
MNRAS 505, 2753–2763 (2021) https://doi.org/10.1093/mnras/stab1470
Advance Access publication 2021 May 26

The mass budget for intermediate-mass black holes in dense star clusters

Yanlong Shi ,1‹ Michael Y. Grudić 2,1‹ and Philip F. Hopkins 1‹
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ABSTRACT
Intermediate-mass black holes (IMBHs) could form via runaway merging of massive stars in a young massive star cluster
(YMC). We combine a suite of numerical simulations of YMC formation with a semi-analytic model for dynamical friction and
merging of massive stars and evolution of a central quasi-star, to predict how final quasi-star and relic IMBH masses scale with
cluster properties (and compare with observations). The simulations argue that inner YMC density profiles at formation are steep
(approaching isothermal), producing some efficient merging even in clusters with relatively low effective densities, unlike models
that assume flat central profiles resembling those of globular clusters after central relaxation. Our results can be approximated
by simple analytic scalings, with MIMBH ∝ v

3/2
cl where v2

cl = GMcl/rh is the circular velocity in terms of initial cluster mass Mcl

and half-mass radius rh. While this suggests IMBH formation is possible even in typical clusters, we show that predicted IMBH
masses for these systems are small, ∼100 − 1000 M� or ∼0.0003 Mcl, below even the most conservative observational upper
limits in all known cases. The IMBH mass could reach � 104 M� in the centres nuclear star clusters, ultra-compact dwarfs, or
compact ellipticals, but in all these cases the prediction remains far below the present observed supermassive BH masses in these
systems.

Key words: stars: formation – globular clusters: general – galaxies: formation – galaxies: star clusters: general.

1 IN T RO D U C T I O N

Intermediate massive black holes (IMBHs), which typically weigh
102–105 M�, are believed to be the missing link between stellar
mass black holes and supermassive black holes (SMBHs). These
objects, if they exist, are expected to play an important role in
multiple astrophysical processes, e.g. affecting the evolution of
globular star clusters and powering off-nuclear ultraluminous X-
ray sources (ULXs). More importantly, they are potentially the
progenitors of SMBHs that are known to live in most galaxies
(Ferrarese & Merritt 2000; Gebhardt et al. 2000; Volonteri 2010;
Mezcua 2017; Koliopanos 2018). Observations of ULXs and stellar
kinematics argued that there may be some evidence for such objects
in galaxies (e.g. Farrell et al. 2009; Kaaret, Feng & Roberts 2017),
and globular star clusters (e.g. Portegies Zwart et al. 2004; see more
in Section 5). But these claims remain controversial.

Theoretically, several different IMBH formation channels have
been proposed. Major ideas include: direct collapse of hyper-mass
quasi-stars in isolation (e.g. Volonteri & Begelman 2010; Schleicher
et al. 2013), runaway hyper-Eddington accretion on to stellar mass
black holes (e.g. Ryu et al. 2016), and runaway mergers in globular
(star) clusters (GCs; e.g. Portegies Zwart & McMillan 2002; Gürkan,
Freitag & Rasio 2004; Gieles et al. 2018b). All these mechanisms
have challenges. For the direct collapse channel, the fragmentation of
molecular clouds may not form quasi-stars instantly, but star clusters
(Moran, Grudić & Hopkins 2018). For the hyper-Eddington channel,
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one important question is whether such high-efficiency accretion
is sustainable or even possible. Finally, for the runaway merger
channel, gravitational recoil due to merging stellar-mass BHs will
likel ‘kick’ the IMBH to a high velocity (∼1000 km s−1; e.g. Holley-
Bockelmann et al. 2008), sufficient to make it escape the star cluster.
Only relatively massive IMBHs (�103 M�) could remain in the
galactic field even after the star cluster dissolves and survive such
a merger without too-large a ‘kick’ (Fragione, Ginsburg & Kocsis
2018), which means the IMBH must be that massive before stellar-
mass BH mergers occur. To solve this problem, the runaway merging
process must be rapid enough such that massive stars merge together
before they evolve off the main sequence and become black holes
individually.

Previous studies of runaway mergers in star clusters have provided
us with a possible scenario: due to mass segregation, relatively
massive main sequence stars sink to the cluster’s centre and then
merge into a supermassive central object that then self-collapses to
an IMBH after ∼3 Myr. In Portegies Zwart & McMillan (2002),
the authors showed N-body simulations of the process, and found
that star clusters with initial half-mass relaxation time-scale trlx �
25 Myr can form IMBHs. More precise simulations in Gürkan et al.
(2004) drew a similar conclusion and predicted that the quasi-star’s
mass could account for ∼0.1 per cent of the total cluster mass. More
recently, Petts & Gualandris (2017) ran high-resolution simulations
of young dense star clusters infalling to the Galactic Center. The
clusters undergo a similar process and the formation and collapse of
a very massive star was observed, resulting black holes with mass
∼20–400 M� (which covers part of the IMBH mass range).

The studies focused on cluster dynamics, while the evolution of the
the central object is another important key step of the runaway merger
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scenario. The central object, as the product of runaway collisions,
is named ‘quasi-star’ or ‘very massive star’ in different context. For
consistency, it will be mentioned as ‘quasi-star’ in this work. Petts
& Gualandris (2017) performed runaway-collision simulations with
sophisticated descriptions of the quasi-star’s mass loss, and showed
that the quasi-star will collapse after ∼3 Myr. Other studies have
found that quasi-stars’ mass (Mq hereafter) can reach up to 106 M�
in principle (given infinite ‘fuel’), and the remnant BH mass is MBH ∼
0.1Mq (e.g. Begelman 2010; Ball et al. 2011). These models also find
the quasi-stars’ lifetime to be ∼3 Myr, with only a weak dependence
on their masses.

These models, taken at face value, however, would actually imply
almost no IMBHs in GCs or other dense stellar systems. The problem
is that most GCs (let alone nuclear stellar clusters or galaxy bulges)
have half-mass relaxation time-scale much longer than 100 Myr
(e.g. trlx ∼ 2.5 Gyr for M15). However, the studies cited above
assumed the initial mass profile of GCs was essentially identical
to the mass profiles of nearby relaxed clusters observed today (e.g.
with a flat King-type central density profile). In short, if one were to
assume that the GCs’ present-day mass distribution reflects their mass
distribution at formation, this would rule out the runaway merger
channel in most globular clusters. However, calculations following
the dynamical evolution of globular clusters over cosmological time-
scales unanimously find that this is not a good assumption (Giersz
et al. 2013; Wang et al. 2016; Baumgardt & Hilker 2018; Kremer et al.
2019). Rather, the combined effects of stellar evolution and mass
loss, dynamical ejections, mass segregation and ‘binary burning’,
and tidal heating/stripping all tend to puff up and flatten the central
mass profile slope of dense stellar systems (usually on time-scales
far shorter than the N-body relaxation time), implying that many
presently observed clusters once had much denser inner cores.

Indeed, the closest observable cousins to proto-globular clusters,
young massive clusters (YMCs), are generally found to have density
profiles that are significantly different from old globular clusters of
comparable mass. Their half-mass radii are generally smaller, with a
typical half-mass radius of ∼1 pc that has no clear correlation with
mass (Ryon et al. 2015, 2017), and thus their relaxation times are
generally shorter. They also have a relatively compact density profile
with an outer asymptotic power-law slope ρ ∝ r−η1 , where η1 is
typically in the range 2–3 (Grudić et al. 2018b). Grudić et al. (2018b)
further found that hydrodynamical simulations of YMC formation
were able to reproduce this density profile robustly, and proposed that
these density profiles arise from the star cluster assembly process.

In this article we revisit the basic physical processes involved in
the assembly a massive stellar object in the centre of a dense star
cluster, using the results of the Grudić et al. (2018b) simulations
that successfully reproduce observed YMC outer density profiles
(Ryon et al. 2015, 2017), as well as a range of giant molecular cloud
(GMC) properties including their turbulent structure, magnetic field
strengths, and stellar auto-correlation functions or stellar clustering
(Guszejnov et al. 2020). These simulations attempt to capture (to
the extent possible with state-of-the-art simulations) the cluster
properties as they form, which is the most relevant time for potential
IMBH formation. Using these simulation results to guide our space
of cluster models, we perform a set of Monte Carlo (MC) simulations
to track the mass segregation process and study the evolution of the
central mass (the quasi-star). Using these methods we predict the
mass growth history of the quasi-star and its dependence on the
properties of the progenitor cloud or host cluster.

The article is organized as follows: in Section 2 we introduce the
analytical and numerical methods used to study mass segregation and
the runaway growth of massive objects in star clusters; in Section 3,

we show the numerical results from the MC simulations and discuss
some secondary effects; in Section 5, we expand the discussion to
observational aspects and make predictions; finally, in Section 6 we
summarize our main findings.

2 MO D E L S A N D ME T H O D S

2.1 Initial conditions from cluster formation simulations

For our initial conditions, we extract catalogues of star clusters as
they form in the simulations from Grudić et al. (2018a,b). These are
N-body plus magneto-hydrodynamic (MHD) simulations of cloud
collapse and star formation, including detailed models for radiative
cooling and chemistry, star formation, and ‘feedback’ once stars
form in the form of radiation (e.g. radiation pressure and H II

regions), stellar winds, and supernovae. The simulations follow the
collapse of giant molecular clouds, the assembly of star clusters,
and the eventual dispersal of gas due to stellar feedback. One such
simulation of e.g. a massive complex can produce many independent
clusters: we identify gravitationally bound star clusters remaining
after gas dispersal1 using a group-finder which associates stars
belonging to a common potential well that are also gravitationally
bound within that well [see Appendix A in Grudić et al. (2018b)
for details]. We restrict to clusters that form >100 bound star
particles.

This gives us an ensemble of ∼1000 clusters ‘at formation,’ one of
which is shown in Fig. 1 Note that this sample of clusters should not
be considered statistically representative of a cluster population that
would form in a real galaxy: the initial conditions of the simulations
were simply uniformly sampled on a logarithmic grid in mass-radius
parameter space, which is ideal for our study here.

These simulations are designed to (1) sample an enormous param-
eter space, and (2) simulate large complexes through the entirety of
star formation and stellar evolution: as such, the numerical resolution
is such that individual ‘star particles’ in the original simulations
represent an initial mass function (IMF)-averaged ensemble of
stars. To properly evolve stellar dynamics, we therefore re-sample
each star particle into an ensemble of individual stars, drawing
probabilistically from the stellar IMF conserving total stellar mass.
By default (since it is the same used for the original simulation stellar
evolution models) we adopt a (Kroupa 2001) IMF with an upper mass
limit of mmax = 100 M�.2 For this assumption the median stellar
mass is 〈m〉 ≈ 0.38 M�, and the mean is 1.5 M�.

2.2 Analytic models from the simulations

Although our simulation suite is extensive, it is still limited by
(1) finite sampling of parameter space and (2) finite resolution.
Especially in cluster centres (particularly important here), the original
simulation will always produce finite-resolution effects. Moreover,
although the simulated clusters have some non-axisymmetric struc-
ture, we generally find this is small and generates torques that are
weak compared to dynamical friction (discussed below). Therefore,

1We have also compared the results extracting clusters at the time of peak
star formation; the time difference is sufficiently small that it has little effect
on our results.
2We have tested and adopting instead a Chabrier (2003) makes negligible
difference to our conclusions. Likewise we find that varying the upper ‘cutoff’
mass of the IMF makes only weak (logarithmic) corrections to our predictions
(because these stars contribute negligibly to the total massive-star stellar mass
budget).

MNRAS 505, 2753–2763 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2753/6284781 by guest on 13 M
arch 2024



IMBH from runaway merger in YMC 2755

Figure 1. Left: Radial density profile ρ(r) for a young, massive, star cluster (stellar mass Mtot = 5.5 × 105 M�) in the studied suite of star-cluster formation
simulations, taken just after the peak episode of star formation. We compare three analytic fits to the profile: ‘modified Jaffe’ (equation 1), ‘double power-law’
(equation 2), and a single power-law fit only to the ‘inner’ radii within the half-mass radius rh (marked by a red star). Middle: Calculated mass growth of the
central massive object, owing to mergers of massive stars. Full MC simulation: Calculating the inspiral of massive stars in the cluster sampling from the IMF
and following each orbit as described in (Section 2), identifying them as merged when they contact the quasi-stellar radius. Crossover time: Time when the
accretion time-scale Ṁacc/Mc becomes > 3 Myr, an estimate of when mass-loss from the quasi-star might outpace accretion). MC simulation without ‘point
mass correction’ (PMC): MC simulation ignoring the ‘point mass correction’ (‘without PMC’, also refer Section 2.3) – i.e. ignoring the effect of the quasi-star
itself and finite mass N-body effects in the centre of the star cluster on stellar dynamics (instead assuming the density profile is simply the smooth/continuous
extrapolation of the continuous ρ(r). This produces systematically higher Mc as the PMC causes inspiralling stars to stall, but the effect is relatively small (tens
of percents) Analytic: Closed-form, approximate solutions for Mc(t), using the analytic fits (left). These agree well with the MC without PMC model, so the
PMC is the dominant correction. Right: Mass accretion rate Ṁc history of the central massive object. We compare a fuel consumption+stellar mass loss rate
for the quasi-star given by a toy model for Eddington-limited growth, with Ṁc, consumption+loss ∼ −Mc/3 Myr. At early times, growth rates are much larger than
this loss rate, while at later times, accretion rates drop rapidly. As a result, the exact assumption about when to ‘truncate’ accretion rates and how to model
quasi-star mass-loss make relatively little difference to our predictions for Mc (though they are important for models which attempt to predict the relic IMBH
mass, given some Mc).

it is especially useful to also consider general analytic models for
the initial conditions, motivated by the cluster catalogue from our
simulation suite.

We consider three simple, spherically-symmetric analytic density
profiles, which we will show allows us to capture almost all of the
key behaviors we study. These are shown in Fig. 1 as fits to one
example profile.3 First, a ‘Modified Jaffe’ model (from Binney &
Tremaine 2011, equation 2.64):

ρ(r) = ρc

(
r

rc

)−η1
(

1 + r

rc

)−η2+η1

. (1)

with inner power-law slope η1, outer slope η2, turnover radius rc, and
normalization ρc (given by e.g. the total mass). We also consider a
similar ‘double power’ law model,

ρ(r) = ρc

(r/rc)η1 + (r/rc)η2
, (2)

which has the same qualitative features as the ‘Modified Jaffe’ model
but features a much sharper turnover around rc, which is useful in
what follows as it dramatically reduces the covariance between the
parameters η1 and η2.

Finally, we also consider a ‘single power’ law model: ρ(r) =
ρc(r/rc)−η for r < rc. This obviously cannot fit any mass profile over

3We have experimented with a variety of different methods for fitting the
analytic profiles to the simulation outputs, and find the most robust results
fitting directly to the spherically averaged ρ(r) in log-log space with uniform
weights but constraining the analytic fit to reproduce the total mass and
half-mass radius (specifying ρc and rc) exactly, so only the slopes η1, 2 are
‘free.’

the entire dynamic range of r with finite mass; we therefore restrict
the fit only to radii smaller than the half-mass radius (so η ≈ η1).
This is included here because it allows us to derive some simple
analytic expressions in regimes where the inner profile dominates
the behaviour.

2.3 Sinking and ‘merging’ stars

Even with the simplifications above, integrating the full N-body
dynamics of massive stars through a cluster into merger with a central
object is computationally impossible (both given our large parameter
space of models and sample of ‘clusters’ reaching ∼108 M�, let
alone uncertainties in the actual size/evolution of the central object).
However, full N-body studies of a small number of smaller clusters
(e.g. Portegies Zwart & McMillan 2002; Gürkan et al. 2004;
Alessandrini et al. 2014) have shown that dynamical friction is an
excellent approximation to rate of sinking and merger of massive
stars with m 	 〈m〉 (which are those that dominate the buildup
of a central quasi-star on the time-scales of interest). This quickly
circularizes the orbits of the massive stars and leads to orbital decay
with

ṙ = −4πG2 m ln � v−3
c ρb r, (3)

where m is the mass of the sinking star, v2
c ≡ G M(< r)/r reflects the

enclosed mass M(< r) inside r, ρb is the density of the background
stars at radius r (e.g. the ρ(r) in the profiles above), and � is a
Coulomb logarithm that we take to be �(r) ≈ 0.1 M(< r)/〈m〉. Less
massive stars will not sink: we approximate this (conservatively, for
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Figure 2. Probability distribution function (PDF) of the best-fitting analytic density profile innert slopes (η1, where ρ ∝ (r/rh)−η1 as r → 0) and outer slopes
(η2, relevant as r → ∞), fit to our entire library of MHD star cluster formation simulations. We compare both ‘modified Jaffe’ (equation 1; MJ) and ‘double
power-law’ (equation 2; DPL) and (at right) single power-law (SPL) fits to just r < rh. Left: Joint PDF of η1 and η2. Darker (lighter) counters denote the 1σ

(2σ ) inclusion contours, while crosses show the local maxima. Right: Marginal 1D PDFs for η1 and η2. The MJ, DPL, and SPL fits are statistically consistent,
though MJ shows larger covariance between η1 and η2 owing to the much less-sharp ‘knee’; SPL has no covariance by construction. Independent of fitting
methodology, the simulations clearly exhibit steep inner profiles at formation with most-common η1 ∼ 1.5−2, closer to isothermal (η1 = 2) than to their
post-relaxation King-like (η1 = 0) profiles.

now) by simply applying a cutoff ignoring any ṙ below mmin =
8 M�.4

From a MC realization of the ICs (either directly from the
formation simulations, or analytic fits), we then evolve the system
forward in time. As massive stars approach the centre, the first to
reach the centre (region interior to which there are no other m >

mmin stars) becomes the ‘seed’ quasi-star (with mass Mc). Because
we are interested in mergers while the massive stars are on the
main sequence, we subsequently ‘merge’ into this any massive
star that (1) has not yet reached the end of its main sequence
lifetime (adopting the relation from Mottram et al. 2011; typically
∼3 Myr for the most massive stars), (2) approaches the quasi-star
within a radius r < rq that represents some ‘interacting binary’ or
‘common envelope’ radius (for which we take the value quoted by
Hosokawa et al. (2013) for models of a rapidly accreting protostar:
rq ≈ 2600 R� (Mq/100 M�)1/2),5 and (3) reaches before the quasi-
star itself has reached the end of its lifetime. We simply add the
merged mass to Mc, neglecting e.g. mass-loss associated with the
merger. Note that during collisions the central object mass Mc(t) will
contribute to the total enclosed mass M(< r) as an additional point
mass, which is included as a correction when solving equation (3) in
our full version of MC simulations. This PMC is not included in our
analytical calculation and the corresponding MC simulations.

The quasi-star ‘lifetime’ essentially sets the end of our simulation,
and the final mass of the quasi-star. Studies of quasi-star structure

4This ignores back-reaction causing lower-mass stars to migrate outwards,
but this is a small effect on the time-scales we consider, and we show below
the exact choice of mmin also has relatively weak effects on our conclusions.
5This is essentially an extrapolation from ‘normal’ pre-main sequence stars.
Of course the sizes of quasi-stars are purely theoretical and uncertain;
however, varying this by factors of several has very little effect on our
conclusions, as the ‘sinking’ times around these radii are relatively small.
But we need to include some finite ‘merger radius’ since we do not model
effects like gravitational wave emission that could merge point-mass-like
particles.

(e.g. Goodman & Tan 2004; Ball et al. 2011; Schleicher et al. 2013)
have found that because these stars are approximately Eddington-
limited, they have lifetimes ∼3 Myr akin to massive stars. Simu-
lations that include a detailed description of quasi-star’s mass loss
also show a similar lifetime of typically 3 Myr (Petts & Gualan-
dris 2017). We have therefore considered simply taking the mass
Mq = Mc(t = 3 Myr). We have also considered a more sophisticated
model motivated by the same pre-main sequence models described
above: some accretion rate Ṁacc = dMc/dt from mergers sustains
the quasi-star lifetime and keeps it ‘puffed up’ (allowing efficient
mergers) as long as it is larger than the fuel consumption/loss rate
from a combination of nuclear burning and stellar mass-loss, which
occurs on a characteristic time-scale t0 ∼ 3 Myr. We therefore take
the final Mq to be Mc at the first time where Ṁacc falls below Mc/t0.
In practice, because the merging stars also have lifetimes ∼3 Myr,
it makes very little difference which of these assumptions we adopt.

3 R ESULTS

3.1 Density profiles

Grudić et al. (2018b) showed that the simulated clusters here produce
a distribution of density profile shapes after relaxation in good
agreement with observations; however, no analysis of the inner
density profiles at formation was performed. In Fig. 2, we show
the distribution of the inner (η1) and outer (η2) mass profile slopes
fit to all clusters. In both ‘modified Jaffe’ and ‘double-power-law’
models, the outer slopes are typically in the range of 3.5–4.5 as
found in Grudić et al. (2018b). The inner slopes cluster around 1–
2.5 [as compared to post-relaxation profiles, which broadly follow
a ‘flat’ Elson, Fall & Freeman (1987) distribution]. The best-fitting
distribution for η1 is most narrowly peaked (around η1 ≈ 2) for the
‘single-power-law’ fits (fit to just r within the half-mass radius), and
most broad for the ‘modified Jaffe’ fit. Our extensive experimentation
with different fitting methods indicates that this directly traces the
covariance between η1 and η2. The single-power fit, with only one
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IMBH from runaway merger in YMC 2757

Figure 3. Properties and predictions from our cluster catalogue with respect to cluster mass Mcl and effective radius (rh). Left: Best-fitting inner density profile
slope parameter (η1). Middle: Best-fitting outer density profile slope parameter (η2). Notably, there is no significant systematic dependence of the density
profile shape parameters η1 or η2 on the cluster mass and radius, consistent with scale-free predictions for substructure in turbulent gravitational fragmentation
(Guszejnov, Hopkins & Grudić 2018). Right: Predicted central object mass Mq, measured as Mc(t = tc), i.e. at the ‘crossover time’ as in e.g. Fig. 1, from our
‘full model,’ as a function of Mc and rh. We compare the predicted values (contours, with Mq/M� labeled) if we assume all clusters have an identical universal
double power-law mass profile with the ‘typical’ values of η1 = η1∗ and η2 = η2∗ (Section 3.1). This reproduces the results well, indicating that sub-structure
in the simulations, and variation in mass profile shape from cluster-to-cluster, do not strongly influence our conclusions.

slope, has no η1 − η2 covariance. The double-power fit, with a ‘sharp’
break, has weak covariance between η1 and η2 which ‘smears’ the
best-fitting η1. The modified Jaffe fit exhibits very strong covariance
between η1 and η2, with a wide range of allowed fits for any given
simulation profile.6

Fig. 3 shows that the best-fitting η1 and η2 do not depend
systematically on either cluster half-mass radius rh or mass Mcl.
Likewise our cluster catalogue includes simulations with progenitor
clouds of different metallicities (Z/Z� = 0.01 − 1), and we see no
dependence on Z.

Even though the exact values of the ‘inner slope’ η1 can vary
between fits, the fact that these are relatively narrowly constrained
(within covariances, i.e. all are ‘good’ representations of the data),
and that they do not depend systematically on cloud mass/size means
that we obtain reasonably good estimates for the final central object
mass from our full MC calculation, using an idealized mass profile
fit with either of the fitting functions or assuming a ‘universal’ mass
profile shape across all clusters (Fig. 4). The modal fit values for (η1,
η2) are (η1M, η2M) = (1.2, 3.7) for the modified Jaffe, (1.4, 3.5) for the
double-power-law, and (1.9) for the single power-law model. Because
of the covariances, however, these are not the same as the values that
give the best estimate of Mq compared to our full MC calculation.
Instead, we should ask which values (η1∗, η2∗), applied to the entire
ensemble of clouds (as a ‘universal’ profile shape), most accurately
predict Mq from the MC:7 these are (η1∗, η2∗) = (1.68, 4.95) for
modified Jaffe,8 (1.81, 3.79) for double power-law, and (1.93) for

6It is important to note that because of the covariance in the fits, models with
the modified Jaffe fit with η1 ∼ 0 give rc � rhalf, i.e. the ‘rollover’ occurs very
slowly down to extremely small radii (often below the simulation resolution)
– so the central densities are still large.
7Formally we find the (η1∗, η2∗) that minimize the variance
∑ | log{Mq, pred(η1∗, η2∗, rh, Mcl)} − log{Mq (MC)}|2.
8The dramatic change in the values for modified Jaffe again indicates the
covariance (with the η2 = 4.95 value indicating that the outer slope plays a
very small role in determining Mq).

Figure 4. Quantitative comparison of the maximum central object mass Mq

predicted by different analytic models for the density profile, to that calculated
using the full simulation 3D density information, for all ∼1000 MHD star-
formation simulation clusters in our library. We normalize both by cluster
mass Mcl to reduce the dynamic range and better highlight any discrepancies.
Dashed lines show identity (MC equals analytic). (a): Results assuming an
analytic modified Jaffe profile with all clusters fitted separately with four free
parameters. (b): Double power model with all clusters fitted separately with
four free parameters. (c): Modified Jaffe model assuming a universal profile
shape with the slopes η1∗ and η2∗ (but allowing Mcl and rh to vary, matched
to the exact simulation values for each simulation). (d): Double power model
assuming a universal profile shape with η1∗ and η2∗. In general, assuming
universal, smooth, analytic, 1D density profiles introduces relatively small
errors into our estimates of Mq (provided we adopt the correct ‘at formation’
slopes), suggesting it is reasonable to apply these to YMCs and other young
objects for which Mcl and rh can be measured but ρ(r) as r → 0 cannot be
resolved.
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single power-law, all of which feature a similar, isothermal-like inner
slope η1 ∼ 2.

3.2 Central object growth

Fig. 1 shows one example of our full MC simulation, with the ensuing
growth of the central object as a function of time Mc(t). The results
from the spherical analytic model with the modified Jaffe or double-
power-law profiles agree very will with the full MC (the single-
power-law works well up to ∼1 − 3 Myr, as well, where most of the
accretion is from radii �rh). The ‘crossover point’ where Ṁacc =
Mc/t0 occurs at t ∼ 1.3 Myr, but the growth rate of Mc is slowing
down already at this point, so Mq only differs by a factor of ∼1.5 if
we take Mq to be Mc at t = 3 Myr, or a factor of 1.9 if we take Mq

as t → ∞. In any case, this particular cluster, chosen to be relatively
extreme (with a total mass ∼106 M� and initial central density of
∼1011 M� pc−3 at r � 0.001 pc) is able to merge most of its massive
stars (∼10 per cent of the total stellar mass) within < 3 Myr.

Fig. 3 shows Mq from our full MC calculation for each simulated
cluster, as a function of cluster mass and half-mass radius. There
is a clear trend where more massive clusters Mcl at the same size
give larger Mq, and a weaker but still evident trend of larger Mq for
more compact clusters at fixed mass. These are expected if cluster
profiles are approximately self-similar: to show this we compare
the predicted Mq from analytic models with different Mcl and rh,
assuming a universal density profile shape (the double power-law fit
with fixed η1 = η1∗, η2 = η2∗).

Fig. 4 compares the mass fraction that can merge to the centre fq ≡
Mq/Mcl from our full MC calculation to that obtained from the simple
spherical analytic models. We compare the results from the modified
Jaffe and double-power-law fits, fit individually to each simulation
cluster, which predict fq to within < 10 per cent on average – this
indicates that deviations from symmetry, ‘lumpiness’, or irregular
structure in the potential and density profile, or resolution effects
(e.g. numerical flattening or shot noise in the central density profile,
as compared to the profile generated by a smooth power-law down
to r → 0) do not strongly influence our results. We also show the
results assuming a universal profile with (η1, η2) = (η1∗, η2∗). This
increases the scatter (as expected) but only by a modest amount: we
can predict Mq to within an rms <0.15 dex assuming this universal
shape at formation.

It is unclear exactly at which mass scale dynamical friction ceases
to be a good approximation for the ‘sinking’ of massive stars: Fig. 5
varies the minimum mass mmin we allow to sink, to show this has
only a small effect on our predictions. Varying mmin from 0.5 − 8 M�
changes Mq by a factor ∼2, because (a) lower-mass stars sink more
slowly (even if we allow them to sink), and (b) the Salpeter IMF is
not extremely steep, so the total mass of stars ‘sinking’ only changes
with m−0.3

min .
Because most of the mass in the IMF is not in the highest-mass

stars, it also makes little difference if we vary the high-mass cutoff
(e.g. changing the upper-mass cutoff of the IMF from 100 M� to
200 M� only produces a � 10 per cent difference in Mq).

Another significant uncertainty in our models is how the actual
mergers/coalescence occur in the centre: we simply populate stars
and merge anything within some large radius in the centre (reflecting
the envelope size of the quasi-star), implicitly meaning there is some
‘overlap’ between the envelope of the quasi-stars and our populated
stars in the models. Properly determining if or how mergers once
massive stars sink close to the central quasi-star requires dynamical
stellar merger simulations. But even within our simple model, stars
can still ‘stall’ near the centre. In Fig. 5, we consider a model variation

where we simply merge any star that reaches the radius where
the proto-star would dominate (be more than 1/2 of) the enclosed
mass M(r), and ignore the mass of Mq itself in calculating vc in
equation (3): these changes essentially guarantee that any massive
star that approaches small r merges. We see that this systematically
increases Mq/Mcl, as expected, by a factor ∼2. This in turn means
that our ‘default’ model (which includes the point-mass correction)
is predicting an order-unity fraction of massive stars near r ∼ 0
‘stall’ or otherwise fail to merge, a reasonable order-of-magnitude
approximation to few-body simulations. It also implies that these
correction does not change our qualitative conclusions.

4 C O M PA R I S O N TO PR E V I O U S WO R K

As discussed in Section 1, Portegies Zwart & McMillan (2002)
and Gürkan et al. (2004) considered detailed N-body simulations
to follow runaway merging, but used adopted very different mass
profile shapes (similar to post-relaxation clusters today). If we adopt
a similar profile shape to their default (e.g. a Plummer-like (η1, η2)
= (0, 5)), and then run our full model to calculate Mq for a wide
range of Mcl and rh (sampling the values of our simulation library)
then – despite the other simplifications here – we obtain quite good
agreement (within a factor of a few) with both their requirement
that the cluster must have trlx � 25 Myr to produce any appreciable
growth of Mc and the peak mass Mq or resulting mass fraction fq =
Mq/Mcl in a central massive object produced when this criterion is
met. This is reassuring, and implies our methodology is reasonable.
The key difference in our predictions, compared to theirs, arises
because our MHD star formation simulations predict quite different
values of η1 compared to those they considered.

Some other recent studies have considered runway stellar mergers
in initial conditions closer to those here (but with a more limited
or ad-hoc choice of initial profiles). Sakurai et al. (2017) adopted
a similar approach to that here, using hydrodynamic simulations to
select dense (Mcl ∼ 105 M�, King-profile core rc ∼ 0.4 pc) proto-
galactic ‘clouds’ and then using those to set up initial conditions
for N-body simulations: although our survey is intended to match
much later-forming star clusters, where the cloud properties overlap
we find similar Mq within a factor ∼2 for each of the ∼8 clusters
they simulate (assuming a typical rc/rh ∼ 0.1). Petts & Gualandris
(2017), as mentioned in Section 1, also used King-type profiles to
setup the initial cluster density. In those simulations, clusters with
mass Mcl ∼ 105 M� and half-mass radius rh ∼ 0.1 – 0.6 pc typically
generate quasi-stars of Mq ∼ 100 – 4000 M� and remnant black holes
of MBH ∼ 20–400 M�. The simulations, although with a background
potential field near the Galactic Center, generally agree with our
analytic estimation in the quasi-star’s mass (e.g. when compared with
the right panel of Fig. 3). However, the central density of the clusters
is typically 106 – 107 M� pc−3 while our star formation simulations
show significant higher density (e.g. as shown in Fig. 1).

In parallel, Devecchi & Volonteri (2009) considered analytic
models for cloud/cluster formation, to estimate typical cloud den-
sities in the early universe, coupled to a simple prescription from
Portegies Zwart & McMillan (2002) for the fraction of clusters
undergoing runaway, to argue fq could reach ∼0.05 for dense
clusters formed in the early Universe because these produce steep
central profiles (η1 � 5/3), broadly similar to our conclusions. And
recently, Tagawa, Haiman & Kocsis (2019) performed semi-analytic
calculations qualitatively akin to those here, considering a much
more limited range of profiles (but taking steep η1) but much more
detailed models for the (proto)-stellar evolution of the quasi-star and
merger criteria, but conclude that effective growth ceases at ∼3

MNRAS 505, 2753–2763 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2753/6284781 by guest on 13 M
arch 2024



IMBH from runaway merger in YMC 2759

Figure 5. The effect of the ‘lower mass cutoff’ (mass limit where dynamical friction remains a good approximation) and point-mass corrections on quasi-star
masses Mq. Left: Varying mmin, the minimum stellar mass where we assume that a dynamical-friction-type orbital decay (equation 3, requiring stellar masses
m 	 〈m〉 ∼ 0.38 M�) is valid. Lines show the predicted Mq as a function of cluster mass Mcl and size rh, assuming the universal best-fitting η1∗, η2∗, for each
mmin, and otherwise adopting our ‘full’ model. This produces nearly-negligible differences, as stars with masses � 8 M� sink inefficiently even if dynamical
friction were a good approximation for their dynamics. The effects of varying the upper mass-limit of the IMF from 100 M� (not shown) are also negligible.
Right: Effect of ignoring the ‘point mass correction’ (not accounting for the finite N-body effect of the quasi-star itself; see Fig. 1). Even if we ignore these
corrections, we obtain Mq, np very similar to our full model Mq, just systematically larger by a modest factor – a linear fit gives Mq ≈ 0.6 Mq, np (fitting an
arbitrary power-law gives (Mq/2000 M�) ≈ 0.6 (Mq, np/2000 M�)0.9, but the difference from the ‘slope =1 fit’ is not significant). Accounting for these finite
N-body effects produces a not-negligible correction to Mq, but it is largely a systematic effect which does not change our qualitative conclusions.

Myr (as we assume here) with a similar effective radius for merger
(versus Mq) as we adopt here. More recently, Rizzuto et al. (2020)
performed a series of N-body simulations of YMCs based on King-
type profiles, indicating that massive stars weighing up to ∼400 M�
may form within 5–15 Myr and sequentially become IMBHs. The
results generally support our semi-analytical model, which is based
on a more realistic parameter space of YMC density profiles and
limited lifetime for quasi-stars.

5 D ISCUSSION

We now consider the implications of our results for real dense
stellar systems. Fig. 6 plots the distribution in Mcl and rh of a wide
variety of known dense, stellar-dominated, dispersion-supported
systems: globulars and YMCs, super-star clusters (SSCs), nuclear
star clusters (NSCs) in different dwarf and late-type galaxies, ultra-
compact dwarf galaxies (UCDs), nearby and high-redshift compact
elliptical galaxies (Es) and bulge-dominated galaxies. The sizes and
masses are compiled in Hopkins et al. (2010), from observations
by Harris (1996), Barmby et al. (2007), Rejkuba et al. (2007),
McCrady & Graham (2007), Walcher et al. (2005), Böker et al.
(2004), Geha, Guhathakurta & van der Marel (2002), Haşegan et al.
(2005), Evstigneeva et al. (2007), Hilker et al. (2007), Kormendy
et al. (2009), Lauer et al. (2007), and van Dokkum et al. (2008). We
have no way of knowing their properties ‘at formation,’ but because
our full simulations can be reasonably approximated by assuming
a ‘universal’ profile shape at formation, we compare the contours
of Mq predicted by our model with a universal at-formation (η1∗,
η2∗). This does assume that the total mass and size have not evolved
much since formation, an obviously uncertain assumption, but likely
plausible since most of these systems have N-body relaxation times
longer than the Hubble time.

From the detailed studies of quasi-star evolution noted in Section 1,
we will also assume in what follows that any quasi-star leaves behind
a ‘relic’ BH of mass MBH ∼ 0.1 ε0.1 Mq . This ‘fudge factor’ ε0.1

accounts for processes including inefficiency of final mergers, mass
loss/ejection during merges, stellar winds, and mass loss during
collapse from the quasi-star.

5.1 Analytic scalings

Assuming the ‘universal’ profile parameters, the contours of constant
Mq are approximately power-laws over most of the dynamic range
of interest. We can approximate this quite well via a simple purely
analytic estimate for Mq if we assume a single-power law profile with
η1 = 2 (isothermal), neglect ‘edge’ effects (assume the stars outside
rh are not sinking efficiently), and approximate the effects of various
non-linear terms like varying coulomb logarithms, the finite N-body
point mass correction, finite IMF sampling, finite size of the quasi-
star, and others as a systematic factor of ∼2 normalization correction
(reasonably well motivated by our comparison in Fig. 5). With all of
these approximations, we obtain the very simple expression

MBH = 0.1 ε0.1 Mq ∼ 250 M� ε0.1

(
Mcl, 5

rh, pc

)3/4

∼ 250 M� ε0.1

(
Veff

20 km s−1

)3/2

, (4)

where V 2
eff ≡ G Mcl/rh, Mcl, 5 = Mcl/105 M�, rh, pc = rh/pc.

Despite the many simplifications involved in deriving this expres-
sion, it provides a quite reasonable order-of-magnitude approxima-
tion to the most important results from our more detailed full model
calculations.

5.2 Globulars and ‘typical’ dense star clusters

Fig. 6 and equation (4) do suggest IMBHs could form in massive GCs,
with typical masses MBH ∼ 0.0003 ε0.1 Mcl. In Fig. 6 we also show
the criterion trlx < 100 Myr which Portegies Zwart & McMillan
(2002) and Gürkan et al. (2004) argue is required for a GC with
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2760 Y. Shi, M. Y. Grudić and P. F. Hopkins

Figure 6. Predictions for the peak central object mass Mq given by our full models assuming the best-fitting universal at-formation density profile parameters
η1∗, η2∗, and given cluster mass Mcl and projected 2D circular half-mass radius Rh (solid lines label contours of constant Mq). We note where the dynamical time
tdyn = 3 Myr (systems with Rh above this line have tdyn 	 3 Myr, making our assumption that the stars are approximately co-eval on the time-scales of interest
for quasi-star evolution suspect). We also compare the contour below which the cluster-scale N-body relaxation time rrlx < 100 Myr where ‘complete core
collapse’ (requiring full N-body simulations) as opposed to sinking in the centre should occur (almost no clusters meet this criteria). We compare the masses and
radii of a variety of observed dense stellar systems (references in text; Section 5), including GCs, SSCs, NSCs and dwarf galaxy stellar nuclei, UCDs, and the
Es. If we assume their masses and radii have not evolved dramatically since formation, this gives a rough prediction for their initial quasi-star masses. Although
Mq could reach as large as � 104 M� in the most massive SSCs/nuclei/UCDs, this is generally much smaller than the present-day SMBH masses detected in
such systems (even moreso for the Mq � 105 M� in the most massive Es, but these also have tdyn � 3 Myr).

an initially flat (η1 = 0), Plummer-like density profile to undergo
any significant runaway merging. We see, as noted in Section 1, that
almost no known present-day massive clusters meet this criterion.
The reason our modeling here predicts they can form central objects
is because we argue they likely had steeper slopes at initial formation
(allowing some merging near their centre at these early times). But,
essentially by definition, any interior region that has a steep enough
slope to produce runaway merging within < 3 Myr will, on time-
scales ∼ Gyr, have undergone relaxation, flattening the central profile
seen today.

However, although our models predict runaway merging could
occur in the centres of almost all clusters at formation, the actual mass
that we predict successfully merges (for realistic cluster Mcl and rh)
is quite modest, giving a rather low MBH/Mcl compared to the clusters
that undergo ‘complete runaway core collapse’ (with trlx < 25 Myr)
in Portegies Zwart & McMillan (2002). In Table 1, we explicitly list
a number of individual observed GCs from Fig. 6 that have claimed
detections or upper limits for central IMBHs. Many contradictory
observational claims exist for some clusters, a well-known issue in
the literature. Using the same models from Fig. 6, and the observed
cluster properties, we give our best estimate of MBH (approximately
given by equation 4), and compare to these observations. We see
that the predicted relic mass from our calculations is typically
∼10−4 − 10−3 Mcl, in many cases a factor ∼10 or more below
the claimed detections/upper limits. There is no case where our
predicted MBH exceeds even the most stringent upper limits. The

most constraining examples we find are M15 and NGC 6388: here
our ‘default’ prediction is only a factor ∼2.5 below the current upper
limits or smallest values among the claimed detections. This implies
ε0.1 � 3 (i.e. MBH � 0.3 Mq , if our models are to be believed at this
level of accuracy).

If some of the most-massive detections (with claimed IMBH
masses up to ∼70 times larger than our prediction) are indeed correct
(although almost all of these cases are controversial with much lower
limits claimed by other studies), then it would most likely imply
that the central BHs grew rapidly after formation via some other
process such as gas accretion (from e.g. stellar mass-loss in the
cluster).

5.3 Connection to SMBHs and more massive stellar systems

The predicted quasi-stars/IMBHs suggested in Fig. 6 and equation (4)
become more massive, on average, in more massive systems,
reaching Mq ∼ 3 × 104 M� in the most massive and dense NSCs
and UCDs, and up to Mq ∼ 3 × 105 M� in the centres of the most
compact local and high-redshift bulges/Es.

These are systems which are known to host SMBHs, with
MBH ∼ 104 − 1010 M� unambiguously detected (with the smallest
BHs in dwarf NSCs, the most massive in compact Es), obeying a tight
correlation with the velocity dispersion σ of the surrounding stars
MM−σ

BH ∼ 3 × 108 M� (σ/200 km s−1)4.3 (Kormendy & Ho 2013).
However, noting that σ ≈ Veff in equation (4) for an isothermal profile,
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IMBH from runaway merger in YMC 2761

Table 1. Predictions for the relic IMBH mass from runaway merging based on our study here, compared to observational
estimates or upper limits for IMBH masses in well-studied clusters. Columns give: (1) object: cluster name (with reference
for its properties); (2) cluster mass Mcl; (3) cluster half-mass radius rh; (4) predicted relic IMBH mass MBH from our models
(see e.g. equation 4) assuming a simple relation between relic BH mass and peak quasi-star mass (MBH = 0.1 ε0.1 Mq); (5)
claimed IMBH ‘detection’ masses or upper limits. References labeled ‘no evidence’ argue there is no positive evidence
for an IMBH but set weak upper limits (shown). In all cases our predicted relic MBH is below present upper limits (and
claimed detections).

Object Mcl/M� rh/pc MBH
ε0.1 M� (predicted) MBH/M� (observed)

ω Cen [1] 3.2 × 106 8.4 600 40 000 [1,8]; <12 000 [9]
47 Tucanae [3] 1.1 × 106 8.2 300 2300 [13]; <1700 [3,7]
G1 (M31) [4] 7.6 × 106 6.8 1500 17 000 [14]; no evidence (�20, 000) [4]
M3 [15] 2.7 × 105 3.4 200 <5300 [15]
M13 [15] 3.0 × 105 9.5 100 <8600 [15]
M15 [6] 6.5 × 105 7.7 200 <500 [16]
M92 [15] 2.3 × 105 2.6 200 <1000 [15]
NGC 1851 [18] 3.7 × 105 2.4 300 <2000 [18]
NGC 1904 [18] 1.4 × 105 4.0 100 3000 [18]
NGC 5694 [18] 2.6 × 105 4.4 100 <8000 [18]
NGC 5824 [18] 4.5 × 105 4.5 200 <6000 [18]
NGC 6093 [18] 3.4 × 105 3.2 200 <800 [18]
NGC 6266 [18] 9.3 × 105 3.0 500 2000 [18]
NGC 6388 [2] 6.8 × 105 1.5 700 28 000 [2]; <2000 [10]; 1500 [11]; <1200 [12]
NGC 6397 [6] 9.1 × 104 4.6 60 600 [15]
NGC 6624 [5] 1.1 × 105 2.4 100 7500 [17]; no evidence (�10 000) [5]

References: [1] Zocchi, Gieles & Hénault-Brunet (2017); [2] Lützgendorf et al. (2015); [3] Hénault-Brunet et al. (2019); [4]
Baumgardt et al. (2003); [5] Gieles et al. (2018a); [6] Sollima & Baumgardt (2017); [7] Mann et al. (2019); [8] Baumgardt
(2017); [9] Marel & Anderson (2010); [10] Lanzoni et al. (2013); [11] Cseh et al. (2010); [12] Bozzo et al. (2011);
[13] Kızıltan, Baumgardt & Loeb (2017); [14] Gebhardt, Rich & Ho (2005); [15] Kamann et al. (2016); [16] Kirsten &
Vlemmings (2012). [17] Perera et al. (2017). [18] Lützgendorf et al. (2013).

this implies that the present-day SMBHs observed are much more
massive than the IMBH we predict from runaway merging at forma-
tion, for any σ � 7 ε0.3

0.1 km s−1 (present-day MM−σ
BH � 100 ε1.5

0.1 M�).
In other words, while the masses here are potentially interesting for
very first initial seeds of the SMBHs, runaway merging cannot es-
tablish most of the mass of any observed BHs on the BH-host galaxy
(or BH-NSC) scaling relations. It does not substantially reduce the
amount of BH accretion (nor the time required for that accretion, if it
occurs at e.g. a fixed Eddington ratio), nor even radically change the
initial seed mass relative to commonly-assumed M seed

BH ∼ 100 M� as
the ‘most optimal normal stellar relic’ remnant mass.

An important additional caveat in these massive systems is that our
models assume the stars are approximately co-eval. This is reasonable
in the centres of dense GCs where the dynamical times are � Myr.
However, in e.g. elliptical galaxy centres, the dynamical times can
be 	 3 Myr; since stars cannot form much faster than the dynamical
time, it is almost certainly the case that the massive star formation
was extended in time relative to the lifetime ∼3 Myr of the quasi-
star. In the centre, later-forming stars can still sink, but they will
merge with a central IMBH instead of quasi-star, producing a tidal
disruption event and building up an accretion disk rather than directly
forming a quasi-star.

6 C O N C L U S I O N S

Using the outputs of high-resolution numerical hydrodynamic sim-
ulations of star cluster/complex formation and destruction that
have been shown to reproduce a wide range of GMC and cluster
observables, we develop a semi-analytic model for the sinking of
massive stars to cluster centres and their merger into a massive quasi-
star. We find:

(i) The mass profile of YMCs ‘at formation’ (centred on local
peaks, as there can still be substructure) can be described by a double
power-law with steep, near-isothermal inner slopes common (that
flatten at later times as the inner regions dynamically relax). This
means that some runaway merging can occur early even in clusters
with relatively low mean densities and long relaxation times (e.g.
Mcl ∼ 105 − 106 M�, rh ∼ 1 − 10 pc, with relaxation times trlx �
100 Myr). The runaway ceases at ∼1 − 3 Myr, regardless of the
details of the quasi-star evolution.

(ii) Over the parameter space of greatest interest (where mas-
sive, dense stellar systems are observed), our predictions can be
approximated with a simple scaling, with the total mass of massive
stars that sink to the centre and could potentially merge, Mq,
scaling as Mq ∝ V 1.5

eff , where Veff is a characteristic circular velocity
(equation 4).

(iii) Although some runaway merging is predicted in nearly all
clusters (Fig. 6), the actual masses of IMBH relics predicted in our
model for observed globulars and typical dense star clusters are quite
modest, ∼100 − 1000 M�. For relic mass MBH � 0.3 Mq (expected
allowing for mass-loss, imperfect merging, quasi-star evolution, etc.),
our predictions are consistent with even the most stringent upper
limits (to our knowledge) on central IMBH mass in all clusters for
which such constraints exist. The most constraining clusters for our
models at present are M15 and NGC 6388; the only well-studied
cluster where our model predicts MBH � 1000 M� is G1.

(iv) In more massive systems such as nuclear star clusters, ultra-
compact dwarfs, and the centres of compact ellipticals, the central
object mass could reach Mq ∼ 104 − 105 M�, an interesting range
for initial seeds of SMBHs. However for any system with velocity
dispersion� 10 km s−1, the SMBHs on the various observed SMBH-
host scaling relations (e.g. MBH − σ ) are far more massive than even
the most optimistic IMBH masses resulting from runaway merging.
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Thus runaway merging does not significantly reduce the need for
subsequent accretion to SMBHs masses.

Our models are intentionally simplified in order to survey a wide
parameter space efficiently and guide intuition and predictions for
future models. Using the models here to identify the most interesting
parameter space, in future work we hope to consider explicit N-body
simulations of the merging process in cluster centres (necessarily
limited to a small number of realizations). In the systems where
merging occurs most rapidly, it is also possible that mergers occur
even as stars are still forming in the cluster, potentially before massive
protostellar cores even complete their pre-main sequence evolution.
Exploring this will require fully hydrodynamic + N-body simulations
of star formation which can resolve the stellar IMF self-consistently
and follow mergers as they occur ‘live.’ Considerable uncertainties
also still surround the actual dynamics of massive stellar mergers
(including complicated effects not followed here, such as the effect
of resolved binaries and hierarchical multiples on merger efficiency)
and the evolution (especially as it grows via rapid merging) of the
(proto) quasi-star. In addition, if such a system forms, a variety of
processes may allow for rapid growth even after it collapses to an
IMBH, as it could accrete tidally-disrupted lower-mass stars that
sink on longer time-scales (e.g. m ∼ 2 − 8 M�), or stellar mass-loss
products from asymptotic giant branch (AGB) stars that can remain
gravitationally bound in the cluster potential. All of these remain
important subjects for future study.
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