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ABSTRACT
We have investigated the basic statistics of the cosmological dispersion measure (DM)—such as its mean, variance,
probability distribution, angular power spectrum, and correlation function—using the state-of-the-art hydrodynamic simulations,
IllustrisTNG300, for the fast radio burst cosmology. To model the DM statistics, we first measured the free-electron abundance
and the power spectrum of its spatial fluctuations. The free-electron power spectrum turns out to be consistent with the dark matter
power spectrum at large scales, but it is strongly damped at small scales (� Mpc) owing to the stellar and active galactic nucleus
feedback. The free-electron power spectrum is well modelled using a scale-dependent bias factor (the ratio of its fluctuation
amplitude to that of the dark matter). We provide analytical fitting functions for the free-electron abundance and its bias factor.
We next constructed mock sky maps of the DM by performing standard ray-tracing simulations with the TNG300 data. The
DM statistics are calculated analytically from the fitting functions of the free-electron distribution, which agree well with the
simulation results measured from the mock maps. We have also obtained the probability distribution of source redshift for a
given DM, which helps in identifying the host galaxies of FRBs from the measured DMs. The angular two-point correlation
function of the DM is described by a simple power law, ξ (θ ) ≈ 2400(θ/deg)−1 pc2 cm−6, which we anticipate will be confirmed
by future observations when thousands of FRBs are available.
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1 IN T RO D U C T I O N

A fast radio burst (FRB) is a radio pulse (∼ms wide) coming from a
cosmological distance (see reviews by Cordes & Chatterjee 2019 and
Petroff, Hessels & Lorimer 2019). After the first detection (Lorimer
et al. 2007), more than hundreds of FRBs have been reported to date
(Petroff et al. 2016).1 Ongoing and future surveys such as ASKAP,2

CHIME,3 UTMOST,4 FAST,5 STARE2 (Bochenek et al. 2020), and
SKA6 will detect thousands of events per year (e.g. Connor et al.
2016; Hashimoto et al. 2020). Many FRB-progenitor models have
been proposed, but the origins of FRBs are still obscure (e.g. Popov &
Postnov 2010; Kashiyama, Ioka & Mészáros 2013; Totani 2013;
Cordes & Wasserman 2016; Murase, Kashiyama & Mészáros 2016;
Kumar, Lu & Bhattacharya 2017; Metzger, Berger & Margalit 2017;
Ioka 2020; Ioka & Zhang 2020; Levin, Beloborodov & Bransgrove
2020; Lyubarsky 2020).7 More observations are needed to differenti-
ate between them. From the frequency dependence of the arrival time
from a FRB, the projected free-electron density along the line of light
(i.e. the dispersion measure, DM) can be measured. Similarly, from
the frequency dependence of the polarisation angle, the line-of-sight

� E-mail: takahasi@hirosaki-u.ac.jp
1FRB catalogue at http://frbcat.org.
2https://www.atnf.csiro.au/projects/askap/
3https://chime-experiment.ca/
4https://astronomy.swin.edu.au/research/utmost/
5https://fast.bao.ac.cn/
6https://www.skatelescope.org/
7https://frbtheorycat.org/index.php/Main Page

component of the magnetic field (i.e. the rotation measure) can also
be measured. Because FRBs are extragalactic sources, these DMs and
RMs directly map the cosmological free-electron distribution (Ioka
2003; Inoue 2004) and the cosmic magnetic fields (e.g. Akahori,
Ryu & Gaensler 2016; Michilli et al. 2018).

The primordial abundance of baryons is currently measured to
sub-per cent-level accuracy by the cosmic microwave background
and big bang nucleosynthesis (BBN; Cooke, Pettini & Steidel 2018;
Planck Collaboration VI 2020). However, in the late-time universe,
the baryon abundance and its spatial distribution are still poorly
constrained by observations (e.g. Fukugita & Peebles 2004; Shull,
Smith & Danforth 2012). About one-third of the baryons are still
missing (the so-called ‘missing baryons’), although they are likely
to be low-density ionized gas in the intergalactic medium (IGM).
The cosmological DM is a powerful tool to probe for the missing
baryons (Ioka 2003; Inoue 2004). Very recently, Macquart et al.
(2020) measured the baryon density from five host-galaxy-identified
FRBs. Their result is independent of, but consistent with, the Planck
and BBN results. Keane et al. (2016) provided a similar constraint
from a single event.

Because FRBs and their DMs have unique cosmological proper-
ties, many cosmological applications have been proposed. The DMs
of far-distant FRBs are a unique probe of cosmological reionization
(Ioka 2003; Inoue 2004; Caleb, Flynn & Stappers 2019; Dai &
Xia 2020). Gravitational lensing of FRBs also enables searches for
intervening compact objects that may constitute the dark matter (e.g.
Zheng et al. 2014; Muñoz et al. 2016; Oguri 2019; Jow et al. 2020;
Liao et al. 2020). If the host galaxy is identified, the redshift–DM
relation can constrain the dark energy models (e.g. Gao, Li & Zhang
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2014; Zhou et al. 2014). The angular autocorrelation of the DM
directly maps free-electron clustering (e.g. Masui & Sigurdson 2015;
Shirasaki, Kashiyama & Yoshida 2017), and its large-scale signal
may contain primordial non-Gaussianity (Reischke, Hagstotz &
Lilow 2020). The cross-correlation of the DM and foreground
galaxies provides the free-electron distribution around the galaxies
(McQuinn 2014; Shirasaki et al. 2017; Madhavacheril et al. 2019),
as well as helping to constrain the redshift distribution of the
host galaxies (Rafiei-Ravandi, Smith & Masui 2019). The cross-
correlation of the DM and the thermal Sunyaev–Zel’dovich signal
(tSZ, Sunyaev & Zeldovich 1970) gives further information about
ionized gas because the tSZ effect measures the projected electron
pressure (Muñoz & Loeb 2018).

Theoretical studies of the DM statistics have been based on the
analytical halo model or hydrodynamic simulations because these
are able to explore the non-linear free-electron distribution. McQuinn
(2014) calculated the DM statistics (variance and probability distri-
bution) from the halo model (e.g. Cooray & Sheth 2002) for given
model ingredients such as spatial halo clustering, halo mass function,
and free-electron density profile in haloes. Madhavacheril et al.
(2019) and Dai & Xia (2020) computed the angular power spectrum
of the DM based on the halo model. Cosmological hydrodynamic
simulations are the most reliable tools for investigating the free-
electron distribution in the universe. Dolag et al. (2015) studied
the DM probability distribution based on hydrodynamic simulations
(the Magneticum Pathfinder; Dolag, Komatsu & Sunyaev 2016).
Zhu, Feng & Zhang (2018) estimated the dispersion and scattering
measures in the IGM using their cosmological hydrodynamic simu-
lations. Pol et al. (2019) made a full-sky map of the DM using the
MICE ONION simulation (Fosalba et al. 2008), and they computed
the mean, variance, and probability distribution of the DM. That
was a dark-matter-only (DMO) simulation, and they assumed that
the free electrons exactly trace the dark matter. Shirasaki et al.
(2017) performed a similar analysis using their own dark-matter
simulation. Jaroszynski (2019) recently studied the cosmological
DM (its mean, variance, and probability distribution) using a public
hydrodynamic simulation, the original Illustris (Vogelsberger et al.
2014).

The previous simulation studies did not compare their measure-
ments with analytical predictions of the DM statistics (such as its
variance and power spectrum), where the analytical solutions are
useful for future data analyses. Previous analytical studies on the
DM statistics assumed that free electrons exactly trace the underlying
dark matter (Masui & Sigurdson 2015; Shirasaki et al. 2017; Rafiei-
Ravandi et al. 2019), although this assumption breaks down at small
scales (� 1 Mpc), as shown in subsection 3.3. The main purpose of
this work is to provide an analytical model for the DM statistics (such
as its mean, variance, angular power spectrum, and correlation func-
tion). The analytical model is based on a standard two-point statistics.
Because the DM statistics are fully determined by the free-electron
statistics, we first measure the the free-electron distribution from
the latest cosmological hydrodynamic simulations, IllustrisTNG, the
successor to Illustris (e.g. Nelson et al. 2018). We use the largest box
run from these TNG simulations (named TNG300, for which the side
length of the cubic box is L = 205 h−1 Mpc � 300 Mpc), which
is suitable for cosmological studies. We measure the free-electron
abundance and the power spectrum of its spatial fluctuations over a
wide range of redshifts (z = 0–5) and scales (≈0.1–200 h−1 Mpc) in
TNG300. We then make fitting functions for them to model the free-
electron distribution. The DM statistics are calculated analytically
using these fitting functions. We next construct mock sky maps
of the DM using the TNG300 data and measure the DM statistics

from them to check the accuracy of the analytical model. The three
spatial-resolution runs in TNG300 are used to check the numerical
convergence of the results. The presented model is applicable, in
principle, for other cross-correlations, such as DM–galaxy, DM–
weak lensing, and DM–tSZ cross-correlations. As thousands of FRBs
will be available in the relatively near future, we expect this kind of
statistical study to be required. Throughout this paper, we mainly
study the cosmological DM (i.e. excluding contributions from the
Milky Way and host galaxies).

The rest of this paper is organized as follows: Section 2 introduces
the theory of two-point DM statistics. Section 3 measures the free-
electron abundance and its power spectrum in the TNG300 data and
provides fitting functions for them. Section 4 describes a procedure
for making mock sky maps of the DM. Section 5 presents our
main results: comparisons between the simulation results measured
from the mock maps and analytical predictions. Section 6 dis-
cusses the host-galaxy contribution and provides comparisons with
other hydrodynamic simulations. Finally, Section 7 summarizes this
work.

Throughout this paper, we adopt a cosmological model consistent
with the Planck 2015 best-fitting flat �CDM model (Planck Collab-
oration XIII 2016): matter density �m = 1 − �� = 0.3089, baryon
density �b = 0.0486, Hubble parameter h = 0.6774, spectral index
ns = 0.9667, and amplitude of the matter density fluctuations on
the scale of 8 h−1 Mpc σ8 = 0.8159. This model is the same as that
adopted in the TNG simulations. All physical quantities (such as
length, wavenumber, and number density) will be given in comoving
units.

2 TH E O RY O F TH E C O S M O L O G I C A L
DI SPERSI ON MEASURE

This section presents the theoretical basics of the cosmological DM:
the mean and fluctuations (subsection 2.1) and the two-point statistics
(subsection 2.2).

2.1 The mean and fluctuations

Three major components contribute to the observed DM: the Milky
Way, the host galaxy, and the intervening cosmological medium.
The Milky Way contribution can be inferred from the Galactic free-
electron distribution, which is modelled by pulsar measurements
(e.g. the NE2001 model: Cordes & Lazio 2002). The host-galaxy
contribution decreases for more distant sources in proportion to (1
+ zs)−1, where zs is the source redshift, due to cosmological time
dilation and the Doppler frequency shift (if its intrinsic property
in the rest frame does not evolve with time, e.g. Zhou et al.
2014). In contrast, the cosmological contribution increases roughly
in proportion to zs (e.g. Ioka 2003), and it exceeds the host-galaxy
contribution for zs � 0.3. Therefore, throughout this paper, we mainly
consider the cosmological contribution, and hereafter, DM refers to
that alone. The host-galaxy contribution will be briefly discussed in
subsection 6.1.

We consider an FRB at an angular position θ = (θ1, θ2) on the
sky and redshift zs, as shown in Fig. 1. The vector r points to
the intervening gas at z, and its absolute value is the comoving
distance

r(z) =
∫ z

0

cdz′

H (z′)
, (1)

where H(z) is the Hubble expansion rate. Denoting the number
density of free electrons at r and z by ne(r; z), the DM is obtained
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Figure 1. Schematic configuration of the observer, ionized gas and an FRB:
θ is the angular position of the FRB, r is a vector along the line of sight, and
ne is the number density of free electrons at r .

by integrating ne along the line of sight (e.g. Ioka 2003; Inoue
2004):

DM(θ ; zs) =
∫ zs

0

cdz

H (z)
ne(r; z)(1 + z). (2)

Note that the number density ne is given in comoving units.
The number density ne can be decomposed into its spatial mean

n̄e and fluctuations δe:

ne(r; z) = n̄e(z) [1 + δe(r; z)] . (3)

The spatial average of the second term vanishes: 〈δe〉 = 0. As for the
first term, the total number density of electrons (including both free
electrons and those bound to atoms) in the universe is

n̄e,total =
(

Xp + 1

2
Yp

)
ρ̄b

mp
, (4)

where ρ̄b is the comoving cosmological baryon density and mp is
the proton mass (e.g. Deng & Zhang 2014). The quantities Xp and
Yp denote the primordial mass fractions of hydrogen and helium,
respectively, and are set to Xp = 1 − Yp = 0.76 to be consistent
with TNG. We ignore the time evolution of n̄e,total due to stellar
nucleosynthesis because it is negligibly small. Introducing the free-
electron fraction at z, fe(z), the free-electron number density is
written as

n̄e(z) = fe(z) n̄e,total, (5)

where fe = 1 corresponds to full ionization. After hydrogen and
helium were fully ionized at z ∼ 3, fe is assumed to be close to
unity. However, current observational constraints on fe still have a
large variation (fe � 0.7–1, e.g. Fukugita & Peebles 2004; Shull et al.
2012; McQuinn 2016; Walters et al. 2019; Li et al. 2020). Note that
fe in equation (5) includes all free electrons, both inside and outside
of intervening galaxies. In other words, fe is the spatial mean fraction
averaged over all galaxies and the IGM. In this paper, we do not
introduce the free-electron fraction in IGM, fIGM. One reason is that
fIGM depends on the boundary between the galaxies and the IGM,
and that boundary is ambiguous. Another reason is that some FRB
signals may pass through an intervening galaxy; this probability may
be low, but it gives a large DM. We will measure fe from the TNG300
simulations in Section 3.

Similarly to ne, the DM can be decomposed into two terms:

DM(θ ; zs) = DM(zs) + δDM(θ ; zs). (6)

The mean and fluctuations of the DM can be written from equa-
tions (2)–(5) in the forms

DM(zs) = ∫ zs

0
cdz
H (z) W (z), (7)

δDM(θ ; zs) = ∫ zs

0
cdz
H (z) W (z)δe(r; z), (8)

with a kernel

W (z) = ρ̄b

mp

(
Xp + 1

2
Yp

)
fe(z)(1 + z). (9)

The mean baryon density is rewritten as ρ̄b = �b ρcr =
3H 2

0 �b/(8πG), where ρcr is the cosmological critical density.

2.2 The two-point statistics

This subsection discusses the angular correlation function and its
Fourier transform (i.e. the power spectrum) of the DM fluctuations.
Previously, several authors have studied the angular power spectrum
of the DM (e.g. Masui & Sigurdson 2015; Shirasaki et al. 2017;
Madhavacheril et al. 2019; Dai & Xia 2020). Here, we simply
summarize their results.8

The angular correlation function of the DM between θ1 and θ2 at
the same source redshift zs is defined as

ξ (θ12; zs) ≡ 〈δDM(θ1; zs) δDM(θ2; zs)〉. (10)

Because of the isotropy of the universe, the correlation function
is a function of the separation θ12 = |θ1 − θ2|. Throughout this
paper, we assume |θ12| 
 1, i.e. the flat-sky approximation is valid.
From equations (8) and (10), under the Limber and the flat-sky
approximations, the correlation function reduces to

ξ (θ12; zs) = 1

2π

∫ zs

0

cdz

H (z)
W 2(z)

∫ ∞

0
dkkPe(k; z)J0 (θ12kr(z)) , (11)

where J0 is the zeroth order Bessel function and k is the wavenumber
of the density fluctuations. The power spectrum of the free-electron
fluctuations is defined as

Pe(k; z) (2π )3 δ3
D(k + k′) ≡ 〈δ̃e(k; z)δ̃e(k′; z)〉, (12)

where δ̃e(k; z) is the Fourier transform of δe(r; z) and δD is the Dirac
delta function.

The Fourier transform of the DM fluctuations is given by

˜δDM(�; zs) =
∫

d2θ δDM(θ ; zs) e−i�·θ , (13)

where � = (�1, �2) is the two-dimensional vector of multipole mo-
ments. Similarly to Pe(k; z), the angular power spectrum of the DM
is defined as

C�(zs) (2π )2 δ2
D(� + �′) ≡ 〈˜δDM(�; zs)˜δDM(�′; zs)〉. (14)

From the above equations (10)–(14), the angular power spectrum is
obtained as

C�(zs) =
∫

d2θ ξ (θ ; zs) e−i�·θ ,

=
∫ zs

0

cdz

H (z)

W 2(z)

r2(z)
Pe

(
k = �

r(z)
; z

)
. (15)

This equation relates the 3D power spectrum of the free electrons
to the 2D power spectrum of the DM.

8A detailed discussion of the two-point statistics of projected random fields
is found in, e.g. section 2.4 of Bartelmann & Schneider (2001) and section
9.1 of Dodelson (2003).
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Table 1. Summary of the TNG300 simulations used in this paper: the numbers of baryon and dark-matter particles (Nbaryon,
Ndark), the average masses of baryon and dark-matter particles (mbaryon, mdark), the minimum gravitational softening length of

the gas cells (εgas, min), and the mean size of the gas cells (rgas ≡ L/N
1/3
baryon). The upper three runs follow both the gravitational

evolution and astrophysical processes, while the bottom one follows only the former. The side length of the simulation box is
L = 205 h−1 Mpc in all runs.

Nbaryon Ndark mbaryon(h−1M�) mdark(h−1M�) εgas, min(h−1kpc) rgas(h−1 kpc)

TNG300-1 25003 25003 7.4 × 106 4.0 × 107 0.25 82
TNG300-2 12503 12503 6.0 × 107 3.2 × 108 0.5 164
TNG300-3 6253 6253 4.8 × 108 2.5 × 109 1.0 328
TNG300-1-Dark – 25003 – 4.7 × 107 – –

Table 2. Output redshift z, comoving distance r(z), and snapshot number in
the TNG data set.

z r(z) (h−1Mpc) Snapshot

0 0 99
0.1 293 91
0.2 571 84
0.3 834 78
0.4 1083 72
0.5 1318 67
0.7 1747 59
1 2301 50
1.5 3034 40
2 3599 33
3 4411 25
4 4973 21
5 5390 17
6 5716 13
7 5978 11
8 6196 8

The variance of the DM is simply obtained by setting θ1 = θ2 in
equations (10) and (11):

σ 2
DM(zs) ≡ 〈[δDM(θ ; zs)]

2〉,
= 1

2π

∫ zs

0

cdz

H (z)
W 2(z)

∫ ∞

0
dkkPe(k; z). (16)

This is consistent with the analytical result in McQuinn (2014, their
section 2). Theoretical models of the ionized fraction fe(z) and the
power spectrum Pe(k; z) are required to compute the above two-point
statistics. We will calibrate these functions using TNG300 in the next
section.

3 C A L I B R AT I O N W I T H T N G 3 0 0

This section briefly introduces the TNG simulations (subsection 3.1)
and then measures the free-electron fraction fe(z) (subsection 3.2)
and the power spectrum Pe(k; z) (subsection 3.3).

3.1 The TNG simulations

We investigate the spatial distribution of free electrons in the universe
using the TNG data set9 (Marinacci et al. 2018; Naiman et al.
2018; Nelson et al. 2018; Springel et al. 2018; Pillepich et al.
2018b). The simulations follow the gravitational clustering of matter
(dark matter and baryons) as well as astrophysical processes such
as star and galaxy formation, gas cooling, and stellar and active

9The simulation data are available at http://www.tng-project.org.

Table 3. Mass fractions of gas, stars, and supermassive black holes to the
total baryons measured in TNG300-1. The values are given in percentages
(i.e. f gas + f star + f bh = 100 %). The gas is further decomposed into neutral
and ionized hydrogen (H0 and H+) and helium (He), which satisfy fgas �
fH0 + fH+ + fHe.

z f gas fH0 fH+ fHe f star f bh

0 96.8 1.4 71.9 23.3 3.2 0.02
1 97.7 0.9 73.2 23.5 2.3 0.01
3 99.3 0.9 74.6 23.8 0.7 5 × 10−3

5 99.8 1.3 74.5 24.0 0.2 1 × 10−3

6 99.9 74.0 1.9 24.0 0.1 <10−3

7 100.0 75.0 1.0 24.0 0.06 <10−3

8 100.0 75.5 0.4 24.0 0.03 <10−3

galactic nucleus (AGN) feedback. The gravitational evolution and
magneto-hydrodynamic processes were computed with the moving-
mesh code AREPO (Springel 2010). The simulations incorporate
astrophysical processes in a subgrid model, thereby enabling them
to follow the processes of galaxy formation and evolution. The
TNG project produced three sets of simulations in different-sized
cubic boxes, with three mass resolutions for each box size. Here,
we used the largest box (referred to as TNG300), with side length
L = 205 h−1 Mpc (� 300 Mpc) because our interest is the large-
scale distribution of free electrons. To check the numerical conver-
gence, we used the three resolutions from high to low (referred to as
TNG300-1 to -3, respectively). This box contains the same number
of dark matter and baryon particles. The number of particles and the
mass resolution are listed in Table 1. The TNG team also performed
DMO runs, in which the number of dark-matter particles was the
same as in TNG300. In this case, the N-body particles represent both
components (baryons and dark matter), but the simulations follow
the gravitational evolution only. Such simulations help to see the
impact of dark matter on the free-electron clustering. Here, we used
the highest resolution run (named TNG300-1-Dark). The TNG team
have released the simulation data at 20 redshifts in the range z =
0–12 (named ‘full’ snapshots). In this paper, we used all the data sets
up to z = 8, as listed in Table 2. The first column is the redshift z,
the second is the comoving distance to z and the third refers to the
TNG snapshot number.

Each baryon particle has one of three forms: gas, star, or supermas-
sive black hole. Free electrons are contained only in the gas particles.
At the initial redshift (z = 127), all the baryon particles are gas. As
time evolves, the gas falls into the haloes, and star formation begins in
high-density regions (Pillepich et al. 2018a). Some gas particles then
convert to stars or black holes. However, even at z = 0, most of the
baryon particles are still gas (the gas mass fraction is > 96 per cent).
The time evolution of each mass fraction measured in TNG300-1 is
summarized in Table 3. The mass fraction is obtained from the total
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Figure 2. Time evolution of the free-electron fraction measured in TNG300.
The purple, blue, and green symbols represent the results from TNG300-1,
-2, and -3 (from high- to low-resolution runs), respectively. The red curve is
the fit to TNG300-1 given in equation (17).

mass of each component in the box divided by the total baryonic mass
(= ρ̄bL

3). The TNG team followed the time evolution of the atomic
abundances of H, He, and seven other species (C, N, O, Ne, Mg, Si,
and Fe). The public data contains the atomic abundance in each gas
particle. For hydrogen, the data includes neutral (H0) and ionized
(H+) fractions. In Table 3, the gas mass fraction (f gas) is further
decomposed into neutral and ionized hydrogen (fH0 and fH+ ) and
helium (fHe), where fHe includes both neutral and ionized states. The
mass fraction of elements heavier than He is negligible. The hydrogen
is ionized abruptly at the epoch of cosmic reionization (between z =
5 and 6). We comment that the mass fraction of stars (fstar) reaches
3.2 per cent at z = 0, which is slightly smaller than the observed
values fstar = 6.0 ± 1.3 per cent (Fukugita & Peebles 2004) and
7 ± 2 per cent (Shull et al. 2012; Nicastro et al. 2018). Therefore,
the gas fraction fgas and the resulting free-electron fraction fe in
TNG300-1 may be overestimated by approximately a few per cent.

Previous work (Jaroszynski 2019) on the DM used the lowest
resolution run of Illustris: the side length of the box is 75 h−1 Mpc,
and it contains 2 × 4553 baryon and dark-matter particles. Therefore,
TNG300 has better mass resolution and a larger simulation volume.
Their work did not check the numerical convergence among the
different resolutions. Illustris is known to predict AGN feedback
that is too strong (e.g. Chisari et al. 2019), which may affect the
free-electron distribution in the haloes.

3.2 Free-electron abundance

The TNG team also provided the abundance of free electrons in
each gas particle, which is the total free-electron abundance for all
atoms (not only for hydrogen). By summing up all the gas particles
in each snapshot, we obtained the number density of free electrons
and its fraction, n̄e(z) and fe(z), as defined in equation (5). Here,
we measured fe(z) at the 16 redshifts in the range z = 0–8 listed in
Table 2. The result is plotted in Fig. 2. At high z (� 6), the gas is
still neutral (i.e. fe � 0). The fraction fe rises abruptly at the epoch of
hydrogen reionization (z ∼ 6) and increases further at the epoch of
helium reionization (z ∼ 4). At relatively low z (� 3), fe decreases
slightly because some fraction of the electrons becomes confined in

stars and black holes (see Table 3). A small fraction of the electrons
is in neutral hydrogen (H I and H2) in galaxies (fH0 ∼ 1 per cent in
Table 3; the cosmological H I distribution was recently studied using
hydrodynamic simulations in, e.g. Villaescusa-Navarro et al. 2018;
Ando et al. 2019).

The TNG300-1 result can be fitted by

fe(z) = a (z + b)0.02 [1 − tanh {c(z − z0)}] , (17)

with a = 0.475, b = 0.703, c = 3.19, and z0 = 5.42. Here, z0

corresponds to the epoch of hydrogen reionization. For z  z0, fe

approaches zero. On the other hand, for z → 0, fe → 2a � 0.95. This
fit agrees with the TNG300-1 results to within a deviation fe =
0.012 in the range z = 0–8. There are few per cent deviations among
the different resolution runs, and thus, this fit has the same level of
error. Note that our fe corresponds to the quantity fion defined in a
previous work (Jaroszynski 2019). Their result is slightly higher than
ours, but the difference is very small (fion � 0.98–0.99 in the range
z = 0–4, see their table 2).

We comment that the TNG simulations followed the ionizing state
of IGM using the time-dependent spatially uniform UV background
radiation (instead of solving radiative transfer equations) with cor-
rections for self-shielding in dense gas. This ionizing background
started at z = 6, and thus the results of fe at z ≥ 6 should be considered
with caution (see section 5.2 of Nelson et al. 2019; section 2.1.2 of
Pillepich et al. 2018a). In the following, the simulation data up to
z = 5 will be used.

3.3 Free-electron power spectrum

We next measured the power spectrum of free electrons in TNG300
following the standard procedure (see e.g. Springel et al. 2018,
their section 2.2). The TNG team provided the mass of free
electrons in each gas particle. To measure the density contrast,
we assigned the free-electron mass to 10243 regular grid cells in
the box using the cloud-in-cell interpolation with the interlacing
scheme (e.g. Jing 2005; Sefusatti et al. 2016). The Fourier transform
of the density field δ̃e(k) was then obtained with fast Fourier
transform (FFT).10 To explore smaller scales, we also employed
the folding method (Jenkins et al. 1998), which folds the particle
positions x into a smaller box of side length L/10 by replacing x
with x%(L/10) (where a%b denotes the reminder of a/b). This
procedure effectively increases the spatial resolution by 10 times.
The minimum and maximum wavenumbers in the 10243 cells
are kmin = 2π/L = 0.025 h Mpc−1 (where L = 205 h−1 Mpc) and
kmax = 512 kmin = 12.9 h Mpc−1, respectively. The folding scheme
enlarges kmax by 10 times. The power spectrum is reliable up
to the particle Nyquist wavenumber, which is determined by the
mean separation of the gas particles rgas in Table 1: kNyq = π /rgas.
The values of kNyq are 38.3 (19.1 and 9.6) h Mpc−1 for TNG300-1
(-2 and -3).

The power spectrum is measured as

Pe(k) = 1

Nmode

∑
|k′ |∈k

∣∣ δ̃e(k′)
∣∣2

, (18)

where the summation is performed in the spherical shell k − k/2 <

|k′| < k + k/2 and Nmode is the number of Fourier modes in
the shell with bin-width (log10k = 0.1). The spectrum Pe(k) in

10Fast Fourier Transform in the West (FFTW) at http://www.fftw.org.
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equation (18) contains the shot noise contribution

Pe,shot = L3

Neff
, (19)

where Neff is the effective number of gas particles in the box. Denoting
mi as the free-electron mass of the i-th gas particle, we have Neff =
(
∑

i mi)2/(
∑

i m
2
i ). If all gas particles have equal mass, then Neff =

Ngas (where Ngas is the number of gas particles). The shot noise was
subtracted from the measured Pe(k). Here, we measured Pe(k) up to
z = 5 because Pe(k) is noisy for z ≥ 6 owing to the low free-electron
abundance.

We also measured the matter power spectrum PDMO(k) in the
DMO run (TNG300-1-Dark in Table 1). This spectrum PDMO(k) can
be used to clarify the difference in clustering between free electrons
and dark matter.

Fig. 3 plots the measured power spectra at several redshifts (z =
0–3). The purple, blue, and green symbols are Pe(k), while the
grey circles are PDMO(k). The dotted lines denote the shot-noise
contribution. The vertical axis is k2Pe(k), which represents the
contribution to the DM variance per lnk from equation (16).
The figure shows that density fluctuations at k = 1–10 h Mpc−1

(corresponding to a scale of 2π/k � 1 Mpc) contribute most to
the DM variance. The shot noise is negligibly small around this
peak. The spectrum Pe(k) agrees with PDMO(k) at large scales
(k < 1 h Mpc−1) but is strongly suppressed at intermediate and
small scales (k � 1 h Mpc−1). Springel et al. (2018) previously
measured the power spectrum of the gas in the TNG simulations
and gave a physical explanation for this suppression: the stellar and
AGN feedback expels gas from the haloes and suppresses the gas
clustering, especially at low z, but gas cooling enhances clustering at
very small scales, k > 10 h Mpc−1. In fact, k2Pe(k) rises slightly for
k > 10 h Mpc−1, especially for the higher resolution run. The results
for Pe(k) at small scales (k � 10 h Mpc−1) do not converge among
the different-resolution runs owing to the lack of spatial resolution.
The orange-dashed curves are Halofit results from a fitting formula
for non-linear PDMO(k) (Smith et al. 2003; Takahashi et al. 2012).
These curves agree with the DMO simulation results very well.

To model Pe(k; z), we introduce the bias factor be(k; z) defined
by

b2
e (k; z) ≡ Pe(k; z)

PDMO(k; z)
. (20)

Fig. 4 plots the measured bias. The bias approaches unity in the small-
k limit, but it is suppressed at large k (� 1 h Mpc−1). At the largest
scales (i.e. the smallest k), the bias is very close to unity, although
it is slightly smaller than unity (by approximately a few per cent),
especially at high z.11 This is because the baryon-density fluctuations
gradually catch up to the dark-matter fluctuations after the epoch of
decoupling (at z � 1100). The red curves are our fits to TNG300-1,
where the bias is calibrated at 10 redshifts in the range z = 0–5 (z =
0, 0.2, 0.4, 0.7, 1, 1.5, 2, 3, 4, and 5). The range of k included in
the fit is determined such that the TNG300-1 and -2 results agree to
within 20 per cent. The bias factor is fitted by the function

b2
e (k; z) = b2

∗(z)

1 + {k/k∗(z)}γ (z) , (21)

11Shaw, Rudd & Nagai (2012) previously measured b2
e (k) from their hy-

drodynamic simulations. Their result is somewhat smaller than ours in the
low-k limit: b2

e (k) = 0.6–1 and varies with z (see the right-hand panel of
their fig. 2). However, according to the cosmological perturbation theory
of mixed components (baryons and dark matter), the baryon-fluctuation
amplitude is only slightly smaller (< 4 per cent) than the dark matter one
for k ≤ 0.1 h Mpc−1 and z ≤ 3 (e.g. Somogyi & Smith 2010, their fig. 1).

with

b2
∗(z) = 0.971 − 0.013 z,

γ (z) = 1.91 − 0.59 z + 0.10 z2,

k∗(z) = 4.36 − 3.24 z + 3.10 z2 − 0.42 z3,

where k∗ has units of h Mpc−1. This function agrees with the
simulation results for Pe(k; z)/PDMO(k; z) to within 3.5 (10.8) per cent
for k < 2 (10) hMpc−1 in the range z = 0–5.

The user can compute Pe(k) from the bias factor (21) and the
PDMO(k) model. Accurate fitting formulas for non-linear PDMO(k)
have been presented, such as Halofit (Smith et al. 2003; Takahashi
et al. 2012), HMcode (Mead et al. 2015), and the Mira-Titan
emulator (Lawrence et al. 2017). These formulas agree with the latest
dark-matter simulations to within 5 per cent up to k = 10 h Mpc−1

(e.g. Smith & Angulo 2019, their fig. 6). Halofit and HMcode are
implemented in public codes such as CAMB12 and CLASS.13

4 MA K I N G MO C K SK Y M A P S O F T H E D M

This section describes our procedure for making mock maps of the
DM. We placed the simulation boxes along the line-of-sight direction
using periodic boundary conditions, as shown in Fig. 5. The observer
is placed at a corner of the box at z = 0. The field of view was set
to be a square of 6 × 6 deg2. To avoid repeating the same structure
along the line of sight, we tilted the main axis (denoted by the dotted
line) of the line of sight by 5◦ from the box axis. The lower z box
in Table 2 was placed closer to the observer. For a given comoving
distance r, we used the box nearest to r. For instance, from Table 2,
the lowest z box (at z = 0) was used for r/(h−1 Mpc) ≤ 293/2, the
second-lowest box (at z = 0.1) was used for 293/2 < r/(h−1 Mpc) ≤
(293 + 571)/2 and so on. Note that, due to the periodicity of the box,
for r > 205 h−1 Mpc/(6 deg) ≈ 2.0 h−1 Gpc, the same structure may
appear more than once in the field of view.

Free electrons are included in the gas particles. For each gas
particle, the TNG team provided the spatial position, gas mass mgas,
density ρgas, and free-electron number density ngas

e . We assume that
each gas particle is described by a sphere of constant density with
the radius rgas determined via mgas = (4πr3

gas/3)ρgas.
The DM is rewritten from equation (2) as

DM(θ ; zs) =
∫ rs

0
drne(r; z) (1 + z(r)) , (22)

where rs ≡ r(zs) is the comoving distance to the source, and θ denotes
the angular position in the field of view, i.e. θ = (θ1, θ2) with |θ1, 2|
≤ 3 deg. Light rays are emitted from the observer and propagate
along straight lines in the field. The DM is computed by summing
the contributions from all gas particles intersecting the light-ray
path:

DM(θ ; zs) =
∑

i

n2D
e,i (bi)(1 + zi), (23)

where n2D
e,i is the free-electron column density of the i-th gas particle

and bi is the impact parameter (i.e. the minimum separation between
the ray path and the position of the i-th particle). The redshift zi is
calculated from the comoving distance using equation (1). Assuming
that the i-th gas particle has a constant density ngas

e,i and radius rgas, i,
its column density profile is given by

n2D
e,i (bi) = 2 ngas

e,i

√
r2

gas,i − b2
i , (24)

12https://camb.info/
13http://class-code.net/
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Statistical modelling of the cosmological DM 2621

Figure 3. Free-electron power spectra Pe(k) at z = 0–3 measured from TNG300. The purple, blue, and green symbols are the results from TNG300-1, -2 and
-3, respectively. The grey circles are the matter power spectrum PDMO(k) in the dark-matter-only run (TNG300-1-Dark). The orange-dashed curves are Halofit
results for non-linear PDMO(k) (Takahashi et al. 2012). The solid red curves are our fits: the free-electron bias factor, b2

e (k) in equation (21), times the Halofit.
The green- and blue-dotted lines are the shot noise for TNG300-3 and -2, respectively. In the middle and right-hand panels, the results are multiplied by factors
of 2–5 (as indicated in each panel) to make the presentation clearer.

Figure 4. Similar to Fig. 3, but showing the free-electron bias factor defined as b2
e (k) = Pe(k)/PDMO(k). The red curves are the fits to TNG300-1 given by

equation (21). The dotted lines denote the shot noise, and the horizontal dashed lines are be = 1.
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2622 R. Takahashi et al.

Figure 5. Schematic picture of our ray-tracing simulation setting. The grey squares represent the TNG300 simulation boxes with periodic boundary conditions.
The field of view is 6 × 6 deg2.

for bi < rgas, i, and n2D
e,i (bi) = 0 otherwise. The DM in equation (23)

is computed along the straight-line ray-path up to zs = 3. We
comment that each light ray passes through a sufficient number
of gas spheres. For instance, in TNG300-1, there are 1.0 × 104,
2.2 × 104, and 3.7 × 104 gas spheres intersecting a single light
ray up to zs = 0.4, 1, and 2, respectively. For TNG300-2 (-3),
this number simply decreases by a factor of 2(4). If the number
of intersecting gas spheres follows a Poisson distribution, the
accuracy of the DM in equation (23) is roughly given by (the
number)−1/2.

We homogeneously emitted 54002 rays through the 6 × 6 deg2

field and computed their DMs using equation (23). The resulting
angular resolution is 4 arcsec (= 6 deg/5400). We stored the DM
data up to zs = 3 at every zs = 0.02 step. To see the statistical
variation among the maps, we prepared 10 such maps14 by recycling
the same simulation data. Here, the recycling procedure is as follows:
(i) swap the coordinates (e.g. x↔y) for all particles in the box, (ii)
shift the coordinates (e.g. x → x + x0 with an arbitrary constant x0

where the coordinate origin can be freely chosen under the periodic
boundary conditions) for all particles, and (iii) finally place these
boxes as in Fig. 5 and perform the same ray-tracing calculation. The
swapped coordinates (i) and the coordinate shift (ii) were randomly
chosen for each map. We prepared the 10 maps for each of the three
resolution runs. We checked that the observer does not belong to
any halo (the TNG also provides halo catalogues containing halo
positions and radii), and thus, the measured DM does not contain the
observer’s halo contribution.

Fig. 6 is a contour map of the DM from TNG300-1 at zs = 1.
This is one of the 10 maps. The red (blue) regions correspond to
foreground clusters or galaxies (voids). We present an analysis of the
10 maps in the following section.

5 R ESULTS

This section presents measurements of the DM statistics from
the mock maps: the mean and variance (subsection 5.1),
probability distribution of the DM (subsection 5.2), probabil-
ity distribution of zs for a given DM (subsection 5.3), an-
gular power spectrum (subsection 5.4) and angular correlation
function (subsection 5.5). Comparisons with the analytical re-
sults using the fitting functions (given in Section 3) are also
presented.

14This number 10 is limited by our hard-disc storage, but sufficient for our
studies.

Figure 6. Contour plot of the DM at source redshift zs = 1. The field of
view is 6 × 6 deg2. The bottom panel is a zoom-in map of 1 × 1 deg2. In this
and the following figures, DM refers to the cosmological DM (excluding the
Milky Way and host-galaxy contributions).

5.1 Mean and variance of the DM

We measured the mean and variance of the DM from the 10 mock
maps. As there are 54002 data points in each map, the total number
of rays (=10 × 54002 � 2.9 × 108) is sufficient for statistical
analysis. Fig. 7 plots the mean with the standard deviation as a
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Figure 7. Mean with 1σ standard deviation of the DM as a function of source
redshift zs. The purple, blue, and green symbols are the simulation results
measured from the 10 mock maps (one of them is plotted in Fig. 6). The solid
(dashed) red curve denotes the analytical predictions for the mean (standard
deviation) discussed in Section 2. The dash–dotted orange curve is the same
as the solid one, but assuming fe = 1. In this and following figures, the theory
refers to the analytical model (in Section 2) using the fitting formulas for fe(z)
and Pe(k; z) (in Section 3).

function of zs. The simulation results are measured at several values
of zs (=0.2, 0.4, 0.7, 1, 1.5, and 2). The mean and variance are
obtained by using all the rays in the 10 maps. The solid and dashed
red curves are the analytical mean and standard deviation given in
equations (7) and (16), respectively. Here and hereafter, the fitting
formulas for fe(z) and Pe(k; z) given in Section 3 are used to compute
the analytical predictions, and the theory refers to the analytical
model (in Section 2) using these fitting formulas. The figure shows
that the theory agrees with the simulations very well. The mean DM
is approximately proportional to zs, DM(zs) ≈ 1000 × zs pc cm−3,
which is consistent with previous work (e.g. Ioka 2003). The dash–
dotted orange curve is the mean DM for the fully ionized case (fe = 1),
as assumed in previous studies (Ioka 2003; Inoue 2004). This simple
assumption only slightly overestimates the mean by approximately
a few per cent in this redshift range.

Fig. 8 is similar to Fig. 7 but plots only the standard deviations.
The agreement between the theory and the simulations is within
10–20 per cent. At large zs (� 1), the theory gives slightly lower
values than the simulations. This is because Pe(k) was fitted up
to k = 10 h Mpc−1, and gas cooling slightly enhances Pe(k) for
k > 10 h Mpc−1 (see Fig. 3), so fluctuations smaller than this
fitting range provides additional contributions to σ DM, especially
at high zs. The TNG300-1 and -2 results almost converge because
fluctuations with k = 1–10 h Mpc−1 contribute most to σ DM (see
also subsection 3.3), and these runs resolve this scale sufficiently.
The TNG300-3 results give a slightly smaller result because of the
lowest resolution. From this figure, the standard deviation is roughly
given by σDM(zs) ≈ 230 × z0.5

s pc cm−3, which is consistent with the
halo-model prediction (McQuinn 2014; Macquart et al. 2020, see
also Kumar & Linder 2019). The previous ray-tracing simulation
(Jaroszynski 2019, see the dashed line in their fig. 1) gave σ DM �
200 and 300 pc cm−3 at zs = 1 and 2, respectively, which are also
consistent with our results.

Previously, Shirasaki et al. (2017) and Pol et al. (2019) studied the
DM statistics using their dark-matter simulations, assuming the free-
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Figure 8. Standard deviation of the DM as a function of zs. The purple, blue,
and green symbols are the TNG300-1, -2, and -3 results. The solid red curve
denotes the analytical prediction given in equation (16). The dash–dotted
orange curve is the same as the solid one, but assuming that the free electrons
exactly trace the dark matter (i.e. be = 1).

electron distribution to be the same as the dark matter distribution
(i.e. be = 1). The dash–dotted orange curve in Fig. 8 corresponds to
this case. This assumption may overestimate σ DM by a factor of 2.

We comment that although the TNG300 simulations do not contain
density fluctuations larger than the box size L (= 205 h−1 Mpc), this
does not affect the results for σ DM. If we set the large-scale cut-
off Pe(k) = 0 for k < 2π/L � 0.03 h Mpc−1 in equation (16), the
variance σ 2

DM is underestimated by < 0.5 per cent in the range zs =
0–2, because k2Pe(k) at such a large scale is too small to give a
contribution.

5.2 Probability distribution of the DM

Fig. 9 plots the probability distribution function (PDF) of the
DM for several source redshifts (zs = 0.4, 0.7, 1, and 1.5). The
coloured histograms correspond to the different TNG resolutions,
which are consistent with each other. The PDF is highly skewed,
especially at low zs, owing to the strong non-Gaussianity of the
density fluctuations. The red curves are lognormal distributions
with the mean and variance given by the DM-map measurements
from TNG300-1. At higher zs, the simulations approach lognormal
distributions. This model is roughly consistent with the simulations,
but it has broader tails around the peak and is less skewed than the
simulations.

Fig. 10 shows a comparison of the PDF with previous fitting
formulas. Das & Ostriker (2006) measured the PDF of the projected
matter density using dark-matter N-body simulations. Their purpose
was to investigate the PDF of the weak-lensing convergence field.
They proposed a modified lognormal distribution (given in their equa-
tion 11). Dolag et al. (2015) performed cosmological hydrodynamic
simulations and measured the PDF. Their formula depends only on zs

(given in their equation 6). Macquart et al. (2020) proposed a skewed
Gaussian PDF calibrated by the halo-model prediction (McQuinn
2014). Here, we used their best-fitting model (their equation 4 with
α = β = 3). In Das & Ostriker (2006) and Macquart et al. (2020),
the formulas contain free parameters, but they are fully determined
by the mean and variance of the DM measured from TNG300-1. The
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Figure 9. Probability distributions of the DM for several source redshifts zs, as measured from the mock maps. The purple, blue, and green histograms are
the TNG300-1, -2, and -3 results. The vertical dashed line denotes the mean DM measured from TNG300-1. The red curves are lognormal distributions. The
vertical axis is in arbitrary units.
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Figure 10. Comparison of probability distributions of the DM at zs =
0.5. The purple histogram is the TNG300-1 result, while the curves denote
previous fitting formulas: Das & Ostriker (2006, red-dashed), Dolag et al.
(2015, dotted brown), and Macquart et al. (2020, dash–dotted orange) in
subsection 5.2.

figure shows that all the formulas show better agreement with the
simulation than the simple lognormal model.

5.3 Probability distribution of the source redshift for a given
DM

Since the DM was calculated at every source redshift step zs =
0.02 up to zs = 3 for each light ray (see Section 4), we can obtain the
source redshift zs corresponding to a given DM. Using all the rays
(=2.9 × 108), the distribution of zs for a given DM is also obtained.
Fig. 11 plots the mean and 1σ standard deviations for the source
redshift zs inferred from the measured DM. The coloured symbols
are the simulation results, while the dash–dotted orange curve is
the analytical DM–zs relation (equation 7). As clearly shown in the
figure, the DM–zs relation underestimates zs, especially at low zs,
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Figure 11. Source redshift inferred from the measured DM. The symbols
with 1σ error bars are the simulation results. The dash–dotted orange curve
is the analytical DM-zs relation (7). The solid (dashed) red curve is the fit to
the mean (1σ error bars), given in equation (25).

owing to the highly skewed distribution of the DM (shown in Figs 9
and 10). As the peak of the DM is lower than the analytical mean for
a given zs in Fig. 9, the inferred zs is higher than the analytical mean
for a given DM. This trend is consistent with a previous finding
(Pol et al. 2019, their fig. 3). The figure shows that the standard
deviation of zs is approximately 20 per cent for DM > 500 pc cm−3

but becomes larger for a nearer source. As the statistics of zs are
useful in searching for the host galaxy of an FRB from the measured
DM, we fitted the mean z̄s and standard deviation σzs from TNG300-1
in the range DM = 100–2000 pc cm−3:

z̄s(DM) = 0.015 DM0.26 + 9.4 × 10−4 DM,

σzs (DM) = 0.0024 DM0.61 + 1.2 × 10−5 DM, (25)

where DM is in units of pc cm−3. These formulas are plotted as the
solid and red-dashed curves in Fig. 11. Though the relation (25) was
derived from TNG300-1 for a specific fe(z) model, it may be used for
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Figure 12. Probability distributions of the source redshift for several given DMs (as denoted over each panel, in units of pc cm−3), as measured from the mock
maps. The purple, blue and green histograms are the TNG300-1, -2 and -3 results. The vertical dashed-orange lines are the analytical DM–zs relation (7). The
red curves are Gaussian fits with mean and variance given by equation (25). The vertical axis is in arbitrary units.

any fe(z) model, so long as fe(z) does not evolve strongly with time
(which is valid in our case at z < 2, where fe � 0.95, as shown in
Fig. 2). In this case, the relation (25) may be used by replacing DM
with DM × (0.95/fe) for an arbitrary fe.

Fig. 12 plots the PDFs of the zs for given DMs. The histograms
are the simulation results, while the vertical dashed-orange lines
are the values of zs inferred from the DM–zs relation (7). The
analytical expectation of z̄s is thus systematically lower than the
true value by 10–20 per cent, especially for a low DM. The red
curves are Gaussian distributions with mean and variance given by
equation (25). The PDF of the zs is well described by a Gaussian.

Walker, Ma & Breton (2020) recently derived a PDF of the zs

by a different approach. Their PDF is based on Bayes’ theorem
and uses their DM probability distribution and a given FRB redshift
distribution. Their PDF (in their Fig. 5) seems consistent with ours,
but their result depends on the prior FRB redshift distribution.
Hackstein et al. (2020) performed a similar analysis using the same
approach.

5.4 Angular power spectrum of the DM

We measured the angular power spectrum of the DM in the same
way as discussed for the free-electron power spectrum in subsection
3.3. The Fourier transform of the DM fluctuations in the i-th map
(i = 1, 2, ···, 10) is denoted as ˜δDMi(�; zs) from equation (13). Then
the power spectrum for this map is obtained as

C�,i(zs) = 1

Nmode,�

∑
|�′ |∈�

∣∣∣ ˜δDMi(�
′; zs)

∣∣∣2
, (26)

where the summation is performed in the annulus � − �/2 <

|�′| < � + �/2, and Nmode, � is the number of Fourier modes in
the annulus with bin-width (log10� = 0.1). We measured C�, i(zs)
for the 10 maps to calculate its mean and variance among the
maps.

Fig. 13 shows the angular power spectra of the DM at zs =
0.4 and 1. The symbols with error bars denote the simulation
results for the mean and standard deviation among the maps. Here,
the minimum multipole is determined by the side length of the

Figure 13. Angular power spectra of the DM at zs = 1 (upper panel) and
0.4 (lower panel). The angular separation θ corresponding to the multipole
� is θ ∼ π/� = 1 deg(�/180)−1. The purple, blue, and green symbols are
the TNG300-1, -2, and -3 results, respectively. The mean and 1σ error bars
(=standard deviations) are measured from the 10 mock maps. The field of
view is 6 × 6 deg2, and the error bars scale as [(survey area)/(36 deg2)]−1/2.
The solid red curves are the analytical predictions (15). The red-dashed curves
are the same as the solid ones, but they include the effect of the finite size of the
simulation box. The dotted grey lines denote shot noise from the host galaxies
(σ 2

DM,host/nhost) with the intrinsic scatter of DMhost, σDM,host = 50 pc cm−3,

and the number densities nhost = 0.1, 1, and 10 deg−2 from left to right.

map: �min = 2π/(6 deg) = 60. The angular resolution of the maps
(= 4 arcsec = 6 deg/5400) is good enough to resolve the signal up
to � = 104. If C� obeys a Gaussian distribution, the error bars scale
in proportion to [(survey area)�]−1/2, where � is the bin-width.
The solid red curves are the theory (15). The red-dashed curves
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Figure 14. Contribution from different redshifts to the angular power
spectrum of the DM. The dotted lines are the same shot noise as in Fig. 13.

include the effect of the finite size of the simulation box, where we
simply set Pe(k) = 0 for k < 2π /L in equation (15). This effect only
slightly suppresses C� at large scales (� < 100). The theory and
simulations agree well over a wide range of �, but the simulations
are slightly suppressed at small � (<103). This may be caused by
the sample variance of the 10 maps (in other words, 10 maps may
not be a sufficient number to measure the mean of C� precisely).
We comment that the power spectra C� at different � (� 102) are
correlated due to the non-Gaussian free-electron fluctuations (the
non-Gaussian covariance between different � for the weak-lensing
power spectrum was discussed in, e.g. Sato et al. 2009). The non-
Gaussianity is more important for larger � or lower zs. The peak
of �2C� in this figure roughly corresponds to the peak of k2Pe(k) in
Fig. 3 via �peak � kpeakr = 2000 [kpeak/(2 h Mpc−1)] [r/(1 h−1 Gpc)]
from equation (15).

In actual measurements of C�, as indicated by several authors
(e.g. Shirasaki et al. 2017; Madhavacheril et al. 2019), C� at small
scales is strongly contaminated by shot noise from the host-galaxy
contribution, DMhost. The shot noise is given by

Cshot = σ 2
DM,host

nhost
, (27)

where σ DM, host is the intrinsic scatter of DMhost, and nhost is the
surface number density per steradian. The shot noise is plotted in
Fig. 13 for the cases σDM,host = 50 pc cm−3 and nhost = 0.1, 1 and
10 deg−2 as illustrative examples. Roughly, the signal must exceed
the shot noise in order to be detectable. The figure shows that the
small-scale signals are difficult to detect, which is consistent with
the previous indication.

Fig. 14 plots the contribution from different redshifts to C�. At
smaller (larger) multipoles �, nearby (distant) structures mainly
contribute to C� because they appear larger (smaller) in the sky.
Especially for � < 10, local structures at z < 0.01 (corresponding to
r < 30 h−1 Mpc) mainly determine the signal.

We comment that the analytical prediction of C� is less accurate
for very small � (< 10) because it was derived under the flat-sky
approximation. The accuracy of the Limber and flat-sky approxi-
mations for projected galaxy clustering and weak-lensing statistics
has been discussed in, e.g. Kilbinger et al. (2017) and Fang et al.
(2020). Further studies are necessary to estimate the accuracy of
these approximations in the DM statistics.

Figure 15. Angular correlation functions of the DM at zs = 1 (upper panel)
and 0.4 (lower panel). The purple, blue, and green symbols are the TNG300-
1, -2, and -3 results, respectively. The mean and 1σ error bars (=standard
deviations) are measured from the 10 mock maps. The field of view is 6 ×
6 deg2, and the error bars scale as [(survey area)/(36 deg2)]−1/2. The solid
(dashed) red curves denote the analytical mean from equation (11) (including
the finite-simulation-box effect discussed in subsection 5.4).

5.5 Angular correlation function of the DM

From equation (10), the correlation function in the i-th map is given
by

ξi(θ ; zs) = 1

Npair

∑
|θ 1−θ 2|∈θ

{
DMi(θ1; zs) − DM(zs)

}

×{
DMi(θ2; zs) − DM(zs)

}
, (28)

where the summation is done in the range θ − θ/2 < |θ1 − θ2| <

θ + θ/2, and Npair is the number of DM pairs in the bin-width
log10θ = 0.1. The mean DM is estimated from the 10 maps.
Similarly to C�, we measured ξ i(θ ) for each of the 10 maps to
estimate its mean and variance among the maps. We comment that
C� and ξ (θ ) are not independent but rather are related via the Fourier
transform.

Fig. 15 plots the angular correlation functions at zs = 0.4 and 1. The
simulation results for the mean and standard deviations are obtained
from the 10 maps. The standard deviations increase near the scale
of the survey area (=6 deg) because the number of independent DM
pairs decreases. The solid red curves are the analytical mean (11).
The red-dashed curves include the effect of the finite simulation
box, discussed in subsection 5.4. The theory agrees well with the
simulations but slightly overestimates them at θ � 1 deg and zs =
0.4. This discrepancy may be caused by the sample variance. We
comment that the simulation results between different values of θ

are strongly correlated (see equation 30).
Finally, Fig. 16 plots the analytical correlation functions for a full-

sky measurement. This figure shows the analytical results only but
covers larger angular scales than Fig. 15. The solid red curves are
the theory (11), which are the same as in Fig. 15. Its asymptotic
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Figure 16. Angular correlation functions of the DM for a full-sky measure-
ment at zs = 1 (upper panel) and 0.4 (lower panel). The solid red curves denote
the analytical mean (11). The horizontal orange-dashed lines are the simple fit
to the red curves given in equation (29). The shaded area denotes the analytical
standard deviation (30) determined by the survey area and the shot noise
from the host galaxies, with σDM,host = 50 pc cm−3 for nhost = 0.1 deg−2

(light grey), 1 deg−2 (grey), and 10 deg−2 (dark grey). The dotted black
curves denote the standard deviation without the shot noise (i.e. nhost → ∞).
The standard deviation simply scales as [(survey area)/(4π )]−1/2. The down
arrows in the lower panel denote the average angular separation of the host
galaxies (i.e. n

−1/2
host ) for nhost = 0.1, 1 and 10 deg−2 from right to left.

behaviour at large θ can be described by a simple power law:

ξ (θ ; zs) ≈ 2400

(
θ

deg

)−1

pc2 cm−6 for θ � 1 deg. (29)

This is plotted by the horizontal orange-dashed lines. We checked
that this fit works well at zs � 0.3 (i.e. it is insensitive to zs,
because such a large-scale signal is mainly determined by nearby
structures, as shown in Fig. 14). Note that equation (29) simply
scales as ∝ (fe/0.95)2 for an arbitrary fe. The grey-shaded regions
represent the standard deviation under the assumption of Gaussian
density fluctuations (which is valid in the large-scale limit). In this
case, the covariance between ξ (θ1; zs) and ξ (θ2; zs) is given by
(Joachimi, Schneider & Eifler 2008)

Cov [ξ (θ1; zs)ξ (θ2; zs)] =
1

SW

∫ ∞

0

�d�

π
J0(�θ1)J0(�θ2) [C�(zs) + Cshot]

2 , (30)

where SW is the survey area in steradians. The covariance is
determined by the survey area at all scales and by the shot noise at
small scales. The diagonal element (i.e. θ1 = θ2) corresponds to the
variance. In this plot, the shot noise of the host galaxies is considered
for the same three cases as in Fig. 13. The dotted black curves denote
the standard deviation without the shot noise. This figure suggests
that the density nhost = 10 deg−2 is high enough to neglect the shot
noise in the plotted range (θ > 0.1 deg). For nhost = 0.1 deg−2, the
shot noise affects the standard deviation even at very large scales
(θ � 10 deg). At small scales, non-Gaussian fluctuations become
important, and thus, the analytical prediction (30) underestimates

the results. On larger scales, the standard deviation increases because
there are fewer independent DM pairs in the full sky (i.e. the large-
scale signal is limited by the cosmic variance). The down arrows in
the lower panel indicate the average angular separation for a given
nhost. Roughly, a signal larger than this scale can be measured. In the
near future, when thousands of FRBs are available over the entire sky,
we expect the correlation signal at θ � 3 deg (NFRB/4000)−1/2 to be
detected (where NFRB is the number of FRBs and the corresponding
number density is nhost � 0.1 deg−2(NFRB/4000)).

Very recently, Xu & Zhang (2020) reported the first detection of
the angular two-point correlation of the DM using 112 FRBs. After
subtracting the Milky Way contribution, they measured a statistical
quantity – the so-called structure function D(θ ) – which is related
to ξ (θ ) as D(θ ) = const. − 2ξ (θ ). Their result, plotted in their
fig. 3(b), is orders of magnitude larger than our analytical expectation
(29), although their error bars are still large. More FRB samples are
required to determine whether their signal is of cosmological origin
or not.

6 D ISCUSSION

6.1 Host-galaxy contribution

So far we have not discussed the host-galaxy contribution because
there are two uncertainties in modelling it. First, the host-galaxy
properties show significant diversity among the ∼10 currently
identified host galaxies (e.g. Tendulkar et al. 2017; Prochaska et al.
2019; Macquart et al. 2020). For instance, the repeating source
FRB 121102 is located in a dwarf galaxy, while four other sources
identified by ASKAP are in massive galaxies (Chatterjee et al. 2017;
Bhandari et al. 2020). The spatial positions of the FRBs in their
host galaxies also show variations from the centre to the outskirts.
Secondly, the resolution of TNG300 is not fine enough to resolve
the inner structure of a host galaxy. These large-box simulations are
suitable for studying the cosmological distribution of free electrons,
but to study the interiors of galaxies, finer resolution (but smaller
box) runs – such as TNG50 and TNG100 – are more suitable. Zhang
et al. (2020) and Jaroszynski (2020) recently studied the host-galaxy
contribution using TNG100.

When Pol et al. (2019) distributed the sources at a given zs

in their DM simulation, they compared two cases: (i) the sources
are distributed randomly, and (ii) its distribution is proportional to
the local density contrast. They found that the latter significantly
decreased the variance of the cosmological contribution, σ 2

DM. Their
results suggest that σ DM also depends on host-galaxy properties such
as its type (elliptical or spiral), mass, or galaxy bias. More studies
are needed on this topic, and we leave this for future work.

6.2 Comparison with other hydrodynamic simulations

Hydrodynamic simulations are the most reliable theoretical tool for
studying the free-electron distribution. The cosmological DM has
been studied using several simulations, such as Magneticum (Dolag
et al. 2015), Illustris (Jaroszynski 2019), and TNG300 (this work).
Although these previous results are fairly consistent with ours (see
Section 5), a more detailed quantitative comparison among various
hydrodynamic simulations is desirable. The free-electron distribution
in haloes depends strongly on the stellar and AGN feedback model
that expels internal gas to the outside a galaxy.

Lim et al. (2020) recently studied the number density profile of
free electrons in haloes with masses of 1012−14.5 M� using three hy-
drodynamic simulations of Illustris, TNG300, and EAGLE (Schaye
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et al. 2015). These simulations show a discrepancy of ∼ 30 per cent
at the halo radius R500, as shown in their figs 5 and 6 (where R500

is the radius within which the mean density is 500 times larger
than the mean cosmological background density). The discrepancy
is larger for a lower mass halo, especially at smaller radius, because
such haloes are more sensitive to the feedback model. For instance,
Illustris predicts a low inner profile due to strong feedback. In the
halo model, Pe(k) at small scales (k � 1 h Mpc−1) is determined by
the halo mass function and the free-electron density profile in the
haloes. Therefore, a similar level of discrepancy is probably present
in Pe(k).

Because the DM variance is sensitive to k2Pe(k) around the peak (k
≈ 1–10 h Mpc−1), the uncertainty in the feedback model may affect
the variance. The angular power spectrum of the DM at small scales
(� > 103) is also sensitive to the feedback. However, because its
small-scale signal is strongly contaminated by the shot noise (see
Fig. 13), the feedback effect will be difficult to observe in C�.

7 C O N C L U S I O N S

We have investigated the basic statistics of the cosmological DM us-
ing the state-of-the-art hydrodynamic simulations, IllustrisTNG300.
Our main purpose is to provide an analytical model for data analysis
on the DM statistics.

First, we measured the free-electron fraction fe(z) and its power
spectrum Pe(k; z) from TNG300, which are key ingredients in the
DM statistics. It turns out that Pe(k; z) is consistent with the DMO
power spectrum PDMO(k; z) at large scales (k � 1 h Mpc−1), but it is
strongly suppressed at small scales (k � 1 h Mpc−1) owing to stellar
and AGN feedback. As a result, the free-electron fluctuations on
scales ≈ 1 Mpc contribute most to the DM variance (because k2Pe(k;
z) has a peak around that scale). To model Pe(k; z), we introduced the
free-electron bias factor defined by b2

e (k; z) = Pe(k; z)/PDMO(k; z).
We then provided simple fitting functions calibrated over a wide
range of scales and epochs: fe(z) for z = 0–8 in equation (17) and
be(k; z) for k < 10 h Mpc−1 and z = 0–5 in equation (21). These
fitting functions will be useful for future statistical analyses of the
free-electron distribution.

Next, we prepared 10 mock sky maps of the DM using the
TNG300 data, based on standard ray-tracing techniques. We then
measured various DM statistics, such as its mean and variance, PDF
of the DM, PDF of the source redshift zs for a given DM, angular
power spectrum, and angular correlation function. We calculated the
analytical predictions using the fitting formulas for fe(z) and Pe(k;
z) and then validated them against the mock DM measurements.
Basic statistics such as the mean, variance, and PDF of the DM
were consistent with previous work. The PDF of the DM is highly
skewed, while the PDF of the zs is well approximated by a Gaussian.
We provided a source redshift–DM relation – zs = zs(DM) in
equation (25) – which helps in identifying the host galaxies of FRBs
from the measured DMs. The angular correlation function was also
computed in subsection 5.5, and we expect it to be detected when
thousands of FRBs are available in the coming years.

Throughout this paper, we compared the TNG300 results with
three resolution runs to see the numerical convergence. We confirmed
that our conclusions do not depend on the resolution, because
all the runs resolve the dominant length-scale of the free-electron
fluctuations (≈ 1 Mpc) sufficiently. Even so, because the gas dis-
tribution in haloes is sensitive to the feedback model, quantitative
comparisons with other hydrodynamic simulations are required for
further systematic checks. The presented analytical model for the DM
statistics will be updated easily by re-calibrating the fitting functions

for fe(z) and Pe(k; z) using more accurate future hydrodynamic
simulations.
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