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ABSTRACT
While it is known that the sharp-line star Vega (vesin i ∼ 20 km s−1) is actually a rapid rotator seen nearly pole-on with low
i (<10◦), no consensus has yet been accomplished regarding its intrinsic rotational velocity (ve), for which rather different values
have been reported so far. Methodologically, detailed analysis of spectral line profiles is useful for this purpose, since they reflect
more or less the ve-dependent gravitational darkening effect. However, direct comparison of observed and theoretically simulated
line profiles is not necessarily effective in practice, where the solution is sensitively affected by various conditions and the scope
for combining many lines is lacking. In this study, determination of Vega’s ve was attempted based on an alternative approach
making use of the first zero (q1) of the Fourier transform of each line profile, which depends on K (temperature sensitivity
parameter differing from line to line) and ve. It turned out that ve and vesin i could be separately established by comparing the
observed qobs

1 and calculated qcal
1 values for a number of lines of different K. Actually, independent analysis applied to two line

sets (49 Fe I lines and 41 Fe II lines) yielded results reasonably consistent with each other. The final parameters of Vega’s rotation
were concluded as vesin i = 21.6(±0.3) km s−1, ve = 195(±15) km s−1, and i = 6.4(±0.5)◦.
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1 IN T RO D U C T I O N

The spectrum of Vega (=α Lyr = HR 7001 = HD 172167 =
HIP 91262; spectral type A0 V) shows a sharp-line nature indicating
a small projected rotational velocity (vesin i ∼ 20 km s−1, where ve

is the equatorial rotation velocity and i is the angle of rotational axis
relative to the line of sight), which is rather unusual among A-type
main-sequence stars (many of them showing vesin i typically around
∼100–300 km s−1). It is nowadays known, however, that this star
is actually a rapid rotator with large ve like other A stars and the
apparent smallness of vesin i is simply ascribed to low i (i.e. this star
happens to be seen nearly pole-on).

Its intrinsic rotational velocity can be observationally determined
by detecting the gravity darkening effect, because it becomes more
exaggerated as ve increases. The mainstream approach used for this
purpose is to analyse the shape of spectral lines, because lines
of a specific group (e.g. weak Fe I lines) show a characteristic
feature (i.e. flat-bottomed profile), which is caused by the lowered
temperature near to the gravity-darkened limb (see e.g. fig. 1 in
Takeda, Kawanomoto & Ohishi 2008a). Alternatively, in order to
establish ve, the extent of gravity darkening can be estimated from
the brightness distribution on the stellar disc by direct high-resolution
interferometric observations.

Beginning from 1990s and especially in the period around 2010,
quite a few determinations of Vega’s ve based on these two methods
have been tried by various investigators as summarised in Table 1.
However, the resulting literature values of ve considerably differ from
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each other as seen from this table. Although the large discrepancy
amounting to�100 km s−1 (from ∼160 to ∼270 km s−1) seen in early
2000s has been mitigated up to the present, they are still diversified
between ∼170 and ∼230 km s−1 (which are the published results
since 2008).

Meanwhile, the discovery of magnetic field in Vega by spectropo-
larimetry (Lignières et al. 2009) provided a new means to measure ve,
because such a Zeeman signature would show cyclic variation due to
rotation; that is, the rotational period (P) may be directly evaluated by
applying a period analysis to time-series data of spectropolarimetric
observations, from which ve is derived as ve = 2πRe/P by using an
appropriately assigned Re (equatorial radius). Following this policy,
Vega’s rotation period was determined within several years after
2010, as shown in Table 1. Although this method is expected to
establish P precisely, these published data are not necessarily in
good agreement but somewhat discrepant by ∼±10 per cent (i.e.
∼±20 km s−1 around ve ∼ 200 km s−1). Therefore, even such
an independent technique (which is essentially different from the
other in the sense that any modelling of gravity-darkened star is not
required) has not yet significantly improved the situation regarding
the ambiguity in ve.

Accordingly, it is desirable to redetermine ve of Vega with higher
reliability than before, in order to clarify which of the recent results
(between ‘low-scale’ value of ∼170–180 km s−1 and ‘high-scale’
value of ∼220–230 km s−1) is more justifiable.

Here, it may be worthwhile to mention the weak point of line
profile analysis, which was once employed by the author’s group
(Takeda, Kawanomoto & Ohishi 2008b; hereinafter referred to as
Paper I) to evaluate Vega’s ve. According to our experience, to derive
ve by searching for the best fit (minimising χ2) between the observed
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Table 1. Previous determinations of Vega’s rotation and related parameters.

Authors vesin i ve i Rp Re P Remark
(km s−1) (km s−1) (deg) (R�) (R�) (d)

Gulliver et al. (1994) 21.8 245 5.1 – – – Line profile
Hill et al. (2004) 21.9 160 7.9 – – – Line profile
Aufdenberg et al. (2006) 21.9 270 4.7 2.26 2.78 – Interferometry
Peterson et al. (2006) 21.5 274 4.5 2.31 2.87 – Interferometry
Takeda et al. (2008b) 22a 175 7.2 2.52 2.76 – Line profile
Yoon et al. (2010) 20.5 236 5.0 2.36 2.82 – Line profile
Hill et al. (2010) 20.8 211 5.7 2.40 2.75 – Line profile
Monnier et al. (2012) 21.3 197 6.2 2.42 2.73 – Interferometry (their Model 3)

Petit et al. (2010) – 184b – – – 0.732 Magnetic modulation
Alina et al. (2012) – 198b – – – 0.678 Magnetic modulation
Butkovskaya (2014) – 216b – – – 0.623 Magnetic modulation
Böhm et al. (2015) – 198b – – – 0.678 Magnetic modulation

Notes. In columns 2–7 are given the values of projected rotational velocity, equatorial rotational velocity, inclination angle of
rotational axis, polar radius, equatorial radius, and rotation period, respectively.
aAssumed value.
bDerived from P by assuming Re = 2.8 R�.

and modelled line profiles for a selected line feature (e.g. well-
behaved weak Fe I line showing a flat-bottomed profile) is not so
hard. However, there is no way to estimate how much uncertainty
is involved in such a specific solution. Actually, since χ2 residual
is a rather broad function of ve and quite vulnerable to a slight
imperfection (e.g. improper placement of continuum level, existence
of weak line blending, irregular noise in observed data, etc.), because
extremely subtle difference of profile shape is concerned (typically
of the order of ∼10−3 in unit of the continuum; cf. figs 4 and 5 in
Paper I), an erroneous ve solution is easily brought about (or even no
solution is found). Therefore, it was decided in Paper I to analyse the
profiles of a large number of lines (87 lines of neutral species and
109 lines of once-ionized species) with a hope of hitting as many
correct solutions as possible. Nevertheless, from a critical point of
view, the result obtained in Paper I was not very satisfactory due to
the following reasons: (i) The final solution (ve = 175 km s−1) was
simply selected from nine models (where ve was varied from 100 to
300 km s−1 with an increment of 25 km s−1) as the one corresponding
to the highest frequency of χ2 minimum for the case of neutral lines,
so an ambiguity of ∼20 km s−1 due to the coarseness of model grid
is inevitable from the start. (ii) While lines of neutral species yielded
a Gaussian-like frequency histogram centred around 175 km s−1 (cf.
fig. 6a in Paper I), those of ionized species (many of them have
‘non-flat-bottom’ profiles) show a near-flat distribution (cf. fig. 6b in
Paper I); this means that the latter set of ionized lines were almost
useless because they made no contribution to the determination of
ve.

Consequently, the conventional line-profile matching in the wave-
length domain applied in Paper I was not necessarily suitable for
such a very delicate problem. In order to make a further step
towards improving the precision, a more efficient approach has to be
invoked, in which many lines of different properties can be effectively
combined to increase the reliability of ve solution while providing a
reasonable procedure for error estimation.

Recently, in an attempt to estimate the intrinsic rotational velocity
of Sirius A, Takeda (2020; hereinafter referred to as Paper II)
made use of the first zero frequency (q1) in the Fourier transform
of the line profile. It then revealed that this quantity can be used
for measuring the gravity darkening effect because it sensitively
responds to a slight variation of the line profile; actually, q1 was
found to vary almost monotonically with ve (inducing a gravity

darkening). While how q1 reflects a change of ve naturally differs
from line to line depending on its property, it was found to be
the sensitivity of line strength (W) to temperature (T), which is
represented by the parameter K (≡log W/log T), that essentially
controls the ve dependence of q1. Therefore, since information of
ve may be extracted from the comparison of the observed qobs

1 with a
corresponding set of qcal

1 (K, ve) calculated for this line on the models
of different ve, the best solution of ve (along with its probable error)
can be established by combining many lines of different K. This
technique turned out successful, and in Paper II it was concluded that
Sirius A is an intrinsically slow rotator (16 ≤ ve � 30–40 km s−1).

Motivated by this achievement, the author decided to apply this
method to analysing the spectral line profiles of Vega, in order to
revisit the task of determining its ve as done in Paper I, hoping that
a result of higher accuracy would be obtained, so that the diversified
literature values may be verified. The purpose of this article is to
report the outcome of this reinvestigation.

2 O BSERVATIONA L DATA

2.1 Selection of lines and their profiles

Regarding the basic observational material of Vega, the high-
dispersion spectra of high signal-to-noise ratio (S/N ∼2000) and high
spectral resolving power (R ∼ 100 000) were used as in Paper I, which
were obtained at Okayama Astrophysical Observatory by using the
HIDES spectrograph attached to the 188 cm reflector and published
by Takeda, Kawanomoto & Ohishi (2007).

The selection of lines to be used for the analysis was done by
following almost the same procedure as adopted in Paper II (cf.
section 2.2 therein), where it was decided to employ only lines
of neutral and ionized Fe in order to maintain consistency with
Paper II. As a result, a total of 90 lines (49 Fe I and 41 Fe II

lines) were eventually sorted out,1 which are listed in Table 2. The
observed profiles of these lines are displayed in Fig. 1, and their

1Since the selection criterion adopted in this study differs from that of Paper I,
the resulting line set is somewhat different. More precisely, out of 60/52
Fe I/Fe II lines analysed in Paper I, 17/16 were discarded, while 6/5 were
newly included.
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Table 2. Atomic data and observed quantities of adopted spectral lines.

λ χ low log gf Wobs K qobs
1 qobs

2
(Å) (eV) (dex) (mÅ) (km−1 s) (km−1 s)

(49 Fe I lines)
3922.911 0.052 − 1.651 25.3 − 14.89 0.02465 0.05085
4014.534 3.573 − 0.200 7.6 − 14.48 0.02425 0.05050
4021.867 2.759 − 0.660 9.4 − 15.21 0.02276 0.05120
4067.978 3.211 − 0.430 7.8 − 14.63 0.02393 0.04988
4175.636 2.845 − 0.670 6.4 − 14.82 0.02540 0.05027
4176.566 3.368 − 0.620 5.2 − 15.59 0.02517 0.04823
4187.038 2.449 − 0.548 15.9 − 14.36 0.02398 0.04980
4195.329 3.332 − 0.412 8.3 − 14.90 0.02538 0.04882
4196.208 3.396 − 0.740 4.2 − 14.73 0.02371 0.04530
4199.095 3.047 +0.250 26.5 − 12.26 0.02503 0.05200
4202.028 1.485 − 0.708 33.6 − 12.38 0.02477 0.05236
4210.343 2.482 − 0.870 7.8 − 15.85 0.02426 0.05217
4219.360 3.573 +0.120 15.4 − 13.31 0.02362 0.04897
4235.936 2.425 − 0.341 21.6 − 13.69 0.02568 0.05155
4238.021 3.417 − 1.286 2.7 − 15.76 0.02373 0.04730
4238.809 3.396 − 0.280 9.8 − 14.59 0.02490 0.05084
4299.234 2.425 − 0.430 21.1 − 13.56 0.02584 0.05010
4447.718 2.223 − 1.342 5.9 − 16.05 0.02342 0.04301
4466.551 2.832 − 0.590 12.4 − 14.96 0.02520 0.05088
4484.219 3.602 − 0.720 3.4 − 15.35 0.02078 0.04992
4494.563 2.198 − 1.136 7.6 − 16.26 0.02423 0.04895
4528.613 2.176 − 0.822 16.3 − 14.93 0.02450 0.05115
4547.846 3.546 − 0.780 2.0 − 16.44 0.02646 0.05141
4602.940 1.485 − 1.950 2.9 − 17.95 0.02107 0.04621
4611.284 3.654 − 0.670 2.8 − 15.21 0.02335 0.04747
4707.272 3.241 − 1.080 2.7 − 15.76 0.02289 0.05004
4903.308 2.882 − 1.080 3.9 − 15.85 0.02487 0.05074
4918.993 2.865 − 0.370 14.0 − 14.24 0.02469 0.05088
4920.502 2.832 +0.060 29.3 − 12.08 0.02636 0.05265
4966.087 3.332 − 0.890 3.7 − 16.69 0.02211 0.05162
5049.819 2.279 − 1.420 4.7 − 17.23 0.02071 0.04464
5133.681 4.178 +0.140 10.0 − 13.76 0.02473 0.05017
5162.292 4.178 +0.020 8.7 − 14.23 0.02422 0.04991
5281.790 3.038 − 1.020 4.0 − 15.46 0.02387 0.04728
5341.023 1.608 − 2.060 3.5 − 17.63 0.02246 0.06592
5353.373 4.103 − 0.840 1.5 − 15.53 0.02327 0.04369
5364.858 4.446 +0.220 7.5 − 13.94 0.02370 0.05068
5367.479 4.415 +0.350 9.3 − 13.76 0.02557 0.05168
5371.489 0.958 − 1.645 12.3 − 16.95 0.02419 0.04971
5389.479 4.415 − 0.410 1.9 − 15.21 0.02572 0.04028
5569.618 3.417 − 0.540 4.5 − 15.87 0.02460 0.05192
5572.841 3.396 − 0.310 7.6 − 15.01 0.02508 0.05084
5576.090 3.430 − 1.000 2.2 − 14.98 0.02342 0.04979
5615.644 3.332 − 0.140 14.3 − 14.33 0.02563 0.05133
5633.975 4.991 − 0.270 1.6 − 14.59 0.02282 0.04763
6136.615 2.453 − 1.400 3.8 − 17.28 0.02402 0.04708
6137.694 2.588 − 1.403 2.8 − 18.58 0.02271 0.04905
6191.558 2.433 − 1.600 2.8 − 18.58 0.02341 0.04736
6230.726 2.559 − 1.281 4.0 − 16.44 0.02328 0.05124

(41 Fe II lines)
4273.326 2.704 − 3.258 17.2 − 5.30 0.02662 0.05143
4278.159 2.692 − 3.816 7.2 − 5.98 0.02611 0.05284
4296.572 2.704 − 3.010 32.6 − 4.28 0.02764 0.05285
4413.601 2.676 − 3.870 4.2 − 5.66 0.02780 0.04958
4451.551 6.138 − 1.844 8.1 − 1.19 0.03020 0.05623
4472.929 2.844 − 3.430 13.2 − 5.45 0.02412 0.05491
4489.183 2.828 − 2.970 31.7 − 4.54 0.02730 0.05278
4491.405 2.855 − 2.700 38.5 − 4.12 0.02813 0.05322
4541.524 2.855 − 3.050 27.7 − 4.68 0.02737 0.05199
4576.340 2.844 − 3.040 27.6 − 4.70 0.02744 0.05185
4582.835 2.844 − 3.100 19.4 − 5.20 0.02645 0.05223

Table 2 – continued

λ χ low log gf Wobs K qobs
1 qobs

2
(Å) (eV) (dex) (mÅ) (km−1 s) (km−1 s)

4620.521 2.828 − 3.280 15.8 − 5.16 0.02702 0.05118
4635.316 5.956 − 1.650 15.6 − 1.54 0.03032 0.05428
4666.758 2.828 − 3.330 16.4 − 5.56 0.02623 0.05034
4713.193 2.778 − 4.932 5.9 − 6.53 0.03818 0.06809
4731.453 2.891 − 3.360 20.9 − 5.29 0.02692 0.05184
4913.292 10.288 +0.012 2.0 +4.82 0.03830 0.08123
4948.793 10.347 − 0.008 1.9 +5.07 0.03419 0.06236
4951.584 10.307 +0.175 3.3 +2.92 0.03701 0.05541
4977.035 10.360 +0.041 2.1 +4.59 0.03409 0.05122
4993.358 2.807 − 3.650 8.4 − 6.27 0.02610 0.05199
5004.195 10.272 +0.497 6.6 +2.92 0.03372 0.05589
5089.214 10.329 − 0.035 2.5 +3.85 0.02708 0.04168
5106.109 10.329 − 0.276 1.1 0.00 0.04118 0.08262
5127.866 5.570 − 2.535 3.7 − 2.60 0.02657 0.07004
5132.669 2.807 − 4.180 3.1 − 6.21 0.02566 0.05284
5149.465 10.447 +0.396 5.3 +3.63 0.02978 0.04636
5203.638 10.391 − 0.046 1.9 +5.07 0.02968 0.05292
5219.926 10.522 − 0.366 1.2 +3.85 0.02856 0.04502
5272.397 5.956 − 2.030 7.0 − 2.05 0.02980 0.04995
5291.666 10.480 +0.575 5.1 +2.80 0.03584 0.07705
5387.063 10.521 +0.518 4.4 +3.25 0.03395 0.05187
5529.932 6.729 − 1.875 3.5 − 1.36 0.02854 0.05276
5567.842 6.730 − 1.887 2.1 0.00 0.03195 0.05079
5645.392 10.561 +0.085 1.9 +5.07 0.03955 0.05893
5835.492 5.911 − 2.372 1.4 0.00 0.02289 0.04158
6084.111 3.199 − 3.808 4.0 − 7.22 0.02622 0.05076
6147.741 3.889 − 2.721 14.4 − 5.00 0.02691 0.05213
6149.258 3.889 − 2.724 14.0 − 5.14 0.02678 0.05177
6175.146 6.222 − 1.983 4.0 − 2.41 0.02596 0.04678
6248.898 5.511 − 2.696 3.2 − 3.01 0.02396 0.04336

Note. In columns 1–7 are given the line wavelength, lower excitation
potential, logarithm of oscillator strength times lower level’s statistical
weight, observed equivalent width, T-sensitivity parameter, observed first
zero frequency, and observed second zero frequency, respectively. The
atomic data are taken from the compilation of Kurucz & Bell (1995).

original data are available in ‘obsprofs.dat’ of the supplementary
material.

The equivalent widths (Wobs) of these 90 lines were measured
by the Gaussian fitting method, which are in the range of 1 mÅ �
W obs � 40 mÅ. As the ‘standard’ plane-parallel model atmosphere
for Vega, Kurucz’s (1993) ATLAS9 model with Teff = 9630 K,
log g = 3.94, vt = 2 km s−1 (microturbulence), and [X/H] = −0.5
(metallicity) was adopted in this study as in Paper I, which well
reproduces the spectral energy distribution. By using this model
along with the atomic data taken from Kurucz & Bell (1995)’s
compilation, the abundance (Astd; called as ‘standard abundance’)
was derived from Wobs for each line.

In the same manner as in Paper II (cf. section 4.1 therein), the
T-sensitivity parameter K (≡dlog W/dlog T) was then evaluated as

K ≡ (W+100 − W−100)/W obs

(+100 − (−100))/9630
, (1)

where W+100 and W−100 are the equivalent widths computed from
Astd by two model atmospheres with only Teff being perturbed by
+100 K (Teff = 9730 K) and −100 K (Teff = 9530 K), respectively
(while other parameters are kept the same as the standard values).
The ranges of the resulting K values are (roughly) −20 � K � −10
and −5 � K � +5 for Fe I and Fe II lines, respectively.
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Figure 1. Observed spectra of finally selected 49 Fe I lines (first through third panels) and 41 Fe II lines (fourth through sixth panels), which are arranged in the
increasing order of wavelength within each group of species as in Table 2. The actual spectral data (normalised flux plotted against the wavelength displacement
relative to the line centre) are shown by lines, while the selected wavelength portions [λ1, λ2] used for calculating the Fourier transforms are depicted by symbols.
Each spectrum (its continuum level is indicated by the horizontal dashed line) is shifted by 0.02 (2 per cent of the continuum level) relative to the adjacent one.

2.2 Zero frequencies of Fourier transforms

Then, the Fourier transform d(σ ) of the line depth profile Dλ (≡1
− Fλ/Fcont) was calculated for each line as done in Paper II (cf.
section 2.3 therein), and the first and second zero frequencies (σ 1 and
σ 2, in unit of wavelength-1) were measured from the cuspy features

of |d(σ )|, which were further converted to wavelength-independent
quantities (q1 and q2, in unit of velocity−1) for convenience by the
relation q ≡ σ (λ/c) (c: velocity of light). The resulting q1 and q2

are plotted against the line parameters in Fig. 2, from which the
following arguments can be made:
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Figure 2. The first zero frequencies (q1: circles) and second zero frequencies (q2: triangles) of Fourier transforms, which were calculated from the observed
profiles of 90 Fe lines, are plotted against (a) λ (wavelength), (b) K (T-sensitivity parameter), (c) χ low (lower excitation potential), and Wobs (observed equivalent
width). The filled and open symbols correspond to Fe I and Fe II lines, respectively. In panel (a), the classical q1(λ) and q2(λ) values derived from the conventional
rotational broadening function corresponding to vesin i = 20, 21, 22, 23, and 24 km s−1 (which were derived from equations 3, 4, and 6 in Paper II) are depicted
by solid lines.

(i) These zero frequencies show an appreciable line-dependent
scatter; especially, those of a fraction of Fe II lines are remarkably
higher in comparison with the theoretical values expected from the
classical rotational broadening function (cf. Fig. 2a)

(ii) This implies that the conventional Fourier analysis of spectral
line profiles, which assumes that the observed profile is expressed
by a convolution of the rotational broadening function and thus the
zero frequency of the rotational broadening function (dependent on
vesin i) should be simply inherited in the observed transform equally
for any line, is no more applicable for precise vesin i determination
in this case.

(iii) The cause for this scatter in q1 as well as q2 is that they tend to
systematically increase with K as shown in Fig. 2(b). This is because
the line profile characteristics are determined by this T-sensitivity
parameter; that is, a line of small/negative K (e.g. weak Fe I line of
low excitation) shows a boxy U-shape, while that of large/positive K
(e.g. weak Fe II line of high excitation) has a sharp V-shape. Such a
difference in the line profile (even if very subtle) is reflected by the
position of zero frequency, which is actually verified by theoretical
calculations based on the gravity-darkened rotating star model (cf.
Section 3.3).

(iv) These q1 and q2 also show some systematic trends with respect
to χ low (Fig. 2c) and Wobs (Fig. 2d); however, they can be reasonably
explained by the dependence of K on χ low and Wobs, as discussed in

appendix A2 of Paper II. Accordingly, it is the difference in K that
causes the line-by-line different characteristics in the profile (and the
zero positions).

The atomic line data and the values of Wobs, K, q1, and q2 for 90
lines are presented in Table 2. Besides, more complete data (including
Astd and the main lobe height as well as the first sidelobe height) are
summarised in ‘obsparms.dat’ of the supplementary material.

3 MODELLI NG O F LI NE PRO FI LES

3.1 Adopted model parameters

Regarding the simulation of theoretical line profiles of a gravity-
darkened rotating star, this study follows the same assumptions and
procedures (including the adopted set of parameters for Vega) as
described in Paper I, where the stellar mass (M), rotational velocity
at the equator (ve), inclination angle of rotation axis (i), polar radius
(Rp), and polar effective temperature (Teff,p) are the fundamental
parameters to be specified.

The mass was fixed at M = 2.3 M�. 10 ve values were chosen as
22, 100, 125, 150, ··· 275, and 300 km s−1 (numbered as models 0, 1,
2, 3, ···, 8, and 9), and the corresponding i values were derived from
the assumption of vesin i = 22 km s−1 (which is a reasonable value
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Table 3. Parameters of adopted models for rotating Vega.

Model ve i Rp Re Teff,p Teff,e log gp log ge Remark
number (km s−1) (deg) (R�) (R�) (K) (K) (cm s−2) (cm s−2)

0 22 90.0 2.700 2.700 9630 9630 3.937 3.937 Gravity effect suppressed.
1 100 12.7 2.640 2.722 9698 9399 3.956 3.956 –
2 125 10.1 2.600 2.726 9750 9281 3.969 3.884 –
3 150 8.4 2.560 2.740 9806 9126 3.983 3.858 –
4 175 7.2 2.520 2.763 9867 8931 3.997 3.823 Nominated model in Paper I.
5 200 6.3 2.470 2.784 9932 8695 4.014 3.783 Best model concluded in this study.
6 225 5.6 2.410 2.799 10000 8416 4.035 3.736 –
7 250 5.0 2.360 2.837 10074 8072 4.054 3.669 –
8 275 4.6 2.300 2.869 10151 7787 4.076 3.587 –
9 300 4.2 2.240 2.908 10233 7546 4.099 3.477 –

Note. Given are the model number, equatorial rotation velocity, inclination angle, radius, effective temperature, and logarithmic surface gravity at
the pole as well as the equator. These models are the same as adopted in Paper I (cf. table 1 therein). Note that vesin i is assumed to be 22 km s−1

in all these models.

for Vega). Based on the requirement of spectral energy distribution,
Rp and Teff,p can be expressed as second-order polynomials in terms
of ve (cf. equations 1 and 2 in Paper I). The model parameters for
each of the 10 models are summarised in Table 3, which is the
same as table 1 in Paper I. Note that model 0 (ve = 22 km s−1 and
i = 90◦) is a special model different from others, in the sense that
it is a spherically symmetric rigid model where the gravity effect
(darkening and distortion) is intentionally suppressed. This model 0
is almost equivalent to the ‘standard model’ mentioned in Section 2.1.

3.2 Simulation of line profiles

The emergent line flux profile was simulated with the program
CALSPEC (cf. section 4.1 in Paper I) by integrating the intensity
profile at each point on the visible disc, which was generated by
using the local model atmosphere corresponding to Teff(�), g(�),
vt = 2 km s−1, and [X/H] = −0.5 (where � is the co-latitude).

Here, a point to notice is how to assign the elemental abundance
(A). If Astd (standard abundance derived from the classical plane-
parallel model) is simply used, the equivalent width of the calculated
line profile (Wcal) turns out generally stronger than Wobs because
of the gravity darkening effect,2 and this discrepancy progressively
increases towards higher ve (as can be recognized in figs 4 and 5 in
Paper I). In Paper I, this problem was circumvented by renormalising
the calculated profile (cf. equation 7 therein) so as to force Wcal =
Wobs, although its validity was not necessarily clear.

Fortunately, this equality does not have to be strictly realised in the
present case of Fourier analysis, because it is the ‘characteristics’ of
the line shape that are essential. Accordingly, the following procedure
was adopted in this study:

(i) First, the provisional equivalent width Wj
∗ (j = 0, 1, 2, ···, 9)

was calculated with CALSPEC for each model by using Astd.
(ii) Then, the corresponding abundance Aj

∗ was derived from Wj
∗

with the help of Kurucz (1993)’s WIDTH9 program by using the
standard plane-parallel model (cf. Section 2.1).

(iii) The abundance difference defined as 	Aj ≡ Astd − Aj
∗

(which is mostly negative) is used as abundance correction to be

2Although Astd was simply used in Paper II for all models irrespective of ve,
it did not cause any serious problem because ve-dependent gravity darkening
effect was not so large as to cause a significant Wcal versus Wobs discrepancy
in the ve range (≤150 km s−1) inspected therein.

applied to Astd; that is, the abundance actually adopted in CALSPEC
for calculating the profile corresponding to model j is Astd + 	Aj.

It should be remarked that this procedure is based on two assumptions
that (i) the classical curve of growth (log W versus A relation) for the
plane-parallel model is applicable even for the gravity-darkened case,
and (ii) the absolute change of log W in response to perturbation by
±	A around Astd in this curve of growth is almost the same (i.e.
locally linear). Despite these rough approximations, the discrepancy
between Wcal and Wobs seen for the case of simply using Astd is
considerably reduced by application of this correction (	A), as
shown in Fig. 3.

3.3 Fourier transform and the trend of first zero

By using such corrected abundances, the theoretical line profiles were
simulated for each of the 10 models and their Fourier transforms were
computed, from which q

j

1 and q
j

2 (j = 0, 1, 2, ···, 9) were measured.
These q

j

1 and q
j

2 values along with the adopted abundance corrections
(	Aj) for all 90 lines are given in ‘calparms.dat’ of the supplementary
material.

As demonstrative examples, the simulated profiles of Fe I 5133.681
(K = −13.76) and Fe II 4951.584 (K = +2.92) lines and their Fourier
transform amplitudes, which were calculated for models 0, 1, 3,
5, 7, and 9, are illustrated in Fig. 4, where the observed data are
also overplotted for comparison. It can be seen from Fig. 4 that the
behaviours of zero frequency for these two lines of different K are
just the opposite in the sense that q1 of Fe I 5133.681/Fe II 4951.584
moves towards lower/higher direction as the gravity darkening effect
is enhanced with an increase in ve.

From now on, our discussion focuses only on the first zero
frequency (q1), which is less affected by measurement errors or
noises in comparison to q2. In order to elucidate the trend of q1

as a function of K and ve, the q1 values are plotted against K in
Figs 5(a)–(f) (each corresponding to models 0, 1, 3, 5, 7, and 9,
respectively). Besides, the linear regression lines (determined from
the q1 versus K plots for Fe I and Fe II lines separately) are also shown
in each panel, and these regression lines for all models are depicted
together in Fig. 5(g). An inspection of Fig. 5 reveals the following
characteristics:

(i) q1 generally increases with an increase in K, which was already
mentioned in Section 2.2 in reference to Fig. 2(b). The q1 values for
Fe I lines are generally smaller than those of Fe II lines because of
the difference in K.
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Figure 3. Graphical illustration describing how the abundance correction
applied to the standard abundance (cf. Section 3.2) improves the discrepancy
between the observed (Wobs) and calculated (Wcal) equivalent widths for each
line, where Wcal (upper panels) and log (Wcal/Wobs) (lower panels) are plotted
against Wobs. The left-hand panels (a, c) correspond to the case of using
the standard (uncorrected) abundances, while the right-hand panels (b, d)
correspond to the case of using the corrected abundances. The results for
models 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are denoted by filled circles, filled
triangles, filled inverse triangles, filled squares, open circles, open triangles,
open inverse triangles, open squares, St. Andrew’s crosses (×), and Greek
crosses (+), respectively. (The symbols for model 0, models 1–3, models 4–6,
and models 7–9 are coloured in black, blue, green, and red, respectively.)

(ii) The slope of the q1 versus K plots is a systematic function of ve;
i.e. it becomes progressively steeper with an increase in ve (Fig. 5g).
This is a useful property for estimating ve from the observed q1–K
relation.

(iii) The sensitivity of q1 to a change in ve also depends on K (cf.
Fig. 5h). While 〈dq1/dve〉 � 0 holds for most lines of K � 0 (all Fe I

lines and many Fe II lines), a group of high-excitation Fe II lines (χ low

∼ 10 eV; such as Fe II 4951.584 in Fig. 4) with positive K indicates
〈dq1/dve〉 > 0.

4 R ESULT AND DISCUSSION

4.1 Rotational velocity of Vega

Now that the observational data of zero frequencies (qobs
1 ) as well as

the corresponding theoretically calculated values (qcal,j
1 for j = 0, 1,

···, 9) to be compared are all set for 90 lines, we can address the main
task of investigating Vega’s rotational velocity, while following the
same procedure as adopted in Paper II (cf. section 4.3 therein).

The observed qobs
1 values are plotted against K in Fig. 6. As seen

from this figure, these qobs
1 data show an increasing tendency with

K and those for Fe I and Fe II lines are distributed in separate two
groups, which is quite similar to the theoretical predictions mentioned
in Section 3.3 (cf. Figs 5a–f). Therefore, there is a good hope of
successfully establishing ve by comparing qobs

1 and qcal
1 for many

lines altogether.
Since the actual value of vesin i (hereinafter denoted as x for

simplicity) is likely to be slightly different from 22 km s−1 assumed

for calculating the modelled profiles, q
th,j

1 should be multiplied by
a scaling factor (22/x) to allow for this possible difference. The
standard deviation defined as

σ
(
xi, vj

e

) ≡
√∑N

n=1

[
qobs

1 (n) − q
cal,j
1 (n)(22/xi)

]2

N
(2)

was computed for each combination of (xi, vj
e ), where xi = 15.0 + 0.2i

(i = 0, 1, ···, 75) and vj
e = 100 + 25(j − 1) (j = 1, 2, ···, 9). Here, n

is the index of each line and N is the total number of the lines used.
As in Paper II, Fe I lines (N = 49) and Fe II lines (N = 41) are treated
separately. The best (x, ve) solution may be found by searching for
the location of σ minimum.

The behaviours of the resulting σ (3D surface and contour plots)
are displayed in Fig. 7 (left- and right-hand panels are for Fe I

and Fe II, respectively). The trace line connecting (x∗, ve) is also
overplotted by the dashed line, where x∗ corresponds to the minimum
of σ trough for each ve (in Table 4 are given the actual data of x∗

and the corresponding σ ∗). Besides, the run of σ with ve across the
tracing is depicted in Fig. 8(a), and the tracings for both species are
drawn together in Fig. 8(b).

An inspection of Fig. 8 yielded satisfactory results, because three
kinds of (x, ve) solutions turned out consistent with each other:
(191, 21.8) from the minimum of σ I (Fig. 8a), (194, 21.5) from the
minimum of σ II (Fig. 8a), and (201, 21.5) from the intersection of
two trace lines (Fig. 8b).

The uncertainties involved in x∗ were estimated as ∼0.14 km s−1

(Fe I) and ∼0.36 km s−1 (Fe II),3 which are indicated by dashed
lines in Fig. 8(b). From this figure, errors in ve and x were roughly
evaluated (from the size of the parallelogram area embraced by
four dashed lines around the intersection) as ∼±15 km s−1 and
∼±0.3 km s−1, respectively.

Consequently, by averaging these three solutions, Vega’s equa-
torial and projected rotational velocities were concluded as ve =
195(±15) km s−1 and vesin i = 21.6(±0.3) km s−1, which further
result in i = 6.4◦(±0.5◦). Among the 10 models adopted in this study
(cf. Table 3), model 5 (ve = 200 km s−1) is the most preferable model;
this can be actually confirmed in Fig. 6, where the linear-regression
lines defined in Fig. 5(b)–(f) are overplotted (after the ve-dependent
difference between x∗ and 22 has been corrected).

4.2 Comparison with previous results

As mentioned in Section 1, although the considerably large differ-
ences of Vega’s ve amounting to �100 km s−1 seen in the literature
of early time were reduced in the more recent results (most of them
were published within several years around 2010), they are still
diversified ranging from ∼170 to ∼230 km s−1. Interestingly, the
ve value (∼200 km s−1) derived in this study is almost in-between
this dispersion. It may be worth briefly reviewing these literature ve

values (published since Paper I; cf. Table 1) in comparison with the
consequence of this investigation.

(i) Line profile method:
Paper I’s result (175 km s−1) based on the conventional profile fitting
has been revised upwards by ∼+20 km s−1 in this reinvestigation by
applying the Fourier transform method to line profiles. While Yoon
et al. (2010)’s 236 km s−1 is somewhat too large, Hill, Gulliver &

3This estimation is based on the relation δx/x ∼ δq1/q1, where δq1 ∼ σ/
√

N .
See section 4.3 in Paper II for more details.
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Figure 4. Theoretical line profiles (top panels) and their Fourier transform amplitudes (middle/bottom panels for wide/zoomed view) of Fe I 5133.681 (left-hand
side) and Fe II 4951.584 (right-hand side) calculated for models 0 (black dashed line), 1 (black solid line), 3 (purple solid line), 5 (blue solid line), 7 (green solid
line), and 9 (red solid line); the observed data are also overplotted by light green symbols. In the middle/bottom panels, the positions of qclassical

1 and qclassical
2

corresponding to the classical rotational broadening function (cf. equations 3, 4, and 6 in Paper II) are indicated by vertical dotted lines for comparison.

Adelman (2010)’s 211 km s−1 is in tolerable agreement as compared
with the present result.

(ii) Interferometry method:
Monnier et al. (2012)’s conclusion of ve = 197 km −1 (derived from
vesin i and i given in their table 2 as Model 3) based on optical
interferometry is in good agreement with this study. Actually, fig. 2
of Monnier et al. (2012) shows that their Model 3 matches well with
model 5 (ve = 200 km s−1) of Paper I.

(iii) Magnetic modulation method:
Vega’s rotational period (P) was directly determined by way of
detecting the magnetic modulation based on time-sequence data of
spectropolarimetric observations: 0.732 d (Petit et al. 2010), 0.678 d

(Alina et al. 2012), 0.623 d (Butkovskaya 2014), and 0.678 d (Böhm
et al. 2015). Among these four, it is the P-value of 0.678 d derived
by both Alina et al. and Böhm et al. that is most consistent with the
ve result (195 km s−1) of this investigation, which corresponds to P
= 2πRe/ve = 0.685 d (where Re = 2.784 R� for model 5 is adopted).

4.3 Advantage of Fourier analysis

Finally, some comments may be in order regarding the superiority
of exploiting the zero frequency (q1) measured from the Fourier
transform of line profiles in comparison with the ordinary profile
fitting approach in the wavelength domain.
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Figure 5. Panels (a)–(f) show the simulated relationships between q1 (first zero frequency) and K (T-sensitivity parameter) for the 49 Fe I (red filled symbols)
and 41 Fe II lines (blue open symbols) calculated for models 0, 1, 3, 5, 7, and 9, respectively. The size and shape of the symbols denote the difference in line
strengths: circles · · · W obs < 5 mÅ, triangles ··· 5 mÅ ≤Wobs < 10 mÅ, squares ··· 10 mÅ ≤Wobs < 20 mÅ, and diamonds ··· 20 mÅ ≤Wobs < 40 mÅ. The
linear regression lines derived from these q1 versus K plots (separately for Fe I and Fe II) are also overplotted by solid lines in each of the panels (a)–(f), and
those for all 10 models are put together in panel (g). The three horizontal dotted lines represent the classical q1 values (corresponding to vesin i = 22 km s−1)
for the limb-darkening coefficient (ε) of 0.3, 0.4, and 0.5 (cf. equation 3 in Paper II). In panel (h) are plotted the mean gradients 〈dq1/dve〉 (in unit of km−2 s2;
averaged over ve between 100 and 300 km s−1) against K, which were computed from the coefficients of quadrature fit (q1 = A + Bve + Cv2

e ) as B + 2C ×
(100 + 300)/2 (i.e. dq1/dve at the mid-ve).

The distinct merit of using q1 is that it can discern very subtle
differences in the profile shape. Fig. 4 provides a good demonstrative
example. While the profile of Fe I 5133.681 undergoes a compara-
tively easy-to-detect change with an increase in ve (Fig. 4a), that of
Fe II 4951.584 is apparently inert (Fig. 4b), which means that getting
information on ve from the profile of the latter is more difficult
(this is the reason why Fe II lines could not be used for determining
ve in Paper I). However, the situation is different in the Fourier
space, where the shift of q1 (reflecting the change of line profile) is
sufficiently detectable with almost the same order of magnitude for

both cases (cf. Figs 4e and f). Accordingly, Fe I as well as Fe II lines
are equally usable for ve determination if q1 is invoked, as done in
this study.

Besides, q1 is precisely measurable and easy to handle as a single
parameter, which is a definite advantage from a practical point
of view. Actually, q1 data of many lines can be so combined as
to improve the precision of ve (while statistically estimating its
error) as done in this paper. Such a treatment would be difficult
in the conventional approach of fitting the observed and theoretical
profiles.
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Figure 6. Observed q1 values of Fe I and Fe II lines plotted against K, where
the meanings of the symbols are the same as in Fig. 5. The averaged trends
(gradients) of theoretical q1 versus K relations calculated for models 1, 3, 5, 7,
and 9 (determined by linear-regression analysis; cf. Fig. 5) are also depicted
by solid lines, which were multiplied by a scaling factor of 22/x∗ in order to
adjust the difference between the actual vesin i (≡x) and the assumed value
(22 km s−1) in the profile calculation (see Table 4 for the ve-dependent values
of x∗).

4.4 Line profile classification using q1 and K

Another distinct merit of q1 is that it provides us with a prospect
for quantitative classification of spectral line shapes founded on a
physically clear basis. Since the discovery around ∼1990 that a
number of spectral lines in Vega (e.g. weak lines of neutral species)
show unusual profiles of square form, there has been a tendency
to pay attention to this specific line group (e.g. compilation of flat-
bottomed lines in Vega by Monier et al. 2017). However, the actual

Table 4. Behaviours of σ trough for Fe I and Fe II lines.

Model ve x∗
I x∗

II σ ∗
I σ ∗

II
number (km s−1) (km s−1) (km s−1) (km−1 s) (km−1 s)

1 100 23.9601 21.4741 0.0011587 0.0034953
2 125 23.4263 21.4789 0.0011351 0.0034061
3 150 22.8475 21.5036 0.0011152 0.0033180
4 175 22.2098 21.5175 0.0010961 0.0032541
5 200 21.5720 21.5339 0.0010948 0.0032388
6 225 21.0187 21.6385 0.0010991 0.0032970
7 250 20.4830 21.7954 0.0011235 0.0034459
8 275 20.0921 22.0538 0.0011457 0.0036829
9 300 19.8300 22.3655 0.0011607 0.0039852

Note. These data show the characteristics of the trough in the σ (x, ve) surface
(x ≡ vesin i) defined by equation (2) for each group of Fe I and Fe II lines.
x∗ is the x value at the minimum σ (x, ve) for each given ve, and σ ∗ is the
corresponding σ (x∗, ve). The trace of x∗ as a function of ve is shown by the
dashed line in the contour plot of Fig. 7.

situation of Vega’s spectral lines in general is not so simple as to be
dichotomized into two categories of normal and peculiar profiles; as
a matter of fact, the individual profiles of most lines should more or
less have anomalies of different degree. Unfortunately, the detection
of such details has been hardly possible so far, because the judgement
of profile peculiarity was done by simple eye inspection due to
the lack of effective scheme for describing/measuring the delicate
characteristics of line profiles.

The first zero frequency (q1) is just what is needed in this context,
which is not only sensitive to a slight difference of line shape but
also easily measurable in the Fourier space. Moreover, thanks to
its close relationship with K, the behaviour of q1 (representing the
line shape characteristics) can be reasonably explained in terms
of the underlying physical mechanism. We now have a unified

Figure 7. Graphical display of the behaviour of σ , which is the standard deviation between the simulated qcal
1 (x, ve) (where x ≡ vesin i) and the observed qobs

1
for each of the Fe lines, where the results for Fe I and Fe II lines are separately displayed in the left- and right-hand panels, respectively. Each set consists of
the 3D representation of the σ (x, ve) surface (upper panel) and the contours of σ on the x–ve plane (lower panel). The trace of trough bottom (connection of x∗
values at the minimum σ for each given ve; cf. Table 4) is indicated by the dashed line in the contour plot.
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Figure 8. (a) σ versus ve relation along the trough bottom for Fe I (filled
symbols) and Fe II (open symbols); in each case, the position of minimum σ

(evaluated by interpolation) is indicated by an arrow. Note that σ II (σ for Fe II)
is reduced by a factor of 1/3 in this figure. (b) The traces of trough bottoms
for Fe I and Fe II (dashed lines in the contour panels of Fig. 7) are plotted
together in the ve versus x plane by solid lines (the intersection is shown by
the double circle), while the dashed lines indicate the error bars involved in x
(±0.14 km s−1 for Fe I and ±0.36 km s−1 for Fe II). The minimum positions
of σ I and σ II are also indicated by Greek cross (+) and St. Andrew’s cross
(×), respectively.

understanding as to why different spectral lines exhibit diversified
profiles in Vega, as summarised below.

(i) It is the parameter K (temperature sensitivity) that essen-
tially determines the observed line shape. The contribution to the
important shoulder part of the profile away from the line centre
(|	λ| � λve sin i/c) is mainly made by the light coming from near
to the gravity-darkened limb of lowered T. Accordingly, lines of K
< 0, K ∼ 0, and K > 0 show boxy (U-shaped), normally round
(like classical rotational broadening), and rather peaked (V-shaped)
profiles, each of which results in appreciably different q1 values.
For example, in Fig. 4, these three groups correspond to those of
lower q1 (∼0.025 km−1s), medium q1 (∼0.03 km−1s), and higher q1

(∼0.035 km−1s), respectively.

(ii) The peculiarity degree of the line shape (i.e. departure from the
classical rotationally broadened profile) is described by K, because
(q1 − qclassical

1 ) ∝ K (qclassical
1  0.03 km−1s) and the gradient (>0) of

this relation progressively increases with ve, as manifested in Fig. 5.
As such, the profile of any line in Vega can be reasonably predicted
if K and ve are specified.

(iii) As explained in appendix A of Paper II, the value of K for
each spectral line depends on χ low (lower excitation potential) and
W (equivalent width). It is important to note that the line strength
affects K in the sense that |K| tends to decrease with an increase in W
(i.e. as the line becomes more saturated), which means that chemical
abundances are implicitly involved. In the present case of A-type
stars, K values for Fe I lines are determined mainly by W, while
those for Fe II lines are determined primarily by χ low (cf. fig. A1 in
Paper II), which are also indicated from Figs 2(c) and (d).

(iv) These behaviours of K in terms of the line parameters
reasonably explain why different spectral lines of Vega reveal
various characteristic shapes. For example: (1) Flat-bottom profiles
(manifestation of K < 0) are seen in Fe I lines but not in Fe II lines,
because of the distinct difference in K between these two line groups;
i.e. −20 � K(Fe I) � −10 and −5 � K(Fe II) � +5. (2) The reason
why typical flat-bottomed shape is observed mainly in weak Fe I

lines (e.g. 4707.272, 4903.308 with W of several mÅ) but not clearly
in moderate-strength Fe I lines (e.g. 4202.028, 4920.502 with W of
a few tens mÅ) is that the (negative) K values of the former group
are generally lower than those of the latter owing to the dependence
on W. (3) Regarding Fe II lines, some lines have clearly peaked V-
shape (e.g. Fe II 5004.195 with χ low = 10.272 eV and K = +2.92)
while others exhibit rather rounded profile (e.g. Fe II 4993.358 with
χ low = 2.807 eV and K = −6.27), which is naturally attributed to
the apparent distinction of K (the sign is inversed) due to the large
difference in χ low.

5 SU M M A RY A N D C O N C L U S I O N

It is known that the sharp-line star Vega (vesin i ∼ 20 km s−1)
is actually a rapid rotator seen nearly pole-on with low i (<10◦).
However, its intrinsic rotational velocity is still in dispute, for which
rather diversified values have been published.

In the previous studies (including Paper I by the author’s group),
analysis of spectral line profiles has been often invoked for this
purpose, which contain information on ve via the gravity darkening
effect, However, it is not necessarily easy to reliably determine ve

by direct comparison of observed and theoretically simulated line
profiles. Besides, this approach is not methodologically effective
because it lacks the scope for combining many lines in establishing
the solution.

Recently, the author applied in Paper II the Fourier analysis to the
profiles of many Fe I and Fe II lines of Sirius A and estimated its ve

by making use of the first zero (q1) of the Fourier transform, which
turned out successful. Therefore, the same approach was decided to
adopt in this study to revisit the task of establishing ve of Vega.

As to the observational data, the same high-dispersion spectra of
Vega as adopted in Paper I were used. From the Fourier transforms
computed from the profiles of selected 49 Fe I and 41 Fe II lines, the
corresponding zero frequencies were measured for the analysis. The
K values (T-sensitivity parameter) of these Fe lines are in the range
of −20 � K � −10 (Fe I lines) and −5 � K � +5 (Fe II lines).

Regarding the gravity-darkened models of rotating Vega, the
model grid (comprising 10 models) arranged in Paper I was adopted,
which cover the ve range of 100–300 km s−1 while assuming vesin i
= 22 km s−1 as fixed. The theoretical profiles of 90 lines were
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simulated for each model, from which Fourier zero frequencies were
further evaluated.

An inspection of these qcal
1 values for the simulated profiles

revealed an increasing tendency with K and the slope of this
trend becomes steeper towards larger ve, which suggests that ve is
determinable by comparing qcal

1 (K, ve) with observed qobs
1 for many

lines of different K.
It turned out that ve and vesin i could be separately established by

the requirement that the standard deviation of the residual between
qcal

1 and qobs
1 be minimized (while taking into account the difference

between the actual vesin i and 22 km s−1 assumed in the model
profiles), and independent analysis applied to two sets of Fe I and
Fe II lines yielded solutions consistent with each other.

The final parameters of Vega’s rotation were concluded to be vesin i
= 21.6(±0.3) km s−1, ve = 195(±15) km s−1, and i = 6.4(±0.5)◦.
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