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ABSTRACT
The Einstein telescope and other third-generation interferometric detectors of gravitational waves are projected to be operational
post 2030. The cosmological signatures of gravitational waves would undoubtedly shed light on any departure from the
current gravitational framework. We here confront a specific modified gravity model, the No Slip Gravity model, with forecast
observations of gravitational waves. We compare the predicted constraints on the dark energy equation of state parameters
w0 − wa , between the modified gravity model and that of Einstein gravity. We show that the No Slip Gravity model mimics
closely the constraints from the standard gravitational theory, and that the cosmological constraints are very similar.

The use of spectroscopic redshifts, especially in the low–redshift regime, lead to significant improvements in the inferred
parameter constraints. We test how well such a prospective gravitational wave dataset would function at testing such models,
and find that there are significant degeneracies between the modified gravity model parameters, and the cosmological parameters
that determine the distance, due to the gravitational wave dimming effect of the modified theory.

Key words: gravitational waves – methods: statistical – cosmological parameters.

1 IN T RO D U C T I O N

In the current era of precision cosmology, observational probes of
the expansion history and constituents of the Universe strongly rely
on the so–called standard candles. Undoubtedly, Type Ia supernovae
(SNe Ia) (Riess et al. 1998; Perlmutter et al. 1999; Kowalski et al.
2008) have extensively been used as standard candles, since their
intrinsic luminosity is assumed to be known within a certain toler-
ance, and therefore these could be used to determine the luminosity
distance. It is well known that the gravitational waves (GWs)
emerging from binary systems also encode the absolute distance
information (Schutz 1986). The coalescence of compact binaries can
be (and has been) used as standard sirens, since from the GW signal
itself one would be able to measure the luminosity distance in an
absolute way. These standard sirens are known to be self-calibrating,
since these do not rely on a cosmic distance ladder. In order to get
the redshift information of a GW event, and so place them on the
luminosity distance–redshift (DL − z) relation, an accompanying
electromagnetic signal is needed (see for instance Oguri 2016; Ding
et al. 2019; The LIGO Scientific Collaboration et al. 2019; Mukherjee
et al. 2020; Yu, Zhang & Wang 2020, and references therein for other
redshift measurement techniques in the case of dark standard sirens).
Such a relation is clearly necessary for the reconstruction of the
late–time cosmological expansion of the Universe, and has also been
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employed to constrain various cosmological parameters of modified
theories of gravity.

The era of GW astronomy begans with the detection of GW150914
(Abbott et al. 2016) from the observation of a GW signal originating
from the coalescence of a binary black hole (BBH), whereas the
first detection of multi–messenger astronomy was reported with
GW170817 (Abbott et al. 2017b) from a GW signal emitted by a
binary neutron star (BNS) inspiral accompanied by electromagnetic
detections. In contrast to standard candles, the determination of a
GW event’s redshift is a nontrivial task, primarily because of the
low resolution of the source’s sky localization which typically is
of ∼ O(10) deg2 accuracy (Fairhurst 2009). On the other hand, the
distance estimates from GWs are free from any external calibration
requirements, which are necessary for the SNe Ia probe (the cosmic
distance ladder).

The primary next generation, also known as third generation
(Abbott et al. 2017a), GW detectors will be the ground–based
Einstein telescope (ET) (Punturo et al. 2010b) and Cosmic Explorer
(CE) (Punturo et al. 2010c) detectors (see for instance, Jin et al. 2020
for a comparison between the ET and CE), along with the space–
based LISA/eLISA (Amaro-Seoane et al. 2013, 2017) and TianQin
(Luo et al. 2016) millihertz observatories. These GW detectors are
expected to have a better sensitivity (by an order of magnitude in
the strain amplitude of GWs) and a wider accessible frequency
band with respect to currently available second-generation detectors.
The median redshift from the near future GW catalog composed
of the combined set of GW events from the planned GW detectors
is envisaged to be at z ∼ 2 (Congedo & Taylor 2019). Clearly,
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such high redshift direct measurements of the luminosity distance
would be clearly complementing the existing and upcoming SNe Ia
measurements. In this analysis, we will be focusing on the ET, which
will be one of the chief GW detectors in the coming decade.

The ET is expected to make independent estimates of the several
cosmological parameters, including (Wang et al. 2018; Belgacem
et al. 2019; Zhang et al. 2019): the Hubble constant (H0), matter
content of the Universe (�0

m), spatial curvature (�0
k), and the dark

energy equation of state parameters (such as the Chevallier–Polarski–
Linder (CPL) {w0, wa} parameters (Chevallier & Polarski 2001;
Linder 2003), or any other alternative parametrization). Indeed, it is
anticipated that more than a thousand GW events need to be detected
(Cai & Yang 2017) (see also Liao et al. 2017 for the consideration
of lensed GW events) in order to match the sensitivity of the Planck
satellite (Aghanim et al. 2020), and these envisaged to be confidently
reported during the ET observation run. Although the ET would not
be able to independently arrive to all the measurements of these
parameters at once, the joint combination (D’Agostino & Nunes
2019; Yang et al. 2020a) of the latter standard sirens datasets with
the precise datasets inferred from the existing and forthcoming state-
of-the-art electromagnetic probes, including measurements of the
baryon acoustic oscillations (BAO) and of the cosmic microwave
background (CMB), would significantly enhance our knowledge
on the dynamics of the Universe. Furthermore, the opportunity of
observing black holes back to a much earlier epoch of the Universe
could allow us to observe the remnants of the first stars, and to explore
the dark ages, during which proto-galaxies and large-scale structure
emerged.

A number of recent works (see for instance, Zhao et al. 2011;
Yang et al. 2019b; Zhang et al. 2020; Wolf & Lagos 2020; Yang
et al. 2020b; Bachega et al. 2020; Li et al. 2020, and references
therein) have illustrated the strength of GW detections by their
ability to constrain different dark energy models. Next-generation
GW detections also give us the scope to perform tests on theories of
modified gravity by confronting the modified propagation of GWs
across cosmological distances. This is possible because of their
higher source redshift and lesser calibration requirements. Modified
theories of gravity are normally characterized by different evolution
of scalar as well as tensor perturbations (Nishizawa 2018). Conse-
quently, any deviation from Einstein gravity could be parametrized
in the propagation equation of GW by introducing new parameters
related to (for example) the propagation speed of GWs, a friction
term that dilutes the amplitude of GWs, graviton mass, or an energy
source term. GW probes, particularly the upcoming detectors, have
been shown (see for instance, Sathyaprakash, Schutz & Van Den
Broeck 2010; Abbott et al. 2017c; Wang et al. 2018; Du et al.
2019; Yang et al. 2019b, a; Lagos et al. 2019; Zhang et al. 2019;
Mastrogiovanni, Steer & Barsuglia 2020; Nunes 2020; ; Sharma &
Harms 2020; Bachega et al. 2020; Belgacem et al. 2020; Chen et al.
2020; Yang et al. 2020a; Zhang et al. 2020 and references therein) to
be able to help shed light on deviations from Einstein gravity.

In this paper, we will present a comparative study of the cosmo-
logical dark energy parameter constraints we will be expecting from
the upcoming GW observations between the existing standard dark
energy models and modified gravity models. We also investigate how
tests of the models may be confused by degeneracies between the
modified theory predictions, and parameters that control the distance.
In Section 2, we discuss the proposed third-generation GW detectors,
while in Section 3 we briefly review the theoretical framework of
modified GW propagation. In Section 4, we illustrate the data and
methodology which will be implemented in Section 5. We draw our
final conclusions and prospective lines of research in Section 6.

Figure 1. Sensitivity evolution of current and proposed GW interferometric
detectors.

2 TH I R D - G E N E R AT I O N G W D E T E C TO R S

The achieved sensitivity by the first generation of interferometric
detectors (LIGO (Abbott et al. 2009), Virgo (Acernese et al. 2008),
GEO 600 (Grote 2008), and TAMA (Takahashi 2004)) was mainly
limited by shot noise, mirror thermal noise, and seismic noise, while
for the second-generation GW detectors, such as Advanced LIGO
(aLIGO) (Harry 2010), Advanced Virgo (AdV) (Acernese et al.
2015), KAGRA (Somiya 2012; Aso et al. 2013), and LIGO-India
(Unnikrishnan 2013) additional fundamental noise sources (such
as, photon radiation pressure noise and thermal noise of the test
mass suspension) will play a role towards the low–frequency end
of the detection band. As expected, the latter noise sources will be
more prominent in third-generation GW detectors (Hild et al. 2011;
Punturo & Luck 2011; Huttner et al. 2017), particularly due to the
fact that the main aim of these detectors is to probe the low–frequency
band; as low as a few Hz (Hild et al. 2010). This low–frequency range
is one of the main driving forces of third-generation GW detectors,
since it encapsulates some rich information on the cosmological
evolution of the Universe (see for instance, Punturo et al. 2010a;
Sathyaprakash et al. 2010, 2012; Srivastava et al. 2019; Bachega et al.
2020; Chen et al. 2020; Maggiore et al. 2020; Sharma & Harms 2020;
Yang et al. 2019b, 2020a; Zhang et al. 2020, and references therein).

We should also remark that this young field of observational
astrophysics is constantly being enhanced by technological improve-
ments. Indeed, the current GW detectors are expected to be upgraded
to Advanced LIGO plus (A +) (The LIGO Scientific collaboration
2019) (possibly to LIGO Voyager (Adhikari et al. 2019)), Advanced
Virgo Plus (AdV +) (Michimura et al. 2019), and KAGRA + (KA-
GRA Collaboration & Akutsu 2020). Fig. 1 illustrates the amplitude
spectral densities (Evans et al. 2018) of the ET along with some of the
mentioned second- and third-generation GW detectors as a function
of frequency. As clearly indicated in this figure, the ET would be able
to probe a considerably wide range of frequencies with significantly
good sensitivity with respect to the upcoming GW detectors.

As already mentioned, we will be considering the ET specifications
(Punturo et al. 2010b) for our analyses, which is a proposed third-
generation ground-based interferometric detector expected to be fully
operational in early 2030s. It will be observing GWs emanated from
BBH mergers up to z � 20, the coalescence of BNS systems up to z

� 2, as well as from neutron star–black hole inspirals up to z� 8. The
ET is envisaged to detect O(103 − 107) BNS events per year with
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signal-to-noise ratios (SNRs) ranging up to ∼100 (Abadie et al. 2010;
Sathyaprakash et al. 2010; Messenger & Read 2012), with a fraction
of these events having an electromagnetic afterglow (Sathyaprakash
et al. 2010; Zhao et al. 2011). The current second-generation
kilometer–scale GW detectors target frequency windows in the range
of ∼ 20 − 2000 Hz, while next-generation interferometers will be
able to probe frequencies as low as ∼1 Hz (Tamanini et al. 2016).
The frequency range is important since it determines the masses of
compact objects that the GW detector could observe.

GW interferometric detectors are sensitive to the relative differ-
ence between two distances, the so–called strain h(t), with t being the
cosmic time. It is well known that GWs are characterized by a second
rank tensor hαβ , having only two independent components h+ and
h× in the transverse–traceless gauge, since the nonzero components
are hxx = −hyy = h+ and hxy = hyx = h×. The response function of a
given GW detector is given by

h(t) = F+(ϑ, ϕ, ψ)h+(t) + F×(ϑ, ϕ, ψ)h×(t), (1)

where F+ and F× are the detector antenna’s beam pattern functions,
(ϑ, ϕ) are the angles describing the location of the source on the sky,
and ψ is the polarization angle. The antenna pattern functions of the
ET are given by (Zhao et al. 2011)

F
(1)
+ (ϑ, ϕ, ψ) =

√
3

2

[
1

2

(
1 + cos2(ϑ)

)
cos (2ϕ) cos (2ψ)

− cos(ϑ) sin (2ϕ) sin (2ψ)

]
,

(2)

F
(1)
× (ϑ, ϕ, ψ) =

√
3

2

[
1

2

(
1 + cos2(ϑ)

)
cos (2ϕ) sin (2ψ)

+ cos(ϑ) sin (2ϕ) cos (2ψ)

]
,

(3)

since the three interferometers will be positioned at equilateral
triangle formation, each of the antenna pattern functions will be at π /3
to each other. Thus, the remaining two beam pattern functions will
be F

(2)
+,×(ϑ, ϕ, ψ) = F

(1)
+,×(ϑ, ϕ + 2π/3, ψ) and F

(3)
+,×(ϑ, ϕ, ψ) =

F
(1)
+,×(ϑ, ϕ + 4π/3, ψ).
Following the stationary–phase approximation (Zhao et al. 2011)

which applies due to the adiabatic evolution of the inspiral’s wave
frequency, we arrive at the Fourier transform Ĥ(f ) of the time–
domain waveform h(t),

Ĥ(f ) = Af −7/6 exp
[
i
(
2πf t0 − π/4 + 2Ψ (f /2) − Φ(2,0)

)]
, (4)

where A is the Fourier transform amplitude, given by

A = 1

DL,GW

√
F 2+

(
1 + cos2(ω)

)2 + 4F 2× cos2(ω)

×
√

5π/96π−7/6M5/6
c . (5)

In the above, we are considering a coalescing binary system located
at a characteristic luminosity distance DL, GW, having a total mass of
M = m1 + m2, with component masses m1 and m2. The associated
observed chirp mass is denoted by Mc = (1 + z)Mχ3/5, with χ =
m1m2/M2 being the symmetric mass ratio. Moreover, the constant t0
denotes the epoch of the merger, while ω is the angle of inclination
of the binary’s orbital angular momentum with the line of sight. The
introduced functions are specified by

Ψ (f ) = −Ψ0 + 3

256χ

7∑
i=0

Ψi(2πMf )i/3, (6)

Φ(2,0) = arctan

(
− 2 cos(ω)F×

(1 + cos2(ω))F+

)
, (7)

where the parameters Ψi are reported in Sathyaprakash & Schutz
(2009).

3 TH E O RY

In Einstein gravity, the linearized evolution equation of GWs prop-
agating in a spatially flat Friedmann–Lemaı̂tre–Robertson–Walker
(FLRW) background is given by

h′′
A + 2H h′

A + k2hA = �A, (8)

where the primes indicate the derivatives with respect to conformal
time η, A = [×, +] corresponds to the two polarization states, h are
the Fourier modes of the GW’s strain amplitude, H = a′/a is the
conformal Hubble parameter such that a = (1 + z)−1 is the scale
factor, and the term on the right hand side is the source term related
to the anisotropic stress tensor. However, in the case of a slightly
more generic theory of modified gravity, the propagation equation of
GWs changes to

h′′
A + 2H [1 − δ(η)] h′

A + k2hA = 0, (9)

the δ(η) term modifies the friction term in the propagation equation
of GWs over a cosmological background, and thus describes the
effect of propagation of the modified GWs (we will present the
parametrization of δ(η) later). The modified middle term is important
as it affects the amplitude of GWs propagating across cosmological
distances, and hence the definition of the GW luminosity distance.
In Einstein gravity, we have that δ(η) = 0, whereas in a number
of modified gravitational theories δ(η) is directly linked with the
effective Planck mass.

In the following analysis, we will be considering the inferred dark
energy parameter constraints from upcoming detections of standard
sirens, using a specific modified gravity model; the No Slip Gravity
model (Linder 2018). No Slip Gravity is a special subclass model of
the Horndeski gravitational framework (Horndeski 1974; Deffayet
et al. 2011), which is well known to be the most general scalar–tensor
theory having second–order field equations in four dimensions. This
framework encompasses (Kobayashi 2019), for instance, f(R) models
(De Felice & Tsujikawa 2010), quintessence (Tsujikawa 2013), the
Brans–Dicke model (Brans & Dicke 1961), and covariant Galileons
(Deffayet, Esposito-Farese & Vikman 2009).

The No Slip Gravity model is advantageous to study in the
sense that gravitational waves propagate at the same speed of light.
Recent results from the binary neutron star merger GW170817/GRB
170817A have shown that the speed of propagation of GWs (cGW)
is in an excellent agreement with the speed of light (c), such that
|(cGW − c)/c| � O(10−15) (Abbott et al. 2017d). The No Slip Grav-
ity model is therefore a viable model which naturally satisfies this re-
quirement, as opposed to a number of well-known modified theories
of gravity which were adversely affected by this measurement (see
for instance, Baker et al. 2017; Ezquiaga & Zumalacárregui 2017;
Sakstein & Jain 2017; Amendola et al. 2018; Crisostomi & Koyama
2018; Ezquiaga & Zumalacárregui 2018; Kase & Tsujikawa 2019).

The gravitational effect on matter and photons can be analysed via
the modified Poisson equations which relate the time–time metric
potential with the space–space metric potential. The growth of
cosmic structure is governed by the gravitational strength Gmatter,
while the deflection of light is characterized by the gravitational
strength Glight. The offset between the latter gravitational strengths
is referred to as the gravitational slip parameter, defined by

η̄ = Gmatter

Glight
, (10)
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Figure 2. Luminosity distance distribution of the GW data as a function of
redshift. There are a total of 1000 GW candidates.

such that η̄ = 1 corresponds to vanishing slip, which holds in the
case of the concordance model of cosmology. In this modified
gravity model, we have a simple relationship between the Planck
mass running parameter αM, and the kinetic braiding parameter
αB (see Bellini & Sawicki 2014 for further information on the
Horndeski property functions αM, B). Indeed, the no slip condition
is specified by αB = −2αM, which then determines the ratio between
the constant Planck mass (mp) in Einstein gravity, and the effective
time–dependent Planck mass in modified gravity M∗, which is
given by

Gmatter = Glight = m2
p

M2∗
. (11)

We should remark that a consequence of the stability conditions
within this framework, the gravitational strength is found to be
diluted with respect to the standard prediction, leading to weaker
gravity (refer to equation (22) of Linder 2018 for further details).
This atypical feature of scalar–tensor theories of gravity arises from
the fact that the non–null kinetic braiding parameter mixes the scalar
sector into the tensor sector, and such a feature could address possible
anomalies in growth of structure observations (Hildebrandt et al.
2017; Abbott et al. 2018; Joudaki et al. 2018; Troxel et al. 2018).

When considering the propagation of GWs, it is essential that we
infer the luminosity distance of the source, DL, GW. The standard
luminosity distance for electromagnetic sources will be denoted by
DL, GR, such that (see Fig. 2)

DL,GR(z) = c(1 + z)
∫ z

0

dz′

H (z′)
, (12)

with

H 2(z) = H 2
0

[
�0

m

a3
+ (1 − �0

m)

a3

(
a−3(w0+wa )e3[wa (a−1)]

)]
, (13)

where we recall that H0 and �0
m denote the Hubble constant and the

current matter density fraction, respectively. For the CPL dark energy
parameter choice of (w0, wa) = (−1, 0), i.e. the concordance model
of cosmology, the above relation for H(z) reads as follows

H 2(z) = H 2
0

[
�0

m(1 + z)3 + (1 − �0
m)
]
, (14)

Figure 3. The comparison of Planck masses via Geff/GN = Gmatter = Glight,
for the indicated values of μ and τ , with fixed at = 0.5. We can verify that at
very early times (a → 0), M∗ � mp.

Table 1. The three different combinations of adopted
parameter values for at , τ and μ (Linder 2018).

at τ μ

0.5 1.5 0.1
1.0 0.1
1.0 0.2

for a spatially flat FLRW metric. In the rest of the paper, unless
explicitly mentioned, DL will be denoting DL, GR.

The relationship between the GW standard siren luminosity
distance and the photon standard candle luminosity distance, is given
by (Saltas et al. 2014; Lombriser & Taylor 2016; Nishizawa 2018;
Belgacem et al. 2018a, b; Dalang, Fleury & Lombriser 2020),

DL,GW(z)

DL,GR(z)
= exp

{
−
∫ z

0

dz′

1 + z′ δ(z′)
}

. (15)

We will now consider the determination of {M∗, αM} by adopting
the parametrizations as reported in Linder (2018), which is explicitly
given by(

mp

M∗

)−2

= 1 + μ

1 + (a/at )
−τ , (16)

where μ is the amplitude of the transition from the early Universe
to the asymptotic future, and at is the scale factor when this occurs,
with 0 < τ ≤ 3/2 being its rapidity. In Fig. 3 we illustrate three
comparisons of the Planck mass with the time-dependent effective
Planck mass according to the parameter values as specified in Table 1.
We can verify that, asymptotically the effective running Planck mass
tends to the constant Planck mass; this is justified since in the early
Universe they are expected to be identical.

By using the fact that αM = d ln M2
∗/d ln a, we get to the following

parametrization of the Planck mass running parameter

αM =
[

1 + μ

1 + e−τ (ln a−ln at )

]−1
τμe−τ (ln a−ln at )[

1 + e−τ (ln a−ln at )
]2 . (17)

The redshift evolution of αM is depicted in Fig. 4, for the specified
parameter values listed in Table 1. In order to solve equation (15),
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Figure 4. Comparison plot of αM, for the indicated values of μ and τ , with
fixed at = 0.5. The grey vertical line indicates the corresponding α0

M values.

we need to find an expression for δ(z). Belgacem et al. (2019) has
provided a generic parametric form of δ(z), suitable for most of the
modified gravity models,

δ(z) = n(1 − ζ0)

1 − ζ0 + ζ0(1 + z)n
, (18)

where ζ 0 and n for Horndeski specific models are defined by

ζ0 = lim
z→∞

M∗(0)

M∗(z)
, (19)

n � αM0

2(ζ0 − 1)
. (20)

We can see that at early–times (z → ∞) we recover Einstein gravity
with δ(z) → 0, while at late–times (z � 1), δ(z) � n(1 − ζ 0). ζ 0 =
1 corresponds to the standard prediction, thus the two luminosity
distances are identical, DL, GW = DL, GR.

4 A NA LY SIS

4.1 Data

We will present a comparison of our results obtained from the derived
luminosity distance estimates using the modified gravity model, to
the ones derived from assuming a standard electromagnetic source
luminosity distance. For computing the latter case, we used the
simulation data of Du et al. (2019), 1000 GW candidates were
adopted in this work, where such a number of GW events is estimated
to be required in order to attain the sensitivity of Planck (Cai &
Yang 2017). The GW candidates were generated via simulations
of the redshift distribution of the sources. It is assumed that all
GW candidates will have electromagnetic counterparts, i.e. all the
candidates will have precise redshift information, and we further
assumed that the GW candidates are modelled from BBH and BNS.
The redshift distribution of the observable sources is specified by
(Zhao et al. 2011)

P(z) ∝ 4πD2
c (z)R(z)

H (z)(1 + z)
, (21)

where Dc(z) is the comoving distance, and R(z) describes the time
evolution of the burst rate which takes the form (Schneider et al.

2001; Cutler & Holz 2009)

R(z) =
⎧⎨⎩

1 + 2z, z ≤ 1,
3
4 (5 − z), 1 < z < 5,

0, z ≥ 5.

(22)

We refer the reader to consult Du et al. (2019) for further details on
the characteristics of the data.

4.2 Errors

For Fisher matrix analysis (Cramer 1946; Cutler & Flanagan 1994;
Berti, Buonanno & Will 2005), we need to model the systematic
errors and account for the cosmological uncertainties propagating
through the luminosity distance measurement. The uncertainties (σ )
in luminosity distance measurement error 〈δDL〉 is composed of

〈σ 〉2 = 〈σphoto−z〉2 + 〈σWL〉2 + 〈σI 〉2 + 〈σP 〉2, (23)

where the four terms on the right–hand side stand for the photometric
redshift measurement error, weak lensing error, instrumental error,
and the peculiar velocity error.

(i) Redshift error: Since most of distant binaries will have
photometric redshift, it is essential to account for the photometric
redshift measurement error. It is modelled by 1(Dahlen et al. 2013;
Ilbert et al. 2013; Tamanini et al. 2016)

σphoto−z =
(

∂DL

∂z

)
[0.03(1 + z)] . (24)

It is vital, that of all the sources which will be detected, the fraction
of counterparts identifiable with the availability of spectroscopic
redshift should have a significant effect on the parameter estimation
and the improvement of the constraints. For the spectroscopic redshift
sources, we assume a flat error of 0.001 (Congedo & Taylor 2019).
Even with current ongoing large-scale SNe surveys, mitigating
the systematic errors originating from high–redshift photometric
samples is a challenge in itself. Assuming there will be vast
improvement in observing capabilities in the next one-to-two decades
in redshift measurements, we will present a comparison of the results
based on scenarios, of different level of expected detections of the
spectroscopic redshift.

(ii) Instrumental error: The combined SNR for the proposed
ET’s network of three independent interferometers is given by

ρ =
√√√√ 3∑

i=1

(
ρ(i)

)2
, (25)

where ρ(i) =
√

〈Ĥ(i), Ĥ(i)〉, with the standard inner product ex-
pressed as follows

〈a, b〉 = 4
∫ fupper

flower

â(f )b̂∗(f ) + â∗(f )b̂(f )

2

df

Sh(f )
. (26)

The noise power spectral density of the ET is denoted by Sh(f), and is
illustrated in Fig. 1. The upper cutoff frequency is dictated by the last
stable orbit of the binary system (Zhao et al. 2011), while the lower
cutoff frequency is set to 1 Hz. Following the adopted SNR threshold
for the current GW detectors, we consider a GW detection if the three
ET interferometers have a network SNR of ρnet > 8. Assuming that

1The spectroscopic redshift measurement error is neglected here; Congedo &
Taylor (2019) state that the nominal requirements from EUCLID/DESI is of
σ spec = 0.001.
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the error on DL, GW is uncorrelated with any other GW parameter, we
can estimate the instrumental error via a Fisher information matrix,
leading to the following expression

σI �
√〈

∂Ĥ
∂DL,GW

,
∂Ĥ

∂DL,GW

〉−1

. (27)

Moreover, since Ĥ ∝ D−1
L,GW, we arrive at σ I � 2DL, GW/ρ, where the

factor of two was introduced in order to take into account the maximal
effect of the binary’s inclination angle on the SNR. We should also
remark that one could adopt the following fitting function for the
projected instrumental error contribution of the ET to the relative
error on the luminosity distance measurement (Zhao et al. 2011)

σI = 0.1449z − 0.0118z2 + 0.0012z3. (28)

(iii) Weak lensing error: It is introduced, since standard sirens
get lensed in identical fashion to EM sources, the inhomogeneities
along the line-of-sight give rise to a weak lensing effect. In the weak
lensing regime, the magnification μWL can be expressed to first order
in terms of the convergence κ as

μWL � 1 + 2κ. (29)

Therefore, we will adopt the following weak lensing uncertainty
(Aldering et al. 2007)

σWL = 0.1z

1 + 0.07z
, (30)

which was based on the original treatment presented in Holz & Linder
(2005) on including lensing in cosmological distance measurements.
Monte Carlo simulations with thousands of SNe Ia were used to
forecast the then SNAP–like SNe Ia survey with redshift range up to
z ∼ 3.0, which makes this result suitable for our current analysis.

(iv) Peculiar velocity error: The peculiar velocity of the source
relative to the Hubble flow introduces another additional error. We
consider the following functional form for this error (Kocsis et al.
2006)

σ 2
P =

[
1 + c(1 + z)2

H (z)DL

]2 〈v2〉
c2

, (31)

where we assume a r.m.s. velocity of 〈v〉 = 500 km/s based on
numerical simulation results from Cen & Ostriker (2000).

We are now in a position to write down the Fisher matrix for the
cosmological parameters of our given model, which can be expressed
as follows

Fij =
1000∑
n=1

1

(σ 2)n

∂DL(zn)

∂θi

∣∣∣∣
fid

∂DL(zn)

∂θj

∣∣∣∣
fid

, (32)

where the sum runs over all the 1000 standard siren events. The
partial derivatives of DL (equation (12)) are with respect to the
cosmological parameters � = {�0

m, H0, w0, wa}, computed at their
fiducial values �fid = {0.315, 67.4, −1, 0}, adopted from the latest
CMB inferred constraints (Aghanim et al. 2020) in the �CDM
framework.

5 R ESULTS

As mentioned above, for our Horndeski model analysis, we used the
No Slip Gravity model. For the Fisher analysis, we have to choose the
parametric results of the model parameters. Precisely, we needed the
value of the parameters (ζ0, n) and for that we also needed the value
of α0

M (equations (19, 20)). It is evident that for the computation

Table 2. We here summarize the fit parameters that are
necessary for the computation of the luminosity distances
in our modified gravity model. These have been inferred
from equation (15) along with the specified values in
Table 1.

α0
M ζ 0 n

0.0270 1.0363 0.3715
0.0208 1.0328 0.3176
0.0392 1.0646 0.3036

Figure 5. The redshift evolution of the δ(z) function, for the specified
parameters as indicated in Table 1.

of the above parameters, via equations (16, 17, 18), we need to
know τ, μ and at. Linder (2018) has presented three different sets
of viable parameter values of τ and μ for a fixed at = 0.5, which
we summarize in Table 1. By adopting these parameter sets, we
computed three respective sets of α0

M along with the corresponding
values of ζ 0 and n using equation (19) together with equation (20).
The derived values are summarized in Table 2.

It is interesting to note that Belgacem et al. (2019) proposed fit
values for the above parameters using another alternate modified
gravity model, the RR model, which is specified by

[ζ0, n] = [0.970, 2.5]. (33)

In appendix A, we further present a comparison of our results with
this model parametrization.

5.1 Luminosity distance

In this section, we will present a comparison of the computed
luminosity distances (DL, GW) using the parameter values as specified
in Tables 1 and 2 with the luminosity distances from Einstein gravity
(DL, GR). Based on equation (15), we calculated δ(z) from the param-
eter sets outlined in the previously mentioned tables. The different
redshift evolution of δ(z) for different models are shown in Fig. 5.

Moreover, we illustrate the comparison between the mentioned
distance estimates for the model specified by μ = 0.1 and τ = 1.5
in Fig. 6. A further comparison of these distance estimates between
one model and another is depicted in Fig. C1, where one could
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Figure 6. Comparison between DL, GW and DL, GR, where the former is
computed via equation (15). The lower panel shows the relative error between
the two luminosity distances. Inset plot in the upper panel shows the zoomed
in view for the range z = [4, 5] and DL(z)/Gpc = [35, 55] to highlight the
region of maximum deviation between the distance estimates.

observe that distance estimates are more sensitive to the amplitude
of transition parameter μ, compared to the rapidity τ .

5.2 Fisher analysis

In Linder (2018), the combination of [μ, τ, at ] = [0.1, 1.5, 0.5]
was found to be in good agreement with current observations, which
we will now adopt. In this section, we will present a comparison of
the 1 − σ constraint plot (ellipses) on the dark energy equation of
state parameters w0 − wa. In Fig. 7 we only depict the model with
[μ, τ, at ] = [0.1, 1.5, 0.5], while in Fig. C2 we further illustrate
the three different parameter choices, with each of them being
analysed in four distinct spectroscopic redshift availability criteria.
Three of the four spectroscopic redshift coverage ranges are chosen
as zspectro = [0.2, 0.3, 0.5], and as a hypothetical benchmark result
we showed what is the constraint if there was a (hypothetical) full
spectroscopic redshift coverage. At the time of writing this paper, our
best guess is to assume that up to redshift of z � 0.3, there will be
possible spectroscopic observations and thus the availability of the
spectroscopic redshift. The concentric ellipses, from outside to in-
side, cover zspectro = [0.3 − 4.0] cases. Each of these cases are plotted
in pairs of ellipses from the No Slip Gravity model and the corre-
sponding Einstein gravity model. We can clearly notice that there is a
degeneracy in our results between the three parameter combinations.
In all considered cases, the No Slip Gravity model is found to be
closely related with Einstein gravity inferred results. As expected,
the constraints get tighter as we increase the spectroscopic coverage.

A measure of these constraints can be analysed by using the Figure
of Merit (FoM) values (Coe 2009). The FoM can be computed for any
cosmological model regardless of the size of the model’s parameter

Figure 7. Fisher ellipses computed by using the luminosity distances DL, GW

for the parameter set [μ, τ, at ] = [0.1, 1.5, 0.5] in the No Slip Gravity
model (green), compared with the ellipse derived from DL, GR (red). The
four concentric ellipse pairs correspond to zspectro = [0.2, 0.3, 0.5, 4.0] as
we traverse from outside to inside.

Table 3. Summary of the FoM values of the plots
shown in Fig. C2, as a function of the spectro-
scopic redshift availability (zspectro) excluding the
case of full spectroscopy, i.e. [0.2, 0.3, 0.5]. The
third column corresponds to either Einstein gravity
(GR) or the adopted No Slip Gravity (NSG) param-
eter values, such that NSG − I : (μ = 0.1, τ = 1.5),
NSG − II : (μ = 0.1, τ = 1.0) and NSG − III : (μ =
0.2, τ = 1.0). A visual representation is depicted in
Fig. 8.

zspectro FoM Set

0.2 0.4283 GR
0.3 0.5066
0.5 0.5405
0.2 0.4231 NSG-I
0.3 0.5000
0.5 0.5332
0.2 0.4242 NSG-II
0.3 0.5014
0.5 0.5348
0.2 0.4206 NSG-III
0.3 0.4969
0.5 0.5298

space. In our case, the FoM is roughly equal to the inverse of the
square root of the area of the ellipse (Coe 2009). Mathematically it
is given by (Tamanini et al. 2016; Laureijs et al. 2011),

FoM = det
(
FC

M,ij

) 1
2N , (34)

where FM, ij is the marginalised 2 × 2 Fisher matrix of the C–th
instance, over the w0 − wa dark energy plane, and N is the number of
model parameters. In Table 3 we have summarized the FoM values
of the ellipses found in Fig. 7, and these are further illustrated in
Fig. 8. We should also remark that there is consistency in the trend
of the FoM values throughout the three parameter combinations as a
function of the spectroscopic redshift coverage. We also observe that
there is a remarkable improvement in the FoM as we increase the
spectroscopic redshift from 0.2 to 0.3. In contrast, the improvement
in the FoM for the remaining length of the abscissa is less steeper.
Definitely, at the time of ET’s realization, we expect this redshift
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Figure 8. The FoM of the confidence regions shown in Fig. 7 (Table 3)
as a function of the spectroscopic redshift coverage. The blue dashed line
corresponds to the mean FoM of the two values at each zspectro.

range to be spectroscopically covered. The blue dashed line gives a
locus of the FoM as a function of the spectroscopic redshift coverage,
all the way to full spectroscopic redshift availability. Significant
improvements can be made by focusing on the enhancement of
spectroscopic redshift availability in the low–redshift ranges. We
should further remark that there is no significant model sensitivity
in terms of the FoM, although visibly minuscule deviations could be
noticed at the highest redshift coverage between Einstein gravity and
the No Slip Gravity models.

5.3 MCMC analysis

We also conducted a Markov Chain Monte Carlo (MCMC) analysis
with the forecast data, to determine how well the parameters ζ 0 and n
could be measured with this data, and what degeneracies might exist
with the cosmological parameters that control cosmic distances.

We use the affine-invariant ensemble sampler for MCMC (Good-
man & Weare 2010), applying the specific Python implementation
emcee (Foreman-Mackey et al. 2013). We adopted uniform priors,
with 0 < �0

m < 1, 0 < ζ 0 < 2, and −1 < n < 2. We assume a flat
universe and hold all other parameters fixed to their fiducial values,
including the dark energy parameters w0 = −1 and wa = 0. We
fix these dark energy parameters as we want to first establish the
degeneracies between the standard �CDM parameters and the NSG
model parameters. If there is already some large degeneracy between
�0

m and ζ 0 (for example) then further expanding the space of possible
distance predictions by also allowing the dark energy parameters w0

and wa make any possible detection of the modified gravity model
much more difficult.

We ran separate MCMC analyses for each of the four models, to
determine if the data could distinguish between the models (assuming
each of them to be true). If the credible region around ζ 0 and n
was small in comparison to the difference in the values between
the different models, then it would be possible to distinguish them,
using this dataset alone. The Bayesian credible contours comparing
�CDM to one of the NSG models are shown in Fig. 9, and were
generated using ChainConsumer (Hinton 2016).

We find that the data is not constraining enough to be able to
to distinguish between the different models. The difference between

values of ζ 0 and n given in Table 2 is much smaller than the parameter
bounds, and so the models are indistinguishable. The constraints
on these parameters are also identical, confirming the results from
Section 5.2. We also compared the constraints on these parameters
for forecast data generated using the other NSG models, and also
found them to be identical.

We see a significant degeneracy between the No Slip gravity model
parameters ζ 0 and n, and the matter density �0

m. As the matter density
increases, the luminosity distance to the different GW sources will
decrease, but this can be balanced by increasing the amount of GW
‘dimming’ that is generated by the modified gravity model, making
the sources appear to be further away. This degeneracy is also present
between the No Slip gravity parameters and H0, though to a lesser
extent. Since the Hubble parameter is mainly constrained by the data
at low redshift, the amount of distance available to see a significant
impact on the value of H0 is reduced. This is why the values of n and
ζ 0 need to be quite large before the Hubble parameter is significantly
shifted. Since there is a large degeneracy between the NSG model
parameters ζ 0 and n and the matter density �0

m, we do not explore
further the degeneracies with the dark energy parameters.

Though the model cannot be distinguished from Einstein gravity
using this data by itself, it may be possible to do so in combination
with other distance probes. Since luminosity distances (and angular
diameter distances) measured by electromagnetic means (e.g. SNe Ia
or BAO) will be completely insensitive to the No Slip gravity model
parameters, they can provide independent constraints on the cosmo-
logical parameters H0 and �0

m. By combining these electromagnetic
datasets with the GW luminosity distances, the degeneracy between
the cosmology parameters �0

m and H0 with the No Slip gravity
parameters ζ 0 and n can be broken, and the size of the confidence
contour can be significantly reduced (as discussed in e.g. Tamanini
et al. (2016), Belgacem et al. (2019), Baker & Harrison (2021)).
This is analogous to testing Etherington’s distance-duality equation
for electromagnetic distances, with the alteration that here the check
is the consistency between electromagnetic and GW distances. We
leave such a demonstration for future work.

6 C O N C L U SIO N

We have presented a study of what we can expect in terms of
cosmological analysis from prospective GW detections from the
perspective of modified gravity models, particularly focusing on
a subclass of the Horndeski scalar–tensor theory of gravitation.
We have presented a comparison to compare the cases between a
modified gravity model and the standard Einstein gravity. For the
implementation of the modified gravity model, we used the No
Slip Gravity model, as outlined in (Linder 2018). This is primarily
motivated from the fact that current observational probes, including
GW detections, are in agreement with the predictions of the No
Slip Gravity model. Third-generation interferometric surveys are
projected to be operational post 2030 and we expect that modified
gravity models, including the one analysed here, will be robustly
tested by a number of proposed surveys such as LSST (LSST Science
Collaboration 2009) and Euclid (Laureijs et al. 2011).

From our results, we see that the alternative model mimics the
standard Einstein theory for the homogeneous expansion. We find,
for the models explored here, that the effect on both the distances
measured, and the values of the cosmological parameters recovered,
are small. We show that, considering a GW-only dataset, there will
be significant parameter degeneracies between the cosmological
parameters, such as �0

m, with the parameters of the No Slip gravity
model. This is because the ‘dimming’ of the GW luminosity distance
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Figure 9. A comparison of the forecasted 68 per cent and 95 per cent Bayesian credible intervals for the parameters H0, �0
m, ζ 0, and n, using the prospective

data described in Section 4, generated assuming �CDM (where gravity is the Einstein model), and assuming a No Slip Gravity model (parametrized by fixed
values of ζ 0 and n). The bounds are estimated using MCMC, and the different markers represent the values of the parameters for the true model, in the two
cases. The bounds on the No Slip gravity parameters are much larger than the differences in the true values of ζ 0 and n, and there are significant parameter
degeneracies between �0

m and the No Slip gravity parameters. The constraints are nearly identical between the models using this dataset.

can also be mimicked by the change in propagation of the GW in
the modified gravity theory. Such a degeneracy could be broken
through combining the GW dataset with distances estimated through
electromagnetic means, or else through separate constraints on the
No Slip gravity model parameters.

We await with great expectations from future GW surveys for
demystifying the fabric of gravity and the implications it will have
on improving our understanding of precision cosmology.
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APPENDIX A : C OMPARISON W ITH THE RR
M O D E L

Belgacem et al. (2019) have presented an alternate parametrization
for a different modified gravity model, the RR model (for a detailed
study, refer to Belgacem et al. 2019; Maggiore & Mancarella 2014).

Although these models, are mostly screened from observational
requirements, still for comparisons and reference purposes, we show
the similar 1 − σ dark energy parameter constraint plot from this
model, with [ζ0, n] = [0.970, 2.5] (equation 33). It is interesting to
see that the RR model gives rise to a constraint which is marginally
tighter than the corresponding Einstein gravity model. A measure of
their corresponding FoM is also provided in the inset plot of Fig. A1.

Figure A1. Constraint plots for the RR Gravity model (blue) in comparison
with the Einstein gravity confidence regions (GR, red) for dark energy
parameters (w0, wa). The concentric ellipse pairs are plotted similar to those
in Fig. 7, where we used the assumption that there will be spectroscopic
redshifts available up to z = [0.2, 0.3, 0.5, 4.0] (outside to inside). Inset
plot: FoM plot of the corresponding ellipses.

APPENDI X B: H UBBLE PARAMETER
CONSTRAI NTS W I TH THE N O SLI P GRAV ITY
M O D E L

We here present the H0 − �0
m constraint figure. The concentric pairs

of ellipses are plotted similar to those in Fig. 7 as a function
of the spectroscopic redshift availability [0.2 (second from the
outermost), 0.3, 0.5, 4.0 (innermost)]. For No Slip Gravity we
used the first parameter choice of [μ, τ, at ] = [0.1, 1.5, 0.5]. The
outermost light blue ellipse is a reference showing the constraint if
no spectroscopic redshifts are available.

Similar to the observations on the w0 − wa confidence regions, we
see that huge improvements in parameter constraints can be achieved
by using spectroscopic redshifts in the low–redshift range. Indeed,
the inset plot of the FoM from Fig. B1 (or Table B1) shows this
trend. We also see that the modified gravity model closely mimics
the standard prediction and that they are nearly identical. Again,
we would like to remark that the case of full spectroscopic redshift
availability is a hypothetical reference point. This can be thought of
as the maximal constraint that these parameter pairs can achieve with
the given specifications.

Figure B1. Comparison plot showing the extreme limits of the constraints
on the Hubble constant (H0) and the matter density (�0

m) plane using the first
parameter set (blue dashed) of the No Slip Gravity model from Table 1 along
with Einstein gravity (GR) (red dashed). As we move from the outer edge to
the inner edge, the spectroscopic coverage changes from [0.2 to 4.0], and the
dot–dashed blue confidence region corresponds to the scenario if all redshift
was photometric (using GR). Inset plot: FoM of the corresponding ellipses,
also listed in Table B1.

Table B1. Table showing the FoM comparisons between GR and the No Slip
Gravity model from Fig. B1. The second column is similar in abbreviation to
Table 3.

zspectro GR NSG − I

0.0 0.7555 0.7689
0.2 1.2981 1.2880
0.3 1.5077 1.4953
0.5 1.6055 1.5918
4.0 2.5614 2.5377
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APPENDIX C : C OMPARISON W ITH OTHER
NSG PARAMETRIZATION VALUES

We here illustrate two figures comparing the inferred results when
considering the three NSG frameworks. In Fig. C1 we depict the
comparison between DL, GW and DL, GR, while in Fig. C2 we compare
the derived Fisher ellipses which were computed by using the
luminosity distances DL, GW for each respective parameter set in

the No Slip Gravity models, compared with the ellipse derived from
DL, GR.

As discussed in the above sections, the considered NSG model
parameters lead to nearly indistinguishable constraints. Having said
that, the computed distance estimates seem to be more sensi-
tive to the amplitude of transition parameter μ, compared to the
rapidity τ .

Figure C1. Comparison between DL, GW and DL, GR, where the former is computed via equation (15). The lower panel shows the relative error between the
two luminosity distances. Inset plots in the upper panels show the zoomed in view for the range z = [4, 5] and DL(z)/Gpc = [35, 55] to highlight the region
of maximum deviation between the distance estimates in each scenario.
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(a) (b)

(c)

Figure C2. Fisher ellipses computed by using the luminosity distances DL, GW for each respective parameter set in the No Slip Gravity model (green), compared
with the ellipse derived from DL, GR (red). Each panel has a set of four concentric ellipse pairs, which correspond to zspectro = [0.2, 0.3, 0.5, 4.0] as we traverse
from outside to inside.
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