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ABSTRACT
We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6
million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected
in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding
to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have
∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated
variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of
individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various
unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off,
and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable
other researchers to access the outputs of the SuperWASP variable stars project.
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1 IN T RO D U C T I O N

Variable stars are key to investigating and testing stellar astrophysics,
and the dynamics and structure of stellar systems. The detection,
classification, and study of classes of variable stars is therefore
an important pursuit. Typically, variable stars are detected through
amplitude and period variations in their photometric light curve.
Classifications of periodic variables based on their light curve are not
always conclusive, but instead give a strong indication of variable
type, and can be used to identify candidates for spectroscopic and
photometric follow-up.

The full SuperWASP photometric archive contains >30 million
light curves of relatively bright stars (V ≤ 15), observed with
a high cadence (as short as 30 s) and long baseline (∼11 yr). A
previous period search using the first few years of the SuperWASP
archive enabled a significant amount of research in the field of
stellar variability, including the identification of 140 short-period
eclipsing binaries close to the period cut-off (Lohr et al. 2013), the
identification of period change in post-common-envelope eclipsing
binary systems to search for circumbinary planets (Lohr et al. 2014),
the discovery of a doubly eclipsing quintuple system (Lohr et al.
2015b), the identification of period change in ∼1400 eclipsing
binaries (Lohr et al. 2015a), the discovery of a δ Sct star in an
eclipsing binary (Norton et al. 2016), the study of ∼5000 RR Lyrae
stars and identification of ∼800 Blazhko effect systems (Greer et al.
2017), and the study of rotationally modulated variables (Thiemann,
Norton & Kolb 2020). A more recent re-analysis of this archive
detected ∼8 million potential periods in ∼3 million unique objects
(Norton 2018).

� E-mail: heidi.thiemann@open.ac.uk

There have been previous attempts at using machine learning
algorithms and artificial neural networks, often called neural net-
works (NN), to automate the classification of SuperWASP variable
stars (SVS) from the raw data, including Payne (2013), who used
three NNs to process a range of parameters that defined the shape
of the phase-folded light curve. They processed over 4.3 million
periods, giving ∼1.1 million preliminary classifications. However,
these NNs found only partial success, identifying 75 per cent of light
curves correctly. As an alternative to machine learning, the SVS
Zooniverse1 project is instead using citizen science to classify the 1.6
million folded light curves referred to above. In this paper, we present
the first analysis of SVS, containing over 1 million classifications,
corresponding to over 500 000 unique object–period combinations.

The SVS project was launched on 2018 September 5 and had
engaged ∼4500 volunteers at the time of this analysis. This anal-
ysis acts as a preliminary look at the Zooniverse classifications,
demonstrating that SVS can be used for both population studies and
for identifying rare and unique variables. This analysis will guide
how we develop the project as it gains more volunteer and machine
learning classifications. In Section 2, we describe the SuperWASP
data; in Section 3 we describe the Zooniverse project; in Section 4
we summarize our results including the identification of new and
unique stellar variables; in Section 6 we draw our conclusions.

2 SUPERWA SP PERI ODI CI TY CATA LOGUE

SuperWASP (Pollacco et al. 2006) surveyed almost the entire night
sky using two identical observatories in La Palma, Canary Islands,
and Sutherland, South Africa. Each robotic observatory consisted of

1www.zooniverse.org/projects/ajnorton/superwasp-variable-stars
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eight cameras each with a 14 cm aperture and a 7.8 × 7.8 deg2 field
of view, allowing for a total sky coverage of ∼500 deg2 per exposure.
The survey excludes the Galactic plane where the large pixel scale
of 16.7 arcsec pixel−1 prevents separation of signals from individual
stars in this dense stellar region. SuperWASP observations were
reduced using the pipeline described in Pollacco et al. (2006). Over
the course of ∼2800 nights between 2004 and 2013, SuperWASP
accumulated ∼16 million images containing ∼580 billion data
points corresponding to ∼31 million unique stars (Norton 2018).
The SuperWASP data set therefore provides a high cadence and
long baseline of observations for more than 30 million stars with
magnitudes between V = 8−15.

For SuperWASP observations, 1 count s−1 after background sub-
traction is roughly equivalent to V ∼ 15. Therefore the mean
SuperWASP magnitude is defined as V = −2.5 log10( F

106 ), where
F is the mean SuperWASP flux and the pseudo-V magnitude is
comparable to the Tycho V magnitude. A typical object in the
SuperWASP archive will have ∼20 000 observations in its light
curve. While the SuperWASP data can contain a significant level
of noise, the long baseline of observations can often compensate for
this in phase-folded light curves.

SuperWASP photometry is carried out by placing apertures on the
images at pre-defined positions identified using the USNO catalogue
as an input. However, the large pixel size of the individual cameras
means that it is possible that a single star can be associated with two
or more different identifiers in the SuperWASP archive, and that light
from multiple stars can appear within the same photometric aperture.
Typically, there is only a single (or dominant) star in the aperture, so
association with a specific object is possible, but that is not always
the case. Hence, in each case confirmatory photometry with a small
point spread function is necessary to confirm exactly which object is
variable.

Norton (2018) recently performed a re-analysis of the entire Super-
WASP archive with the aim of detecting all periodic variables. The
re-analysis comprised a one-dimensional CLEAN power spectrum
analysis (based on the technique outlined by Roberts, Lehar & Dreher
1987) as well as a phase dispersion minimization and folding analysis
(following the method of Davies 1990). Only periods that were
significantly detected using both methods were considered to be
plausible. For each light curve, all periods that passed these criteria
were recorded, with a significance value recorded from both the
folding analysis and the Fourier analysis. The periods identified have
an average uncertainty of ∼±0.1 per cent.

This re-analysis detected ∼8 million candidate periods of stellar
variables in ∼3 million unique objects, shown in Fig. 1. A significant
number of period detections result from systematic effects in the
SuperWASP photometric data, resulting in the detection of periods
close to integer fractions or multiples of a sidereal day or lunar
month (i.e. 1, 1/2, 1/4 d, etc.). Periods flagged as affected by one
of these effects were removed from the data set, leaving 1569 061
candidate periods in 767 199 unique objects, shown in Fig. 2. Clearly,
some genuine periods will have been rejected by this method, but if
we extrapolate across the gaps, the rejected genuine periods should
amount to no more than 5 per cent of the total. The SuperWASP
periodicity catalogue is available on the Warwick SuperWASP
archive2 as the table period ajn5.

To generate subjects for SVS (Norton 2018), light-curve data for
objects with one or more potentially genuine periods listed in the
SuperWASP Periodicity Catalogue were used. The data for each

2http://wasp.warwick.ac.uk/archive/docs/index.shtml

Figure 1. Histogram of the identified periods in all objects in the SuperWASP
Periodicity Catalogue. There are significant numbers of excess periods close
to integer multiples or fractions of a sidereal day or lunar month, indicated
by the coloured vertical lines (the red lines correspond to fractions of a day;
the light blue corresponds to multiples of a day; the dark blue corresponds
to the monthly and longer cycles). All such periods are flagged and may be
discarded. The upper panel shows the cumulative period histogram, while the
lower one, whose vertical axis is truncated, shows the regular histogram.

selected object were folded at each of its potential periods and
then rendered to produce a set of one or more phase-folded light
curve images. Each image displays the raw photometric data points,
overlaid with the mean profile in 100 phase bins, an example of
which is shown in Fig. 3.

3 C I TI ZEN SCI ENCE

The Zooniverse3 (Lintott et al. 2008) is the world’s most popular
platform for ‘people-powered research’, where a community of
volunteers, or ‘citizen scientists’, can participate in real scientific
research through simple tasks such as analysing and categorizing
large data sets. This approach, using the ‘wisdom of the crowd’, can
be used to greatly improve the accuracy and speed with which data
can be analysed and classified. Despite minimal training and subject
matter expertise, Zooniverse volunteers have proven time and time

3www.zooniverse.org
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SuperWASP variable stars 1301

Figure 2. Histogram of all un-flagged periods corresponding to objects in the
SuperWASP Periodicity Catalogue. The coloured vertical lines indicate where
flagged periods have been removed (the red lines correspond to fractions of a
day; the light blue corresponds to multiples of a day; the dark blue corresponds
to the monthly and longer cycles). The upper panel shows the cumulative
period histogram, while the lower one shows the regular histogram.

again that non-experts can achieve a good level of accuracy, and can
identify unusual objects that automated algorithms will often miss.

SVS launched on 2018 September 5, with the aim of classifying
the output of the SuperWASP Periodicity Catalogue (Norton 2018).
The aim of SVS is threefold: to identify rare variable stars, to identify
populations of variable stars in order to probe the extremes and trends
of each population, and to facilitate the future development of a web
portal in order to give researchers and the public access to the output
of this project.

We constructed the SVS project using the Zooniverse project
builder platform,4 creating a classification task, tutorial, and ‘Field
Guide’ that provides example light curves and guidance for classifi-
cation. There is also an option for volunteers to report their findings
in the ‘Talk’ section, where they can discuss individual light curves,
highlight unusual and rare ones, and identify which objects have
already been detected in other data bases.

The classification of variable stars can be difficult, with 211
variable star types and sub-types listed in the International Variable
Star Index5 (VSX; G39). The noise level of the SuperWASP light

4www.zooniverse.org/lab
5www.aavso.org/vsx/index.php

Figure 3. Upper panel: Volunteers are first tasked with classifying each
light curve as a generic variable type. This example shows an EW folded at
half the correct period. Lower panel: If a volunteer chooses a classification
of EA/EB, EW, or pulsator, they are asked to choose whether the period is
correct or not.

curves often makes it difficult to distinguish between similar types
of variables. However, to be successful, Zooniverse, projects must be
accessible to non-subject matter experts. We therefore ask volunteers
to classify light curves into the following generic and overarching
variable types:

(i) Pulsators: stars that display periodic changes in brightness due
to changes in the star’s size and luminosity as its outer layers expand
and contract in a regular manner. This category includes RR Lyrae, δ
Scuti, Cepheid variables, and Mira variables. Light curves are often
asymmetric with a steeper rise and shallower fall in brightness.

(ii) EA/EB: detached and semidetached eclipsing binary systems
that display periodic changes in brightness. This category includes
Algol (EA) and Beta Lyrae (EB) eclipsing binaries. Two eclipses
per cycle may be distinguished, often of different depth, with clear
boundaries to the eclipses.

(iii) EW: contact-eclipsing and near-contact eclipsing binary sys-
tems that display periodic changes in brightness. This category
includes W Ursae Majoris (EW) type eclipsing binaries. Brightness
variation is continuous and the eclipses are often of similar depth,
resulting in half the orbital period often being identified instead of
the true period.

(iv) Rotators: stars that display rotational modulation in their light
curve. This category includes single stars with significant star spots
and stars with ellipsoidal modulation from close binaries that do
not eclipse but instead are distorted into non-spherical (ellipsoidal)
shapes by gravity due to their proximity. Brightness variations are
typically quasi-sinusoidal.

(v) Unknown: stars displaying some degree of periodicity but that
do not fall into any previous category. This category might include
semiregular stars and long-period variables.
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(vi) Junk: light curves that display no genuine periodicity, or
apparent periodicity that is due only to data dropouts or remaining
systematic artefacts.

Volunteers are presented with a phase-folded light curve and tasked
with classifying it into one of the following options: pulsator, EA/EB,
EW, rotator, unknown, or junk, shown in Fig. 3. If the volunteer
chooses either EA/EB, EW, or pulsator, they are presented with a
second question that asks them to choose whether the folding period
is correct period, half period, or wrong period. The classification task
itself is essentially a pattern-matching task.

We collect multiple classifications of each phase-folded light
curve, allowing us to take the most common classification as the
true classification and ‘retire’ it from the live project. Between 2018
September 5 and 2019 September 23, each light curve required seven
classifications from separate volunteers to ‘retire’ it, meaning that if a
light curve received four or more of the same classification, the light
curve would be assigned to the corresponding category. On 2019
September 24, a variable retirement rate was implemented using
Caesar6 advanced retirement engine provided by the Zooniverse
platform. As a result, a light curve is now retired if either the clas-
sification count reaches seven, the subject receives four of the same
classification, or if the subject receives three junk classifications,
since junk light curves are typically easier to identify. Following
the introduction of the variable retirement rate with Caesar, junk-
classified subjects are retired more quickly, so we would expect to
see a higher relative frequency of junk in the output, with the number
of junk classifications eventually plateauing as they are retired from
the live project.

In the period immediately following the project launch, the subject
images presented to volunteers were selected randomly from the
full pool of 1.6 million light curves. Even if all 4500 volunteers
that had so far engaged with the project classified one subject per
minute, the expected time for any particular subject to accrue seven
classifications is almost 40 h. In reality, the initial retirement rate
was ∼3000 subjects per month on average. Accordingly, a subject
batching strategy was adopted that reduced the available subject pool
size to 288 000 light curves at any one time. Following this change,
the retirement rate increased to ∼17 000 subjects per month, peaking
at ∼43 711 retirements in 2019 October.

During peak times of activity (when SVS is promoted as a ‘featured
project’ on the Zooniverse front page), there is an average of ∼4300
classifications per day, peaking at 11 442; outside these intervals,
there is an average of ∼1100 classifications per day and a retirement
rate of ∼5000 per month. At this lower classification rate, it is
estimated that it will take ∼4–5 yr to complete each ‘live’ set
of 288 000 objects, or ∼25 yr to complete the full set (∼15 yr at
a higher classification rate). By comparison, one of the authors
classified ∼5000 light curves in a day without working on other
research activities. Considering these time scales, machine learning
will be vital to complete the classification of all 1.6 million phase-
folded light curves within a reasonable time-frame. The number of
classifications and retirements over the first 2 yr is shown in Fig. 4.

We use the Gini coefficient to give a quantitative measure of the
engagement of volunteers. The Gini coefficient ranges from 0 to 1,
where 0 indicates that each volunteer contributes an equal number
of classifications, and 1 indicates that there is an extreme difference
in number of classifications from each volunteer. We find that the
mean Gini coefficient for SVS is 0.92. By comparison, Spiers et al.

6https://caesar.zooniverse.org

Figure 4. The number of classifications (black) and retirements (red) over the
first 2 yr of the project. The shallow increase shows pre-launch classifications
from experts and beta testers. SVS was officially launched on 2018 September
2, and since then has has a fairly consistent classification rate. Peaks of activity
(such as being a ‘featured project’) cause sudden rises in classifications. The
change to a variable retirement limit and batching is clear in early 2019.

(2019) finds that the mean Gini coefficient for astronomy projects on
Zooniverse is 0.82, and Eisner et al. (2020) finds a similarly high Gini
coefficient for Planet Hunters TESS of 0.94. Whilst a higher Gini
coefficient does not necessarily indicate project ‘success’, it does
indicate that SVS has a large number of prolific classifiers, which is
often desirable for citizen science projects. Loyal classifiers spend
more time engaging with the project, and hence are likely to have a
strong understanding of the project aims and classification methods
and make fewer mistakes.

For the project age, SVS has fewer total volunteers than other
general astronomy projects on the Zooniverse, but a comparable
number of total volunteers to other non-astronomy projects and
variable star astronomy projects. A direct comparison is Variable Star
Zoo7 (classifying ∼60 000 light curves), a project thats to classify
variable stars in the VVV survey. Variable Star Zoo launched in
2018 July and has engaged with 5305 volunteers to date, similar to
SVS. Two upcoming variable star Zooniverse projects are Zwicky
Stellar Sleuths,8 and a new project by ASAS-SN, Citizen ASAS-SN.9

SVS will complement these projects, and the increase in variable star
Zooniverse projects may increase volunteer interest in this branch of
astronomy.

3.1 Data cleaning

The classifications used in this analysis were downloaded on 2020
September 2, giving almost 2 yr of classification data. Although there
have been 1071 345 classifications corresponding to over 568 739
unique object–period combinations, the majority of light curves have
not yet received a sufficient number of classifications for retirement.

Classifications from SVS are exported as a CSV file from the
Zooniverse site. Before data cleaning, the SVS classification export
is stripped of non-essential data, including time of classification
and user name of Zooniverse volunteers. In addition to the primary
science analysis, an in-depth assessment of classification reliability,

7https://www.zooniverse.org/projects/ilacerna/variable-star-zoo
8https://www.zooniverse.org/projects/adamamiller/zwickys-stellar-sleuths
9https://www.zooniverse.org/projects/tharinduj/citizen-asas-sn
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Figure 5. There are 5 objects with nine classifications, 27 objects with
eight classifications, 1934 objects with seven classifications, and 3510
objects with six classifications, 11 085 with five classifications, 35 298 with
four classifications, 84 180 with three classifications, 109 034 with two
classifications, 323 666 with one classification. At this stage, only 9 per cent of
objects (7 per cent of non-junk objects) have received enough classifications
for retirement.

including detection of ‘spam’ classifications was performed. For this
secondary analysis, the full SVS classification export was used as is.

The likely classification for each subject is decided by a custom
written script. This script looks at all the classifications of the
same Subject ID (or same SuperWASP ID and Period ID) and
finds the most popular (or only) classification. If two (or more)
classifications are equally popular, then we allocate the classification
as the first given classification from the following list: junk, pulsator,
rotator, EW, EA/EB, unknown (ordered from most common to
least common). The unfiltered SVS export has 1071 345 rows
corresponding to all classifications made up to that time. After
processing and removing duplicated rows, 1025 750 light-curve
classifications remain. After finding the top classification for each
subject, the output had 568 739 rows corresponding to unique object–
period combinations. Fig. 5 shows a histogram of the number of
classifications per object.

Additional catalogues are cross-matched with the output to iden-
tify additional parameters such as distance, colour, and previous clas-
sifications. This includes a 10 arcsec spatial cross-match with Gaia-
DR2 and the Gaia-DR2 Bailer-Jones distance catalogue (Bailer-
Jones et al. 2018; Gaia Collaboration 2018), a 10 arcsec cross-match
with NOMAD (Zacharias et al. 2004), and a 2 arcmin cross-match
to VSX.

Light curves with fewer than four classifications are removed, and
any remaining duplicates (both spatial and WASP ID) are retained,
since these are plausibly multiperiodic or multiclassification objects.
We complete an initial visual assessment of unrealistic periods, but
at this stage, objects with such periods are not removed since these
are plausibly extreme period objects that may be of interest. Table 1
shows a breakdown of the cleaned data set.

3.2 Classification reliability

A total of 7478 volunteers made 1071 345 classifications. SVS
has ∼4500 registered volunteers, indicating that ∼3000 volunteers
engaged with the project but did not register on the Zooniverse
platform. Registered volunteers made 93.9 per cent of classifications,
and 6.1 per cent of classifications (65 398) were made by unregis-
tered or anonymous volunteers, making ∼20 classifications each
on average. Fig. 6 shows the distribution of classifications made

per volunteer. Just over half (52.6 per cent) of volunteers made
10 or fewer classifications, 36.0 per cent made 11–100, 9.6 per cent
made 101–1000, and 1.6 per cent made over 1000. 18 (0.2 per cent)
‘superclassifiers’ made more than 10 000 classifications.

To estimate the classification reliability, SVS classifications are
compared existing variable classifications, such as VSX classifica-
tions or Gaia-DR2 variable types. Fig. 7 shows the confusion matrix
for volunteer classifications compared to the closest stellar variable
within the VSX catalogue. While the SVS classification accuracy
is high for binaries and pulsators, with ∼89 per cent of EA/EBs,
∼71 per cent of EWs, and ∼78 per cent of pulsators being correctly
classified, rotators are a more challenging variable type with only
∼9 per cent of rotator classifications being ‘correct’. The category of
unknown easily categorized, but separating SVS classified objects
into their corresponding classes from the VSX catalogue gives
∼24 per cent semiregular variables, ∼23 per cent miscellaneous vari-
ables, and ∼15 per cent long period variables. Overall, we find a
classification accuracy of 60 per cent for all variable types, excluding
junk.

Too few SVS variables have a Gaia-DR2 variability component to
undertake a similar full assessment, using the Gaia-DR2 variability
results catalogue containing 363 369 classifications of pulsators from
Cepheids to Mira variables. Only one EA/EB and eight EW-type SVS
variables are classified as pulsating stars in Gaia-DR2. Of the 273
pulsators (27 per cent of 1020 identified) in Gaia-DR2 variability
results, 9 are classified as Type I or II Cepheids, 9 are Mira variables,
17 are δ Scuti stars, and 238 are RR Lyrae stars. A total of 81 rotators
and 47 unknown variables are classified as pulsators in Gaia-DR2
variability results.

This assessment gives a rudimentary estimate on the probability
that different classes of variables are classified correctly. When
combined with the SuperWASP periodicity catalogue likelihood
statistics, we can use this to give us a good idea of the correct period
and variability type. It is most likely that incorrect classifications
arise from two causes. Some variable types, especially EA/EB, can
appear to be another variable type when folded at the wrong period.
It is therefore important that we have a robust method of identifying
the true period of an object that may have multiple-detected periods,
see Section 4.3. The other dominant cause of incorrect classifications
will mostly likely be human error, and non-specialists may miss some
of the nuances of a light curve that indicate a certain variability type.
But a cohort of non-specialist volunteers is by no means a bad thing,
since the combination of people power and multiple classifications
means that an accurate consensus is usually reached. Feedback from
citizen–scientist volunteers also suggests that confusion can arise
from the overlaid binned red line, especially in instances where the
binned line appears to show a different variable type from the actual
data, due to data dropouts or spikes. At this stage of the project, it
is not possible to remove or edit this binned line, but it is something
to be aware of in the analysis of the resultant classifications, and
use of labelled data in machine learning. Other issues may arise if
volunteers skip the training available to them through the Zooniverse
interface, forget the training, or find the training is not written in their
first language.

While highly unlikely, it is also possible that bots, spamming,
or deliberate sabotage can influence the results. There are no in-
built protections against this on the Zooniverse platform, so the only
way of identifying ‘spam’ classifications is by checking for a high
number of classifications by the same user within an unrealistically
short time-frame. All classifications were checked for a single user
making multiple classifications per second and none were found.
It is not possible to check this for users who are not logged in,

MNRAS 502, 1299–1311 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/1299/6105327 by guest on 10 April 2024



1304 H. B. Thiemann et al.

Table 1. Breakdown of the first 1 million classifications corresponding to 568 739 unique object–period combinations, and
the results of positional cross-matches to the Gaia-DR2 and Bailer-Jones et al. (2018) catalogue, VSX, and SuperWASP
catalogues of binaries (Payne 2013) and pulsators (Greer et al. 2017).

Full output EA/EB EW Pulsator Rotator Unknown Junk

Classifications 568739 29882 36328 25730 56582 41541 378,671
Nclass ≥ 4 13390 2425 3187 1777 4402 1599 N/A
Nclass ≥ 4 and correct period 11322 1629 2672 1020 4402 1599 N/A
In Gaia-DR2 10213 792 2599 1000 4275 1547 N/A
In VSX 5,283 665 1528 579 1939 572 N/A
In Payne and/or Greer 314 259 44 11 N/A N/A N/A

Figure 6. The number of classifications per volunteer. Any classifications
made by an anonymous volunteer over different days will be counted as
multiple volunteers’ inputs.

Figure 7. The confusion matrix for volunteer classifications compared to
VSX classifications. The category of unknown for VSX contains semiregular
stars and stars classified as miscellaneous. We find an overall classification
accuracy of 60 per cent.

so unexpected spikes in classifications (>100 classifications in
<1 min) were searched for. Only one spike in activity matching
these parameters was detected by a single user, and their clas-
sifications were visually assessed by the authors and verified as
non-spam.

Volunteer weightings have not yet been implemented in the
classification pipeline, but will be an important part of the CNN,
and will be used to improve classification reliability. We trialled

Figure 8. The distribution of NOMAD V magnitude of SVS stars with a
variable-type classification and correct period classification ranges between
8 ≥ V ≥ 18.

two simple methods of calculating weightings: identifying overlap
of classifications with ‘expert’ or author classifications, and overlap
with VSX classifications. With six possible variable types, a suitable
number of classifications is needed for each variable type to calculate
weightings. Unfortunately the overlap with ‘expert’ classifications is
too low to provide a conclusive weighting. Assessing against VSX,
we take only those have made >100 classifications of each variable
type, of which only 15 have an overlap of >100 with VSX, which also
provides an inconclusive weighting system. Alternative methods will
be explored in future work, for example, through the use of individual
volunteer confusion matrices, see Section 5.1.1.

4 R ESULTS

4.1 Overview

Volunteer classifications indicate that this first analysis consists
primarily of junk classifications (66.6 per cent of all classifications),
which are discarded. The remainder of the classifications is made up
of EA/EB (5.3 per cent), EW (6.4 per cent), pulsators (4.5 per cent),
rotators (9.9 per cent), and unknown (7.3 per cent). As previously
identified, the classification accuracy of rotators is low so the true
proportion will be lower than this figure indicates. Fig. 8 shows the
distribution of V-band magnitudes ranging from approximately 8 ≥ V
≥ 15, with a number of fainter sources. Genuine faint sources can be
detected by the longest SuperWASP exposures, but contamination
by nearby stars can sometimes mimic faint sources, resulting in
spurious detections. Fig. 9 shows the distribution of distances of
these typically near-by stellar variables. Each variable type has a
similar distribution, with the exception of pulsators, showing a peak
in distance at ∼4800 pc, with a fainter average V magnitude of ∼13.8,
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Figure 9. The distance (pc) distribution of SVS stars with a variable type
classification and correct period classification. The full data set is shown in
the solid line, while the pulsators are shown by the dashed line. Pulsators
appear to have a different distribution to other variables.

likely due to a greater number of more distant stellar variables of this
type.

The spatial distribution of the 568 739 unique object–period com-
binations is shown as a sky density plot in Fig. 10. The classifications
are not evenly distributed, since typically only a few degrees of sky
are available for classification at any one time, and SuperWASP
could not resolve objects in the dense regions of the Galactic
plane.

We have not yet accounted for the effects of interstellar extinction
and reddening on magnitudes, colours, and variable classification.
Jayasinghe et al. (2018) uses the reddening-free Wesenheit magni-
tudes (e.g. Madore 1982; Lebzelter et al. 2018), with Gaia DR2 and
2MASS passbands to improve variability classification for ASAS-
SN, but do not account for the effects of extinction in colours. We
aim to complete an analysis of the effect of both in future analyses
of SVS classifications, using either the reddening-free Wesenheit
magnitudes, the calculation of stellar extinction using the Binary
and Stellar Evolution and Population Synthesis (Willems & Kolb
2002) implementation of extinction given by Drimmel, Cabrera-
Lavers & López-Corredoira (2003), or Gaia-DR2 reddening values
and distances. Unlike ASAS-SN, magnitude and passband data do
not feed into an automated classification pipeline, and our initial
machine learning classification algorithm will not incorporate this
data (Section 5.1.1). We expect that reddening would not be the
cause of reclassification of the overarching variable types, however,
for specific subsets of variable types (e.g. RR Lyrae stars), extinction
correction may be necessary.

4.2 New variable objects

We expect SVS to classify many known stellar variables, and
identify several previously unknown stellar variables. Previously
known variables are identified by a 2 arcmin cross-match with the
VSX catalogue (retrieved on 2020 October 20), which contains
classifications of 2105 377 variable stars from surveys including,
e.g. OGLE (Udalski 2003), ASAS (Rucinski 2006), ASAS-SN
(Shappee et al. 2014; Kochanek et al. 2017; Jayasinghe et al. 2018),
ROTSE (Akerlof et al. 2003), NSVS (Wozniak et al. 2003), and
ZTF (Bellm et al. 2019). A secondary cross-match is performed with
catalogues from Payne (2013) containing 12 884 EAs, 5226 EBs,
and 2875 EWs, and Greer et al. (2017) containing 4963 RR Lyrae
stars.

To select potentially new variable stars, objects with a known
classification and period are removed; objects that are flagged as
variable, but which have no classification or period, are not removed.
All new stellar variables were assessed by eye by the authors to
verify the classification type and correctness of the period. Duplicated
objects were removed and objects were reclassified as required. We
caution that the subset of remaining rotator and unknown objects may
still contain binaries and pulsators at the incorrect period, despite the
best efforts of the authors to identify them. Through this process,
we are left with 2560 unique candidate new variables, shown in
Table 2.

Using this approach, we have identified 301 previously unknown
variable stars, not including rotators and unknown variables, a selec-
tion of which are shown in Table 3, with a period distribution shown
in Fig. 11. Of particular interest are a short-period cut-off eclipsing
binary (with two SuperWASP IDs: 1SWASPJ004003.56+501501.9
and 1SWASPJ004008.54 + 501455.6), new δ Scuti stars (Sec-
tion 4.4), and binaries displaying the O’Connell effect. Based on
the low classification accuracy of rotators, we caution that new
variables classified as rotators or unknown may not have the correct
classification.

Excluding rotators and unknown variables, these new variables are
typically bright (V ∼ 13) stars. It is likely that these objects have not
been detected due to either surveys not yet having enough epochs
to provide a variability classification (e.g. ASAS-SN), focus on the
Galactic plane or specific specific fields (e.g. Kepler, OGLE), or can
only observe one hemisphere (ZTF). Assuming that 66 per cent of
the 1.6 million light curves in SVS are junk, we estimate that on
completion of SVS, ∼5000 new EA/EB, EW, and pulsating stellar
variables could be identified.

4.3 Multiple periods and multiple classifications

Stars displaying two or more real periodic modulations in their light
curve are of great interest, and multiply periodic systems can act as
stellar laboratories. Targets of interest are pulsating stars in eclipsing
binary systems. There are detections of only ∼100 δ Scuti stars in
eclipsing binaries (Kahraman Aliçavus et al. 2017), and there are
very few RR Lyrae stars known in eclipsing binaries, and no known
Galactic Cepheids in eclipsing binaries with orbital periods of less
than 1 yr (Evans et al. 2011).

A search identified 1202 multiperiodic systems, including 229
EA/EBs, 362 EWs, 100 pulsators, 441 rotators, and 70 unknowns.
A visual inspection by the authors revealed that none are convincing
multiperiodic systems, but instead are objects with aliases of the
true period. Initially, 1SWASPJ004859.70 + 172328.1 appeared to
have multiple correct EA/EB classifications. Further investigation
found this object has a true period of 3.11 d, discounting the alias
periods. However, this object has previously been identified as an
eclipseless rotator (with a period of 3.11 d), but the SuperWASP
light curves show a clear primary eclipse and shallow secondary
eclipse, shown in Fig. 12. While the primary eclipse depth remains
constant, the out-of-eclipse light curve changes significantly over the
8 yr of observation, possibly due to a tidally locked star-spot on one
of the stellar components.

We are also interested in multiclassification systems. To identify
such systems, we searched the SVS data set for subjects that have
the same WASP ID but have multiple different, but by consensus
‘correct’ period classifications. This search found 1563 systems with
two or more classifications, shown in Table 4. The classifications
with the greatest overlap appear to be EA/EB and EW, and rotators
with other classifications. Based on the low classification accuracy of

MNRAS 502, 1299–1311 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/1/1299/6105327 by guest on 10 April 2024



1306 H. B. Thiemann et al.

Figure 10. Map of SVS classifications. The red points indicate objects that have been retired from the live queue, and the grey points indicate objects that have
received too few classifications for retirement. Classifications are not evenly distributed since only a few degrees of the sky are available to volunteers at any
one time. As each data set is complete, more of the sky map will be filled.

Table 2. Previously unidentified stellar variables by variable type. There are
significantly more variables classified as rotator or unknown. Stars classified
as rotators are unlikely to be true rotators and may be binaries and pulsators
folded at the wrong period, and unknown variables are likely to be junk,
semiregular, or long period variables.

Type EA/EB EW Pulsator Rotator Unknown

Number 192 40 69 1365 894

Table 3. Sample from 301 previously unidentified stellar variables and
related characteristics, not including rotators and unknown variables. The
periods of each object have been assessed by the authors to correct for mis-
classifications; whilst they have been corrected as much as possible, some
periods remain best guesses. All periods have an uncertainty of ±0.1 per cent.
The full table, including rotators and unknown variables, can be found at
10.5281/zenodo.4439383.

WASP ID Type Period (d)

1SWASPJ000005.14-755731.3 EA/EB 4.30
1SWASPJ000026.84 + 393855.6 EA/EB 3.59
1SWASPJ000028.05 + 041248.4 EA/EB 4.69
1SWASPJ000039.60-191306.0 EA/EB 6.76
1SWASPJ000047.05 + 353443.1 EW 1.22
1SWASPJ000054.70 + 544425.6 EA/EB 3.19
1SWASPJ000057.42-544520.1 EA/EB 0.75
1SWASPJ000059.84 + 094404.5 EA/EB 0.65
1SWASPJ000105.41-622920.6 EA/EB 1.48
1SWASPJ000132.23-051917.6 Pulsator 1.62
1SWASPJ000132.66-091513.7 EA/EB 4.19
1SWASPJ000145.10 + 501843.4 EA/EB 1.69
1SWASPJ000149.26 + 061830.8 EA/EB 0.32
1SWASPJ000149.45-363918.1 Pulsator 0.64
1SWASPJ000203.48-214746.0 EA/EB 0.86
1SWASPJ000315.40 + 495750.8 EA/EB 3.65
1SWASPJ000323.81 + 325049.7 EA/EB 8.25
1SWASPJ000343.16 + 465244.0 Pulsator 1.31
1SWASPJ000353.60 + 043503.0 EW 0.28
1SWASPJ000410.77-525122.4 EW 0.24

Figure 11. The distribution of period of newly identified stellar variables
(EA/EB, EW, and pulsator) by variable type. EA/EBs are shown by the
dashed line, EWs by the dotted line, and pulsators by the solid line.

rotators, we make the assumption that any multiclassification object
in which one classification is rotator or unknown can be discounted
as a true multiple classification.

Each of our candidate multiclassification systems were ver-
ified by eye (excluding rotators and unknown variables), ulti-
mately yielding only apparently one real multiclassification system,
1SWASPJ000220.66-292933.8, shown in Fig. 13. This object has
both an EW and pulsator classification and SuperWASP periods of
3.15 and 1.46 d, respectively. On inspection, the EW-classified light
curve appears to be that of a RS Canum Venaticorum (RS CVn)
binary. This object has a candidate RS CVn classification, with a
period of 6.29 d or an eclipseless RS CVn classification with a period
of 3.14 d in VSX. This object appears to have experienced significant
surface spot coverage evolution over the 7 yr of observations, and
even hints at an eclipse in field 2.

Another object of particular interest was one that appeared to be a
δ Scuti star in an eclipsing binary (1SWASPJ004811.15+473719.1),
however, this was found to be two separate systems, a
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Figure 12. 1SWASPJ004859.70 + 172328.1, an object with multiple EA/EB classifications, with a true period of 3.11 d. The mid-point of each frame is as
follows: field 1 (2004 August), field 2 (2006 August), field 8 (2011 October), and field 9 (2012 December).

Table 4. The number of light curves with multiple classifications per
classification type. Rotators have the greatest overlap with other variable
classifications, likely due to the low classification accuracy of rotators, and
the high number of alias period light curves per rotator object.

EA/EB EW Rotator Pulsator Unknown

EA/EB – 246 128 5 75
EW 246 – 716 16 46
Rotator 128 716 – 99 202
Pulsator 5 16 99 – 30
Unknown 75 46 202 30 –

binary (1SWASPJ004810.36+473747.7) and a δ Scuti star
(1SWASPJ004811.15 + 473719.1), spatially separated by 30 arcsec,
shown in Fig. 14.

4.4 Extreme variables

A valuable aspect of large catalogues of variable stars can be the
identification of extremes of each class, i.e. those with extremely
long or short periods, or extremely high or low amplitudes. SVS has
the opportunity to increase the sample size of short period contact
binaries, as well as identifying, for example, unusually long period
contact binaries. For the full SVS data set, there are two peaks, at
∼0.3 d where we might expect to find short period binaries and aliases

of binaries, and short period pulsators, and ∼30 d where we might
expect to find semiregular stars, currently classified as unknown.

We explore extremes of each variable type using the following
criteria as standard definitions of periods, and visually inspect light
curves at the extremes of each period:

(i) EA/EB: 0.3 d ≤ P ≤ 10 d (e.g. Stepien 1995)
(ii) EW: 0.22 d ≤ P ≤ 1 d (e.g. Rucinski 1992)
(iii) Pulsator: 0.3 d ≤P ≤ 8 d (e.g. Leavitt & Pickering 1912;

Breger 1979; Matsunaga et al. 2006; Drake et al. 2014)
(iv) Rotator: P≥0.5 d (periods range from hours to months (e.g.

Nielsen et al. 2013)
(v) Unknown: N/A (semiregular P ≥10 d) (e.g. Soszyński et al.

2009)

The class of pulsators has the widest range of possible periods,
including δ Scuti (∼<0.3d), RR Lyrae (0.44–0.82 d), Cepheid (with
periods of weeks to months), Mira (P ≥ 100 d), and W Virginis
(0.8 d ≤ P ≤ 35 d). We chose a lower limit of P ≤ 0.3d to
allow us to identify candidate δ Scuti and High Amplitude δ Scuti
stars.

We have identified objects that appear to be long-period examples
of near-contact eclipsing binary stars, with orbital periods of up to
a month or more. To be in contact, or near contact, at such long
periods requires the stellar components to be giants. Such objects
have been proposed as the progenitors of red novae, but none have
been conclusively identified pre-nova. The outbursts are believed to
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Figure 13. The light curve of 1SWASPJ000220.66-292933.8, classified by volunteers both as an EW with a period of 3.15 d and a pulsator with a period of 1.46
d. It has previously been classified as an eclipseless RS CVn and a non-periodic rotator. The mid-point of each frame is as follows: field 1 (2006 September),
field 2 (2007 September), field 4 (2012 August), and field 5 (2013 September).

be due to stellar mergers, but only one progenitor of such an event
has ever been studied, V1309 Sco, and that was only recognized
retrospectively, after the merger occurred (Tylenda et al. 2011). SVS
volunteers have identified ∼10 candidates, with an example of one of
these systems identified in SVS is shown in Fig. 15. These candidate
near-contact red giant eclipsing binaries are the subject of an ongoing
follow-up campaign and the subject of an upcoming paper.

We have also identified a new eclipsing binary
(1SWASPJ004003.56+501501.9/1SWASPJ004008.54 + 501455.6)
with a period of ∼0.23 d near the short-period cut-off of ∼0.22 d,
shown in Fig. 16. Such stars are of importance in the study of the
evolution and structure of close binary systems.

5 D ISCUSSION

In the full table of volunteer-classified light curves, we provide the
SuperWASP ID, period (from the SuperWASP periodicity catalogue),
and best-guess variable type. We do not provide RA, Dec., or B, V,
R magnitudes for any classified object. In most cases, there is only a
single bright star in the photometric aperture and so this will usually
be the source of the variability, so associations with other data are
still possible most of the time. However. the large SuperWASP pixel
size and possibility of contamination mean that we cannot confirm
the association of a light curve with a specific stellar object without

further follow-up. We caution that anyone using this catalogue may
need to confirm the variability type with their own follow-up.

Although it is disappointing not to find many new multiperiodic
or multiclassification systems at this stage, this analysis method
can be applied to future analyses, especially for the identification
of variables with evolving star spots. With a greater number of
classifications, we expect to identify a significant number of ex-
tremely short- and long-period pulsators, including δ Scuti stars and
Mira variables. Individual pulsator sub-types are not identified by
citizen scientist volunteers, so would require the authors to visually
inspect each pulsator light curve after making cuts using additional
period, colour, and luminosity data. We also expect to identify more
extreme binaries, including near-contact red giant eclipsing binaries,
and binaries near the short-period cut-off. It is evident that if some
form of machine learning is implemented, there may still be the
need for some level of human interaction with multiperiodic and
multiclassification systems to identify false positives.

We currently cannot estimate whether volunteer classifications
have been biased. There is no identifying data on the image of each
light curve, in an attempt to keep the classification task to a pattern
matching exercise only. However, following the project launch, it
was realized that some metadata for each light curve was visible to
volunteers in the form of the SuperWASP ID. For volunteers who
notice this, the ID gives information on the RA and Dec. of each
SuperWASP object, and hence the closest corresponding star from
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Figure 14. Upper: The δ Scuti star 1SWASPJ004811.15 + 473719.1
with a period of 1.9 h. Lower: The EW-type eclipsing binary
1SWASPJ004810.36+473747.7 with a period of 18.7 h (0.78 d). These
objects were classified as the singular object 1SWASPJ004811.15 + 473719.1
with both an EW and a δ Scuti star in the same photometric aperture.

other catalogues. Subsequently, some users have used this ID to
cross-match the light curve to existing classifications and surveys,
using this knowledge to make a decision on the classification type.
We do not have a way of identifying who has used this method
and whether it can bias the results. Volunteer feedback has indicated
that use of cross-matching has improved their knowledge of stellar
variables and classification accuracy, and they value being able to
investigate the light curves in more depth.

To that end, as of 2020 November, we have added links to external
catalogues (CERiT, ASAS-SN, and Simbad) to the metadata that
is visible only after a classification has been completed. It is not
intended to be a tool to influence classifications, but it has been
developed in order to allow interested volunteers to engage with the
project further.

5.1 The future of SuperWASP variable stars

To successfully complete all classifications in SVS and make the
results public, we are now working on implementing machine
learning techniques and building a platform through which the results
can be accessed.

Figure 15. The first classification of a candidate near contact red giant
eclipsing binary, 1SWASPJ000927.89 + 014542.1, with a period of 41.62 d,
significantly longer than typical contact eclipsing binary periods.

Figure 16. A newly identified EW-type binary (both
1SWASPJ004003.56+501501.9 and 1SWASPJ004008.54 + 501455.6) with
a period of 0.23 d, close to the short-period cut-off.

5.1.1 The need for machine learning

We estimate that at the current classification rate it will take at least
15 yr to classify all 1.6 million light curves in SVS. To this extent,
we are developing a novel method for classifying these phase-folded
light curves to speed up the classification process, which is the
subject of an upcoming paper. In this new method, we will train
a convolutional neural network (CNN) on the same images of phase-
folded light curves as those presented to SVS volunteers. We will use
the >1 million volunteer-generated classifications, or labels, to train
the CNNs. We will run an initial CNN using volunteer-generated
labels, then use expert classified light curves to calculate further
volunteer confusion matrices, deriving fuzzy labels and weighting
classifications to improve reliability. We will then use a custom
Zooniverse project to allow for expert bulk classification of CNN
predictions, and retrain the CNN using expert classifications.

There is also the scope to use volunteer comments from the ‘Talk’
forum section of SVS. It is possible for a volunteer to create a
discussion page for each light curve, where they might ‘tag’ or
comment on it, giving a further classification type (i.e. while the
SVS classification might be pulsator, a volunteer might comment
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‘RR Lyrae’ that indicates that the light curve is a pulsator sub-type).
This forum potentially holds another significant source of labelled
data that may be explored in future work.

5.1.2 A new user interface

One of the key aims of SVS is to make the classified SuperWASP
periodicity catalogue light curves publicly available and to create the
first catalogue of variable stars in the SuperWASP archive. We have
begun work on a new user interface (UI), similar to WASP-DR110

and the ASAS-SN catalogue of variable stars.11

This (UI) will take the form of a web portal, which will allow
a user to easily and quickly search the classified light curves using
a number of different parameters, including RA and Dec. with a
search radius, magnitude or flux, period, and variable type. A search
of this UI will not only provide SuperWASP data and classifications,
but also an automated cross-match to other catalogues, for example,
Simbad, ASAS-SN, and VSX. Having selected an object, the user
will be able to dynamically work with the data or download a FITS
or CSV file. The dynamic interface will allow the user to fold the
light curve at a different period, re-scale the plot, or convert between
magnitude and flux, and more. This new UI will be updated with new
SVS classifications or reclassifications every 6 months following its
launch.

6 C O N C L U S I O N S

We present the preliminary results of the first analysis of the
SVS Zooniverse project, which consists of 1025 750 classifications
corresponding to 568 739 unique object–period combinations. Over
4500 registered volunteers had engaged with the project between
2018 September and 2020 September.

Each SuperWASP light curve has been classified by between four
and seven volunteers, classifying it as a broad type of stellar variable.
We find that the majority (66.6 per cent) of classifications are junk
and are therefore discarded, but the remainder (33.4 per cent) of
the classifications corresponding to EA/EB, EW, pulsator, rotator,
and unknown, are valuable for population studies and studies of
unique stellar variables. We identified that variables with a rotational
modulation are the most inconsistently classified by volunteers, with
only ∼9 per cent of rotators being correctly classified, compared to
∼89 per cent of EA/EB-type binaries. We caution that the classifica-
tion of rotator should not be relied upon until there is a more reliable
method of classification for this variable type.

As a result of SVS, 301 new variable stars have been identified.
Extrapolating to the wider data set, we would expect that ∼5000
new variable stars could be identified on completion of this project.
We have identified extreme period variables, including long-period
contact binaries, and eclipsing contact binaries near the short-period
cut-off, and δ Scuti stars. This project has the potential to expand the
catalogue of δ Scuti stars in eclipsing binaries, and discover the first
Cepheids in eclipsing binaries (if they exist), as well as to identify
multiperiodic Cepheids and RR Lyrae stars. The high number of
false-positive multiply periodic and multiclassification light curves
identified by volunteers indicates that an expert must complete the
final stage of classification by eye for the most extreme and unusual
light curves.

10https://wasp.cerit-sc.cz/form
11https://asas-sn.osu.edu/variables

This analysis is not conclusive, but it demonstrates that SVS is
successful in its aims of identifying unique and extreme variables,
and identifying populations of stellar variables for further study. This
analysis and methods will guide the project in future analyses of
volunteer and machine learning classifications. We are now working
on using citizen scientist classified data to train CNNs to speed up
the classification process, however, humans are still skilled at picking
out the rare and unique objects, and generating labelled data. Both
volunteer classified light curves and CNN-classified light curves will
feed into a new public UI that is currently under development.
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