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ABSTRACT

Blazar variability appears to be stochastic in nature. However, a possibility of low-dimensional chaos was considered in the past,
but with no unambiguous detection so far. If present, it would constrain the emission mechanism by suggesting an underlying
dynamical system. We rigorously searched for signatures of chaos in Fermi-Large Area Telescope light curves of 11 blazars. The
data were comprehensively investigated using the methods of nonlinear time-series analysis: phase-space reconstruction, fractal
dimension, and maximal Lyapunov exponent (mLE). We tested several possible parameters affecting the outcomes, in particular
the mLE, in order to verify the spuriousness of the outcomes. We found no signs of chaos in any of the analysed blazars. Blazar
variability is either truly stochastic in nature or governed by high-dimensional chaos that can often resemble randomness.

Key words: chaos—methods: data analysis—galaxies: active—BL Lacertac objects: general — galaxies: jets —gamma-rays:

galaxies.

1 INTRODUCTION

The Fermi-Large Area Telescope (LAT; Atwood et al. 2009) is a
high-energy y-ray telescope, sensitive to photons in the energy range
from 20 MeV to 300 GeV, which detected 5065 sources in the 100
MeV-100 GeV energy range (Abdollahi et al. 2020). More than
3130 sources were identified as blazars, a subclass of active galactic
nuclei (AGNs), possessing a set of characteristic properties such as
strong continuous radiation observed throughout the electromagnetic
spectrum, flat-spectrum radio core, fast variability in any energy
band, and a high degree of optical-to-radio polarization. In the
unification scheme introduced by Urry & Padovani (1995), blazars
are AGNs pointing their relativistic jets towards the Earth (see
e.g. Urry & Padovani 1995; Bottcher, Harris & Krawczynski 2012;
Padovani 2017, for a review). Blazars are usually divided into two
groups: BL Lacertae objects (BL Lacs) and flat spectrum radio
quasars (FSRQs). This classification is historically based on the
strength of the optical emission lines, i.e. FSRQs have broad emission
lines with the equivalent width >5 A, while BL Lacs possess weak
lines or no emission lines at all. Further classification is made
taking into account position of a synchrotron peak, v/, in the v—
vF, plane, in the multiwavelength spectral energy distribution and
different accretion regimes of AGNs. BL Lacs are commonly split
into low-peaked, intermediate-peaked, and high-peaked (HBL) BL
Lacs (Abdo et al. 2010). An additional group of extreme HBLs,
having v:_, = 10'7 Hz, is also considered (Costamante et al. 2001;

peak ~v
Akiyama et al. 2016).
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The search for chaos in AGNs has not been successful so far.
One of the first attempts was done by Lehto, Czerny & McHardy
(1993), who computed the correlation dimensions dc of the X-ray
light curves (LCs) of eight AGNs, and reported evidence for dc <
4.5 for the Seyfert galaxy NGC 4051, suggesting that variability of
this source might be chaotic in its nature.

Provenzale, Vio & Cristiani (1994) investigated a long (800 d)
optical LC of the quasar 3C 345 with the correlation dimension
as well. While dc ~ 3.1 was found, the authors demonstrated that
this is a spurious detection owing to the long-memory property of
the non-stationary signal driven by a power-law form of the power
spectral density. They pointed at an intermittent stochastic process
that produced outputs consistent with the observations. Therefore,
the interpretation of any fractional correlation dimension of a phase-
space trajectory reconstructed from a univariate time series needs
to be backed up with additional evidence. The same technique was
applied to microquasars (Misra et al. 2004), but the initially reported
saturation of the correlation dimension was not found to be a signa-
ture of chaos, likely owing to the non-stationarity of the data again
(Mannattil, Gupta & Chakraborty 2016). Indeed, non-stationarity
often leads to a spurious detection of chaos in a non-chaotic system
(Tarnopolski 2015), hence a proper transformation is required.

Kidger, Gonzalez-Perez & Sadun (1996) performed microvariabil-
ity analysis of the BL Lac 3C 66A in the optical and near-infrared
bands. They reported on a positive maximal Lyapunov exponent
(mLE) and very low correlation dimensions, dc < 2. These are
contradictory findings, since 1 < dc < 2 implies at most a two-
dimensional phase space (Seymour & Lorimer 2013), in which,
according to the Poincaré-Bendixson theorem, chaos cannot occur
(Lichtenberg & Lieberman 1992). This can be most likely attributed
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to the very short LCs that were investigated. Sadun (1996), in turn,
conducted a broad nonlinear time-series analysis of the optical LCs of
the famous OJ 287 double black hole (BH) system, and reported 2 <
dc < 4, with positive mLEs as well. The particular method for their
calculation was not described explicitly, but it should be mentioned
that the algorithm of Wolf et al. (1985), frequently employed in
the past, is biased towards detecting positive mLEs, especially for
short data sets, since it does not test for exponential divergence, but
assumes it explicitly ad hoc (Tarnopolski 2015). A more rigorous,
up-to-date analysis of OJ 287 is therefore appropriate.

Finally, most recently Bachev, Mukhopadhyay & Strigachev
(2015) analysed a long (1.6 yr), densely sampled (160 000 points)
optical Kepler LC of the BL Lac W2R 1926-+42. They aimed to
constrain the correlation dimension of the reconstructed phase-space
trajectory; however, the dimension did not saturate at any value
smaller than the maximal tested embedding dimension m = 10.
Overall, a saturated or even fractional dc needs not be due to the
underlying chaotic dynamics, and hence a larger suite of nonlinear
time-series analysis techniques should be invoked, especially aiming
at establishing the sign of the mLE, with a careful consideration of
the stationarity of the analysed data.

In this work we search for signatures of chaos in the y-
ray LCs of some of the brightest or otherwise famous blazars
from Fermi-LAT. We examine five BL Lacs (Mrk 501, Mrk 421,
PKS 07164714, PKS 2155—304, and TXS 0506+056) and six
FSRQs (PKS 1510—-089, 3C 279, B2 1520431, B2 1633+38,
3C 454.3, PKS 1830—211), i.e. the sample from Tarnopolski et al.
(2020). The methodology for studying chaotic behaviour includes
well-established methods of nonlinear time-series analysis, such as
reconstruction of the phase space, correlation dimension, and mLE.
We utilize the method of surrogates to ascertain the reliability of the
results.

2 DATA

To ensure stationarity, we investigated the logarithmized LCs in the
7-d binning in order to maximize the number of points (Tarnopolski
et al. 2020), i.e. we seek for chaotic behaviour in the process /(f)
underlying the observed variability f(¢). The two are connected via
f(t) = exp [U(1)] since (Uttley, McHardy & Vaughan 2005):

(i) the distribution of fluxes is lognormal,
(i1) the root mean square—flux relation is linear.

2.1 Fermi data

We performed a spectral analysis of ~11-yr Fermi-LAT data of 11
well-known blazars, spanning between 54682 and 58592 MJD in an
energy range of 100 MeV-300 GeV. We analysed the data using
a binned maximum-likelihood approach! in a region of interest
(ROI) of 10° around the position of each blazar, with the latest
1.2.1 version of FERMITOOLS, namely conda distribution of the
Fermi ScienceTools,?> and FERMIPY (Wood et al. 2017). We used
the reprocessed Pass 8 data and the PSR3_SOURCE_V2 instrument
response functions. A zenith angle cut of 90° is used together with
the EVENT_CLASS = 128 and the EVENT_TYPE = 3, while
the gtmktime cuts DATA_QUAL==1 && LAT_CONFIG==1 were
chosen. We defined the spatial bin size to be 0°1, and the number of

Uhttps://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/binned_likelihood _tut
orial.html
Zhttps://github.com/fermi-lat/Fermitools-conda/wiki
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energy bins per decade of 8. The diffuse components® were modelled
with the Galactic diffuse emission model gll_iem v07.fits
and the isotropic diffuse model 1so_P8R3_SOURCE_V2_vO01l. txt,
including also all known point-like foreground/background sources
in the ROI from the LAT 8-yr Source Catalog (4FGL; The Fermi-LAT
collaboration 2020). The LCs of each blazar were generated using 7-d
time bins and selecting observations with the test statistic TS > 25.

2.2 Interpolation of missing points

Data loss introduces a bias in the estimated frequency content of
the signal, because the observed power spectrum is the result of the
convolution of the true power spectrum with the spectral window
function. Thus, recovering the entire duty cycle is necessary to
identify the signatures of chaos in the LCs without biases.

Missing data points in the LCs were interpolated using the
method of interpolation by autoregressive moving average algorithm
(MIARMA; Pascual-Granado, Garrido & Suarez 2015), which is
aimed to preserve the original frequency content of the signal.
This algorithm makes use of a forward—backward predictor based
on ARMA modelling. A local prediction is obtained for each
interpolation allowing also that weakly non-stationary signals can
be interpolated.

3 METHODS

The whole analysis was performed for logarithmic LCs. We con-
ducted the analysis of surrogates as well to make sure our results
are not due to a chance occurrence. Every object was nonlinearly
denoised (see Section 3.2) before the phase-space reconstruction and
the subsequent search for a positive mLE. The routines implemented
in the TISEAN 3.0.1 package* (Hegger, Kantz & Schreiber 1999)
were utilized throughout.

3.1 Phase-space reconstruction

The phase-space representation of a dynamical system is one of the
key points in nonlinear data analysis. In theory, a dynamical system
can be defined by a set of first-order ordinary differential equations
that can be directly investigated to rigorously describe the structure of
the phase space (Kantz & Schreiber 2004). However, in case of real-
world dynamical systems, the underlying equations are either too
complex, or simply unknown. Observations of a physical process
usually do not provide all possible state variables. Often just one
observable is available, e.g. a series of flux values that form a LC.
Such a univariate time series can still be utilized to reconstruct the
phase space.

A basic technique is to reconstruct the phase-space trajectory via
Takens time delay embedding method (Takens 1981). Having a series
of scalar measurements x(¢), evenly distributed at times ¢, one can
form an m-dimensional location vector of delay coordinates, S(7),
using only the values of x(7) according to

S‘(t) =[x(t), x(t + 1), x(t +21), ..., x(t + (m — D7)]. (1)

The main difficulty while attempting the phase-space reconstruction
lies in determining the values of the time delay v and embedding
dimension m. These can be obtained with the help of mutual
information (MI; see Section 3.3) and the fraction of false nearest

3https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
“https://www.pks.mpg.de/~tisean/
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neighbours (FNN, see Section 3.4). To uncover the structure buried
in observational fluctuations, noise reduction techniques are also
employed.

3.2 Nonlinear noise reduction

Generally, noise reduction methods for nonlinear chaotic time series
work iteratively. In each iteration the noise is repressed by requiring
locally linear relations among the delay coordinates, i.e. by moving
the delay vectors toward some smooth manifold. We performed noise
reduction with the algorithm designed by Grassberger et al. (1993),
implemented as the ghkss routine in the TISEAN package. The
concept is as follows: the dynamical system forms a g-dimensional
manifold M; containing the phase-space trajectory. According to the
Takens’ embedding theorem there exists a one-to-one image of the
path in the embedding space, if m is sufficiently high. Thus, if the
measured time series was not corrupted with noise, all the embedding
vectors v, would lie inside another manifold M, in the embedding
space. However, due to the noise this condition is no longer fulfilled.
The idea of the locally projective noise reduction scheme is that for
each v, there exists a correction ©,, with ||®,]|| small, in such a
way that v, — ©, € M, and that ©, is orthogonal on M,. Of course
a projection to the manifold can only be a reasonable concept if
the vectors are embedded in spaces which are higher-dimensional
than the manifold M,. Thus we have to overembed in m-dimensional
spaces with m > q.
With the metric tensor G defined as
1 i=j,i>1 j<m

Gij = {0 otherwise ’ 2)
where m is the dimension of the ‘overembedded’ delay vectors,
the minimization problem > (®;G'®,) = min is to be solved,

1
including the following constraints:

() al (v, —©,)+ b, =0(ori=qg+1, .., m);
(11) aflGafl = 51‘_,*,

where the aj, are the normal vectors of M, at the point v, — ©,; bﬁ,
could be found solving a minimization problem (Grassberger et al.
1993), where b’ = —a' - £ and & is given as a linear combination
gl = ka <, @kVitn- The neighbourhood for each point v, is U,,
and wy, is a weight factor with w; > 0 and > oy = 1.

3.3 Mutual information (MI)

The most reasonable delay is chosen as the first local minimum of
the MI. The 7 time delayed MI is defined as

L= By (” 3)

i,j=1

where Pj(7) is the joint probability that an observation falls in the
i-th interval and the observation time t falls in the jth interval, P;
and P; are the marginal probabilities (Fraser & Swinney 1986). In
other words, it gives the amount of information one can obtain about
X; + ¢ given x,. The absolute difference between x,, and x,;, of the
data is binned into n bins, and for each bin the MI as a function of
7 is constructed from the probabilities that the variable lies in the ith
and jth bins and the Pj;(t) that x, and x, , . are in the ith and jth bins,
respectively (Tarnopolski 2015).

Additionally, we used also the autocorrelation function (ACF),
with the criterion to choose as the delay t the first lag at which the
ACF drops below 1/e, but the obtained delays did not always match
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with those from the MI. Therefore, all delays inferred from MI,
ACEF, and values in between were checked in subsequent steps of the
analysis. Some parameters could not give a clear interpretation as per
the chaotic behaviour, though. Both MI and ACF were implemented
within the mutual routine in the TISEAN package.

3.4 False nearest neighbours

The FNN method is a way of determining the minimal sufficient
embedding dimension m. This means that in an my-dimensional
delay space the reconstructed trajectory is a topological one-to-one
image of the trajectory in the original phase space. If one selects
a point on it, then its neighbours are mapped on to neighbours in
the delay space. Thus the neighbourhoods of points are mapped on
to neighbourhoods, too. However, the shape and diameter of the
neighbourhoods vary depending on the LEs. But if one embeds in
an m-dimensional space with m < my, points are projected on to
neighbourhoods of other points to which they would not belong in
higher dimensions (aka false neighbours), because the topological
structure is no longer retained. The FNN algorithm looks for nearest
neighbour k; j» for each point | k in an m-dimensional space, and
calculates the distance ||k — k [|. It then iterates over both points
and computes

||k1+1 - k/+l||

“
IIk; — k|

Thereby, a false neighbour is any neighbour for which R; > Ry,
where Ry, is some threshold. This algorithm was first proposed
by Kennel, Brown & Abarbanel (1992), and next improved by
Hegger & Kantz (1999). The FNN algorithm is widely used for
detecting chaotic behaviour in data sets obtained from astrophysical
observations (Hanslmeier et al. 2013), to experimental measurements
connected with electronics (Kodba, Perc & Marhl 2005). We utilized
the false nearest routine from the TISEAN package.

3.5 Lyapunov exponent

The LE is one of the main characteristics in the analysis of chaotic
dynamical system. The LE characterizes the rate of separation of
infinitesimally close trajectories Z(t) and Zy(7) in the phase space
(Cecconi, Cencini & Vulpiani 2010). It describes the evolution of the
separation §Z(t) = Z(t) — Zy(¢) via

8Z(1)| ~ e |8Zo(1)], (&)

where §Z(t) = Z.(0) — Z((0). The mLE is a measure of predictability
for a given solution to a dynamical system, and is formally deter-
mined as:

1, BZO)|
18Zo(1)]

A positive mLE usually indicates that the system is chaotic, i.e.
exhibits sensitive dependence on initial conditions, manifesting itself
through exponential divergence.

For the estimation of the mLE of a given univariate time series
set we use Kantz method (Hegger et al. 1999) in our analysis,
implemented as the 1yap_k routine in the TISEAN package. The
algorithm takes points in the neighbourhood of some point x;. Next,
it computes the average distance of all acquired trajectories to the
reference, ith one, as a dependence of the relative time n. The average
S(n) of the logarithms of these distances (so-called stretching factors)
is plotted as a function of n. In the case of chaos, three regions should
be distinct: a steep increase for small n, a linear part and a plateau

Q)

Amax = lim  lim
t—0068Zyp—0
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(Seymour & Lorimer 2013). The slope of the linear increase is the
mLE; its inverse is the Lyapunov time.

3.6 Correlation dimension

A fractal dimension (Mandelbrot 1983) is often measured with the
correlation dimension, dc (Grassberger & Procaccia 1983), which
takes into account the local densities of the points in the examined
data set. For usual 1D, 2D, or 3D cases the d¢ is equal to 1, 2, and 3,
respectively. Typically, a fractional correlation dimension is obtained
for fractals.’

The correlation dimension is defined as

. InC(R)
de = IIeLmo InR ’ M
with the estimate for the correlation function C(R) being
N N
CRY <> >~ O(R — |lx; — x;1)), ®

i=1 j=i+l

where the Heaviside step function ® adds to C(R) only points x; in a
distance smaller than R from x; and vice versa. The total number
of points in the reconstructed phase-space trajectory is denoted
by N, and the usual Euclidean distance is employed. The limit in
equation (7) is attained by fitting a straight line to the linear part of
the obtained log C(R) versus log R dependency. The dimension d¢ is
estimated as the slope of this linear regression.

Eckmann & Ruelle (1992) argued that for a time series of length
N, the maximal meaningful value of dc is necessarily less than 2log N
(see also Ruelle 1990). For the LCs examined herein, we have N 2>
500, hence d¢ < 5. We therefore search for low-dimensional chaos,
ie. with m ~ 3-5.

3.7 Surrogate data

The method of surrogates is the most commonly employed one
to provide a reliable statistical evaluation in order to ensure that
the observed results are not obtained by chance, but are a true
characteristic of the system. Surrogates can be created as a data set
that is generated from a model fitted to the observed (original) data,
or directly from the original data (by some suitable transformation of
it). Testing for the underlying nonlinearity with surrogates requires
an appropriate null hypothesis: the data are linearly correlated in
the temporal domain, but are random otherwise. In our employed
approach, surrogates are generated from the original data while
destroying any nonlinear structure by randomizing the phases of
the Fourier transform (Theiler et al. 1992; Oprisan et al. 2015).

We use the routine surrogates from the TISEAN package, that
generates multivariate surrogate data (i.e. implements the iterative
Fourier scheme). The idea behind this routine is to create a whole
ensemble of different realizations of a null hypothesis, and to apply
statistical tests to reject the null for a given data set. The algorithm
creates surrogates with the same Fourier amplitudes and the same
distribution of values as in the original data set (Kantz & Schreiber
2004). If the chaotic signature is present in the original data, but
not in the surrogates, one can ascertain that the detection of chaotic
behaviour is a real phenomenon.

3 Although some fractals can exhibit integer fractal dimensions, just different
from the embedding dimension; e.g. the boundary of the Mandelbrot set has
a dimension of exactly 2 (Shishikura 1998).
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Figure 1. The FNN plot for the logarithmic LC of 3C 279. (a) The knee at
m =~ 4-5 indicates the most appropriate embedding dimension; the value 7 =
3 was used. (b) One cannot see such a sharp bending when was set to the
delay value T = 9. (c) The lack of a sharp bending is also evident in case of
the surrogates.

4 RESULTS

The 11 blazars in our sample were examined according to the
methodology outlined in Section 3. We cannot claim the presence of
chaos in any of the analysed objects. In the following we illustrate
the analysis with an example of one blazar, i.e. 3C 279, leading to the
conclusion of the lack of chaotic behaviour in this source. Similar
results were obtained for the remaining 10 blazars.

4.1 Embedding dimension m

The FNN algorithm was employed to infer the proper embedding
dimension m. The FNN fraction for different m is displayed in
Fig. 1. A clear bending (a knee) is seen at m >~ 4 — 5 on the
FNN plot (Fig. 1a). The three curves represent one, two, and three
iterations of the denoising procedure of the original LC with the
value T = 3. However, there is no clear bend on the FNN plot
(b), which was obtained with the delay value T = 9. In order to
ascertain that this result is not a chance occurrence, 100 surrogates
were generated for every data set and their FNN fractions were
computed. A representative subset of such surrogates and their mean
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Figure 2. Estimation of the delay 7. (a) The MI has its first local minimum
at T = 3. (b) The ACF drops below 1/e at T = 8.

value is displayed in Fig. 1(c). The FNN fractions remain high for
all m tested, and overall no clear bend is visible.

4.2 Time delay ©

After testing different values of t for the phase-space reconstruction
and the LEs, we came to the conclusion that various 7 values lead
to dramatically different results. MI yielded in general T < 15. The
same range of 7 was implied from the ACF, although often the
particular values were inconsistent. Fig. 2 shows illustrative plots of
MI and ACF. By investigating the phase-space reconstructions and
the resulting mLEs, we settled using the values 7 = 3 and 7 = 8 as
representative.

4.3 Phase-space reconstruction

With the obtained values of m and 7, one can in principle pro-
duce a phase-space reconstruction of the trajectory according to
equation (1). However, for obvious reasons, illustrating graphically
the resulting four- or five-dimensional trajectory is impossible. For
display purposes only, a representation with t =3 and t =8 ina
three-dimensional space is displayed in Fig. 3, together with a typical
exemplary reconstruction of one of the surrogates.

4.4 Maximal Lyapunov exponent

Utilizing the obtained values of m and 7, we eventually attempted to
constrain the mLE. In Fig. 4, the stretching factors S(») are depicted
for the logarithmic LC itself, as well as for a representative example
of a surrogate. As mentioned in Section 3.5, in case of chaos three
regions should be clearly visible: a sharp increase for very small n,
followed by a linear section, and finally a plateau. None of these

MNRAS 502, 2750-2756 (2021)

X(t+271)

Figure 3. A three-dimensional phase-space reconstruction of 3C 279. These
are projections of the underlying five-dimensional trajectories. (a) The delay
v = 8 was used. (b) In this case T = 3. The topology is still similar. (c) A
reconstruction of surrogates. Any structure was destroyed.
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Figure 4. The stretching factors S(n) of (a) 3C 279 and (b) a representative
surrogate. In both cases there is no unambiguous linear increase. Different
colours correspond to different embedding dimensions .

parts are present in Fig. 4(a), also no such features are present in any
of the surrogates (cf. Fig. 4b). Such results were arrived at for all 11
blazars in our sample.

4.5 Correlation dimension

We constructed a plot of d¢ as a function of m, which is presented
in Fig. 5, as means of comparing with other works that utilized this
method. In case of a chaotic system a linear increase followed by
a plateau should be seen. The analysis of 3C 279 (Fig. 5a) did not
provide evidence of chaotic behaviour of the system. The plot of the
surrogate data in Fig. 5(b) does not exhibit a plateau part as well.
This observation applies to all 11 blazars considered herein.

5 DISCUSSION

Finding low-dimensional chaos in a phenomenon with not well-
constrained physics is of great importance, since it provides infor-
mation about the complexity of the underlying laws governing its
occurrence (Seymour & Lorimer 2013; Bachev et al. 2015). This
in particular refers to blazar LCs, in which no unambiguous signs
of chaos have been detected. Indeed, the analyses presented herein
also did not give the slightest hints allowing to suspect the presence
of chaos in any of the 11 objects examined. We displayed here the
results corresponding to 3C 279; the other 10 blazars yielded very
similar outcomes.

In principal, the behaviour of a dynamical system can be described
by a set of first-order ordinary differential equations. Such system can
be directly investigated to uncover the structure of the phase space
and to characterize its dynamical properties. Attractors, their fractal
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Figure 5. Correlation dimension dc for 3C 279 of (a) the logarithmic LC
and (b) one of the surrogates. In both plots there is no clear plateau.

dimensions, Lyapunov exponents, etc., can be easily estimated, and
their properties can be studied analytically, semi-analytically, and
numerically. However, the underlying equations in most cases of
real-world dynamical systems, such as blazar LCs, are unknown.
Hence the detection of chaos, or lack of thereof, is a notoriously
difficult task, especially in cases when the time series are relatively
short and contaminated by observational noise. Noisy data can
hinder the detection of chaos; moreover, high-dimensional chaos
can be disguised as randomness. Bachev et al. (2015) argued that
in the single-zone model there are only a handful of parameters
that control the emission, which is governed by the Fokker—Planck
(continuity) equation. However, if the radiation mechanism, and
subsequently the variability of blazars, can indeed be accurately
described by the (partial differential) continuity equation with some
appropriate injection term (Stawarz & Petrosian 2008; Finke &
Becker 2014, 2015; Chen et al. 2016), then the dynamical system
is considered to be infinite-dimensional. While chaos can be present
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in infinite-dimensional systems (e.g. delayed systems; Wernecke,
Sandor & Gros 2019), its detection in astronomical LCs need
not be unambiguously identifiable with the standard tools, most
commonly applied with a discovery of low-dimensional chaos in
mind—especially when the details of the fundamental dynamical
processes remain unknown, and the time series is not extremely long.

On the other hand, if the radiation is influenced by turbulence in
the jets, e.g. by chaotic magnetic flows caused by plasma instabilities,
there might be instances in which the behaviour of the system
settles on some low-dimensional attractor. Therefore, further search
for chaos in high-quality (multiwavelength) data gathered by next-
generation space instruments, like the James Webb Space Telescope
(Gardner et al. 2006), can be expected to give a more definite answer.
A uniform, rigorous analysis, in the spirit presented herein, of the
already abundantly available optical data from the Kepler space
telescope (Smith et al. 2018) is also called for.

6 CONCLUSIONS

The aim of this paper was to search for evidence of low-dimensional
chaos in y-ray LCs of 11 blazars, i.e. five BL Lacs and six FSRQs.
Data from Fermi-LAT (10-yr-long LCs with a 7-d binning) were
investigated using the phase-space reconstruction via embedding di-
mension m and time delay t, with the goal of eventually constraining
the mLE (if positive) and correlation dimension dc.

All analyses implied no signs of chaos for all 11 blazars.
Therefore, the underlying physical processes that give rise to the
observed variability are either truly stochastic (Tavecchio, Bonnoli
& Galanti (2020) or governed by high-dimensional (possibly infinite-
dimensional as well) chaos that can resemble randomness.
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