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ABSTRACT
We investigate the growth rate of structures in the local Universe. For this, we use as a cosmological tracer the HI line extra-
galactic sources from the Arecibo Legacy Fast ALFA (ALFALFA) survey to obtain a measurement of the normalized growth
rate parameter, fσ 8, considered a powerful tool to constrain alternative models of gravity. For these analyses, we calculate the
Local Group velocity due to the matter structures distribution in the ALFALFA catalogue and compare it with the Local Group
velocity relative to the Cosmic Microwave Background frame to obtain the velocity scale parameter, β. Using Monte Carlo
realizations and lognormal simulations, our methodology quantifies the errors introduced by shot-noise and partial sky coverage
of the analysed data. The measurement of the velocity scale parameter β and the calculation of the matter fluctuation of the
cosmological tracer, σ tr

8 , lead us to fσ 8 = 0.46 ± 0.06 at z̄ = 0.013, in good agreement (at 1σ level) with the value expected in
the �CDM concordance model. In addition, our analyses of the ALFALFA sample also provide a measurement of the growth
rate of structures f = 0.56 ± 0.07, at z̄ = 0.013.

Key words: Local Group – large-scale structure of Universe – cosmology: observations.

1 IN T RO D U C T I O N

The large-scale structure data from current astronomical surveys
contain the imprints of matter clustering evolution caused by gravi-
tational instability (Pezzotta et al. 2017; Bautista et al. 2018; Haude
et al. 2019; Aubert et al. 2020; Marques & Bernui 2020). How these
instabilities evolve over time is a crucial test for theories that aim
to understand possible deviations of cosmological models based on
general relativity (GR). The growth rate of cosmic structures, f(a), is
defined as (Strauss & Willick 1995)

f (a) ≡ d ln D(a)

d ln a
, (1)

where D = D(a) is the linear growth function, and a is the scale
factor in the Robertson–Walker metric based on GR theory. In fact,
f = f(a) has the potential to constrain alternative models of gravity
and dark energy from the measure of the growth index, γ , when one
parametrizes f as (Linder & Cahn 2007)

f (a) = �γ
m. (2)

In the �CDM model, based on GR, γ � 0.55, and for some f(R)
modified gravity models, γ � 0.41−0.21z (Basilakos 2012).

The literature reports the analyses of several cosmological probes
used to constrain f(a), like the Cosmic Microwave Background
(CMB) (Planck Collaboration VI 2020), cluster abundances (Planck
Collaboration XXIV 2016), weak lensing (Abbott et al. 2018),
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redshift space distortions (RSD) (Alam et al. 2017), and pecu-
liar velocities (Boruah, Hudson & Lavaux 2019), among others.
Measurements of the growth rate, as well as other cosmological
observables, are useful to determine the best parameters of the current
cosmological model (de Carvalho et al. 2018; Nunes & Bernui 2020).

Although some studies intend to measure f(a) at some redshift,
in practice, they also constrain other parameters. For instance,
the approach with peculiar velocities constrains the velocity scale
parameter β ≡ f/b, where b is the linear bias defined by b ≡
σ tr

8 /σ m
8 (Papageorgiou et al. 2012), σm

8 is the matter fluctuation at
radius 8 Mpc /h (hereafter σ8 ≡ σm

8 ), and σ tr
8 is the matter fluctuation

of the cosmological tracer (e.g. blue galaxies, luminous red galaxies,
etc.) at radius 8 Mpc /h. The most common constraint found in the
literature is the combination fσ 8. An interesting approach to obtain
fσ 8 is to measure first β and then find f σ8 = β b σ8, or equivalently

f σ8 = β σ tr
8 . (3)

For a local Universe sample, z � 0.1, the gravitational dipole
approach is suitable to measure β and, consequently, f σ8, using
the equation (3) (see e.g. Scaramella, Vettolani & Zamorani 1994;
Strauss & Willick 1995). If one compares the peculiar velocity of
our Local Group (LG) of galaxies inferred from the CMB dipole,
627 ± 22 km s−1 towards (l, b) = (273◦ ± 3◦, 29◦ ± 3◦) (Kogut
et al. 1993; Courteau & Van Den Bergh 1999; Erdoğdu et al. 2006),
with the value measured in a local survey, one can constrain β.
For example, in the analyses done by Erdoğdu et al. (2006), they
used the 2 Micron All-sky Redshift Survey (2MRS) to estimate
β = 0.40 ± 0.09, with the dipole converging to a constant value
around 60 Mpc /h. In another work, Basilakos & Plionis (2006)
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re-examined the Point Source catalogue redshift survey (Rowan-
Robinson et al. 2000) estimating the β parameter as β � 0.49, with
significantly contribution to the dipole magnitude from distances
beyond 185 Mpc/h. In addition, using a full-sky (FS) X-ray cluster
sample, Kocevski & Ebeling (2006) calculated β = 0.24 ± 0.01 using
the number-weighted method (see Section 3.1). These authors also
observe contributions to the dipole velocity beyond 185 Mpc/h. As
reported by Bilicki et al. (2011), one should not expect consistency
between different analyses of diverse cosmic tracers for the amplitude
and the scale of convergence. Regarding β, the �CDM model is a
good guide to find out if the result found for β is in any way consistent,
that is, β = ��CDM

m (z)0.55/b. Despite the differences found in the
literature about the convergence scale, that is, the minimum scale
where the dipole velocity attains its stability value (Kocevski &
Ebeling 2006), we will show, for the sample in analysis, that the
magnitude of the gravitational dipole is reached around 60 Mpc.

In this work, we investigate the clustering of the extra-galactic
HI line sources observed in the, recently completed, ALFALFA
Survey (Haynes et al. 2018) to perform a measurement of fσ 8

in the local Universe, i.e. at z̄ = 0.013. Although the ALFALFA
catalogue does not contain FS data, since the surveyed area is
� � 6900 deg2 (fsky � 1/6), a distinctive feature is that it has a
high number density of objects compared with FS catalogues in the
same redshift range. This reduces the shot noise and increases the
efficiency of the selection function, ruling out artificial convergences
in the dipole magnitude, a crucial property for the approach we adopt
here, and that we shall explain below. Another important attribute
of the ALFALFA catalogue is that for the data sample with cz� <

6000 km s−1, the dipole can be calculated in the real space avoiding
the RSD effect, known as the rocket effect (Kaiser 1987; Kaiser
& Lahav 1989). Regarding the error and systematic sources, our
analyses take into account the incomplete sky coverage by using
lognormal simulations (Agrawal et al. 2017) that help us to correct
both direction and magnitude of the gravitational dipole (also called
clustering dipole), and a set of Monte Carlo realizations, proposed
by Basilakos & Plionis (1998) to estimate the shot-noise error,
procedures described in Section 3.2 (for diverse analyses regarding
systematics, see e.g. Marques et al. 2018; Avila et al. 2018, 2019;
Sarkar & Pandey 2019; Heinesen 2020; Pandey & Sarkar 2020; de
Carvalho et al. 2020, 2021).

The work is structured as follows. The ALFALFA catalogue
is presented in Section 2, together with the selection function
calculation and the criteria to select the final data sample for analysis.
In Section 3, we detail the methodology to calculate the LG dipole, its
error estimation, and the σ tr

8 calculation. The results of our analyses
and our conclusions are presented in Sections 4 and 5, respectively.

2 TH E A R E C I B O L E G AC Y FA S T A L FA SU RV E Y

The Arecibo Legacy Fast ALFA Survey1 (ALFALFA; Haynes et al.
2011, 2018) was a blind 21-cm HI line survey designed with the main
goal of obtaining a robust measurement of the HI mass function, an
important component, together with the luminosity function that can
make a significant contribution to the study of galaxy population in
the local Universe (Giovanelli & Haynes 2016; Jones et al. 2016,
2018, 2020). Given the surveyed area and the spectral resolution,
ALFALFA can measure the faint end of the HI mass function for
the optically faint, gas-rich population (O’Donoghue 2018). For
additional studies, see Haynes et al. (2018) and references therein.

1http://egg.astro.cornell.edu/alfalfa/data/index.php
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Figure 1. The Hubble–Lemaı̂tre diagram for the ALFALFA HI line sources
below cz� < 6000 km s−1 and with CODE 1. Notice the discontinuity around
r = 85 Mpc, which appears because the ALFALFA team adopted a different
approach to determine the distances. For this, we decided to remove from our
sample those objects at distances larger than 85 Mpc.

The ALFALFA survey was performed between 2005 and 2011
covering an area of � � 6900 deg2 out to z < 0.06 detecting 31 500
HI line extra-galactic sources. The survey covers two discontinuous
regions, both in the declination range of 0◦ < DEC < 36◦, in
the right ascension intervals of 21h30m < RA < 3h15m (South
galactic hemisphere) and 7h20m < RA < 16h40m (North galactic
hemisphere). The catalogues distinguish the sources with a CODE 1,
2, and 9, according to quality of the data observed (Haynes et al.
2018). CODE 1, refers to a high signal-to-noise ratio detection of the
HI extragalactic source, with confirmed optical counterpart; CODE

2 refers to a lower signal-to-noise ratio coincident with optical
counterpart and they are considered unreliable sources; and CODE

9 refers to a high signal-to-noise ratio source with no optical
counterpart and likely Galactic high-velocity cloud. In this work,
we shall use only the sources with CODE 1, as recommended by the
ALFALFA team.

2.1 Data selection

The distances data presented in the ALFALFA catalogue are de-
scribed in Haynes et al. (2018) (see Section 3.1, column 11). The
ALFALFA collaboration uses two distances estimation approaches:
(i) for those objects with cz� > 6000 km s−1, the distance is simply
estimated as c zCMB/H0, where c zcmb is the recessional velocity
measured in the CMB reference frame and H0 is the Hubble constant,
and (ii) for objects with czCMB < 6000 km s−1, the collaboration
assigns distances to nearby galaxies through a parametric flow model
developed by Master (2005), based mainly on the SFI++ catalogue
of galaxies (Springob et al. 2007) and results from analysis of the
peculiar motion of galaxies, groups, and clusters, using a combination
of primary distances from the literature and secondary distances from
the Tully–Fisher relation. Also, when available, they use known
distances from the literature. In Appendix A, we test the impact
of distance uncertainties on dipole analyses.

The transition velocity between the methodologies applied to
calculate distances, that is, 6000 km s−1, means 85–90 Mpc, and this
interval corresponds to the discontinuity observed in the Hubble–
Lemaı̂tre diagram, shown in Fig. 1. Due to this fact, we applied a
conservative cut to remove the HI sources with distances above 85
Mpc (the red vertical line in Fig. 1 illustrates this cut). In this way,
we are sure that all objects from the sample selected for our dipole
analyses have all their distance measurements performed using only
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Figure 2. Distribution of distances versus velocities (i.e. the Hubble–
Lemaı̂tre plot) for the members of the Virgo cluster. One observes various
discontinuities, evidencing the difficulty of the ALFALFA survey to determine
the individual distances of the Virgo cluster galaxies, suggestive of non-linear
dynamics that can bias the analyses. These objects were removed from the
sample in analysis.

one methodology. As also observed in Fig. 1, some objects appear
far from the Hubble flow, probably due to their intense peculiar
motions. This systematic effect motivates an examination. For this,
in Appendix B, we performed a comparative test with and without
the outlier HI sources.

The next constraint applied to the sample concerns the presence
of the Virgo cluster. We observe that it is composed by 224 HI
line sources, a potential source of systematics. In fact, the radial
distances attributed to the members of the Virgo cluster in the
ALFALFA catalogue are not realistic, as observed in Fig. 2 (see
discussions about the adopted distances in Haynes et al. 2018). The
discontinuous distribution of distances of the galaxy Virgo members,
clearly observed in Fig. 2, is due to the lack of information regarding
the distance of each galaxy to us. For this, the distances of the
galaxies inside Virgo are assigned only by identifying the groups or
substructures and assigning the same distance to all their members.
Therefore, to avoid biasing our calculations, we remove the Virgo
members from our sample.

Our final restriction aims to avoid the contribution of LG member
galaxies, which should not be accounted for the dipole calculation.
Therefore, since we are considering the LG as an unique structure, we
follow Bilicki et al. (2011), Bilicki (2012), and Erdoğdu et al. (2006)
and remove these galaxies. We assume the LG as a spherical structure
of 1.5-Mpc radius centred near us, as suggested by observations (Van
den Bergh 2000; Van der Marel & Guhathakurta 2008). Then,
we localize and remove from our catalogue 8 HI line sources
corresponding to this region.

After all these cuts, the final data sample for analyses contains
N = 7798 HI line extra-galactic sources, with median redshift z̄ =
0.013, and number density n̄ = 0.04 Mpc−3. In Fig. 3, we show the
distribution of their distances, and in Fig. 4 their Aitoff projection on
the celestial sphere in galactic coordinates.

Two important features of this final data sample regarding our
study of the gravitational dipole deserve some comments: (i) it does
not cover the full sky, and (ii) it does not cover the area corresponding
to the LG peculiar motion direction inferred from the CMB dipole,
as shown in Fig. 4 as a blue triangle. With respect to the first feature,
our methodology to estimate the error for fσ 8 takes into account the
incomplete sky coverage, as described in the Section 3.2. Regarding
the second feature, one does not expect that with a partial sky (PS)
coverage of the data sample, one could find the LG dipole direction

0 20 40 60 80

r [Mpc]

0

100

200

300

400

500

N

Figure 3. Histogram of the distances distribution of the ALFALFA HI line
sources of the final data sample used in this work. See Section 2.1 for more
information on how the sample was selected.

Figure 4. The HI line sources of our final data sample in the galactic Aitoff
projection. The blue triangle indicates the direction of the LG velocity (l, b)
= (273◦ ± 3◦, 29◦ ± 3◦) inferred using the CMB dipole measurement.

aligned, or close to the CMB dipole direction; fortunately, our interest
is just in the modulus part of the LG dipole, which is affected by the
partial coverage of the sky, but can be corrected by evaluating the
impact of such feature through a set of simulated data, as we shall
see.

2.2 The radial selection function

In order to calculate the gravitational dipole, we must assign a weight
ωi for the i th galaxy (Scaramella et al. 1994)

ωi = 1

φ(ri)
, (4)

where φ(ri) is the radial selection function. To calculate φ(r) for
the ALFALFA sample, we must obtain the two-dimensional number
density distribution, n(mHI, ω50), where mHI ≡ log (MHI) and MHI is
the HI mass, measured in solar mass units, and w50 ≡ log(W50) is
associated to the velocity width of the HI spectrum, W50, measured
at the 50 per cent level, as described in Haynes et al. (2018), in units
of km/s. Then, φ(r) is calculated as (Papastergis et al. 2013)

φ(r) =
∫ ωf

ωi

∫ mf

m(r) n(m,ω)dmdω∫ ωf

ωi

∫ mf

mi
n(m, ω)dmdω

. (5)

We dropped the sub-indices HI and 50 for simplicity. Notice that the
integral in mass in the numerator uses as lower limit the minimum
HI mass detectable at a distance r, mHI(r). The other integrals are
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Figure 5. Radial selection function for the data in analysis. For details, see
Section 2.2.

performed over the whole range of mass mi ≤ mHI ≤ mf, and velocity
width, ωi ≤ ω50 ≤ ωf, of the objects in the ALFALFA sample.
In Fig. 5, we show the result of this calculation, that is, the radial
selection function for our data analyses.

3 M E T H O D O L O G Y

In this section, we discuss the number-weighted method, a procedure
to measure the LG velocity, caused by large-scale matter distribution,
and the β parameter, an intermediary step to obtain fσ 8. To apply this
methodology, one assumes the data to be a representative sample of
the local Universe, besides that the galaxy clustering can be analysed
using linear theory of perturbations. In what follows, we also describe
the error estimations, that is, the contribution from shot noise and
the incomplete sky coverage, and the necessary correction. Lastly,
we show the way to measure σ tr

8 to obtain fσ 8 from equation (3).

3.1 Number-weighted method and the LG dipole

From the linear theory of gravitational instability, the peculiar
velocity field v is related to the gravitational field, g, by (Peebles
1980)

v(r) = H0f

4πGρ̄
g(r), (6)

where f is the growth rate defined in equation (1), H0 is the Hubble
constant measured today, G is the gravitational constant, and ρ̄ is the
matter density averaged over a large volume V. If we write g as

g(r) = Gρ̄

∫
V

δm(r′)
r′ − r

|r′ − r|3 d3r′, (7)

one can calculate the peculiar velocity if one knows the matter density
contrast, δm(r).

To measure g for a galaxy survey, the linear relation between
matter and tracer contrasts can be assumed,

δtr = b δm, (8)

where b is the linear bias, and we consider the LG barycentre as the
origin of coordinates, that is r = 0. If the survey volume is large
enough to ensure the convergence of the integral (Scaramella et al.
1994), one can rewrite equation (6) as

v LG(r) = H0β

4 π n̄
DLG(r), (9)

where the LG clustering dipole, DLG, is defined by

DLG(r) ≡
N(r)∑

i

r̂i

φ(ri) r2
i

, (10)

summing over all objects inside the sphere of radius r. Equation (9)
is known as the number-weighted method (Erdoğdu et al. 2006).

3.2 Error estimation

In order to correctly obtain β, several effects that can influence the
gravitational dipole magnitude must be taken into account (Schmoldt
et al. 1999). As we already mentioned, one of them is the RSD effect
that can be avoided here because the distances of our ALFALFA
sample are provided in real space. On the other hand, we must also
evaluate the error introduced by shot noise and the impact of using
an incomplete sky coverage. Following, we discuss the methodology
used to take into account each of them.

3.2.1 Shot noise

Following Basilakos & Plionis (1998), we use a set of NMC = 144
Monte Carlo realizations to calculate the error due to the shot noise.
This number of Monte Carlos is to equalize the number of lognormal
simulations, N = 144, used to correct the dipole velocity due to the
PS coverage of our data sample (see Section 3.2.2 for details).

The methodology to produce each realization is to randomize the
angular coordinates of the sources, i.e. taking their right ascension
and declination from uniform random distributions limited by the
ALFALFA footprint, repositioning them inside the same region,
while their distances remain the same, keeping unchanged the
selection function. From the set of Monte Carlo realizations, one
can calculate the covariance matrix due to the shot noise as

C
ij

SN = H0

4πn̄

1

N − 1

N∑
k=1

[
Dk

LG(ri) − 〈DLG〉(ri)
]

× [Dk
LG(rj ) − 〈DLG〉(rj )], (11)

where Dk
LG ≡ |Dk

LG| is the dipole magnitude calculated for the k th
Monte Carlo realization and 〈DLG〉 is the average dipole over all the
NMC = 144 Monte Carlo realizations.

3.2.2 Correction procedure for incomplete sky coverage

The incomplete sky coverage of the sample in analysis, shown in
Fig. 4, certainly bias the measurement of direction and magnitude
of the LG dipole velocity, which must be corrected accordingly. The
idea is to use simulated catalogues to perform both full and partial sky
dipole analyses that allow to find the corrected LG dipole velocity.

Consider a set of N FS lognormal simulated catalogues to which we
apply the ALFALFA footprint to obtain the respective PS lognormal
simulated catalogues. Then, we measure the dipoles of the i th
catalogue, DFS, i

sim and DPS, i
sim , for i = 1, ···, N, for the FS and PS

cases, respectively. The difference, Xi(r), defined as

Xi(r) ≡ DFS, i
sim (r) − DPS, i

sim (r), (12)

is used to correct our PS LG dipole velocity measurement. Now, we
construct the corrected LG dipole velocity as

vLG(r)β−1 ≡ H0

4πn̄

1

N

N∑
i=1

[
DPS

HI(r) + Xi(r)
]
, (13)
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Table 1. Survey configuration and cosmological pa-
rameters from the Planck last data release (Planck
Collaboration VI 2020) used to generate the set of Ns

= 4000 lognormal realizations used in the analyses.

Survey configuration Cosmological parameters

z = 0.0 �ch2 = 0.1202
b = 1.0 
mν = 0.0600
Ng = 2 × 105 ns = 0.9649
Lx = 230 ln (10As) = 3.045
Ly = 230 �bh2 = 0.02236
Lz = 230 h = 0.6727

correcting both direction and module of the LG dipole velocity for
a PS data catalogue, and, for this, appropriate for the ALFALFA
catalogue (see Appendix C for details of this correction procedure).

To obtain a good performance with this correction procedure, one
has to restrict the set of FS lognormal simulations to those whose
clustering dipole direction is close to the LG velocity direction in
CMB frame, (l, b) = (273◦ ± 3◦, 29◦ ± 3◦), and for this, we consider
those maps where the misalignment between both directions is less
than 30◦.2 The ideal situation would be to consider only simulations
where this value is 0◦, but this clearly would be a fine-tuning, and
scientifically invalid, approach. By doing this, we are left with 144
catalogues from a total of 4000 lognormal simulations produced.3

This is not strange, as already noticed by Kolokotronis et al. (1995),
to find suitable simulations that exhibit that the main features of
our LG universe is a difficult task, which decreases considerably the
number of suitable catalogues for analyses.

This dipole correction procedure was done using a set of simulated
lognormal catalogues constructed with the public code4 presented
in Agrawal et al. (2017). The lognormal approach assumes that the
matter and galaxy density fields can be represented by a lognormal
probability density function. In Agrawal et al. (2017), the authors
show the remarkable agreement between the input and measurements
for the correlation function and power spectrum, important features
used to analyse galaxy clustering in surveys.

In Table 1, we show all the input parameters needed to generate
our lognormal FS simulated catalogues. In the first column, we
present the survey configuration: the box dimensions, Lx, Ly, and
Lz, the number of galaxies,5Ng, the redshift at which we generate
the input power spectrum, z, and the bias, b. The matter power
spectrum, P(k), is calculated using Eisenstein & Hu (EH) transfer
function (Eisenstein & Hu 1998). The code uses this approach by
default, in case one does not provide a table of P(k) values calculated
externally (see Appendix D for a check of the accuracy of the EH
approach). All these parameters were chosen in order to reproduce
the ALFALFA survey. In the second column of Table 1, we observe

2The robustness of our results has been tested for several values of maximum
misalignment: 20◦, 30◦, and 40◦, achieving basically the same results for
each case.
3We tested the robustness of this, apparently small, number of catalogues. We
first perform the analyses with these 144 catalogues and calculate fσ 8; then we
add new 1000 FS lognormal catalogues to the original 4000, selecting a total
of 191 catalogues, we redo the analyses, and again calculate fσ 8 obtaining
the same result.
4https://bitbucket.org/komatsu5147/lognormal galaxies/src/master/
5This number is not constant in all realizations but their fluctuations around
N = 7798 (the number of HI line sources of the catalogue in analysis) are not
significant.

the cosmological parameters, as given by the Planck Collaboration
VI (2020). For the bias choice, see Section 3.3.

It is worth mentioning that, even though the lognormal simulations
do not reproduce accurately the velocity field when compared with
N-body simulations, as shown by Agrawal et al. (2017) using the
linearized continuity equation of the matter fields, our analyses using
equations (9) and (10) use only the galaxy positions. Therefore, as
our tests suggest in Appendix C, the lognormal catalogues can be
used to obtain robust results of the ALFALFA dipole convergence
and, consequently, an accurate measurement of fσ 8.

Finally, one can calculate the error in equation (13) using the
same procedure used to compute the shot-noise error. The covariance
matrix due to the PS coverage using the lognormal (LN) catalogues
can be calculated as

C
ij

LN = 1

N − 1

N∑
k=1

([vLG(ri)β
−1]k − 〈[vLG(ri)β

−1]〉)

× ([vLG(rj )β−1]k − 〈[vLG(rj )β−1]〉), (14)

where vLG ≡ |vLG|, [vLG(r)β−1]k is the LG velocity for the k th
lognormal realization, and 〈[vLG(r)β−1]〉 is the average LG velocity
over N realizations.

Notice that to obtain the errors in both β and fσ 8, we combine
both covariance matrices, that is,

C
ij

SN+LN = C
ij

SN + C
ij

LN. (15)

3.3 Measuring σ tr
8

In order to perform a measurement of fσ 8 in the local Universe using
our data sample, we first calculate β, using equation (9), and then,
σ tr

8 , the matter fluctuation of the HI line sources of our data sample
in spheres of 8 Mpc /h. For galaxy samples, σ tr

8 was observed to be
close to 1 (Juszkiewicz et al. 2009; Boruah et al. 2019). However, this
result will depend on the bias of the tracer. In the �CDM context,
one expects σ tr

8 < 1 for b � 1.
In this work, we calculate σ tr

8 using the relationship

σ tr
8 = bHI σ8, (16)

where σ 8 = 0.8120 ± 0.0073 from Planck Collaboration VI (2020).6

The linear bias, bHI, for the HI line sources can be obtained from
the work of Martin et al. (2012), where they calculated the bias for
different scales. In fig. 10 of this reference, we observe, in the interval
3–30 Mpc /h, a fluctuation around 1, where the HI tracer reflects the
underlying matter distribution. Then, we take the data points in this
scale range and fit a horizontal line to them, obtaining

bHI = 0.99 ± 0.11 . (17)

This bias value motivated us to fix b = 1.0 to generate the lognormal
simulations. Using equation (16), we obtain the variance for our
sample, that is, σ tr

8 = 0.80 ± 0.09.

4 R ESULTS

In Fig. 6, we show the result of applying equations (9) and
(13) to our ALFALFA sample, where n̄ = 0.04 Mpc−3 and H0 =
67.27 km s−1/Mpc (Planck Collaboration VI 2020). The error bars

6This value of σ 8 corresponds to z = 0; assuming the �CDM fiducial model
of Table 1, one finds: σ 8(z = 0) − σ 8(z = 0.013) = 0.0056, a difference
smaller than the error bar that does not modify our main result. For this, we
use σ 8(z = 0.013) � σ 8(z = 0) = 0.8120 ± 0.0073.
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Figure 6. The ALFALFA LG velocity function, in real space, as a function
of the radial distance from the observer to a surface of radius r, where the
dipole is evaluated. The error bars take into account cosmic variance and
shot-noise errors (see the text for details). The convergence value, V, and its
1σ error are represented by the black horizontal line and the shaded region,
respectively.
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Figure 7. Reduced covariance matrix, Cij /
√

Cii × Cjj , obtained from
equation (15). The covariance matrix is obtained combining the shot-noise
error, using Monte Carlo realizations, and the error due to the correction for
partial sky survey, using lognormal simulations.

come from the diagonal terms of the covariance matrix given by
equation (15) (see Fig. 7), accounting for the cosmic variance, that
comes from the 144 lognormal simulations, using equation (14),
and the shot noise, from the 144 Monte Carlo realizations using
equation (11). In the same plot, we compare the corrected (red
squares) and the uncorrected (blue triangles) LG velocity. One can
see that, in average, for scales smaller than ∼70 Mpc, the PS
uncorrected analysis underestimates the dipole amplitude, with an
opposite behaviour for larger scales. The black line and the shaded
region represent the convergence value and 1σ uncertainty of the LG
velocity function, respectively. We describe below how we obtain
this value.

To obtain the convergence value, V, taking into account the
error bars, we performed a numerical derivative of the LG velocity
function, that is,

d

dr
vLG(r)β−1 = H0

4πn̄

1

N

N∑
i=1

d

dr

[
DPS

HI(r) + Xi(r)
]
, (18)

looking for the scale interval consistent with zero, i.e. where this
function attains a maximum, ensuring an accurate measurement of
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Figure 8. Numerical derivative of the ALFALFA LG velocity function (red
squares in Fig. 6) with respect to the radial distance r. The error bars
correspond to the 1σ dispersion from the 144 lognormal simulations.

this convergence value. In Fig. 8, we show the result of equation (18)
applied to the ALFALFA LG velocity; the 1σ error bars are estimated
performing the same sequence of analyses over each of the 144
simulations. We observe that the derivative is consistent with zero,
within a 1σ confidence level, in the interval 45−63 Mpc. Thus, to
obtain the convergence value, we take the LG velocity data points in
this interval and fit for a horizontal line to them, obtaining

V = 1103.98 ± 78.61 km/s . (19)

In Fig. 6, we observe that the ALFALFA-corrected LG velocity is
consistent with this convergence value (black vertical line), within the
1σ level, until 85 Mpc, i.e. the limit of our analysis. As our selection
function is of order φ(r = 85 Mpc) � 0.3, we are confident that
our result does not indicate an artificial convergence, as discussed
in Scaramella et al. (1994).

Then, one can find the velocity scale parameter β from equation (9)
by using V = 1103.98 ± 78.61 km s−1 value and the known LG
peculiar velocity in the CMB frame uLG ≡ |uLG| = 627 ± 22 km s−1

(Courteau & Van Den Bergh 1999; Erdoğdu et al. 2006)

β = uLG

V
= 0.57 ± 0.04 . (20)

Because f = b β, this measurement of β combined with the bias b
of the sample in analysis, equation (17), provides a measurement of
the growth rate of structures f,

f = 0.56 ± 0.07, (21)

at z̄ = 0.013.
Our measurement of β shows a good agreement with the value

β�CDM expected in the �CDM model. In fact, equation (2) with
γ = 0.55 and �m = 0.3150 (from Table 1) gives f�CDM = 0.54
at z̄ = 0.013; then, using bHI = 0.99 ± 0.11, we have β�CDM =
0.54 ± 0.06.

Finally, we can obtain our main result fσ 8; for this, we use equa-
tion (3) to combine β, from equation (20), with σ tr

8 = 0.80 ± 0.09,
obtained using equations (16) and (17), to get

f σ8 = 0.46 ± 0.06, (22)

at z̄ = 0.013, consistent with the �CDM model at 1σ confidence
level, [fσ 8]�CDM = 0.43 ± 0.02. In Fig. 9, we display, for comparison,
our result together with a sample of measurements of fσ 8 at low
redshift, performed through diverse methodologies that analyse
several cosmological tracers.

As a robustness test for the H0 value, a parameter in the calculations
of the LG dipole velocity, we have produced another set of lognormal
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Figure 9. Measurements of fσ 8 for the local Universe, where our result is
shown as a red square. We observe a good agreement with the �CDM model,
corresponding to the case γ = 0.55 [see equation (2)]. The blue dot is the work
of Howlett et al. (2017), using the 2MTF galaxies, and the inverted brown
triangle is the outcome of Adam & Blake (2017) for the 6dF galaxy survey
data. The work of Turnbull et al. (2012), cyan triangle, used a compilation
of SNe Ia. These three measurements are slightly shifted to the right for a
better visualization, but they were calculated at z � 0. The green pentagon
shows the result of Huterer et al. (2017) combining low redshift SNe Ia with
the 6dF galaxy survey. The last two points correspond to Qin, Howlett &
Staveley-Smith (2019) (who combine the 2MTF and 6dF galaxies) and Said
et al. (2020) (who performed joint analyses of the 6dFGS and SDSS data) at
z = 0.03 and z = 0.035, respectively.

simulations with the hypothesis H0 = 74.03 km s−1/Mpc (Riess et al.
2019) (i.e. h = 0.7403). We have repeated the analyses finding: β =
0.51 ± 0.02 and fσ 8 = 0.41 ± 0.05, which reproduces, within 1 σ ,
the results already obtained. This reveals that the value of the Hubble
constant H0 has a limited impact on our analyses, and that our results
are robust under different values of H0 reported in the literature.

5 C O N C L U S I O N S

The structures growth data of the observed Universe have the
potential to differentiate between the metric theory that supports
the standard cosmological model, that is GR theory, from those
based on modified gravity models. Due to this scenario, efforts
are being done to analyse several cosmological tracers with diverse
approaches and methodologies. One of these is the gravitational
dipole technique (Hudson 1993; Scaramella et al. 1994). In summary,
this methodology compares the peculiar velocity of the LG of
galaxies, inferred from the CMB dipole, to the LG gravitational
acceleration calculated from a given cosmological tracer. Using the
catalogue of extra-galactic HI line sources provided by the ALFALFA
survey (Haynes et al. 2018), we investigate the growth rate of cosmic
structures in the local Universe.

In fact, these analyses can be biased by various systematic effects,
such as shot noise, RSD, and non-linear effects, as well as the
incomplete sky coverage of the survey. As discussed in Section 3.2,
the latter is the main source of systematics in our analyses. To
correct the LG velocity dipole for the effect produced by the fact
that the observed data in the ALFALFA survey cover a partial region
of the celestial sphere, instead of the full sky, we use sets of FS
and PS lognormal simulations according to the correction procedure
described in Section 3.2.2. In contrast, while the RSD effect can be
avoided, since our data sample allows the dipole calculation in real
space, the shot noise contributes with a relatively small error due
to the high-number density of the sample, as shown in the analyses
performed with the set of Monte Carlo realizations.

Additionally, our analyses show that it is possible to estimate the
product of the growth rate and the matter fluctuation, fσ 8, through
the gravitational dipole approach (Scaramella et al. 1994; Strauss
& Willick 1995) using a PS catalogue, as long as the bias of the
cosmological tracer and the correction due to the PS survey are
carefully taken into account. This way, we found that the magnitude
of the dipole velocity calculated from the ALFALFA sample reaches
the convergence around 60 Mpc, and its magnitude leads to our
estimate of the velocity scale parameter, β = 0.57 ± 0.04. Together
with our measurement of the matter fluctuation in the local Universe,
σ tr

8 = 0.80 ± 0.09, it provides the value fσ 8 = 0.46 ± 0.06 at
z̄ = 0.013. This measurement is in good agreement, at 1σ level, with
the value obtained in the �CDM concordance model: [fσ 8]�CDM

= 0.43 ± 0.02. As observed in Fig. 9, where we show a small
compilation of f σ8 values in the local Universe, our result is in
good consonance with measurements obtained analysing several
cosmological tracers through methodologies different from ours.
Furthermore, our analyses of the ALFALFA sample also provide
a measurement of the growth rate of structures f = 0.56 ± 0.07, at
z̄ = 0.013.
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APPEN D IX A : TESTING THE IMPACT OF
DISTA N C E U N C ERTAINTIES ON DIPOLE
ANA LY SES

In this appendix, we show that the possible underestimation in the
measurements of the distance errors in the ALFALFA catalogue
produces a negligible effect in our dipole analyses. To show this,
we perform the following test. Consider our ALFALFA data set

20 40 60 80

r [Mpc]

900

1000

1100

1200

1300

H
0

4π
n̄
D̄

(r
)

[k
m

s−
1 ]

Data points

20 40 60 80

r [Mpc]

3.25

3.50

3.75

4.00

4.25

4.50

E
rr

or
[%

]

Figure A1. Upper panel: Dipole analyses of the ALFALFA catalogue with
error bars given by 4000 Monte Carlo realizations generated imposing large
artificial errors in distance measurements. Lower panel: Error, in percentage,
with respect to the dipole amplitude. See the text for details.

of N = 7798 distance values: {di}, i = 1, 2, · · · , 7798. We generate
4000 Monte Carlo realizations, where each realization contains 7798
simulated distance values, the i th distance dsim

i is taken from a
normal distribution with mean value di (the true value) and standard
deviation σi = 0.2 di . That is, we consider Monte Carlo realizations
as simulated catalogues with ‘wrong’ distance values, quantities that
deviate in 20 per cent on average from the original ‘true’ values given
in the ALFALFA catalogue, a conservative deviation as suggested
by the information contained in Boruah et al. (2019).

In the upper panel of Fig. A1, we show the result of this test.
The squares represent the data values obtained analysing the dipole
value for the ALFALFA catalogue, and the error bars correspond
to the standard deviation for the same analysis done with each one
of the 4000 Monte Carlo realizations. According to this test, the
assumed deviations in the distance values have a negligible effect on
the determination of the dipole, as observed in the lower panel of
Fig. A1, where one can see that the error bars correspond to less than
5 per cent of the measured dipole amplitude.

APPENDI X B: TEST FOR PECULI AR
VELOCI TI ES

From Fig. 1, one observes that some HI line sources deviate largely
from the Hubble flow, indicating that these objects undergo strong
gravitational interactions in the local Universe, and as a consequence,
they have large peculiar velocities. To evaluate if a set of large
peculiar velocities can affect our dipole measurement, we performed
a test. We calculate, for this set of N = 7798 HI line sources, the
1σ dispersion of velocities compared with the velocity expected
in the Hubble flow, obtaining 325 km s−1, represented by red lines
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Figure B1. Upper panel: Velocities of the ALFALFA HI line sources with
respect to the Hubble flow within (i.e. inside the red lines) and out (i.e.
outside the red lines) 1σ dispersion of the Hubble flow. Lower panel:
Relative difference of the uncorrected LG velocity of the test sample, obtained
removing the cosmic objects with large peculiar velocities (vcut

LG), with respect
to the uncorrected LG velocity of the original sample (vuncut

LG ).

in the upper panel of Fig. B1. After that, we remove from the
sample those objects with velocities out of this 1σ dispersion level,
remaining a test sample of Ntest = 6881 HI line sources. We then
compute the LG velocities for each of these two samples: with N =
7798 and with Ntest = 6881 objects. In the lower panel of Fig. B1,
we compute the relative difference between these uncorrected LG
velocities, which shows a maximum deviation of ∼3 per cent. We
further investigate the impact of these objects with large peculiar
velocities in the measurement of the corrected LG velocity. Our
result shows that these uncorrected LG velocities are within the 1σ

error of the corrected LG velocity. Therefore, we conclude that the
effect caused by the peculiar velocities in our analyses is negligible,
and their impact is within the error of our dipole measurement.

A P P E N D I X C : TH E C O R R E C T I O N PRO C E D U R E
O F T H E LG D I P O L E V E L O C I T Y

With the procedure used in Section 3.2.2, we correct the partial sky
clustering dipole measurement, DPS

data(r), as

Dcorrected, i
data (r) = DPS

data(r) + Xi(r), (C1)

i = 1, 2, ···, N, where N is the number of simulated catalogues
used in the correction analyses. The correction term, Xi(r) defined in
equation (12), is the vectorial difference between the full-sky (FS)
and partial sky (PS) clustering dipoles obtained from a set of N
lognormal simulations, for i = 1, ···, N. In equation (C1), the vector
Xi(r) contains the lost information due to the partial sky coverage
of the data survey. Thus, this procedure produces, for each radial
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Figure C1. Robustness test of the correction procedure, performed for
N = 144 lognormal catalogues. The results show an excellent agreement
between the corrected clustering dipoles for the PS catalogues (red squares)
as compared with the clustering dipoles of the corresponding FS catalogues
(green dots). The average of the uncorrected PS dipoles is represented by
blue triangles.

distance r, a set of N values {Dcorrected, i} = {|Dcorrected, i |} that we
use to find the correct clustering dipole. The corrected clustering LG

dipole D
corrected

(r) is the average of the set of N values: {Dcorrected, i(r)},
and the associated error is the standard deviation of this set. These
data, H0

4πn̄
D

corrected
(r), are plotted as red squares in Fig. 6, while

the blue triangles correspond to the partial sky uncorrected data
H0
4πn̄

DPS
data(r).

Finally, the corrected clustering dipole, D
corrected

(r), is related to
the LG velocity, vLG(r), through β as

vLG(r) β−1 = H0

4πn̄
D

corrected
(r), (C2)

equivalent to the equation (13).
A robustness test is in due here to show the performance of this

correction procedure. First, we select the set of N FS lognormal
simulated catalogues where the misalignment of their clustering
dipole and CMB dipole direction is less than 30◦. Then, we have
two sets of simulated catalogues: N FS lognormal maps, and N
PS lognormal maps (obtained from the first set after applying the
ALFALFA footprint). From this set of PS catalogues, we select one
of them to be considered the data catalogue. The remaining N − 1 PS
catalogues and the N − 1 FS catalogues will be used in the correction
procedure of this data catalogue.

The second step is to calculate the uncorrected and the corrected
clustering dipoles of this data catalogue according to equations (12)
and (C1). After that, we repeat these calculations using each one of
the other N − 1 simulations as the data catalogue.

In the third step, we perform the average of these N-uncorrected
and N-corrected clustering dipoles and plot them in Fig. C1. To
complete the test, one has to calculate the clustering dipole of the N
FS catalogues, take their average, and plot together with the above
data. One clearly observes in Fig. C1 that our procedure to correct the
clustering dipole of the PS-simulated catalogues perfectly reproduces
the true result.

As a complementary verification, we also test our correction
procedure by calculating the misalignment, �θ (r), as a function
of the radial distance, between the LG velocity relative to the
CMB frame and the clustering dipole measured from the ALFALFA
catalogue. The expected behaviour for �θ (r) is a decreasing function
for large distances, achieving a convergence that depends on the size
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Figure C2. Misalignment between the LG velocity relative to the CMB
frame, uLG, and the clustering dipole measured from the ALFALFA catalogue,
vLG(r)β−1, for both cases, the corrected (red squares) and uncorrected (blue
triangles) velocities.

and location of the data sample on the sky, besides the deepness of
the catalogue (see Section 5 of Bilicki et al. 2011).

We perform the calculation of �θ (r) with two data sets: the
original or uncorrected LG velocity and the corrected LG velocity
obtained according to our correction procedure described above.
Our results are shown in Fig. C2, where we observe the uncorrected
(blue triangles) and the corrected (red squares) �θ as a function
of the radial distance, r. For the uncorrected LG velocity data,
the misalignment varies between 60◦ and 70◦, increasing at large
scales, very different from a decreasing expected behaviour. For the
corrected LG velocity data, the misalignment decreases and at large
scales converges to ∼45◦.

APP ENDIX D : TESTING THE EISENSTEIN AND
H U A P P ROAC H

The code of Agrawal et al. (2017), used here to produce the lognormal
simulations, calculates the matter power spectrum, P(k), using the
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Figure D1. Relative difference of the LG dipole calculated from 1000 log-
normal simulations generated using the power spectrum from two approaches:
EH (Eisenstein & Hu 1998) and CAMB (Lewis et al. 2000). The horizontal
axis refers to the radial distance from the observer to a surface of radius r,
where the dipole is calculated.

Eisenstein and Hu (EH) transfer function (Eisenstein & Hu 1998).
We find interesting to perform a test to check the accuracy of the
EH approach compared with the result obtained using the CAMB
code7(Lewis, Challinor & Cahn 2000), one of the most known and
tested Boltzmann codes. For this, first we produce a set of 1000
lognormal simulations using the whole pipeline of the code; this
includes the internal use of the EH fitting to obtain the matter power
spectrum. Secondly, we generate a set of 1000 lognormal simulations,
but this time the matter power spectrum is produced with the CAMB
code and introduced into the code as a numerical table (this is an
option of the code). Then, we perform dipole clustering analyses
with both sets of lognormal simulations; our results are shown in
Fig. D1 and confirm that both approaches provide the same output.

7https://camb.info/
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