i.e. selects the wrong
model with high confidence, in only a few per cent of the cases. This is
relevant in view of data from upcoming telescopes, for example, the
Nancy Grace Roman Space Telescope (NRST, formerly WFIRST)
and the James Webb Space Telescope (JWST). When combined,
data from these two observatories will provide deep coverage over
the entire range of wavelengths (with the exception of the bluest
channels, but extending to mid-infrared) considered here. While
obtaining a direct comparison is difficult without making reference
to a specific observing proposal, it can generally be expected that
data from JWST and NRST will be 2-3 magnitudes deeper than
those currently available from HST and Spitzer, for deep fields of
area 0.25deg? or larger (A. Koekemoer, in proceedings of NRST
conference, Space Telescope, 2020 October, and Koekemoer et al.
2019). A uniform improvement of 2.5 magnitude deeper data across
the range of the spectrum would correspond to the ‘10x noise
reduction’ case we have described in this paper.

(i1) In the two scenarios that most closely resemble a comparison
between a single component of star formation and a two-component
model with an additional (recent or otherwise) burst, the Bayes factor
performs increasingly well as a function of increasing S/N and age
separation between the two components.

(iii) Priors play a large role in parameter estimation and Bayes
factors estimation, especially at low S/N, as is to be expected. Our
recommendation is that uniform priors in the logarithms of stellar
age, A,, and 7, are preferred to uniform priors in the same variables,
although we also observe that the Bayes factor is less affected by
incorrect priors than the estimates of physical parameters.

(iv) The SDDR can be a good proxy for the Bayes factor when
the region of the posteriors where 6, is evaluated is sufficiently
well sampled. This enables the usage of Bayesian model comparison
even without the computationally intensive need for nested sampling
algorithms, broadening the range of possible scientific applications
of this method.

Finally, we believe that our KDE method to extract realistic
multivariate distributions for input parameters from data, keeping
into account the covariances between different physical quantities,
will be useful to the broader astrophysical community.

In a future paper, we aim to consider more carefully the sources
of systematic uncertainty of the Bayes factor, and to run multiple

MNRAS 502, 3993-4008 (2021)

202 Iudy 0g uo 3sanb Aq | G9+01 9/€66€/€/20G/2I01He/Selu/wod dno-dlwapese//:sdyy woly papeojumod



4008  A. J. Lawler and V. Acquaviva

simulations on each scenario to account for the stochasticity of the
evidence calculation in the MULTINEST nested sampling algorithm.
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