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ABSTRACT
Large galaxy samples from multiobject integral field spectroscopic (IFS) surveys now allow for a statistical analysis of the z ∼ 0
galaxy population using resolved kinematic measurements. However, the improvement in number statistics comes at a cost, with
multiobject IFS survey more severely impacted by the effect of seeing and lower signal-to-noise ratio. We present an analysis
of ∼1800 galaxies from the SAMI Galaxy Survey taking into account these effects. We investigate the spread and overlap in
the kinematic distributions of the spin parameter proxy λRe as a function of stellar mass and ellipticity εe. For SAMI data, the
distributions of galaxies identified as regular and non-regular rotators with KINEMETRY show considerable overlap in the λRe –εe

diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in λRe space, with less
overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed λRe –log (M�/M�) distribution.
By allowing the mixture probability to vary as a function of mass, we investigate whether the data are best fit with a single
kinematic distribution or with two. Below log (M�/M�) ∼ 10.5, a single beta distribution is sufficient to fit the complete λRe

distribution, whereas a second beta distribution is required above log (M�/M�) ∼ 10.5 to account for a population of low-λRe

galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique
information provided by visual classification of galaxy kinematic maps should not be disregarded in future studies. Applied to
mock-observations from different cosmological simulations, the mixture model also predicts bimodal λRe distributions, albeit
with different positions of the λRe peaks. Our analysis validates the conclusions from previous, smaller IFS surveys, but also
demonstrates the importance of using selection criteria for identifying different kinematic classes that are dictated by the quality
and resolution of the observed or simulated data.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics – galaxies: stellar content – galaxies:
structure – cosmology: observations.

1 IN T RO D U C T I O N

The distribution of ordered to random stellar motions in present-
day galaxies provides strong constraints on how galaxies assembled
their mass over cosmic time. Historically, the kinematic properties of
spiral galaxies were already known even as the extragalactic nature of
these galaxies was still being debated (Slipher 1914; Pease 1916). In
contrast, the kinematic variety and complexity of early-type galaxies
was revealed at a much later stage (for reviews see de Zeeuw &
Franx 1991; Cappellari 2016). One of the major discoveries for early-
type galaxies was that with increasing luminosity, elliptical galaxies
transition from being predominantly rapid to predominantly slow
rotators (SRs; Bertola & Capaccioli 1975; Illingworth 1977; Davies
et al. 1983), and that the flattening of these slowly-rotating ellipticals

� E-mail: jesse.vandesande@sydney.edu.au

was due to anisotropy rather than rotation (Binney 1978; Schechter
& Gunn 1979).

A key remaining question about the kinematic properties of
galaxies is whether the distribution of rotation is bimodal with
contrasting formation histories or a continuous transition from
one type into another. While there are indications for a bimodal
distribution between different types of elliptical galaxies or within
the early-type population, most of the evidence is circumstantial. The
idea of two intrinsically different types of ellipticals originated from
the connection between the kinematic properties of ellipticals with
boxy and discy isophotes (Carter 1987; Bender 1988; Kormendy &
Bender 1996), or with cuspy cores versus inner power-law stellar
light profiles (Faber et al. 1997), which are thought to be related to
the merger history.

One of the first mentions of a dichotomy in the early-type popu-
lation, i.e. two physically distinct groups as based on morphological
and photometric properties, is by Ferrarese et al. (1994) further
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supported by Lauer et al. (1995; but see also Carollo et al. 1997).
Subsequently, Kormendy & Bender (1996) suggest a dichotomy
between discy and boxy ellipticals based on the relation between
the isophotal boxiness parameter a4/a and V/σ (the ratio of the
velocity V to the velocity dispersion σ ), however, they mention
the possibility that boxy and discy ellipticals form a continuous
sequence. In contrast, Ferrarese et al. (2006) present evidence in
favour of a continuous distribution in the logarithmic inner slopes
of early-type galaxies, instead of a bimodality. Kormendy & Bender
(2012) present an extensive list of properties classifying elliptical
galaxies into giant ellipticals (MV � −21.5) versus normal and dwarf
true ellipticals (MV � −21.5), a continuation of the results from
Kormendy & Bender (1996) and Kormendy et al. (2009). Among
other properties, giant ellipticals should have cores, rotate slowly,
and have boxy-distorted isophotes.

With two-dimensional (2D) kinematic measurements from integral
field spectroscopy (IFS, e.g. SAURON; Bacon et al. 2001; de Zeeuw
et al. 2002), Emsellem et al. (2007) did not find a clear relation
between the spin parameter proxy λR and boxy versus discy early
types, nor between λR and core versus power-law early-type galaxies.
Further results from ATLAS3D survey indicate no clear trend between
the boxiness parameter a4 and the fast rotator (FR) and SR classes
(Emsellem et al. 2011). However, while Krajnović et al. (2013) find
no evidence for a bimodal distribution of nuclear slopes of ATLAS3D

galaxies, the combination of σ e and λRe is found to be a good
predictor for the shape of the inner light profile (see also Krajnović
et al. 2020).

In parallel, Emsellem et al. (2007) identified two rotational types
of early-type galaxies from a visual inspection of the V and σ

maps, quantitatively classified as FRs and SRs having λR ≥ 0.1 and
λR < 0.1, respectively. In subsequent surveys, such as ATLAS3D,
a combination of the KINEMETRY method, which quantifies the
regularity of the velocity field (Krajnović et al. 2006, 2011), and
the spin-parameter proxy λR and ellipticity were used to classify
galaxies as FRs and SRs (Emsellem et al. 2011). One of the main
results from the ATLAS3D survey is that the vast majority of early
types (86 per cent) belong to a single family of fast-rotating disc
galaxies with ordered rotation and regular velocity fields (Emsellem
et al. 2011; Krajnović et al. 2011). Only a small fraction (14 per cent)
of early-type galaxies are SRs with more complex dynamical and
morphological (e.g. triaxial) structures.

While the evidence for at least two kinematic populations of
ellipticals and of early-type galaxies has been growing (e.g. Cap-
pellari 2016; Graham et al. 2018), there has been relatively little
discussion on the possibility of a continuous distribution or on
the overlap of properties between classes. Given the complexity
of how massive (log (M�/M�)>10.5) galaxies assemble their stellar
mass over time (e.g. see Naab et al. 2014), assigning galaxies to
specific classes without expecting considerable overlap might be an
unprofitable endeavour. In large-volume cosmological simulations
(e.g. Evolution and Assembly of GaLaxies and their Environ-
ments, EAGLE, Schaye et al. 2015; Crain et al. 2015; HORIZON-
AGN, Dubois et al. 2014; ILLUSTRIS, Genel et al. 2014; Vogels-
berger et al. 2014; ILLUSTRIS-TNG, Springel et al. 2018; Pillepich
et al. 2018; MAGNETICUM, Dolag et al. in preparation; Hirschmann
et al. 2014) the properties of FRs and SRs have been studied in
detail, but the fast/slow selection methods almost always follow
the observational criteria (Penoyre et al. 2017; Choi et al. 2018;
Schulze et al. 2018; Lagos et al. 2018b; Pulsoni et al. 2020;
Walo-Martı́n et al. 2020). Thus, the question arises as to how
much insight we will gain from comparisons to cosmological
simulations when quantitatively many fundamental galaxy relations

are still poorly matched to observations (van de Sande et al.
2019).

With the rise of large multiobject IFS surveys, such as the
SAMI Galaxy Survey (Sydney-AAO Multi-object Integral field
spectrograph; N ∼3000; Croom et al. 2012; Bryant et al. 2015)
and the SDSS-IV MaNGA Survey (Sloan Digital Sky Survey Data;
Mapping Nearby Galaxies at Apache Point Observatory; N ∼10 000;
Bundy et al. 2015), we are now able to determine the properties of
different kinematic populations as a function of stellar mass using
a statistical framework that can be similarly applied when studying
mock-galaxies extracted from cosmological simulations. However,
the observed kinematic measurements of V and σ in SAMI and
MaNGA are more severely impacted by atmospheric seeing as well
as having larger kinematic uncertainties due to the lower signal-to-
noise ratio (S/N) as compared to earlier IFS surveys (e.g. SAURON,
de Zeeuw et al. 2002; ATLAS3D Cappellari et al. 2011; CALIFA,
Sánchez et al. 2012). Furthermore, these multiobject IFS samples
include galaxies of all morphological types and uncertainties in visual
morphological classification could introduce additional challenges.
Therefore, a new approach is needed in order to separate non-regular
or SR galaxies from the dominant fast or regular rotating population
when the S/N and seeing strongly impact the data quality.

Different methods of correcting the measured λRe for seeing now
exist (Graham et al. 2018; Chung, Park & Park 2020; Harborne et al.
2020a), although the corrections are less certain for galaxies with
irregular velocity fields. It remains to be seen whether the results from
statistical samples of recent IFS surveys are significantly impacted
by seeing, such that an intrinsically-bimodal galaxy distribution
would be observed as unimodal. Thus, we need to re-investigate
and adapt existing FR and SR selection criteria (e.g. Emsellem
et al. 2007, 2011; Cappellari 2016) and investigate the amount of
overlap between the different distributions using multiobject IFS data
combined with mock-observations from simulations with relatively
low spatial resolution.

In this paper, we revisit dynamical galaxy demographics in the
era of large IFS samples, where the impact of seeing and data
quality is more severe than in previous IFS surveys. We use the
SAMI Galaxy Survey, which contains ∼3000 galaxies across a large
range in galaxy stellar mass, morphology, seeing conditions, and
data quality. It provides an ideal test set to investigate the challenges
set out above. The main goals of this paper are (1) to determine
the impact of different seeing correction methods on the kinematic
populations, (2) to investigate the scatter or overlap in the FR and SR
distributions, (3) to provide updated methods and selection criteria
for separating galaxies that belong to different kinematic families
in both observations and simulations, and (4) to consolidate results
from different IFS surveys over a range of sample sizes and data
quality.

Given the details required to perform a rigorous statistical in-
vestigation to achieve our goals, this paper contains several long
sections where we analyse and compare previous methods. These
sections are independent and can be skipped without losing the main
narrative. We present the data from the observations in Section 2.
The core analysis of observational data is presented in Section
3, and for large cosmological simulations in Section 4. Readers
solely interested in our new classification method can choose to skip
Sections 3.1–3.3 and 4. Section 5 gives our perspective on previous
claims of a bimodality (Sections 5.1–5.5) as well as a discussion on
the implications of this work (Sections 5.6–5.7). A summary and
conclusion is given in Section 6. Throughout this paper, we assume
a �CDM cosmology with �m = 0.3, �� = 0.7, and H0 = 70 km s−1

Mpc−1.
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2 DATA

2.1 SAMI Galaxy survey

SAMI is a multiobject IFS mounted at the prime focus of the 3.9-m
Anglo-Australian Telescope (AAT), with 13 hexabundles (Bland-
Hawthorn et al. 2011; Bryant et al. 2011, 2014; Bryant & Bland-
Hawthorn 2012) deployable over a 1◦ diameter field of view. Each
hexabundle consists of 61 individual 1.6-arcsec fibres, and covers
an ∼15-arcsec-diameter region on the sky. The 793 object fibres
and 26 individual sky fibres are fed into the AAOmega spectrograph
(Saunders et al. 2004; Smith et al. 2004; Sharp et al. 2006), with a
blue (3750–5750 Å) and red (6300–7400 Å) arm. With the 580V and
1000R grating, the spectral resolution is Rblue ∼ 1810 at 4800 Å, and
Rred ∼ 4260 at 6850 Å (Scott et al. 2018), respectively. In order to
cover gaps between fibres and to create data cubes with 0.5-arcsec
spaxel size, all observations are carried out using a six- to seven-
position dither pattern (Allen et al. 2015; Sharp et al. 2015)

The SAMI Galaxy Survey (Croom et al. 2012; Bryant et al. 2015)
contains ∼3000 galaxies within redshift 0.004 < z < 0.095 with a
broad range in galaxy stellar mass (M∗ = 108–1012M�) and galaxy
environment (field, groups, and clusters). Galaxies were selected
from the Galaxy and Mass Assembly (GAMA; Driver et al. 2011)
campaign in the GAMA G09, G12, and G15 regions, in combination
with eight high-density cluster regions sampled within radius R200

(Owers et al. 2017). We use 3072 unique galaxies from internal data
release v0.12. Reduced data cubes and stellar kinematic data products
for 1559 galaxies in the GAMA fields are available as part of the first,
second, and third SAMI Galaxy Survey data releases (Green et al.
2018; Scott et al. 2018; Croom et al. 2021).

2.1.1 Ancillary data

For galaxies in the GAMA fields, aperture matched g − i colours
were measured from reprocessed SDSS Data Release 7 (York et al.
2000; Kelvin et al. 2012), by the GAMA survey (Hill et al. 2011;
Liske et al. 2015). For the cluster environment, photometry from the
SDSS (York et al. 2000) and VLT Survey Telescope (VST) ATLAS
imaging data are used (Shanks et al. 2013; Owers et al. 2017). Stellar
masses are derived from the rest-frame i-band absolute magnitude
and g − i colour, by employing the colour–mass relation as outlined
in Taylor et al. (2011). A Chabrier (2003) stellar initial mass function
and exponentially declining star formation histories are assumed in
deriving the stellar masses. For more details, see Bryant et al. (2015).

We use the Multi-Gaussian Expansion (MGE; Emsellem, Monnet
& Bacon 1994; Cappellari 2002) technique, and the code from Scott
et al. (2013) to derive structural parameters of galaxies from the
imaging data from the GAMA-SDSS (Driver et al. 2011), SDSS
(York et al. 2000), and VST (Shanks et al. 2013; Owers et al. 2017).
Those parameters are the effective radius (the half-light radius of
the semimajor axis; Re), the ellipticity of the galaxy within one
effective radius (εe), and position angles. For more details, we refer
to D’Eugenio et al. (2021).

Visual morphological classifications are described in detail in
Cortese et al. (2016). The classifications are determined from SDSS
and VST gri colour images and are based on the Hubble type (Hubble
1926), following the scheme used by Kelvin et al. (2014). Early- and
late-type galaxies are divided according to their shape, the presence
of spiral arms, and/or signs of star formation. Early types with discs
are then classified as S0s and pure bulges as ellipticals (E). Late-type
galaxies with a disc plus bulge component are classified as early
spirals, and galaxies with only a disc component as late spirals.

Figure 1. Stellar mass distribution of the full SAMI sample (light grey) and
stellar kinematic sample (grey). The green line shows the completeness in
bins of stellar mass. The SAMI stellar kinematic sample is biased towards
high stellar mass as compared to the full SAMI sample, with 50 per cent
completeness reached above log (M�/M�) ∼ 9.55.

2.1.2 Stellar kinematics

The stellar kinematic measurements for the SAMI Galaxy Survey
are described in detail in van de Sande et al. (2017b). A short
summary is provided below. We use the penalized pixel fitting code
(PPXF; Cappellari & Emsellem 2004; Cappellari 2017) assuming
a Gaussian line-of-sight velocity distribution (LOSVD). Before
combining the blue and red spectra, the red spectra are convolved to
match the instrumental resolution in the blue. The combined spectra
are rebinned on to a logarithmic wavelength scale with constant
velocity spacing (57.9 km s−1). We derive a set of radially-varying
optimal templates from the SAMI annular-binned spectra, using the
MILES stellar library (Sánchez-Blázquez et al. 2006; Falcón-Barroso
et al. 2011). For each individual spaxel, PPXF is given a set of two or
three optimal templates from the annular bin in which the spaxel is
located as well as the optimal templates from neighbouring annular
bins. We estimate the uncertainties on the LOSVD parameters from
150 simulated spectra.

We visually inspect the 3072 SAMI kinematic maps in the GAMA
and cluster regions, and 140 galaxies are flagged and excluded due to
unreliable kinematic maps caused by nearby objects or mergers that
influence the stellar kinematics of the main object. 1025 galaxies are
excluded because the radius out to which we can accurately measure
the stellar kinematics is less than 2.0 arcsec or Re<1.5 arcsec. We
also remove 40 galaxies where the ratio of the point spread function
to the effective radius of a galaxy is larger than σ PSF/Re > 0.6. We
adopt the limit of 0.6 because of the relatively large impact of beam-
smearing on λRe at these σ PSF/Re values (see Harborne et al. 2020a).
Lastly, for another 35 galaxies, no reliable λR aperture correction out
to one Re could be derived (see Section 3.1). This brings the total
sample of galaxies with kinematic measurements to 1832.

The stellar kinematic completeness as compared to the full SAMI
Galaxy Survey sample is presented in Fig. 1. The largest fraction
of galaxies without kinematic measurements is below stellar mass
of log (M�/M�) < 9.5. Because the stellar kinematic completeness
drops rapidly below 50 per cent at low stellar mass (see Fig. 1), we
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Figure 2. Colour distribution of the full SAMI sample (light grey) and stellar
kinematic sample (grey) for all galaxies above a stellar mass of log (M�/M�)
> 9.5. The green line shows the completeness in bins of g − i colour. In the
region where 95 per cent of the data lie (0.63 < g − i < 1.36), we find no colour
bias in the stellar kinematic sample as compared to the full SAMI sample.
This demonstrates that our kinematic sample is a representative subset of the
full galaxy population.

do not use the remaining 67 galaxies below log (M�/M�) < 9.5 for
the core analysis of this paper.

We investigate whether the kinematic sample above this mass
limit of log (M�/M�) = 9.5 is a representative subset of the full
SAMI sample by comparing the g − i colour distributions in Fig. 2.
For the vast majority of the sample (>95 per cent), we find that
the colour distribution of the stellar kinematic sample matches that
of the full sample, with the exception of the bluest (g − i < 0.6)
and some of the reddest (1.4 < g − i < 1.55) galaxies where the
completeness drops below 75 per cent. Thus, we conclude that the
kinematic sample has no colour bias as compared to the full SAMI
sample that was drawn from the volume-limited GAMA survey with
high completeness (∼90 per cent). The final number of galaxies
from the SAMI Galaxy Survey with usable stellar velocity and stellar
velocity dispersion maps above a stellar mass of log (M�/M�) > 9.5
is 1765; we dub this set of galaxies the ‘SAMI stellar kinematic
sample’.

3 K INEMATIC IDENTIFIERS IN
SEEING-IMPACTED DATA

3.1 FRs and SRs in seeing-impacted data

FR and SR galaxies are commonly selected from a combination of the
spin parameter proxy λR (Emsellem et al. 2007) and the ellipticity ε.
λR quantifies the ratio of the ordered rotation and the random motions
in a stellar system, and is given by

λR = 〈R|V |〉
〈R√

V 2 + σ 2〉 =
∑Nspx

j=0 FjRj |Vj |∑Nspx
j=0 FjRj

√
V 2

j + σ 2
j

. (1)

Here, the subscript j refers to the position of a spaxel within
the ellipse, Fj the flux of the jth spaxel, Vj is the stellar velocity
in km s−1, σ j the velocity dispersion in km s−1. Rj is the semimajor
axis of the ellipse on which spaxel j lies, not the circular projected
radius to the centre as is used by e.g. Emsellem et al. (2007, 2011).

We use the unbinned flux, velocity, and velocity dispersion maps as
described in Section 2.1.2. The sum is taken over all spaxels Nspx

within an ellipse with semimajor axis Re and ellipticity εe where the
ellipticity is defined from the axial ratio: ε = 1 − b/a. We use the
input galaxy catalogue’s RA and Dec. and WCS information from the
cube headers, to determine a galaxy’s centre. The systemic velocity
is determined from nine central spaxels (1.5 × 1.5 arcsec2 box).

We only use spaxels that meet the quality criteria for SAMI Galaxy
Survey data as described in van de Sande et al. (2017b): S/N > 3 Å−1,
σ obs> FWHMinstr/2 ∼ 35 km s−1 where the FWHM is the full width
at half-maximum, Verror < 30 km s−1(Q1 from van de Sande et al.
2017b), and σ error < σ obs∗0.1 + 25 km s−1 (Q2 from van de Sande
et al. 2017b). In practice, as the uncertainties on V and σ are strongly
correlated with S/N, primarily spaxels towards the galaxy outskirts
fail to meet these selection criteria. Kinematic maps with spatially
discontinuous V or σ measurements (with ‘holes’) are rare, but if
the fill factor of good spaxels is less than 85 per cent, the galaxy is
excluded from the sample. As outlined in van de Sande et al. (2017a),
if the fill factor within one effective radius is less than 95 per cent,
an aperture correction to λR is applied (279 galaxies, 15.8 per cent
of the stellar kinematic sample).

SRs are commonly selected using one of the following criteria,
i.e. from Emsellem et al. (2007, dotted line in Fig. 3):

λRe < 0.1,

or Emsellem et al. (2011, dashed curve in Fig. 3):

λRe < 0.31 × √
εe,

or with the selection criteria from Cappellari (2016, solid line in
Fig. 3) :

λRe < 0.08 + εe/4 with εe < 0.4.

We present the SAMI stellar kinematic sample in Fig. 3(a). The
distribution of galaxies in the λRe –εe space is similar to previous
studies (Emsellem et al. 2011; Cappellari 2016; Graham et al. 2018;
Falcón-Barroso et al. 2019). As noted by Falcón-Barroso et al.
(2019), in contrast to the CALIFA Survey, our sample does not
reach values above λRe > 0.8. This λR ceiling is partially caused
by the impact of atmospheric seeing (see the next paragraph), but
also because of the different radius definition used to calculate λR in
equation (1). A similar effect due to seeing is seen in the MaNGA
data as presented by Fraser-McKelvie et al. (2018), but not in Graham
et al. (2018, 2019) using the same MaNGA data and λR definition,
who find that λRe reaches values close to the upper limit of 1.0,
with and without a seeing correction applied. In the λRe distribution
function (Fig. 3a), we see a small peak below λRe < 0.1, but no clear
evidence for two distinct peaks or populations is visible from our
seeing-uncorrected data.

Atmospheric seeing impacts the stellar kinematic measurements
by spatially smearing the line-of-sight velocity distribution, which
results in a flatter observed velocity gradient but increased overall
velocity dispersion. Hence, the seeing-impacted λRe values will be
lower compared to no-seeing measurements. An analytic correction
to account for atmospheric seeing on λRe was presented by Graham
et al. (2018). This correction was derived by simulating the effect
of seeing on kinematic galaxy models constructed with the Jeans
Anisotropic MGE modelling method (Cappellari 2008), and takes
into account the ratio of the seeing to the galaxy effective radius and
Sérsic index.

The accuracy of the analytic λR correction was tested in Harborne
et al. (2019). Although the mean correction across a range of
morphological types works well, a residual scatter of ±0.1λRe
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Figure 3. Spin parameter proxy λRe versus ellipticity εe for the SAMI stellar kinematic sample, without (panel a) and with seeing corrections applied (panels b
using the method from Graham et al. 2018 and panel c using the method from Harborne et al. 2020a). Distributions of λRe and εe are shown on the side and on
top of each panel. We also show the FR and SR selection criteria from Emsellem et al. (2007, dotted line), Emsellem et al. (2011, dashed line), and Cappellari
(2016, solid line). In panel (b), the non-regular rotators (NRRs) defined using KINEMETRY are colour coded orange, whereas regular rotators (RRs) are shown
in blue. A clear bimodal distribution in λRe is only observed when the seeing correction is applied to the RRs within the sample (panel b), but we argue this
bimodality is artificially enhanced by the seeing correction method (see Section 3.1).

remains as a function of inclination. However, the correction is
applicable only for RRs (Graham et al. 2018). The impact of this
limitation is demonstrated in Fig. 3(b). Here, we have seeing-
corrected λRe for all regular rotating galaxies (blue circles), identified
using KINEMETRY with 〈k51,e〉 < 0.07 (see Section 3.2 and van
de Sande et al. 2017b), whereas the NRRs are left uncorrected
(orange circles). From the λRe distribution shown on the side
of panel (b), a clear bimodal distribution appears,1 although we
argue that this separation is artificial enhanced by the seeing
correction.

An alternative seeing correction was presented by Harborne et al.
(2020a) that has been derived from a suite of hydrodynamical
simulations of galaxies with different bulge-to-total ratios. While
the method follows the idea of Graham et al. (2018), this new
correction includes an inclination term approximated from the
observed ellipticity. The residual scatter in λRe after applying this
correction on a test set of galaxies shows smaller residual scatter
as compared to Graham et al. (2018), and also works for all galaxy
types within the suite of simulations. Yet, true SRs, with complex
stellar orbital distributions, kinematically distinct cores, and counter-
rotating discs, are harder to produce in isolated-galaxy simulations.
Instead, galaxies from the EAGLE simulations were used, which
showed that λRe can be seeing-corrected effectively for this type
of galaxy with an accuracy of � log λRe < 0.026 dex. Furthermore,
the absolute impact of the seeing correction on λRe for this galaxy
type is small. The Harborne et al. (2020a) seeing-corrected λRe

measurements are presented in Fig. 3(c). The low-λRe peak that
was visible in Fig. 3(b) λRe distribution is no longer as pronounced,
and whilst there may be two populations, by eye it is not clear where
and how to divide the two possible distributions.

Including a seeing correction is crucial for recovering an unbiased
λRe distribution. As galaxies with smaller angular sizes are more
severely impacted by seeing, intrinsic differences in the physical
sizes of early- and late-type galaxies combined with a redshift-
dependent mass selection, can lead to a morphologically biased
λRe distribution. Therefore, in what follows, we will use the seeing

1We adopt the definition of bimodality as a distribution with two different
modes that appear as distinct peaks in the density distribution.

correction from Harborne et al. (2020a) as the default. The optimized
correction formulas for the SAMI Galaxy Survey data are presented
in Appendix A1.

However, with the seeing correction applied to all galaxies, it is
unclear whether the Emsellem et al. (2011) or Cappellari (2016) SR
selection regions are still valid for our data, or how much overlap
there is between the different distributions. As the beam smearing
of galaxies with complex inner rotational velocity and dispersion
structures behaves differently from regular rotating galaxies, the
impact of seeing cannot straightforwardly be predicted with a simple
analytic formula; the λR values for complex non-rotating galaxies
might be overcorrected. This could explain why it is harder to detect
a bimodal distribution in Fig. 3(c). To solve this problem, we will
need to include more information than λRe and εe alone if we want
to determine whether or not we can separate a population of FRs and
SRs in our data.

3.2 Kinemetry: RRs and NRRs

3.2.1 Description of the KINEMETRY method

We first turn to KINEMETRY for identifying kinematic subgroups
as defined in Krajnović et al. (2011) because the FR and SR
selection regions from Emsellem et al. (2011) and Cappellari (2016)
were designed to best separate regular and non-regular galaxies.
In this section, we follow a similar approach. The KINEMETRY

method (Krajnović et al. 2006, 2008) provides an estimate of the
kinematic asymmetry, under the assumption that the velocity field of
a galaxy can be described with a simple cosine law along ellipses:
V(θ ) = Vrotcos θ , where Vrot is the amplitude of the rotation and
θ is the azimuthal angle. Deviations from this cosine law can
then be modelled using Fourier harmonics, where the first-order
decomposition k1 is equivalent to the rotational velocity and the
high-order terms (k3, k5) then describe the kinematic anomalies. The
kinematic asymmetry is defined from the amplitudes of the Fourier
harmonics k5/k1 (Krajnović et al. 2011). Our method for measuring
the kinematic asymmetry on SAMI Galaxy Survey data is described
in detail in van de Sande et al. (2017b). The KINEMETRY method
forms the basis of separating galaxies into regular versus non-regular
classes. As was already noted in van de Sande et al. (2017b), the
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An optimal kinematic classification 3083

Figure 4. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. Data are colour coded by the kinematic asymmetry parameter 〈k51,e〉 (panel
a) and visual morphological type (panels b and c). Unfilled symbols indicate that 〈k51,e〉 could not be measured within one Re, or a conclusive visual morphology
could not be determined. Galaxies below log (M�/M�) < 9.5 are not used in the main analysis, but are shown here for completeness. The overlap of RRs and
NRRs increases towards lower stellar mass. The low-mass NRRs also have higher values of λRe as compared to high-mass NRRs. We show the RRs and NRRs
in the λRe –εe space in panel (d) with the optimal selection region (black) derived from panel (e) and the SR selection box from Cappellari (2016) in grey. There is
considerable overlap of RR and NRR rotators. Panel (e) shows the ‘Receiver Operating Characteristic Curve’ (ROC-curve) and Matthews correlation coefficient
distribution from which we derive the optimal selection region. The most optimal selection region has a true positive rate (TPR) of only 57.4 per cent with a
false positive rate (FPR) of 5.7 per cent. This suggests that the λRe –εe space is not ideal for distinguishing between RRs and NRRs derived from SAMI data.

distribution of 〈k5/k1〉 does not show a sharp transition between RRs
and NRRs. Instead, there is a peak in the 〈k5/k1〉 distribution around
∼0.03 with a long tail towards high 〈k5/k1〉 values (see also Fig. B3a).

Following Emsellem et al. (2011), we use the lower limit 〈k5/k1〉
− 〈k5/k1error〉 to separate RRs and NRRs, taking into account that
within uncertainties a galaxy that is classed as NRR can still be a
RR. From here on, we simply refer to 〈k5/k1〉 − 〈k5/k1error〉 within an
aperture of one effective radius as 〈k51,e〉. The divide between RRs
and NRRs was set to 4 per cent in Krajnović et al. (2011) based on
the peak and error of the distribution, but to 2 per cent in Krajnović
et al. (2008). As our data quality is different (median 〈k51,e〉=0.014
for ATLAS3D versus a median 〈k51,e〉 = 0.029 here), we adjust this
limit to 〈k51,e〉 = 0.07, which corresponds to the 84th percentile of
the 〈k51,e〉 distribution. Note that in van de Sande et al. (2017b), we
also adopted an intermediate class of quasi-RRs, but for the clarity

of directly comparing to FRs and SRs, we do not use the QRR
terminology here.

3.2.2 Identifying FRs and SRs using KINEMETRY as a prior

Fig. 4(a) shows the seeing-corrected spin parameter proxy λRe

using the method from Harborne et al. (2020a) versus stellar mass
log (M�/M�). The data are colour coded by the 〈k51,e〉 values for
the entire sample. There are two clear trends visible. First, at
fixed stellar mass, the kinematic asymmetry is higher for low
λRe values. Secondly, at fixed λRe the mean kinematic asymmetry
becomes higher towards lower stellar mass, likely to be dominated
by a relationship in k1 (rotational velocity) versus stellar mass.
To clarify these trends, we show the RRs and NRR separately in
Figs 4(b) and 4(c) now colour coded by visual morphology. As
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Table 1. Confusion matrix for the condition of NRR versus RR using the SR
versus FR test.

NRR RR

SR True positive False positive
FR False negative True negative

expected, for galaxies with high stellar masses (log (M�/M�) >

10.75), NRRs have the lowest values of λRe . However, towards
lower stellar mass, NRRs demonstrate a large range in λRe , even
with our strict definition of non-regularity (〈k51,e〉 > 0.07). We note
that the relatively high-spin NRRs (λRe > 0.4) roughly fall into two
categories: galaxies with late-type spiral morphology and inclination
<45◦ with kinematic features in the velocity maps caused by spiral
arms or bars, and galaxies with edge-on morphology and low spatial
coverage.

The increased scatter in λRe towards low stellar masses is caused
by a combination of lower S/N and a decrease in the overall rotational
velocities (k1) of these galaxies. Because 〈k51,e〉 is normalized by k1,
slower rotating galaxies that follow a perfect cosine rotation will
have higher 〈k51,e〉 even if uncertainties on V measurements are the
same. As galaxies have lower angular momentum towards low stellar
mass, higher values of 〈k51,e〉 are expected. Similarly, as galaxies
are inclined from edge-on towards face-on, k1 will become lower,
increasing the typical 〈k51,e〉. Galaxies towards low stellar mass and
face-on discs with low surface brightness also have lower typical
S/N values, causing higher V uncertainties and, therefore, higher
〈k51,e〉. Thus the higher scatter in 〈k51,e〉 below log (M�/M�) < 10.5 is
caused by a combination of late-type morphology and observational
effects.

The larger scatter between 〈k51,e〉 and λRe leads to consider-
able overlap between the RR and NRR populations in the λRe –
log (M�/M�) diagram. By using a single λRe cut-off value to separate
RRs and NRRs we will not only cause a bias with stellar mass, but
also create a large number of false positives (FP) and false negatives
(FN), if we assume that 〈k51,e〉 is the perfect classifier.

The λRe versus ellipticity εe diagram, as presented in Fig. 4(d), is
now commonly used to separate FRs and SRs, where the empirical
separation between FRs and SRs is motivated by the location of
the RRs and NRRs. However, from Fig. 4(d), it is immediately clear
that the most-current selection criterion from Cappellari (2016) (grey
lines) and the previous selection criteria (Emsellem et al. 2007, 2011,
not shown) are unsuccessful in separating RRs and NRRs within our
seeing-corrected SAMI sample.

In order to quantify the ‘success’ of the SR selection region
for separating RRs and NRRs, we will treat ‘non-regularity’ as a
condition that a galaxy can have, while using the λRe –εe diagram as
the diagnostic to identify this condition. By adopting this classifi-
cation, we can calculate statistical measures of performance of this
binary test, such as the sensitivity and specificity. To do so, we first
construct a confusion matrix (Table 1) where we determine the TP,
true negatives (TN), FP, and FN. A TP is where a galaxy has the
condition of NRR and is also classified (i.e. tested positive) as an SR,
whereas a TN is an RR that has been classified as an FR.

There are several statistical measures that quantify the relevance
of our statistical test. Here, we will use an ‘ROC-curve’ analysis
to quantify how well our test performs (see, e.g. Fawcett 2006).
Specifically, we will use the sensitivity or TPR, the fall-out or
FPR, the positive prediction value (PPV), and Matthews correlation

coefficient (MCC; Matthews 1975):

T PR = T P

P
= T P

T P + FN
, (2)

FPR = FP

N
= FP

FP + T N
, (3)

PPV = T P

T P + FP
, (4)

MCC = T P × T N − FP × FN√
(T P + FP )(T P + FN )(T N + FP )(T N + FN )

. (5)

Instead of calculating a single set of numbers for the Cappellari
(2016) FR/SR selection, it will be more insightful to try a variety of
selection criteria to determine the optimal selection region. We first
explored the full range of selection boxes with different starting and
end positions (i.e. with different slopes) in both λRe and and εe but
the retrieved optimal selection function did not have significantly
improved MCC values as compared to the adopted selection function
below (there was one exception that we will highlight in Section 3.4).
Instead, we choose a varying selection region similar to Cappellari
(2016) as this was well motivated for higher S/N and higher spatial
resolution data (e.g. see Appendix B1):

λRe < λR start + εe/4, with εe < 0.35 + λR start

1.538
. (6)

We define the optimal selection when the MCC reaches its highest
value, which is a trade-off between the number of true and false posi-
tives and negatives. We note that there are several other optimization
parameters, such as the ‘Youden’s J statistic’, the Accuracy, or the F1
score, but they all returned similar results as compared to the MCC.

We show the TPR versus the FPR, also known as the ‘ROC-
curve’, in Fig. 4(e), with an additional inset panel that shows the
MCC as a function of λRstart. A completely random test would result
in data residing on the one-to-one line. We test 200 different selection
regions, with λRstart ranging from 0 to 1. With increasing values of
λRstart we find an increase in the TPR but also in the FPR. According
to the MCC parameter, the optimal selection region has λRstart = 0.16
shown as the black line in Fig. 4(d). This value is significantly higher
than the λRstart = 0.08 from Cappellari (2016). More importantly, the
optimal selection region only has a TPR of 57.4 per cent with an FPR
of 5.7 per cent, and a PPV of 65.8 per cent.

Thus, we conclude that using the λRe –εe diagram to separate RRs
and NRRs is only moderately successful when presented with seeing-
dominated data. We emphasize that the KINEMETRY method was
designed for higher quality data than presented here; hence, we do
not suggest that these results should be interpreted a ‘failure’ of the
method. Instead, it is a motivation to explore an alternative kinematic
identifier that is better suited for poorer-quality data, which is the goal
of the next section.

3.3 Visual kinematic classification: obvious versus non-obvious
rotators

3.3.1 A new visual kinematic classification scheme

In the previous section we demonstrated that there is no clean
separation of RRs and NRRs in the λRe –εe plane or the λRe –
log (M�/M�) plane. None the less, when the data quality is good
enough, KINEMETRY provides a quantitative measure of what we
visually interpret as kinematic deviations from a regular rotating
velocity profile (e.g. see Appendix B1). Given that the large variety
of the kinematic types as presented by Krajnović et al. (2011) are
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An optimal kinematic classification 3085

Figure 5. Kinematic visual classification flow-chart (left-hand panel) with example gri colour images and velocity maps as used in the SAMI Galaxy Survey
kinematic visual classification. The white-dashed circle on the images from VST-KiDS or Subaru-HSC shows the SAMI field of view, whereas the blue- or
red-dashed ellipse on the colour images, respectively, shows 1Re or 0.5Re. In the first step, for each galaxy, colour images are first used to determine whether
the galaxy is face-on spiral. Secondly, the galaxy’s velocity map is used to classify objects into NORs and ORs. Here, the velocity scale is derived from the
velocity dispersion ±σ e. This integrates the velocity dispersion into the visual classification such that with increasing velocity dispersion the rotational velocity
has to become more pronounced in order for a galaxy to be classified as an OR. The third step employs autoscaled velocity maps to aid classifiers in identifying
kinematic substructures (no-features versus with-features).

also easily identified by eye in the ATLAS3D velocity maps, we
will now investigate whether a visual kinematic classification of
SAMI galaxies offers a clearer separation of galaxies with different
kinematic structures.

Visual classification, for example, of galaxy morphology, is
however subjective from observer to observer and is susceptible to
the quality and spatial resolution of the imaging data. None the less, a
well-developed framework exists that allows classifiers to determine
a galaxy’s morphological type with several levels of refinement.
Unfortunately, such a clear and well-defined framework does not
exist for classifying kinematic maps of galaxies.

Krajnović et al. (2011) and Cappellari (2016) offer a frame-
work for identifying kinematic features within early types such a
‘Kinematically Distinct Core’ or ‘Counter-Rotating Core’, yet the
classification of when a velocity field is no longer regular rotating
is highly subjective. While the origin of this naming convention
is closely related to the quantitative KINEMETRY measurements,
comparing flux-weighted measurement within one Re and visual
classifications are not always straight forward (see Section 5.1 for
examples). Furthermore, the different subclasses (e.g. No Features,
2 Maxima, Kinematic Twist) for RRs are no longer present in
Cappellari (2016, fig. 4), who present four classes for galaxies with
non-regular velocity fields but only one for RRs. However, the main
issue with the current kinematic classification scheme is that it is not
well adapted for data with different quality. When the S/N decreases
and the spatial resolution becomes lower, one would be tempted to

classify all galaxies as NRRs if the velocity field appears noisier than
the high-quality example galaxies for which the visual classification
was designed.

An initial attempt by three of the authors to classify 50 SAMI
galaxies with λRe < 0.35 into regular versus NRRs led to an identical
classification of only 22 galaxies (44 per cent). While kinematic
features in the core, such as KDCs, are easily classified in nearby
galaxies with well-resolved spatial data, they are easily missed
in surveys such as SAMI and MaNGA where there is a trade-
off between multiplexing, spatial resolution, and spatial extent.
Furthermore, the regular and non-regular classes that are based on the
luminosity-weighted 〈k51,e〉 parameter do not directly translate into
a visual classification. As such, we found that the three classifiers
had different interpretations of the visual regular versus non-regular
classification scheme. This implies that we need to devise a more
easily interpretable visual kinematic classification scheme that allows
for different levels of data quality.

We propose a kinematic visual classification scheme defined as
follows (Fig. 5). We begin by defining a specific class for spiral
and/or strongly barred galaxies that are close to face-on (FO-Sp),
thus showing no obvious rotation. Secondly, we divide the population
into ‘obvious rotators’ (ORs) and ‘non-obvious rotators’ (NORs).
The adopted language is purposely vague to allow for some freedom
of interpretation as the classification is qualitative, not quantitative.
Whilst the velocity field does not necessarily have to be regular for
a galaxy to be classified as an OR, opposite ends of the velocity
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field should demonstrate reversed rotation. For the SAMI Galaxy
Survey stellar kinematic data, we add one level of refinement. After
classifying the kinematic map into OR or NOR, in the third step
we check whether the galaxy has an inner kinematic feature (‘With
Feature’; WF) or not. With improved data quality, this classification
scheme can be further refined by adding an extra level to identify the
type of kinematic feature (e.g, kinematically distinct core, 2M, etc.,
from Krajnović et al. 2011).

A flow-chart and five example maps of the different visual
kinematic types are presented in Fig. 5. For each galaxy, we show
the best-available gri colour image derived from VST-KiDS (de Jong
et al. 2017) or Subaru-Hyper Suprime Camera DR1 imaging (Aihara
et al. 2018), a velocity map with a range set by the average velocity
dispersion, as well as a velocity map with autoscaling. The first
velocity map with σ e-scaling was used to classify galaxies into NORs
or ORs, whereas the autoscaled velocity map is better adjusted for
identifying inner kinematic features. The choice for using a velocity
range set by the velocity dispersion was motivated by the dependence
of the maximum rotational velocity as a function of stellar mass, i.e.
the Baryonic Tully–Fisher relation. We also wanted to incorporate
the velocity dispersion into the visual classification such that with
increasing velocity dispersion the rotational velocity has to become
more pronounced in order for a galaxy to be classified as an OR.

Using similar maps as shown in Fig. 5, seven members of the
SAMI Galaxy Survey team visually classified ∼600 kinematic maps
of galaxies with λRe � 0.35. We chose to visually classify only
a selected sample of galaxies, because no NORs were identified
at λRe � 0.35 in a test set of 147 galaxies (10 per cent of non-
classified galaxies). And because kinematic visual classification is
time-consuming process, we only selected galaxies in the λRe region
where a mix of ORs and NORs was expected, in order to reduce the
total number of galaxies.

Following a similar approach as outlined in Cortese et al. (2016),
after all votes were combined, the kinematic type with at least 5/7
votes were chosen (66.7 per cent, 399/598). When no absolute
majority was found, ORs and ORs-WF were combined into an
intermediate type, as well as NORs and NORs-WF. If 5/7 votes
then agreed, the galaxy was classified as the intermediate type (23.2
per cent, 139/598). For the remaining cases (∼10 per cent, 58/598),
the classifications of the two most average classifiers were compared
and if those agreed that type was chosen (6.2 per cent, 37/598).
Otherwise, we checked whether a weak majority (4/7) was reached
(3.5 per cent, 21/598). Only two galaxies in our sample remained
unclassified under this scheme.

The results of the kinematic visual classification are presented in
the λRe –log (M�/M�) plane (Figs 6a–c). Interestingly, we find that
the distribution of ORs and ORs-WF extend to very low values of
λRe . While this is expected for face-on spirals, we also find ORs-
WFs galaxies with low λRe that are classified morphologically as
Elliptical and S0s. For NORs, as expected there is an increase in
their fraction towards higher stellar mass. The average λRe values
of NORs also decrease with increasing stellar mass. We find that
low-mass (log (M�/M�) < 10) NORs are nearly all morphologically
classified as late-spiral or irregular. In Fig. 6(d), we investigate where
ORs and NORs reside in the λRe –εe plane. The NORs have mostly
low ellipticity values, and beyond εe > 0.4, we only find a handful of
NORs. A large fraction of the ORs at low spin-parameter (λRe<0.2)
are classified having kinematic features, and similarly for λRe < 0.4
and εe > 0.4, which strengthens the argument for setting an ellipticity
limit of εe < 0.4 to select galaxies with actual slow rotation rather
than low λRe values due to counter-rotating discs. Note however that
face-on galaxies without a strong bar (i < 10◦, εe < 0.4) do not have

a measurable rotation and will therefore end up in this SR selection
region; these galaxies can only be identified as disc-galaxies from a
visual morphological classification.

3.3.2 Identifying FRs and SRs using visual kinematic morphology
as a prior

Similar to the test we did for KINEMETRY, we will now treat ‘non-
obvious rotation‘ as a condition that a galaxy can have, while again
using the λRe –εe diagram as the diagnostic to identify this condition.
The confusion matrix is given in Table 2. We then use equation (6)
to select SRs and FRs for an ensemble of selecting regions and
calculate the TPR (equation 2), the FPR (equation 3), and the MCC
(equation 5). The optimal selection is defined by the highest MCC
value.

The TPR versus FPR, and the MCC distribution are shown in
Fig. 6(e). According to the MCC parameter, the optimal selection
region has λRstart = 0.12 shown as the black line in Fig. 6(d), which
is close to the λRstart = 0.08 from Cappellari (2016). The optimal
selection region only has a TPR of 83.1 per cent with a small FPR
of 3.6 per cent, and a PPV of 67.6 per cent. If we were to accept
a higher FPR of 20 per cent, which is reached at λRstart = 0.27,
then we obtain an impressive TPR of 98.7 per cent, but with an
unacceptably low PPV of 30.9 per cent. Overall, we conclude that
there is a good success of selecting data sets and ORs using the λRe –
εe diagram. None the less, as the λRe –εe diagram only shows the
average rotational properties within Re, it cannot replace the spatial
information obtained through the process of visual classification.

3.4 Using Bayesian mixture models for identifying different
kinematic families

3.4.1 Description of the Bayesian mixture model

Up to this point, we have been working with the assumption that
multiple kinematic populations of galaxies exist. Using KINEME-
TRY we separated galaxies into regular and non-regular and for the
visual kinematic classification we split galaxies into obvious and non-
obvious rotation. Both analyses indicate that the various kinematic
classes exist across the full range in stellar masses, with an increased
fraction of NRRs and NORs towards high stellar mass. None the
less, the question of whether or not a bimodal distribution with two
distinct peaks exists has not been answered by this analysis. The
〈k51,e〉 distribution from KINEMETRY only reveals a highly skewed
distribution, whereas the visual kinematic classification could be
tracing two ends of a continuous distribution.

Here, we are interested in analysing the λRe distribution as a
function of stellar mass without forcing two distinct populations,
or assuming where these populations should reside in the λRe –
log (M�/M�) plane. To do so, we analyse our data using a Bayesian
mixture modelling framework.2 The main assumption we make is
that the λRe distribution of galaxies can be well approximated by
a beta distribution, where the probability density function (PDF) is
given by

f (x, α, β) = xα−1(1 − x)β−1

B(α, β)
, (7)

2Inspired by Taylor et al. (2015), who analyse ‘blue’ and ‘red’ galaxies as
two naturally overlapping populations using an MCMC analysis.
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Figure 6. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. Data are colour coded by the kinematic visual classification (panel a) and
visual morphological type (panels b and c). Unfilled symbols indicate that a conclusive visual morphology could not be determined. Note that only galaxies with
λRe � 0.35 were kinematically visually classified (symbol with black border), all other galaxies are ORs by default (symbols with grey border). The overlap
between the obvious and data sets is considerably less as compared to the results using KINEMETRY. With increasing stellar mass, the median λRe of NORs
decreases. We show the ORs and NORs in the λRe –εe space in panel (d) with the optimal selection region (black) and the SR selection box from Cappellari
(2016) in grey. There is mild overlap of ORs and NORS, but panel (e) indicates a relatively clean selection of NORS can be made using the black selection box.

Table 2. Confusion matrix for the condition of NOR versus OR using the
SR versus FR test.

NOR OR

SR True positive False positive
FR False negative True negative

with B(α, β) defined using the Gamma function �:

B(α, β) = �(α)�(β)

�(α + β)
. (8)

The beta distribution has the property of only being defined on the
unit interval, which makes it ideal to describe values of λR that are
also constrained to lie between 0 and 1. However, as the maxima and
minima of the observed distributions are not perfectly 0 and 1, we

re-scale the λR values in the following way:

λR, rescaled = λR − min(λR)

max(λR) − min(λR)
. (9)

To model the locations of galaxies in the λRe –log (M�/M�) plane,
we use a linear combination of two beta functions at each value
of stellar mass (which we label 1 and 2). However, the proportion
of galaxies that are drawn from each beta distribution at a given
stellar mass is not fixed. We allow the ‘mixture probability’ p to vary
smoothly as a function of stellar mass, which captures the well-known
dependence of kinematic morphology and mass (e.g. Emsellem et al.
2011; Brough et al. 2017; Veale et al. 2017; van de Sande et al.
2017a; Graham et al. 2018; Green et al. 2018).

Note that the expected relation of both populations with stellar
mass is also the primary reason for not using the λRe –εe diagram
to fit the data. Even though inclination has a significant impact
on the observed λRe values that could be partially accounted for
by using ellipticity instead of mass, we argue that without an

MNRAS 505, 3078–3106 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/3078/6284775 by guest on 10 April 2024



3088 J. van de Sande et al.

Figure 7. Bayesian mixture model analysis to identify different kinematic populations. In panel (a), we show the seeing-corrected spin parameter proxy versus
stellar mass, where the blue and red density contours show the amplitude of the beta distributions that we fit to the volume-corrected data. Note that we only
show 5000 randomly drawn galaxies here. The ‘mixture probability’ (i.e. the probability of being drawn from the second beta distribution describing the ‘slow’
rotators) as a function of stellar mass is given in panel (b), where the black lines show 2000 realizations of the mixture model and the red line shows the average.
Panel (c) shows the total distribution in λRe summed over all stellar masses for the data (black), together with 2000 realizations of the mixture model in orange.
At low stellar mass (log (M�/M�) < 10.5) the probability of finding galaxies that belong to a second low-λRe population goes to zero, whereas at high stellar
mass, the probability for a second low-λRe population is very high. We note that the high-λRe beta distribution shows a small deviation from the observed data,
which is further explored in Fig. 8. None the less, the Bayesian mixture model analysis provides the most principled separation of the two distributions.

inclination correction we only get an increase in the scatter and
overlap of both λRe distributions. While we could attempt to correct
for inclination, this parameter is poorly constrained for galaxies
below λRe < 0.2. Only correcting a subset of the data could lead
to a bimodality by construction (see Section 3.1), which we want
to avoid here. We further investigate the impact of inclination in
Appendix C.

At this point, we also apply a volume correction to our cluster
sample. The complete volume correction analysis will be presented
by van de Sande et al. (in preparation), but we provide a short
description here. The SAMI targets are drawn from the volume-
limited GAMA survey with high completeness (∼90 per cent).
However, the GAMA regions lack high overdensity regions with
halo mass greater than log (Mhalo/M�) ∼ 14.5. For that reason, the
SAMI Galaxy Survey targeted an additional eight cluster regions
to fill this density gap. None the less, the probability of finding an
extremely massive cluster such as Abell 85 (the most massive cluster
in the SAMI cluster sample) within the GAMA volume is less than
1. Hence, a volume correction needs to be applied.

We first calculate the total survey volume, using the stepped series
of stellar mass limits as a function of redshift from which the SAMI
Galaxy Survey targets were selected (see Bryant et al. 2015). For each
volume, we calculate the predicted halo mass function from Angulo
et al. (2012) using HMFCALC: An Online Tool for Calculating Dark
Matter Halo Mass Functions (Murray, Power & Robotham 2013).
With that halo mass function, we can then obtain a probability
of finding a cluster galaxy within the SAMI-GAMA volume. For
example, we find that the probability of observing a galaxy in the
most massive cluster Abell 85 is ∼1/38. To take this overabundance
of cluster galaxies into account, we randomly draw each galaxy in
the full survey – with replacement – using an oversampling of 38
multiplied by a galaxy’s volume correction. In practice, a galaxy
in the most massive cluster (Abell 85) will be drawn only once,
whereas a galaxy in the GAMA region will be drawn 38 times. For
each draw, we add a random number to each data point derived from
the 1σ measurement uncertainty on λRe and a typical 1σ stellar mass
uncertainty of 0.1dex. The total volume-corrected data set consists
of 53 587 data points.

We then use this volume-corrected sample to fit the λRe distribution
as a function of stellar mass. The shape parameters of both beta
functions (α1, β1 and α2, β2, respectively) are defined to be linear
functions of stellar mass. This allows the two beta distributions to
vary their width and location in the λR–log (M�/M�) plane to match
the observational data. Note that the model has the freedom to let
one set of parameters have zero contribution if the data do not
motivate two populations. A full mathematical description of the
model including priors is given in Appendix D.

We fit this model using the PYTHON interface to the probabilistic
programming language STAN (Carpenter et al. 2017). STAN uses a
modified version of the Hamiltonian Monte Carlo algorithm (Duane
et al. 1987; Hoffman & Gelman 2014) to sample the model’s posterior
probability distribution and perform full Bayesian inference of the
parameters. During the fitting, we run four separate chains for 500
warm-up steps and 500 sampling steps each. The warm-up steps
are then discarded. We ensure that there are no divergent transitions
during the sampling and that the Gelman–Rubin convergence di-
agnostic R̂ (Gelman & Rubin 1992) for each parameter is within
normal values (1 < R̂ < 1.1). Note that no binning in log (M�/M�)
or λRe is applied in the fitting process; each data-point is treated
independently.

3.4.2 Probabilistic fast and slow rotators

The key results from this analysis are shown in Fig. 7. We identify
two clear distributions within the λRe –log (M�/M�) diagram with
moderate overlap. In Fig. 7(a), the blue high λR distribution, which is
consistent with the location of galaxies traditionally called FRs, dom-
inates at low and intermediate stellar masses. Above log (M�/M�) >

10.5, the contribution from a second population at low λRe as shown
in red, consistent with traditional SRs, becomes more and more
dominant towards high stellar mass. While these two populations
occupy the exact regions where we expect FRs and SRs to reside, we
want to avoid using the exact same terminology when the process
of identifying these two populations is very different from previous
studies. Instead, we will refer to these distributions as probabilistic
fast and slow rotators (pFRs and pSRs).
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An optimal kinematic classification 3089

Figure 8. Distribution of the seeing-corrected λRe from the volume-corrected sample in four stellar mass bins, split by visual morphology into late-type galaxies
(top row), early-type galaxies (middle row), and the full sample (bottom row). The observed distribution is shown in grey, and the best-fitting mixture model
in black with the two beta distributions shown separately on top in blue and red. We emphasize that this mixture model has been fit to all galaxies in our
sample simultaneously, and has not been fit to the binned data shown here. Late-type galaxies are well described by a single beta distribution, with a near zero
contribution from a second distribution. For early-type galaxies, above stellar mass log (M�/M�) > 10, we find an increasingly dominant population of pSRs at
low λRe . The position and amplitude of this second distribution remains the same when we fit the entire population versus early types only. In general, we find a
good fit to the data at low and high-stellar masses (column 1, 3, and 4), but within 10.0 < log (M�/M�) < 10.5 (second column), the shape of the high-λRe beta
distribution does not match the data as well as for other stellar mass bins.

In Fig. 7(b), we find that the probability of a galaxy being
drawn from the pSR distribution rapidly increases as a function of
stellar mass, particularly above log (M�/M�) > 11, in agreement with
previous studies (e.g. Emsellem et al. 2011; Brough et al. 2017; Veale
et al. 2017; van de Sande et al. 2017a; Graham et al. 2018; Green
et al. 2018). However, the model prediction becomes increasingly
uncertain above log (M�/M�)>11.4 where the number of observed
SAMI Galaxy Survey galaxies rapidly drops. The λRe distribution
summed over the entire mass range is shown in Fig. 7(c). There is a
minor offset of the peak of the pFR distribution as compared to the
peak of the data, but the peak of the pSR is well matched to the data.

In Fig. 8, we split the sample into four equal bins of stellar mass
to investigate this offset further. In particular, we are interested
in determining whether or not the main assumption that the λRe

distribution can be described by a beta function is valid. Furthermore,
we separate the late- and early-type distributions because we expect
the behaviour of these populations to be different. Indeed, for late
types only, we find that the λRe distribution can be described by
a single beta function associated with the pFRs, with minimal
contribution of a second beta distribution. However, for early-type
galaxies, a second dominant peak appears approximately around
log (M�/M�) > 10.5, which is also well fitted by a beta distribution.
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In the combined sample (Fig. 8, bottom row), we see how the
relative contributions of early types and late types as a function
of stellar mass impact the λRe distribution. Below log (M�/M�)
< 10.5 the late-type population dominates, which is reflected by
the strong peak at λRe ∼ 0.6, whereas towards higher stellar mass,
the contribution from early-type galaxies becomes more dominant.
Between 10.5 < log (M�/M�) < 11, we find the combined late-
type pFR and early-type pFR distribution, which have roughly
equal numbers of galaxies, is also well described by a single beta
distribution. This is perhaps surprising as the individual late-type and
early-type pFR distributions are different in shape with peak values
that are offset by ∼0.2 in λRe . While this does not exclude that the
two populations are kinematically different, it validates the choice
of a single beta distribution for the combined early- and late-type
pFR population. We also note that the peak and width of the pSR
distributions are identical when analysed as part of the full sample
or within the early-type sample. We emphasize that this is not by
construction, but an outcome of our mixture model analysis.

None the less, while in three out of four stellar mass bins we find
a relatively good fit of our model to the data, in the bin with mass
interval 10.0 < log (M�/M�) < 10.5, we see a poorer fit to the data.
The discrepancy between the model and the data could be caused
by a relatively high broad peak in the distribution at λRe ∼ 0.6 for
late types, or because we enforce a smooth transition of the beta
distributions as a function of stellar mass using a linear relation.
Instead, we attribute the poor fit in this mass regime to the lower
peak around λRe ∼ 0.2. The larger abundance of galaxies at these
low λRe values could be explained by a population of galaxies that
we previously identified as NOR-WF or OR-WF (see Section 3.3).
These galaxies might have outer kinematic structures consistent with
either the pSR or pFR population, but the inner kinematics offset
the λRe measurements from their main distribution. Removing these
galaxies from the sample indeed results in a better visual fit, but as
our goal here is to use only the spin parameter proxy and stellar mass
without secondary identifiers to clean or pre-select our sample, we
did not attempt to improve this further.

To summarize, using a Bayesian mixture model analysis we have
demonstrated that two beta distributions are required to describe the
observed λRe distribution as a function of stellar mass. For early-
type galaxies, the location of pFR peak has a lower λRe value as
compared to pFR late-type galaxies, but the locations of the pFR
and pSR peaks do not change with stellar mass. The amplitude of
pSR distribution rapidly increases with stellar mass, but the peak
and width remain constant. When we analyse the full SAMI Galaxy
Survey sample, we find that the data are well described by two beta
distributions, but because the relative fraction of late- and early-type
galaxies changes as a function of stellar mass, we also find that the
width and peak of the pFR distributions change moderately. These
results are consistent with the findings of Guo et al. (2020), who show
that in the local Universe, above log (M�/M�) > 10.5, both late- and
early-type populations become important in the total stellar mass
budget, whereas below log (M�/M�) > 10.5 only one population is
needed to reproduce the stellar mass function of galaxies.

3.4.3 Identifying FRs and SRs using Bayesian mixture models as a
prior

We now use the Bayesian mixture model to identify which galaxies
are most likely pFRs and pSRs. In Fig. 9(a), we show the SR prob-
ability contours, where p(SR) = PDF SR / (PDFSR + PDFFR).
We define a galaxy as a pSR when the p(SR) is higher than 50 per

cent. Note that this selection does not take into account ellipticity
or visual morphology. For that reason, counter-rotating discs that
are often excluded using an ellipticity cut-off, or face-on spirals can
still be selected as pSR when they are clearly different in structure
and kinematics as compared to massive-triaxial ellipticals. We find
that the fraction of pSRs strongly increases with stellar mass, which
was already demonstrated in Fig. 7. But the pSR contours are more
tightly packed in the λRe direction, whereas the stellar mass range
from the 20th to 80th probability covers nearly a dex in stellar mass.

In Figs 9(b) and (c), we show the mass normalized FR and SR
PDFs. The contours indicate the 68 and 95 percentiles or how
likely we are to find a pFR or pSR in that region. We overlay the
SAMI Galaxy Survey data to identify low-probability pFR and pSR
galaxies. For example, in Fig. 9(b), below log (M�/M�) < 10.5,
there are a number of pFR galaxies that lie below the 95 percentile
contours. In our visual kinematic classification analysis (Fig. 6), we
already found that this region is predominately occupied by OR-
WF, whereas the majority of OR have no such feature. Similarly,
we find low-mass pSRs that are outside the 95 percentile. However,
whereas the PDFs are normalized as a function of stellar mass, the
SAMI observed mass function peaks around log (M�/M�) ∼ 10.5.
It is therefore no surprise that we find more pSR at log (M�/M�) <

10.5 than the PDF from a flat stellar mass distribution suggests.
Similar to the test, we performed for KINEMETRY and the visual

kinematic classification, we will now treat pFR versus pSR as
a condition that a galaxy can have, with λRe –εe diagram as the
diagnostic to identify this condition. The confusion matrix is given in
Table 3. In Fig. 9(d), we investigate where pFRs and pSRs reside in
the λRe –εe plane. Unsurprisingly, there is a clear separation between
both classes because the pFR and pSR classifications come directly
from the λRe –log (M�/M�) probability cutoffs. Therefore, we are
mainly gauging how much overlap of the pFR and pSR distribution
there is when swapping log (M�/M�) for εe. While this may seem
somewhat artificial, we note that both KINEMETRY and the kinematic
visual classification are also based on the kinematic data. Thus, all
kinematic identifiers have some degree of interdependence.

We find no dependence on the location of pSR with respect to
the ellipticity (Fig. 9d), and in particular towards low εe, we do not
detect a decline in the λRe values of pSR. This result is similar to
the NOR category defined from visual classification. To quantify this
trend, we explore different selection boxes with varying slopes, start
and end positions in both λRe and εe. Indeed, the optimal selection
function has a nearly flat slope starting at λRe=0.14 and extends out
εe = 0.5, with an MCC value that is higher than the MCC value from
the default selection region from equation (6) (0.890 versus 0.865,
respectively).

In Fig. 9(e), we show the TPR versus FPR of our test as well
as the MCC distribution for the default selection region region from
equation (6). The optimal selection only has λRstart value of 0.12, with
a TPR of 90.4 per cent with a small FPR of 1.9 per cent, and a PPV
of 83.0 per cent. Overall, there is an excellent agreement between
the selection of probabilistic FRs and SRs using the λRe –εe diagram,
although we re-emphasize that this is mostly by construction.

4 D I FFERENT KI NEMATI C D I STRI BUTI O NS
I N C O S M O L O G I C A L H Y D RO DY NA M I C A L
SI MULATI ONS

Cosmological hydrodynamical simulations offer great insight into
the formation and evolution of galaxies from high-redshift (z ∼ 50)
to the present-day (z = 0). By simultaneously comparing structural,
dynamical, and stellar population measurements from simulations
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Figure 9. Seeing-corrected spin parameter proxy versus stellar mass and ellipticity. We present the pFRs and pSRs as blue and red coloured symbols in panel
(a), with contours marking the probability for a galaxy to be an SR (p(SR) = 50 per cent black, and from light to dark red as 20, 40, 60, and 80 per cent). Panels
(b) and (c) show the FR and SR PDFs normalized in each mass bin, with contours enclosing 68 and 95 per cent of the PDF, and indicates the probability of
finding a pSR or pFR if the mass-function is flat. The SAMI classified pFRs and pSRs are shown in the λRe –εe space in panel (d) where the optimal selection
region from our ROC analysis is shown in black together with the Cappellari (2016) SR selection box in grey. Because we select pFRs and pSRs from the p(SR)
= 50 per cent contour in the λRe –log (M�/M�), the small increase of the λRe limit with stellar mass results in some minor contamination in the λRe –εe space.
None the less, panel (e) indicates an extremely high TPR with low FPR, but this is partly by construction.

Table 3. Confusion matrix for the condition of pSR versus pFR using the
SR versus FR test.

pSR pFR

SR True positive False positive
FR False negative True negative

and observations, van de Sande et al. (2019) demonstrate that recent
large cosmological simulations are now capable of reproducing many
of the known galaxy relations. While recent comparisons with IFS
measurements showed a qualitatively good agreement for several
fundamental galaxy relations (see e.g. Penoyre et al. 2017; Choi
et al. 2018; Schulze et al. 2018; Lagos et al. 2018b; Pulsoni et al.
2020; Walo-Martı́n et al. 2020), quantitatively some fundamental
parameters are not well reproduced (Lange et al. 2016; van de Sande
et al. 2019; Xu et al. 2019); moreover, areas of discrepancy and

agreement vary between the different simulations (van de Sande
et al. 2019). None the less, these simulations are useful to interpret
the kinematic properties of different galaxy populations across time
and different environments (Teklu et al. 2015; Dubois et al. 2016;
Choi & Yi 2017; Kaviraj et al. 2017; Penoyre et al. 2017; Remus
et al. 2017; Welker et al. 2017; Choi et al. 2018; Lagos et al. 2018a,b;
Martin et al. 2018; Schulze et al. 2018; Pillepich et al. 2019; Pulsoni
et al. 2020; Schulze et al. 2020; Walo-Martı́n et al. 2020).

To assess whether observational selection criteria can be success-
fully applied to data from simulations to separate FRs and SRs,
we will now repeat the mixture model analysis on IFS mock-
observations from cosmological hydrodynamical simulations. We
use the data as presented by van de Sande et al. (2019) where
we used the EAGLE, HORIZON-AGN, and Magneticum Pathfinder
simulations. All simulations model key physical processes of galaxy
formation, including gas cooling, star formation, feedback from
stars and from supermassive black holes, although each simulation
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adopts different philosophies for calibrating to and reproducing
observational results. The details of the simulations and mock-
observations are summarized below.

4.1 EAGLE and hydrangea

From the publicly available EAGLE project (Crain et al. 2015; Schaye
et al. 2015; McAlpine et al. 2016) data, we use the reference model
Ref-L100N1504 that has a volume of (100 Mpc)3 co-moving. We
combine EAGLE with HYDRANGEA that consists of 24 cosmological
zoom-in simulations of galaxy clusters and their environments (Bahé
et al. 2017) to provide a better environmental match to the observed
SAMI Galaxy Survey. HYDRANGEA is part of the larger Cluster-
EAGLE project (Barnes et al. 2017). Cluster-EAGLE is similar to
EAGLE but with different parameter values for the active galactic
nuclei (AGN) feedback model, to make it more efficient. Both
EAGLE and HYDRANGEA adopt the Planck Collaboration XXXI
(2014) cosmological parameters (�m = 0.307, �� = 0.693, H0

= 67.77 km s−1 Mpc−1). Each dark matter particle has a mass of
9.7 × 106 M�, and the initial gas particle mass is 1.81 × 106 M�.
The typical mass of a stellar particle is similar to the gas particle mass.
In what follows, we will refer to the joined EAGLE and HYDRANGEA

sample as EAGLE+.

4.2 Horizon-AGN simulations

The second set of cosmological hydrodynamic simulations is
HORIZON-AGN with the details presented by Dubois et al. (2014).
Here, we use the simulation box with a volume of (142 Mpc)3

co-moving with an adopted cosmology that is compatible with
the Wilkinson Microwave Anisotropy Probe 7 cosmology (�m =
0.272, �� = 0.728, H0 = 70.4 km s−1 Mpc−1; Komatsu et al.
2011). HORIZON-AGN uses a grid to compute the hydrodynamics,
employing adaptively refinement to the local density following a
quasi-Lagrangian scheme (Teyssier 2002), with cells that are 1 kpc
wide at maximal refinement level. The dark matter particle mass is
8 × 107 M�, and the adopted resolution is such that the typical mass
of a stellar particle is 2 × 106 M�.

4.3 MAGNETICUM simulations

The third set of cosmological hydrodynamical simulations that we
will use are the Magneticum Pathfinder simulations (www.magn
eticum.org), hereafter simply MAGNETICUM (see Dolag et al. in
preparation; Hirschmann et al. 2014; Teklu et al. 2015 for more
details on the simulation). We use the data from the medium-
sized cosmological box (Box 4) with a volume of (68 Mpc)3 co-
moving at the ultra-high-resolution level. MAGNETICUM adopts a
cosmology compatible with the Wilkinson Microwave Anisotropy
Probe 7 cosmology (�m=0.272, �� = 0.728, H0 = 70.4 km s−1

Mpc−1; Komatsu et al. 2011). The dark matter and gas particles have
masses of, respectively, 5.1 × 107 and 1.0 × 107 M�, and each gas
particle can spawn up to four stellar particles.

4.4 Mock observations

The method for extracting kinematic measurements from EAGLE+

are described in Lagos et al. (2018b), for HORIZON-AGN in Welker
et al. (2020), and in Schulze et al. (2018) for MAGNETICUM, all
corrected to H0 = 70.0 km s−1 Mpc−1. For all simulations, we
extract r-band luminosity-weighted effective radii, ellipticities, line-
of-sight velocities and velocity dispersions, adopting techniques that

closely match the observations. The λR values for HORIZON-AGN and
MAGNETICUM are derived using equation (1), whereas for EAGLE+ we
use the definition as described in Emsellem et al. (2007). Note that
these different λR definitions do not impact our analysis as we are
investigating the separation of two kinematic families within each
distribution, without a direct quantitative comparison. Specifically,
the different λR definitions will only significantly impact galaxies
with high values of ellipticity, well above the region where both
kinematic distributions are expected to overlap.

A lower mass limit of M� = 5 × 109 M� is used for EAGLE,
HYDRANGEA, and HORIZON-AGN, but a higher mass limit of M� =
1 × 1010 M� for MAGNETICUM, to ensure that the simulated measure-
ments from the mock-observations are well converged. None the less,
we acknowledge that with the spatial resolution of these simulations,
effects similar to observational beam-smearing might play a role in
the kinematic measurements of mock-observed simulated galaxies.
Lastly, a mass-matching technique is used to remove the difference
between the observed and simulated stellar mass function for a clearer
comparison of the results (for more details see van de Sande et al.
2019), but we note that we find consistent results when no mass-
matching is enforced.

4.5 Separating FRs and SRs in simulations using Bayesian
mixture models

We now repeat the Bayesian mixture model analysis from Sec-
tion 3.4. Our goal is to see whether or not our mixture model recovers
a meaningful separation of the two kinematic distributions within the
simulated data, even though we have not demonstrated yet that two
kinematic populations exist. The results for all three simulations are
presented in Fig. 10, with the left-hand column showing the EAGLE+

analysis, HORIZON-AGN in the middle column, and MAGNETICUM on
the right-hand side. We present the separation of pSRs (red) and
pFRs (blue) using the 50 per cent probability levels in the top row,
whereas the bottom row shows the probability of being drawn from
the pSR beta distribution.

The difference in the location of the pSR population is striking
for all three simulations. As compared to pSR selection region from
observations, we detect a steeper upturn in λRe towards high stellar
masses for HORIZON-AGN and even steeper for EAGLE+. In contrast,
the MAGNETICUM pSR contours increase much slower as a function of
stellar mass, with a narrow range in permitted λRe values, although the
upper limit of the pSR selection is similar to observations. The other
striking difference between the observations and simulations is the
location and the shape of the pFR distribution. Below log (M�/M�)
< 10.5 for EAGLE+ and log (M�/M�) < 11 for MAGNETICUM, the pFR
distribution covers the full λRe range, whereas for HORIZON-AGN, the
peak of the pFR distribution is very low from λRe ∼ 0.2 to ∼0.4.

From the probability of the pSR beta distribution as a function of
stellar mass (Fig. 10f), it is clear that the Bayesian mixture model
for the MAGNETICUM simulation data is not as well constrained as
compared to the other two simulations and the observed SAMI
Galaxy Survey data (Fig. 7). The numerous model realizations
indicate that there is a considerable range of possible solutions.
The probability of finding the pSRs distribution at the highest stellar
masses in MAGNETICUM is also lower as compared to the observations
(respectively, ∼0.5 versus ∼0.75), whereas EAGLE+ and HORIZON-
AGN predict consistent values. Furthermore, in Figs 10(d)–(e), we
find that for EAGLE+ and HORIZON-AGN the p(SR) as a function of
stellar mass are similar. It is not obvious that this should be the case,
especially given the large differences in the ranges of λRe from the
two simulations (Figs 10a–b).
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Figure 10. Bayesian mixture model analysis to identify different kinematic populations in the EAGLE+ (left-hand panels), HORIZON-AGN (middle panels), and
MAGNETICUM (right-hand panels) simulation using the spin parameter proxy versus stellar mass. The pFRs and pSRs are shown as blue and red coloured
symbols. The contours mark the probability for a galaxy to be a SR (p(SR) = 50 per cent black, and from light to dark red as 20, 40, 60, and 80 per cent). We
find that the pSR/pFR divide in HORIZON-AGN closest matches the observations, whereas the EAGLE+ and MAGNETICUM pSR/pFR cutoff reveal a, respectively,
stronger and milder increase of the pSR distribution as a function of stellar mass.

In order to see how well the mixture model separates the pSR
and pFR distributions in the simulations data, we present the λRe

distributions in different stellar mass bins in Fig. 11. We find a wide
variety of λRe distributions, both in terms of shape and maximum
λRe extent. Most noticeably for EAGLE+, and to a lesser extent
in HORIZON-AGN, we find that the width of the pSR distribution
increases with increasing stellar mass, with a tail towards higher and
higher λRe even though the peak of the pSR distribution remains at
the same location. However, for MAGNETICUM, the pSR distribution
is extremely narrow and does not change considerably as a function
of stellar mass.

In all three simulations, the mixture model suggests a bimodal
distribution, even though two distinct peaks are not evident for
each simulation in Fig. 11. While this does not imply that multiple
kinematic populations do not exist, it does demonstrate the value
of investigating the kinematic distributions beyond the work as
presented in van de Sande et al. (2019). Here, we find that the
overlap between the pSR and pFR distributions is more considerable
in the simulations as compared to observations, and that the dividing
line for pSR and pFR is at different λRe values as a function of
stellar mass. Thus, a good agreement between the observed and
simulated distributions does not automatically imply that the ratio
of sub populations matches as well. These results also show that the
observational selection criteria that are used to classify galaxies into

FRs and SRs are not suitable to study the fractions of the simulated
populations as a function of stellar mass or environment. Within the
same SR selection region, between observations and simulations, it
is unlikely that a comparable population of galaxies will be selected
without considerable contamination.

5 D ISCUSSION

The taxonomy of galaxies determined from their visual morphologi-
cal properties has been a powerful tool to advance our knowledge of
the processes that shape galaxies, with the Hubble Sequence (Hubble
1926) and the De Vaucouleurs system (De Vaucouleurs 1959) still
in active use today. However, like any other area where taxonomy is
used, an introduction of hard boundaries between classes can create
artificial dichotomies when, in reality, the transition between these
classes could be continuous.3

With increasingly large samples of galaxies with resolved kine-
matic measurements, various kinematic classifications have now
been proposed. Some of these naming conventions have perhaps
led to an oversimplification of the way we view the kinematic galaxy
population with an assumption that the previously proposed classes

3See Graham (2019) for a detailed discussion on the ‘artificial division of the
early-type galaxy population’ from size measurements.
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Figure 11. Distribution of λRe from EAGLE+ (top panels), HORIZON-AGN (middle panels), and MAGNETICUM (bottom panels) in four stellar mass bins. The
observed distribution is shown in grey, the best-fitting mixture model in black with the two beta distributions shown separately on top in blue and red. Note
that the mixture models have been fit to all mock-observed galaxies in the samples simultaneously, and has not been fit to the binned data shown here. In all
three simulations, the Bayesian mixture model indicates a bimodal distribution, but the differences between the λRe distributions from the three simulations are
considerable with a large overlap of the pFR and pSR distributions.

are distinct and independent. In this paper, we have investigated
how well we can separate a bimodal kinematic distribution in
the galaxy population, specifically when the data quality is more
severely impacted by seeing and spatial sampling. In the second half
of this analysis, we convincingly show that we can separate two
kinematic populations, yet when relying on secondary classifiers
such as kinematic visual classification or KINEMETRY we find that
the overlap of these different classes can be considerable. Because
of the mixing of the different distributions, we are cautious to assign
individual galaxies to a certain class. Instead, we advocate using
probabilities to assess how likely it is that galaxies share the same
properties. None the less, historically various kinematic tracers have
been used to promote the existence of a dichotomy. These will be
reviewed in Section 5.1–5.5, whereas the implications of our work
are discussed in Section 5.6–5.7.

5.1 Separating FRs and SRs based on visual kinematic
classification

We will start with a historical context on the visual kinematic
identification of the first resolved kinematic maps that formed the
foundation of the work that we present in this paper. Kinematic
visual classification only became advantageous with the introduction
of the SAURON IFS (Bacon et al. 2001), followed by several IFS
surveys. But, as we will argue in this section, the lack of a clear and
well-defined classification scheme and the limited field of view has
made kinematic visual classification overly subjective with some key
results left open to alternative interpretations.

The SAURON survey (de Zeeuw et al. 2002) yielded kinematic
maps for a significant sample of 48 nearby early-type galaxies. A
visual analysis revealed that most early-type galaxies show a signif-
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icant amount of rotation, whereas others have complex dynamical
structures inconsistent with being simple rotating oblate spheroids
(Emsellem et al. 2004). Visual classification of the kinematic maps
was further explored in Emsellem et al. (2007) and Cappellari et al.
(2007) who introduced the FR and SR classes. However, a detailed
look at some of the early results suggests that even with good-quality
data, the classification is not always obvious. For example, we would
argue that from fig. 1 in Emsellem et al. (2007), it is not clear that
elliptical NGC 5982 (second row, sixth column) is an SR galaxy as the
outskirts show rapid rotation. In our revised kinematic classification
scheme from Section 3.3, this galaxy would be classified as an OR
with features (OR-WF).

Similar ambiguities can be found in the kinematic maps from the
ATLAS3D Survey using the SAURON IFS, as presented in fig. 1 from
Krajnović et al. (2011). For example, galaxies NGC 4472 and NGC
4382 are classified as NRR-CRC (counter-rotating core) and RR-2M
(double maxima), respectively. From KINEMETRY, the classification
into NRR and RR is clear: 〈k51,e〉 = 0.197 ± 0.075 for NGC 4472 and
〈k51,e〉 = 0.025 ± 0.009 for NGC 4382. However, when attempting a
visual classification of the velocity fields, we would argue that these
velocity fields in the outskirts do not look that different, where there
are clear signs of rapid ordered rotation. Both galaxies are round (εe

= 0.17, 0.2) and have respective λRe values of 0.08 and 0.16, which
puts them well below and relatively close to the FR/SR dividing
line (SRs must have λRe < 0.14 at εe = 0.20). Combined with the
fact that both velocity fields do not extend beyond 0.26–0.36Re, it
is hard to argue that one galaxy is a clear SR whilst the other
is not.

Our revised kinematic classification scheme was purposely de-
signed to take into account such ambiguity by adopting a new
terminology of ‘obvious’ and ‘non-obvious’ rotation (ORs and
NORs). Even though the extent of the kinematic maps is still
important, outer versus inner rotation is more clearly defined in
this revised scheme (see also Section 5.4). Additionally, our SAMI
kinematic sample has at least one Re kinematic coverage for ∼80 per
cent of the galaxies, and only a relatively small fraction of galaxies
do not extend beyond 0.5Re (∼5 per cent).

The new visual classification scheme also allows each user to come
up with their own interpretation of what ORs and NORs could look
like, although we offer some examples of what the classes might look
like. ‘Self-calibration’ is important in this classification scheme, and
to facilitate this, each classifier was shown their collection of galaxies
assigned to the same class after each subset. By being allowed to swap
galaxies between classes, the most optimal selection could be made.
Given this ambiguity and flexibility in the classification scheme,
the bimodal distribution of ORs and NORs in the λRe –M� space
(Fig. 6) is surprisingly clear, and confirms that two classes indeed
exist.

Unlike some previous classifications (Graham et al. 2018), we
advocate for the aggregation of classifications from many indepen-
dent classifiers. A comparison of visual classifications from three
different authors on the SAMI maps, using the classifying scheme
from Krajnović et al. (2011), resulted in a large range in classification,
with poor overall agreement. Results based off single classifiers may
thus be biased and artificially skew the resulting distributions. A
supervised machine learning approach (e.g. boosting), or a citizen
science project (e.g. Galaxy Zoo; Lintott et al. 2008), could provide a
viable solution for the near future when the number of galaxies with
2D kinematic maps is expected to grow beyond 10 000. We further
emphasize that a more quantitative approach guided by these visual
classifications should always be sought to connect to other studies
and simulations

5.2 Separating RRs and NRRs using kinemetry

KINEMETRY offers a quantification of the irregularity of the velocity
field (Krajnović et al. 2006, 2008, 2011) and has been exploited to
classify galaxies into regular and non-regular classes. This classifi-
cation scheme formed the basis for the revised λR–εe separation line
of FRs and SRs in Emsellem et al. (2011) and Cappellari (2016). We
re-analyse the separation of ATLAS3D FRs and SRs using our ROC
analysis (see Appendix B1) and find a clean separation of RR and
NRR with a high PPV (89.7), but with an optimal selection region
that has a higher λRe limit as compared to Emsellem et al. (2011) or
Cappellari (2016).

None the less, using a subset of high-quality SAMI Galaxy Survey
data, van de Sande et al. (2017b) showed that the 〈k5/k1〉 distribution
from both ATLAS3D and SAMI was peaked around 〈k5/k1〉 ∼ 0.02–
0.03 but with a continuous tail towards higher 〈k5/k1〉 values. Yet,
the shape of this distribution does not suggest that the distribution
in 〈k5/k1〉 is bimodal. Furthermore, in Section 3.2 we show that with
lower quality data, the overlap of regular and non-regular galaxies in
the λR–M� and λR–εe space is considerable. As 〈k5/k1〉 is intrinsically
correlated with V/σ and λR through the rotational component,
galaxies with high V/σ or λR values will always have lower 〈k5/k1〉 if
the k5 component remains constant. Thus, while KINEMETRY provides
a useful and quantifiable measure of the kinematic asymmetry of the
velocity field, we argue that this method does not provide strong
evidence for a kinematic dichotomy.

5.3 Separating two kinematic families using JAM modelling

Using Jeans Anisotropic MGE (JAM) modelling of ATLAS3D

galaxies (Cappellari et al. 2013b), Cappellari (2016) shows that the
distribution of κ is bimodal, where κ is the ratio of the observed
velocity Vobs and the modelled velocity V(σφ = σ R) from JAM using
an oblate velocity ellipsoid. RRs are Gaussian-distributed around κ

= 1, whereas NRRs conglomerate towards zero, with minor overlap
of both distributions (see also B1c).

In Appendix B2, we repeat our ROC analysis with ATLAS3D data
using κ < 0.65 as the identifier for SRs. We only find a marginal
improvement of the MCC parameter if we use JAM modelling as
compared to using KINEMETRY. Further, as noted by Cappellari
(2016), for NRRs without a disc, ‘the shape of the predicted V(σφ =
σ R) is, even qualitatively, very different from the observed velocity
field’. JAM models assume axisymmetry, so perhaps it is unsurpris-
ing that triaxial ETGs have low values of κ . None the less, dynamical
modelling clearly shows that there is a family of galaxies consistent
with being axisymmetric oblate rotating spheroids, and a class of
galaxies with more complex dynamical properties that are not well
fitted by Jeans models. Schwarzschild modelling (Schwarzschild
1979) has great potential for understanding the orbital structure
of all types of galaxies (see, e.g. van den Bosch et al. 2008; van
de Ven, de Zeeuw & van den Bosch 2008; Zhu et al. 2018a,b,
using SAURON and CALIFA IFS data). Yet, the technique remains
computationally expensive and requires high-quality data for the
orbital decompositions to be non-degenerate.

5.4 The impact of a radial extent on the SR classification

The radial extent out to which the kinematic measurements are
analysed also has a significant impact on the FR and SR classification.
When visually classifying kinematic maps, more attention may
subconsciously be given to larger radii, with the eye being drawn to
the larger number of spaxels in the outskirts. This is one of the reasons
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why our revised classification scheme distinguishes between obvious
versus non-obvious rotation, which can be more easily picked up in
the outskirts, with a refinement option for kinematic features towards
the centre. None the less, if the radial coverage of the kinematic
maps do not extend beyond the central region (e.g. <0.5Re), the
classification will be inherently biased.

For quantitative measurements, a scale of one Re is typically
adopted because of observational constraints that are necessary to
obtain the required S/N ratio to extract the LOSVD beyond this
radius. However, there is no physical reason to restrict our kinematic
measurements to within this radius and this approach might have
hampered our understanding of galaxies (e.g. see Graham 2019). The
radial coverage varies considerably between different IFS surveys,
but more importantly, it typically changes as a function of stellar
mass within surveys as well. The necessity for aperture-correcting
λR and V/σ measurements is demonstrated in van de Sande et al.
(2017a) (see also D’Eugenio et al. 2013), who show that there is a
strong bias in the largest measurable kinematic radius as a function
of stellar mass, which significantly impacts the fraction of SRs.

Studies measuring the kinematic parameters out to larger radius
have demonstrated that the rotational properties of galaxies can
change when measured at a different radius (e.g. Proctor et al. 2009;
Weijmans et al. 2009; Arnold et al. 2011). More recently, radial
tracks within the λR–ε space have been utilized to study how the
radial kinematic behaviour changes using increasingly large samples
(Bellstedt et al. 2017; Graham et al. 2017; Foster et al. 2018; Rawlings
et al. 2020). Kinematic full-spectral bulge-disc decomposition now
also offer the possibility to explore λR for bulges and discs separately
(Tabor et al. 2017; Méndez-Abreu et al. 2018; Tabor et al. 2019; Oh
et al. 2020). For a single kinematic galaxy classification that is based
on an average quantity such as λR, a larger aperture will always be
preferred to include the largest possible fraction of stellar mass. But
for classifying internal subcomponents the aforementioned methods
will be essential. While several past (e.g. SLUGGS, Brodie et al.
2014; CALIFA, Sánchez et al. 2012) and upcoming (e.g. Hector
Bryant et al. 2016; MAGPI, Foster et al. 2020) IFS surveys are
aimed at providing larger Re coverage, for the coming years the
largest samples of galaxies will still be restricted to 1–2Re.

Therefore, well-calibrated large cosmological simulations will
be crucial to offer insight into the build-up of mass and angular
momentum at large radius (e.g. Pulsoni et al. 2020; Schulze et al.
2020), which can be tested observationally with smaller samples that
have large Re coverage (e.g. Sarzi et al. 2018; Gadotti et al. 2019).

5.5 Do simulations predict two kinematic families?

Many theoretical studies have tried to explain the origin of the
different kinematic classes of galaxies, in particular in relation to
the impact of mergers (for a review on the topic, see Naab et al.
2014). While several early-type formation models managed to create
galaxies with little rotation, the detailed properties of those simulated
galaxies still differ significantly from observations (e.g. Bendo &
Barnes 2000; Jesseit et al. 2009; Bois et al. 2011).

Binary galaxy merger simulations demonstrate that the majority
of merger remnants are consistent with being fast rotating galaxies
(Bois et al. 2010, 2011), with the mass ratio of the progenitors
being a crucial parameter for creating SRs, although the orbit-spin
orientation of the merger might be as important (Moody et al. 2014).
A clear bimodality in λRe –εe is seen in both Jesseit et al. (2009) and
Bois et al. (2011), but Bois et al. (2011) caution that this bimodality
‘could likely result from the specific choices of simulated mass
ratios and the limited number of simulated incoming orbits’. The

relative importance of a dissipational component in the formation of
a bimodal populations is still unclear, with contrasting results from
Cox et al. (2006) and Taranu, Dubinski & Yee (2013).

Cosmological simulations offer a more realistic insight into the
kinematic distribution of modelled galaxies, although the fast/slow
selection nearly always follows the observational criteria. In this
paper, we demonstrate that considerable differences in the location
of the different distributions of FRs and SRs exist as compared to
observations and between simulations. Quantitative offsets in galaxy
structural, kinematic, and stellar population parameters were already
demonstrated to exist as shown by van de Sande et al. (2019), so it is
not surprising that the selection criteria for FRs and SRs should be
adapted for the different simulations.

None the less, the large differences of the pSR populations towards
higher stellar mass in the simulations is perhaps surprising. While
lower mass galaxies assemble their stellar material primarily though
star formation (Robotham et al. 2014), mergers dominate the addition
of stellar material in galaxies above M∗ (log (M�/M�) ∼ 10.75)
and also are key in lowering angular momentum in galaxies. Large
differences between the frequency and mass-ratio of mergers are not
expected between different cosmological simulations, which points
towards a different problem within the simulations. The key might
lie in the fast-rotating population. None of the simulations showed a
close match to the observed pFR distribution, and if the progenitors
of SRs do not match the observed distribution, perhaps we should
not expect the pSR distribution to match either.

Alternatively, the large differences in the λR distributions could
indicate that the presence and treatment of gas, star formation, as well
the feedback subgrid models in these simulations are more critical
for the kinematic properties of all galaxies than previously assumed,
although the effects could be indirect. The exact prescription for how
feedback is modelled will change the abundance of gas in galaxies
and will therefore impact the frequency in which dry versus wet
mergers happen as well as their typical mass ratios (e.g. see Dubois
et al. 2013, 2016; Lagos et al. 2018a). Both of these factors are
important in the formation of SRs. This idea is in contradiction with
the finding from Penoyre et al. (2017) who conclude that no major
difference is found due to presence of gas in mergers in ILLUSTRIS,
whereas Naab et al. (2014) using cosmological zoom-in simulations,
and Lagos et al. (2018a,b), using EAGLE, found a clear impact of
the gas content on galaxy spin. The latter results are also confirmed
by Martin et al. (2018), who find that the morphology of merger
remnants strongly depends on the gas fraction of the merger and
that re-grown discs are common in gas-rich mergers. However, as no
clear picture into the formation of SRs has yet emerged from large-
volume cosmological simulations, it will be paramount to accurately
compare distributions of observations and simulations in consistent
ways.

5.6 How to best separate two kinematic families

The main aim of this paper is to investigate how we can best separate
different kinematic populations and to what extent these different
kinematic populations overlap. In our analysis, we have investi-
gated three kinematic classifications in detail (KINEMETRY, visual
kinematic morphology, and Bayesian mixture model classification),
but have not yet directly compared the different classifications to
each other. We address this here by looking at the agreement and
disagreement between these methods. We select galaxies that have
all three classifications, which reduces the total sample from 1765
to 1625 galaxies, caused by the fact that not all galaxies have 〈k5/k1〉
measurements out to one Re. Galaxies are then grouped according
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Figure 12. Seeing-corrected spin parameter proxy versus stellar mass colour coded by visual morphology. The three panels show combined classes of FRs
(panel a), SRs (panel b), and galaxies with mixed classifications (panel c). The fraction of galaxies with mixed classification is considerable (12.6 per cent,
205/1625) and the mixed sample spans a large in λRe .

to where their classifications agree: (1) A galaxy is an RR, an OR,
and a pFR (Fig. 12a), or (2) a galaxy is an NRR, an NOR, and a
pSR (Fig. 12b), or (3) a galaxy only has two out of three matching
classifications (Fig. 12c). It should be noted that none of the kinematic
identifiers used here are truly independent as they all rely on the
velocity and velocity dispersion maps.

The overlapping FR classifications form the biggest group with
82.6 per cent (1342/1625), the SR classifiers are the smallest (4.8 per
cent; 78/1625), whereas galaxies with mixed classifications make
up 12.6 per cent of the total sample (205/1625). Within the mixed
classified sample, the largest subgroup is where galaxies are classified
as ORs and pFRs, but where KINEMETRY suggests the galaxies
are NRRs (114/205). As most of these galaxies reside towards
lower stellar masses and higher λRe , we argued before that the high
〈k51,e〉 values that lead to this classification are more likely caused
by observational effects rather than their intrinsic properties. This
suggests that when using KINEMETRY with SAMI-like data quality,
the NRR population has the highest probability to be contaminated
with ORs and pFRs.

We conclude that the visual kinematic morphology and the
Bayesian mixture model analysis provide the most consistent clas-
sification. Using a modified version of the Cappellari (2016) SR
selection region, we also find a high positive predictive value
for separating the NOR/OR and pSR/pFR classes. Therefore, a
combination of the two methods with the associated selection box is
recommended for selecting SRs from the SAMI Galaxy Survey or
data with similar quality when aiming to compare to previous studies
that separate FRs and SRs.

5.7 Implications for galaxy formation scenarios

A critical stellar mass limit of log (M�/M�) ∼ 11.3 has been proposed
as the limit above which passive SRs with cores dominate (see
discussion in Cappellari 2016), to the point where galaxies below
this mass limit are no longer classified as SRs (Graham et al.
2019). Although our data quality does not allow us to address
the question of whether SRs in our sample have core or power-
law inner light profiles, we do not find evidence for a limit below
which there are no NNRs, NORs, or pSRs, as based on KINEMETRY,

visual kinematic classification, or the Bayesian mixture models.
Depending on the kinematic galaxy identifier (e.g. KINEMETRY, visual
classification, Bayesian mixture models), we find the fraction of these
different populations to start rising at different stellar masses. The
analysis from Falcón-Barroso et al. (2019, fig. 5) using CALIFA
data also clearly shows a group of SR ellipticals with stellar masses
below log (M�/M�) ∼ 11.3. Furthermore, some of the cosmological
simulation data analysed here also reveal a small, but non-negligible
fraction of SRs towards low stellar mass. Hence, we are cautious to
use mass as a selection criterion for SRs, in particular when their
formation process is still not well understood.

One of the striking results from our Bayesian mixture model
analysis is that the λR peaks of the pFR and pSR distributions are
nearly constant as a function of stellar mass. While this appears to be
in conflict with the general notion that galaxies have lower λR with
increasing stellar mass, our results indicate that this kinematic trend
is caused by a changing fraction of galaxies in the pFR and pSR
distribution. Towards higher stellar mass, the fraction of galaxies in
the pFR decreases while it increases for the pSR, leading to a lower
λR of the entire population.

The constant λR peak for pSRs as a function of stellar mass implies
that the formation process of SRs, i.e. the near complete removal
of a galaxy’s angular momentum, is likely similar across all stellar
masses. If the mechanism transforming pFRs into pSRs was different
as a function of stellar mass, we would either observe a different
pSR λR peak, or a change in the width of the pSR distribution. We
detect neither. None the less, the strong fractional increase of the
pSRs distribution as a function of stellar mass may indicate that
the SRs formation process is more efficient towards higher stellar
mass, or else that the processes that cause a galaxy to evolve into
a SR also tend to lead to it becoming very massive. This picture is
consistent with predictions from cosmological simulations that show
that approximately 30–50 per cent of the SRs are produced in a
single massive merger (e.g. Schulze et al. 2018; Lagos et al. 2020), a
process that can happen at all stellar masses, albeit it is most efficient
in transforming galaxies into SRs if the merger is dry, which is more
likely at higher masses.

These predictions can be tested with enhanced number statistics
combined with better kinematic data quality (e.g. Hector; Bryant et al.
2016) or by going to higher redshift (e.g. MAGPI at z ∼ 0.3, Foster
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et al. 2020; LEGA-C at z ∼ 0.8, van der Wel et al. 2016). Early results
from the LEGA-C survey indicate that there is increased rotational
support in z ∼ 0.8 quiescent galaxies (Bezanson et al. 2018), although
it is not clear yet whether this is due to a change in the V/σ or λR

peak of the pFR and pSR distributions or a change in the fractions
of pFRs and pSRs distributions.

6 C O N C L U S I O N

The dynamics of galaxies offers great insight into the assembly
and redistribution of stellar mass within galaxies over time. The
prevailing physical explanation for drastically altering the dynam-
ical properties of galaxies is undoubtedly merging and accretion.
Yet many questions still remain on the importance of gas as a
dissipational component as well as the frequency of major and
minor mergers and their impact on the inner and outer stellar
distributions. Key to answering these questions is identifying the
different kinematic populations that exist and link these to the various
proposed formation scenarios.

Using data from the SAMI Galaxy Survey, we investigate whether
or not we can detect a bimodality in the kinematic properties of
the entire galaxy population using λRe versus stellar mass and
ellipticity. The main goal of this paper is to use different techniques
to identify whether we can accurately separate a bimodal kinematic
distribution in relatively low-S/N, seeing-impacted data, and to what
extent different kinematic populations overlap. By doing so, we aim
to consolidate results from ongoing multiobject IFS surveys with
the conclusions from previous IFS surveys that had better S/N and
spatial resolution, but where the sample size did not allow a statistical
analysis. We also provide a framework for comparing these results
to mock-observations from cosmological simulations.

We find the following results:

(i) Partially applied seeing corrections can lead to an artificially
enhanced bimodality. Using 1765 SAMI galaxies with λRe measure-
ments, we investigate the impact of the seeing corrections. No clear
bimodal distribution in λRe is detected in the SAMI seeing-dominated
data or when the Harborne et al. (2020a) correction is applied to
all galaxies (Figs 3a and c). However, when only RRs are seeing-
corrected, as was done in Graham et al. (2018), we detect a clear
bimodal distribution in λRe , but we argue this is an artificial construct
as the correction is applied to a subset of the sample (Fig. 3b). Thus,
from the λRe –εe diagram alone using SAMI Galaxy Survey data,
we do not find strong evidence for distinct kinematic populations of
galaxies.

(ii) There is considerable overlap of RRs and NRR distributions
with SAMI. With galaxies classified as RRs and NRRs from the
kinematic asymmetry of the rotational velocity fields using the
KINEMETRY method, we investigate the amount of overlap of the
RR and NRR distributions within the λRe –log (M�/M�) and λRe –εe

diagrams. At low stellar mass, NRR (〈k51,e〉>0.07) have higher values
of λRe than at high stellar mass (Figs 4a and c). We find considerable
mixing of the RR and NRR populations in our SAMI sample, in
particular below log (M�/M�) < 10.5. The trend of decreasing 〈k51,e〉
values with increasing stellar mass also leads to considerable overlap
of RRs and NRRs within the λRe –εe diagram. We use an ‘ROC’ and
MCC’ to determine the best possible selection box to separate RR
and NRR within the λRe –εe diagram. For SAMI Galaxy Survey data,
the optimal selection region has a higher λRe threshold as compared
to the selection box from Cappellari (2016), but overall does not
provide a clean separation of RR and NRR classes as the PPV is only
65.7 per cent.

(iii) Visual kinematic classification of SAMI data leads to a
cleaner separation of two kinematic populations. We devise a new
visual classification scheme that first separates galaxies with obvious
rotation (ORs) from galaxies with no obvious rotation (NORs),
combined with a second layer of refinement to find galaxies with
inner kinematic features (with-features versus no-features). There
is a well-defined separation of ORs and NORs within the λRe –
log (M�/M�) and λRe –εe planes. Similar to KINEMETRY we find that
the NORs have higher values of λRe towards lower stellar mass.
The optimal selection region for selecting NORs using λRe and εe is
close to the selection region from Cappellari (2016). Furthermore, the
ROC analysis reveals a significantly higher success rate as compared
to using KINEMETRY for SAMI, which suggests that our visual
classification scheme is more suitable for data that has a large range
of S/N and the typical spatial resolution of SAMI or MaNGA.

(iv) Bayesian mixture models provide the cleanest separation of
two kinematic families. Rather than looking for two populations
using KINEMETRY or visual classification, we use a Bayesian mixture
model analysis to determine whether multiple populations can be
identified as a function of stellar mass. At all stellar masses, the
λRe distribution for late-type galaxies is well described by a single
beta distribution that peaks at λRe ∼ 0.6. However, for early-type
galaxies above log (M�/M�) > 10.5 a second beta distribution is
required with a lower peak at λRe ∼ 0.1. These results demonstrate
clearly that we can separate two stellar kinematic populations from
the λR distribution, even when these distributions have non-negligible
overlap. Based on these results, we then refer to galaxies as,
respectively, pFRs and pSRs. In contrast to NRRs and NORs, pSRs
have lower λRe values at lower stellar mass. This could indicate that
the NRRs and NORs found at low stellar mass are simply the lower
tail of a broad λRe distribution, but not a separate class. Even though
pSR have slightly higher λRe values towards high stellar mass, the
pSRs and pFRs are extremely well separated within the λRe –εe, but
with a caveat that pSRs were selected primarily using λRe .

(v) Mixed results from cosmological hydrodynamical simulations.
We apply the same Bayesian mixture model analysis to mock-
observations from the EAGLE and HYDRANGEA, HORIZON-AGN, and
MAGNETICUM cosmological hydrodynamical simulations. Although
the mixture model predicts two populations of stellar rotators in
all three simulations, the λRe peak of the two beta distributions is
significantly offset from observations, and the fraction of both beta
distributions as a function of stellar mass also change considerably.
The overlap of the two beta distributions also differs significantly
between the simulations. Our results indicate that the treatment
of the ISM and feedback subgrid models within these simulation
have a considerable impact on the distribution of FRs and SRs.
More importantly, observational selection criteria for FRs and SRs
should not be applied to data from simulations to derive the
fraction of different kinematic populations unless the distributions
in λRe and εe are well matched to the observations they are
compared to.

(vi) The optimal classification of galaxy stellar kinematics. By
comparing three kinematic classification methods (KINEMETRY, vi-
sual kinematic morphology, and a Bayesian mixture model), we find
the best agreement between the visual kinematic morphology and
Bayesian mixture model classification. None the less, we argue that
visual classification provides a unique spatial kinematic insight, and
maintains its usefulness for future work. For comparing to previous
studies that adopted the Cappellari (2016) selection box to separate
FRs and SRs, we advise using equation (6) with λRstart = 0.12
when the data quality is similar to that of the SAMI Galaxy Survey.
However, we stress that our analysis revealed a significant amount
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of overlap between the different kinematic distributions that should
be acknowledged.

Going forward. Many claims about a kinematic bimodality have
been made in the past with an ongoing unquenchable drive to separate
galaxies into binary classification. In this paper, we confirm key
findings from previous and ongoing IFS studies that the vast majority
of galaxies are consistent with being a family of oblate rotating
systems viewed at random orientation. At the same time, there is
a group of mainly massive early-type galaxies that show complex
dynamical structures, irregular velocity fields, 2σ peaks, or kinematic
misalignment, with indications that some fraction of these galaxies
are triaxial systems.

The rapid increase in the number of galaxy IFS observations
has been achieved by a compromise between multiplexing, spatial
resolution and S/N. Nevertheless, we have demonstrated that we
can extract different kinematic populations in seeing-impacted data,
but only when the analysis techniques are matched to the data
quality. However, even when using higher quality data (e.g. see
Appendix B), with different kinematic identifiers the same galaxy can
be simultaneously classified into opposite groups (e.g. an RR-SR or
NRR-FR). Our results show that it has become essential to take into
consideration that the distributions of various kinematic populations
overlap. When the overlap and mixing of classes is ignored, and
naming conventions for various kinematic classifications slowly
morph into a singular class (e.g. all NRRs are SRs and vice versa), the
complexity of galaxy evolution is disregarded. Cosmological simula-
tions have shown that galaxy evolution is a highly stochastic process;
hence, we do not expect distinct, cleanly separated classes. Instead,
we promote the analysis of stellar kinematic data using probability
distribution functions instead of bimodal classes. With more than
10 000 IFS galaxy observations becoming publicly available soon
(e.g. SAMI Galaxy Survey, SDSS-IV MaNGA), now is the perfect
time to further pursue such an endeavour.
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APPENDIX A : TESTING SEEING
C O R R E C T I O N S O N R E P E AT O B S E RVATI O N S

A1 Analytic correction to account for atmospheric seeing

In this paper, we use an analytic seeing correction for λR as presented
by Harborne et al. (2020a) using the public code SIMSPIN (Harborne,
Power & Robotham 2020b), optimized for SAMI Galaxy Survey
data. Specifically, the corrections in Harborne et al. (2020a) cover
the full range of 0 < σ PSF/Re < 0.9, whereas the median σ PSF/Re =
0.22 for SAMI data with a defined maximum limit of σ PSF/Re < 0.6.
The updated equation for λR is (where R is the semimajor axis of the
ellipse on which each spaxel lies)

�λcorr
ε−R = f

(
σPSF

Rmaj

)
+

(
σPSF

Rmaj

)
× f

(
ε, n, Rfac

eff

)
, (A1)

where

f

(
σPSF

Rmaj

)�λε
R

= 7.44

1 + exp

[
4.87

(
σPSF
Rmaj

)1.68
+ 3.03

] − 0.34, (A2)

f (ε, n, Rfac
eff )�λε

R = [0.011 × log10(ε)] − [0.278 × log10(n)]

+ 0.098, (A3)

Here n is the Sérsic index, and Rfac
eff is the radius (in units of Re) at

which λR is measured (Rfac
eff = 1 in our case). Similarly, for V/σ ,

�V /σ corr = f

(
σPSF

Rmaj

)
+ 3

(
σPSF

Rmaj

)
× f

(
ε, n, Rfac

eff

)
, (A4)

where

f

(
σPSF

Rmaj

)�V /σ

= 7.47

1 + exp

[
5.31

(
σPSF
Rmaj

)1.68
+ 2.89

] − 0.39, (A5)

and

f (ε, n, Rfac
eff )�V /σ = [−0.078 × ε] + [0.0038 × log10(n)]

+ 0.029. (A6)

Using these equations, we can then calculate λ intr
Re

(the intrinsic or
true value of the spin parameter proxy) from the observed λ obs

Re
:

λ intr
Re

= 10
[

log10

(
λ obs

Re

)
−�λcorr

R

]
, (A7)

and similarly for V/σ :

(V /σ ) intr
e = 10[log10((V /σ ) obs

e )−�V /σ corr]. (A8)

The SAMI stellar kinematic sample has a median σ PSF/Re = 0.22,
which results in a median λR correction factor of 0.14 dex, or an
average absolute increase in λRe of +0.11. Above σ PSF/Re > 0.6, the
correction factor increases rapidly, which is the main motivation for
not using data above this limit for the main analysis.

A2 Testing seeing correction on repeat observations

We now use SAMI Galaxy Survey repeat observations to test the
analytic seeing correction as described in the previous section. Repeat
observations are ideal for estimating uncertainties due to weather
conditions, such as seeing and transmission, but also in the use of
different hexabundles. Due to the SAMI Galaxy Survey’s optimal
field tiling and plate configuration, there are a total of 210 galaxies
that have repeat observations. For this analysis, we only use galaxies
that meet our selection criteria from Section 2, with full stellar
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Figure A1. Comparison of λRe measurements from repeat observations. In the top row we show λRe for the original data (panel a), with the seeing correction
from Harborne et al. (2020a) applied (panel b), and after homogenizing the sample to a common seeing of 2.0 arcsec (panel c). In the bottom row we show the
fractional difference in λRe versus the difference in seeing of the original and repeat observations. The dashed line in panel d) shows the best-fitting relations as
given by equation (A9) that were used to homogenize the data (panels c and f).

kinematic Re coverage. The full Re coverage selection is applied to
avoid confusing uncertainties from our λR aperture correction with
those due to the impact of seeing. This selection reduces the number
of galaxies with repeat observations to 169.

In the top row of Fig. A1, we present the λRe measurement for
the original and repeat observations, with and without different
methods to correct for the seeing. The bottom row of Fig. A1
shows the fractional difference of the PSF’s FWHM versus the
fractional difference in λRe . Galaxies from observations with the
best combination of seeing and S/N are called ‘original’, whereas
the other secondary observations are named ‘repeats’. We note that
our sample of repeat observations is a representative subsample of
the total stellar kinematic sample, with similar stellar mass and
morphological type, and is observed under similar seeing conditions.
The median FWHMPSF of the repeat observations is 206 arcsec,
whereas the average seeing of the entire stellar kinematic sample
is 2.04 arcsec. The best-seeing repeat observation has FWHM =
1.37 arcsec, whereas the worst repeat has FWHM = 2.85 arcsec.

The seeing correction from Harborne et al. (2020a) applied to
the λRe repeat measurements are shown in Fig. A1(c). This figure
demonstrates that the seeing correction works well across the large
range in λRe measurements. For low values of λRe<0.35, where we
expect most galaxies with complex kinematic features, the agreement
between the seeing-corrected original and the repeat measurement
is excellent. Thus, the analytic correction works for all types of
galaxies, including SRs. Figs A1(b) and (d) show that the rms of
the fractional differences goes down from 0.065 to 0.045 when the
seeing correction is included.

A3 Empirical correction to account for atmospheric seeing

In this section, we test an alternative method to correct for the
impact of seeing on our kinematic data. The idea here will be to
use an empirical relation derived from the repeat observations to
homogenize the sample to a common average seeing. Such a data-
driven approach has the advantage that it is not biased to the choice of
simulations to derive the analytic seeing correction. For example, the
analytic correction has not been designed for galaxies with complex
dynamics (although the correction works relatively well with little
scatter and the absolute λR correction for these galaxies is small).
An empirical seeing homogenization can be applied to the whole
sample because it is based on the exact same observational setup
and data quality as the sample that it will be applied to. The large
range in morphology, stellar mass, and λR values for the repeat
observations also remove any morphological bias. A homogenized
sample might also be more appropriate to use for comparing to
simulations. The philosophy here is that it is more reliable to convolve
mock-observations from simulations to the seeing of an observational
survey then it is to deconvolve observational results.

For these reasons, we will now derive an empirical seeing
correction or homogenization, and test how well it removes the
scatter in λR and V/σ using repeat observations. Figs A1(a) and
(d) show the results from the repeat observations without applying
any corrections. We find that there is a linear trend between �FWHM
and �λRe , such that with a larger difference in seeing between the
original and repeat, the larger is the difference in λR. By fitting a
linear relation to our data from Fig. A1(d), our goal is to remove
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the trend between FWHM and λR. Motivated by the results from
the analytic correction, we separate the sample into different bins of
σ PSF where the impact of seeing will be different. We find that

log10

(
λ

orig
Re

/λ
rep
Re

) = −0.247 × log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.0 < σPSF < 0.2, (A9)

log10

(
λ

orig
Re

/λ
rep
Re

) = −0.380 × log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.2 < σPSF < 0.4, (A10)

log10

(
λ

orig
Re

/λ
rep
Re

) = −0.520 × log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.4 < σPSF < 0.6. (A11)

The best-fitting relation is shown in Fig. A1(b). As expected, with
increasing fractions of σ PSF the slope of the relation between λR

and FWHM also increases. The analysis is repeated on the V/σ
measurements (not shown here), from which we find the following
relations:

log10

(
(V /σ ) orig

e /(V /σ ) rep
e

) = −0.380

× log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.0 < σPSF < 0.2, (A12)

log10

(
(V /σ ) orig

e /(V /σ ) rep
e

) = −0.495

× log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.2 < σPSF < 0.4, (A13)

log10

(
(V /σ ) orig

e /(V /σ ) rep
e

) = −0.580

× log10

(
FWHM orig

PSF /FWHM rep
PSF

)
for 0.4 < σPSF < 0.6. (A14)

We use equation (A9) to homogenize our λRe measurements to a
single seeing value of 2.0 arcsec, which are shown in Figs A1(c) and
(f). The difference between the original and repeat observations has
become smaller, with a clear reduction in the rms scatter. The method
works surprisingly well given the low number of free parameters in
the fit. Even more so, if we use a single relation to fit all data
between 0.0 < σ PSF < 0.6, the rms scatter only increases marginally
to 0.048. In summary, homogenizing the data reduces the scatter
similarly as the analytic correction from Harborne et al. (2020a).
In this paper, we adopt the analytic corrected to derive the intrinsic
λR such that we can compare to previous surveys where seeing was
not a limitation. However, for a comparison to mock observations
from large cosmological simulations, which might be impacted by
numerical resolution effects, a seeing homogenization method might
be more suitable.

APPENDIX B: FRS AND SRS IN ATLAS 3D

One of the goals of this paper is to investigate whether or not we
can identify multiple kinematic populations in data where impact of
seeing and data quality cannot be ignored. We present a framework
to quantify how well kinematic identifiers are separated in the λRe –εe

diagram based upon the ratio of the TRP and the TN rate. Here, we re-
analyse results from the ATLAS3D survey, using data as presented by
Emsellem et al. (2004), Cappellari et al. (2011, 2013a,b), Krajnović
et al. (2011), and Emsellem et al. (2011), adapted to definitions used

in this paper. For more details on these measurements, we refer to
van de Sande et al. (2019).

In Fig. B1, we first present the distributions of 〈k51,e〉, λRe , and κ

(see Section 5.3), which is the ratio of the observed velocity Vobs

and the modelled velocity V(σφ = σ R) from JAM models. Note that
for the κ values, we did not imply a JAM quality cut, as NRRs
are not expected to be well described by JAM models. The vertical
grey lines in Fig. B1 show the commonly used selection regions
for each parameter. However, we do not find clear evidence for
a bimodal distribution from these three parameters, although this
does not exclude the existence of a bimodality. Instead, it shows
that a larger sample of galaxies is required to detect a multimodal
distribution if these parameters are used independently.

B1 RRs and NRRs from KINEMETRY using ATLAS3D data

Following Krajnović et al. (2011) we use KINEMETRY to mark the
condition a galaxy can have, using 〈k5/k1〉 − 〈k5/k1error〉 < 0.04 to
select FRs. We present the measurements in Fig. B2. Similar to SAMI
data, we find that galaxies with high 〈k51,e〉 also have higher values
of λRe towards low stellar mass. When using the ROC analysis with
the confusing matrix from Table 1, we find that the optimal selection
region that starts at λR = 0.12 only has a TPR of 77.8 per cent
with an FPR of 1.9 per cent. However, the PPV for ATLAS3D data
is significantly higher than for SAMI data, with, respectively, 89.7
versus 70.6 per cent, with a similar result for the MCC with ATLAS3D

= 0.83 and SAMI=0.66. The TPR for the Emsellem et al. (2011)
and Cappellari (2016) selection criteria are similar but relatively low
at 62.2 per cent. The MCC values are 0.747 and 0.757, respectively.
Thus, from a statistical point of view, we do not find a significant
difference between the selection criteria from Emsellem et al. (2011)
and Cappellari (2016), but we note that, for example, the εe < 0.4
criteria were introduced to exclude counter-rotating discs from the
SR class.

B2 FRs and SRs from JAM modelling using ATLAS3D data

We will now use the κ parameter to classify galaxies as κSR (κ <

0.65) and κFR (κ > 0.65). We use the JAM model parameters from
Cappellari et al. (2013b), without applying a quality cut or limit on
the inclination, but we note that with ‘Quality’ > 0 or inclination i
> 60◦ the results are qualitatively the same. The data and the ROC
analysis are presented in Fig. B3. Similar to KINEMETRY, we find
that galaxies with low κ also have higher values of λRe towards low
stellar mass. The optimal selection region is now considerably higher
than the selection box from Cappellari (2016), with a starting value
of λR = 0.20 and a TPR = 87.5, an FPR = 3.5, a PPV = 87.5, and an
MCC = 0.875. In contrast, the TPR for the Emsellem et al. (2011)
and Cappellari (2016) selection regions are both 51.8 with MCC =
0.674 and 0.682, respectively.

While the κ parameter presents the cleanest separation within the
λRe –εe diagram of all identifiers that we have used, the optimal
selection is significantly higher as compared to the KINEMETRY

optimal selection box. However, a closer look at the MCC distribution
in Fig. B3(c) reveals that the peak of the MCC values is quite broad,
and the relatively small ATLAS3D sample size could offset the λRe

starting value to higher values. Nevertheless, the fact the KINEMETRY

and κ selection boxes differ quite considerably should be a warning
that even with high-quality IFS data, the question of how to select
FRs and SRs from the λRe –εe diagram is sensitive to the kinematic
identifier used.
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Figure B1. Distributions of 〈k51,e〉, λRe , and κ from the ATLAS3D survey. The vertical lines in panel (a) and (c) indicate the proposed division for RRs and
NRRs (panel a) and slow and FRs using JAM modelling panel (c), whereas the wider grey region in panel (b) indicates the Cappellari (2016) FR/SR selection
region that includes an ellipticity term.

Figure B2. Spin parameter proxy versus stellar mass and ellipticity using ATLAS3D data. Data are colour coded by 〈k51,e〉 (panels a and b). Round symbols
show RRs, and square symbols show NRRs. We show the RRs and NRRs in the λRe –εe space in panel (b) with the optimal selection region (black), the SR
selection box from Cappellari (2016) in grey, and from Emsellem et al. (2011) as the dashed line. Panel (c) suggests that the λRe –εe space is an effective way to
distinguishing between RRs and NRRs derived from ATLAS3D data.

Figure B3. Spin parameter proxy versus stellar mass and ellipticity using ATLAS3D data. Data are colour coded by κ (panels a and b). Round symbols show
the κFR, and square symbols show the κSR. We show the κFR and κSR in the λRe –εe space in panel (b) with the optimal selection region (black), the SR
selection box from Cappellari (2016) in grey, and from Emsellem et al. (2011) as the dashed line. Panel (c) suggests that the λRe –εe space is a powerful method
to distinguishing between the two types of rotators as identified by κ from JAM modelling of ATLAS3D data.
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Figure C1. Observed and edge-on projected λRe distributions for SAMI
Galaxy Survey late-type galaxies. The data are shown in black, whereas the
blue line shows the best-fitting beta function. The 1σ width of the distribution
changes from 0.275 to 0.234 between λRe and λ

edge-on
Re

, and we also detect
an offset of �λRe = 0.055 towards higher λRe when the measurements are
projected to edge-on.

A P P E N D I X C : TH E I M PAC T O F I N C L I NAT I O N
O N T H E λRe DISTRIBU TIONS

To test the impact of inclination on the λRe distributions, we will
compare our default λRe measurement to λRe values corrected to
an edge-on projection. These λRe edge-on estimates are derived
from the observed λRe and εe measurements following the method
described in van de Sande et al. (2018). The method combines
the observed properties with theoretical predictions from the tensor
Virial theorem (Binney 2005) and builds on the assumption that
galaxies are simple rotating oblate axisymmetric spheroids with
varying intrinsic shape and mild anisotropy (Cappellari et al. 2007).
As this is an oversimplification of the known complexities of galaxy
structure and dynamics, in particular for massive early-type galaxies,
we therefore only use late-type galaxies for the analysis here.

We present the λRe and λ
edge-on
Re

distributions for SAMI late-
type galaxies in Fig. C1. The low-λRe galaxies that are not well
fitted by the Beta function, do not disappear after applying our
inclination correction. As many of these galaxies are observed close
to face-on, uncertainties on the ellipticity measurements play an
increasingly negative role on the inclination correction. Moreover,
morphological features such as bars and spiral arms can make the
galaxies’ ellipticity to appear flatter than they really are, inhibiting
an accurate deprojection. Alternative methods to determine edge-on
λRe measurements will be explored in future work.

None the less, the edge-on projected distribution becomes only
mildly narrower (�λRe = 0.041) and shifts slightly towards higher
λRe from 0.586 to 0.641. As these changes are relatively small, we
do not expect our results on separating a bimodal λRe distribution to
change significantly due to the effects of inclination.

A P P E N D I X D : TH E BAY E S I A N M I X T U R E
M O D E L IN D E TA I L

D1 Model description

For each galaxy in our sample, we have measurements of its stellar
mass (M∗) and a proxy for the spin parameter measured within one
effective radius (λR). We aim to model a galaxy’s spin parameter,
which we label y to keep with standard notation in the literature,
in terms of its stellar mass. We do this by building a probabilistic

mixture model. In this Appendix, we describe the Bayesian Mixture
model used in Section 3.4 in detail.

A mixture model uses a number (in this case, 2) of different
probability distributions to model a set of observed data. The
probability of a single data point being drawn from one distribution
is denoted π . This implies that the likelihood function is of the
form

p(y|θ) ∝
N∏

n=1

(
πp1(yn|θ1) + (1 − π)p2(yn|θ2)

)
, (D1)

where p1 and p2 refer to the different probability distributions and θ

is a vector of model parameters.
In this case, we assign p1 and p2 to be two distinct beta distri-

butions, each with shape parameters α and β (i.e. θ1 = (α1, β1) and
θ2 = (α2, β2)). We allow these shape parameters to vary as a function
of stellar mass via a first-order polynomial:

i = 1, 2, (D2)

log(αi) = ci + diM∗, (D3)

log(βi) = ei + fiM∗. (D4)

These correspond to eight free parameters. Note that the beta
distribution’s shape parameters must be constrained to be positive,
and as such we vary them on the logarithmic scale, such that αi and
β i are always greater than zero.

Furthermore, we allow the mixture probability, π , to vary with
stellar mass. This represents the well-known dependence of kine-
matic morphology with stellar mass, with massive galaxies much
more likely to be SRs (e.g. Emsellem et al. 2011; Brough et al.
2017; Veale et al. 2017; van de Sande et al. 2017a; Graham et al.
2018; Green et al. 2018). Since π is a probability, it must lie
between 0 and 1. To ensure this is always the case, we use the
sigmoid function to map any real number to the interval [0, 1],
which also introduces a further two parameters to the model
(μ and σ ):

π(M∗) = 1

1 + exp(−(M∗ − μ)/σ )
. (D5)

To summarize, our model has 10 free parameters, 8 corresponding
to the change in beta distribution shape parameters with stellar mass
and 2 corresponding to how the probability of being drawn from
either beta distribution varies with stellar mass. The final likelihood
function is therefore

p(y|M∗, α, β, μ, σ ) ∝
N∏

n=1

(
π(M∗, μ, σ ) p1(yn|α1(M∗), β1(M∗))

+ (1 − π(M∗, μ, σ ))

× p2(yn|α1(M∗), β1(M∗))
)
. (D6)

D2 Priors

As with any Bayesian analysis, each free parameter must be assigned
a prior. Our prior choices are described in Table D1. We conduct
simulations to see the effect of our prior choices (known as ‘prior
predictive checks’) and ensure that our prior choices do not give rise
to unphysical distributions of simulated data. Reasonable changes to
these priors do not change our conclusions.
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Table D1. A summary of our prior choices for the Bayesian mixture model presented in Section 3.4.

SAMI observations EAGLE HorizonAGN Magneticum
Parameter Location Scale Location Scale Location Scale Location Scale

log (c1) loge(4.5) 0.5 loge(3.3) 0.3 0 3 loge(4.3) 1
log (d1) 0 0.5 0 0.5 0 3 0 3
log (c2) loge(6.9) 0.5 loge(4.5) 0.3 loge(9.75) 3 loge(25) 1
log (d2) 0 0.5 0 0.5 loge(1.49) 3 0 3
log (e1) loge(4.4) 0.5 loge(5) 1 loge(15) 3 loge(9.4) 1
log (f1) 0 0.5 0 0.5 0 3 0 3
log (e2) loge(100) 0.5 loge(45) 0.3 loge(100) 0.5 loge(200) 1
log (f2) 0 0.5 0 0.5 0 3 0 3
μ 0 1 1 0.3 0 1 0 1
σ 0 2 −1 0.3 0 2 0 2

Notes. Each parameter (or transformation of a parameter) below is assigned a Gaussian prior with the given location
(mean) and scale (standard deviation). The exception is the σ parameter, which has a half-Gaussian prior (i.e a
Gaussian probability distribution for positive values and zero probability for negative values).

1Sydney Institute for Astronomy, School of Physics, A28, The University of
Sydney, Sydney, NSW 2006, Australia
2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO
3D), Canberra, ACT 2601, Australia
3International Centre for Radio Astronomy Research, The University of
Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
4School of Physics, University of New South Wales, Kensington, NSW 2052,
Australia
5Australian Astronomical Optics, AAO-USydney, School of Physics, Univer-
sity of Sydney, Sydney, NSW 2006, Australia
6University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH, UK
7Institut d’Astrophysique de Paris, UMR 7095, CNRS, UPMC Univ. Paris VI,
98 bis boulevard Arago, F-75014 Paris, France
8Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000
Gent, Belgium
9Australian Astronomical Optics, Faculty of Science and Engineering, Mac-
quarie University, 105 Delhi Rd, North Ryde, NSW 2113, Australia

10Research School of Astronomy and Astrophysics, Australian National
University, Canberra, ACT 2611, Australia
11Department of Physics and Astronomy, Macquarie University, Sydney, NSW
2109, Australia
12Astronomy, Astrophysics and Astrophotonics Research Centre, Macquarie
University, Sydney, NSW 2109, Australia
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