
MNRAS 502, 2087–2096 (2021) doi:10.1093/mnras/stab212
Advance Access publication 2021 January 25

Improving estimates of the growth rate using galaxy–velocity correlations:
a simulation study

Ryan J. Turner ,‹ Chris Blake and Rossana Ruggeri
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia

Accepted 2021 January 21. Received 2021 January 8; in original form 2020 July 17

ABSTRACT
We present an improved framework for estimating the growth rate of large-scale structure, using measurements of the galaxy–
velocity cross-correlation in configuration space. We consider standard estimators of the velocity autocorrelation function, ψ1

and ψ2, the two-point galaxy correlation function, ξ gg, and introduce a new estimator of the galaxy–velocity cross-correlation
function, ψ3. By including pair counts measured from random catalogues of velocities and positions sampled from distributions
characteristic of the true data, we find that the variance in the galaxy–velocity cross-correlation function is significantly reduced.
Applying a covariance analysis and χ2 minimization procedure to these statistics, we determine estimates and errors for the
normalized growth rate fσ 8 and the parameter β = f/b, where b is the galaxy bias factor. We test this framework on mock
hemisphere data sets for redshift z < 0.1 with realistic velocity noise constructed from the L-PICOLA simulation code, and find
that we are able to recover the fiducial value of fσ 8 from the joint combination of ψ1 + ψ2 + ψ3 + ξ gg, with 15 per cent accuracy
from individual mocks. We also recover the fiducial fσ 8 to within 1σ regardless of the combination of correlation statistics used.
When we consider all four statistics together we find that the statistical uncertainty in our measurement of the growth rate is
reduced by 59 per cent compared to the same analysis only considering ψ2, by 53 per cent compared to the same analysis only
considering ψ1, and by 52 per cent compared to the same analysis jointly considering ψ1 and ψ2.

Key words: techniques: radial velocities – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Peculiar velocities are the local velocities of galaxies relative to the
motion expected from the general expansion of the Universe. These
velocities, which may be directly measured for individual galaxies
using standard-candle techniques, are imparted over cosmic time
under the gravitational influence of large-scale structure, encoding
information about gravitational perturbations and the growth rate of
structure. This makes the peculiar velocity field a powerful probe
of mass fluctuations over the largest scales (Watkins, Feldman &
Hudson 2009; Feldman, Watkins & Hudson 2010; Koda et al.
2014) and related peculiar velocity statistics an effective probe
of gravitational physics, or (assuming a standard cosmological
model) parameters such as the matter density �m (Ferreira et al.
1999).

Peculiar velocity statistics such as the two-point peculiar velocity
correlation functions (ψ1 and ψ2, Gorski et al. 1989), and their use
in constraining cosmological parameters, have long been discussed
(e.g. Groth, Juszkiewicz & Ostriker 1989; Wang et al. 2018; Dupuy,
Courtois & Kubik 2019; Borgani et al. 2000). These statistics are
measured from the observed radial component of peculiar velocities
where, under standard assumptions, the radial peculiar velocity
field carries the same information as the three-dimensional velocity
correlation tensor (Gorski 1988). Other studies have modelled and
measured observed peculiar velocities using maximum-likelihood
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approaches (Johnson et al. 2014; Huterer et al. 2017; Adams &
Blake 2020) or power spectrum techniques (Park 2000; Park & Park
2006; Qin, Howlett & Staveley-Smith 2019).

Peculiar velocities in linear theory constrain a degenerate combina-
tion of the growth rate f and σ 8, the amplitude of density fluctuations
on scales of 8 h−1 Mpc. This combined parameter is referred to as
the normalized growth rate of structure, fσ 8. Different cosmological
models predict different fσ 8 behaviours. In the standard lambda cold
dark matter (	CDM) model of cosmology the growth rate is constant
with scale, with predicted redshift behaviour f = �m(z)0.55 (Linder
2005). Some theories of modified gravity, such as the f(R) scenario
(Mirzatuny & Pierpaoli 2019), predict that the growth rate changes as
a function of scale (Baker et al. 2014). The effects of modified gravity
are only observed in fluctuations on the largest scales, where the
peculiar velocities outperform other cosmological probes, making
them an important tool in disambiguating cosmological models and
testing the 	CDM model of cosmology (Koda et al. 2014; Howlett,
Staveley-Smith & Blake 2017).

Cross-correlations between peculiar velocities and the galaxy
density field contain additional information about cosmological
physics, which may be exploited in a joint analysis using models
linking the density and velocity statistics (e.g. Davis et al. 2011;
Hudson & Turnbull 2012; Carrick et al. 2015; Ma, Li & He 2015;
Adams & Blake 2017; Nusser 2017; Adams & Blake 2020; Boruah,
Hudson & Lavaux 2020). The common sample variance between
the velocity and density fields serves to significantly improve the
accuracy with which key parameters may be determined (Koda et al.
2014; Howlett et al. 2017).
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Joint analyses of the galaxy velocity and density fields have often
been implemented in a ‘velocity-density comparison’ method (e.g.
Strauss & Willick 1995; Carrick et al. 2015; Said et al. 2020) where
the density field is used to construct a model velocity field that is
compared with peculiar velocity measurements at the locations of
galaxies. Such approaches most directly recover the parameter β =
f/b, where b is the linear galaxy bias factor that describes how the
galaxy distribution traces the underlying mass distribution (Kaiser
1984). The resulting value of β depends on the density-field tracer,
and this approach is complementary to measurements using redshift-
space distortions in the galaxy correlation function (e.g. Hawkins
et al. 2003). We choose to frame our analysis in terms of β rather
than bσ 8, due to the considerable literature in measurements of β.

Despite the potential of direct peculiar velocity measurements
to test large-scale cosmological physics, the small sample sizes
of current surveys have limited their potency as cosmological
probes. However, future data sets, many with a specific focus
on observational strategies to mitigate systematic errors in the
measurements of velocity dispersions and of stellar populations along
the Fundamental Plane, are rapidly increasing the competitiveness of
peculiar velocities as a cosmological probe and already permitting
measurements of the local growth rate or associated parameters with
10-20 per cent precision (e.g. Davis et al. 2011; Hudson & Turnbull
2012; Johnson et al. 2014; Carrick et al. 2015; Adams & Blake
2017; Wang et al. 2018; Dupuy et al. 2019; Qin et al. 2019). These
measurements generally agree with early-time measurements of �m

and σ 8 from WMAP9 (Bennett et al. 2013) and Planck (Planck
Collaboration VI 2018), and redshift-space distortion measurements
from local galaxy surveys (Beutler et al. 2012).

Current samples that have been used for peculiar velocity studies
include the 6◦ Field Galaxy Survey (Springob et al. 2014), the Cos-
micFlows samples (Tully et al. 2013; Tully, Courtois & Sorce 2016),
and local supernovae surveys (Ganeshalingam, Li & Filippenko
2013; Krisciunas et al. 2017; Foley et al. 2018). Future data sets
that may be utilized for peculiar velocity studies include the Taipan
Galaxy Survey (da Cunha et al. 2017), the WALLABY H I Survey
(Koribalski et al. 2020), the dark energy spectroscopic instrument
(DESI Collaboration 2016) and supernovae data sets such as the
Zwicky Transient Facility (Bellm et al. 2019).

This work investigates the joint use of galaxy and peculiar velocity
correlation statistics to constrain fσ 8 in simulated catalogues, in
which we assume the density field and velocity field are measured
from the same sample of objects. We extend existing work by
focusing on a joint analysis of autocorrelation and cross-correlation
statistics between galaxies and peculiar velocities in configuration
space, breaking the degeneracy between fσ 8 and bσ 8 found in the
cross-correlation function and improving constraints on cosmologi-
cal parameters. Furthermore, we present a new statistic ψ3 that acts
as an analogue to the mean pairwise velocity estimator v12, and
extend current estimators by introducing pair counts with random
velocity catalogues, dramatically improving the variance in estimates
of the galaxy–velocity cross-correlation function. Since our focus is
on testing growth information present in the peculiar velocity field
rather than redshift-space distortions in the density field, we do not
include redshift-space distortions in this simulation study, but will
return to this issue in future work.

The structure of the paper is as follows. Section 2 describes the
theory of the autocorrelation and cross-correlation functions used
in this work. The cosmological simulation data we use and the
method by which we apply our estimators to the data is described
in Section 3. Section 4 describes the derivations of the correlation
function estimators. In Section 5, we describe how successful our

methodology is at constraining estimates of the normalized growth
rate. We conclude and discuss future plans for extensions to this work
in Section 6.

2 TH E O RY

2.1 Velocity autocorrelation functions

The general form of the two-point correlation tensor of the peculiar
velocity field, which contains all the information about a Gaussian
vector field, is


ij (�rA, �rB ) = 〈vi(�rA) vj (�rB )〉 (1)

(Gorski 1988), where �rA and �rB are two spatial positions, vi are
the components of peculiar velocity, and 〈...〉 represents the average
measurement over different statistical realizations. Assuming that
the velocity field is irrotational, homogeneous, and isotropic, and
that velocity perturbations are linear, the velocity correlation tensor
can be written as


ij (r) = [
‖(r) − 
⊥(r)] r̂Ai r̂Bj + 
⊥(r) δK
ij , (2)

where r = |�rB − �rA| is the magnitude of the separation between
positions �rA and �rB , 
�(r) and 
⊥(r) are the functions describing
the correlation between components of velocity parallel and perpen-
dicular to the separation vector �r , and δK

ij is the Kronecker delta. The
spectral form of 
�(r) and 
⊥(r) was described by Gorski (1988):


‖(r) = H 2a2(f σ8)2

2π2

∫
P (k)

σ 2
8,fid

[
j0(kr) − 2

j1(kr)

kr

]
dk, (3)


⊥(r) = H 2a2(f σ8)2

2π2

∫
P (k)

σ 2
8,fid

j1(kr)

kr
dk, (4)

where H is the Hubble parameter, P(k) is the linear matter power
spectrum as a function of wavenumber k, which we assume in our
study is measured at redshift z = 0 meaning the scale factor a = 1,
and ji(x) is the ith spherical Bessel function of the first kind:

j0(x) = sin x

x
, (5)

j1(x) = sin x

x2
− cos x

x
. (6)

In this work, we assume that the initial shape of the power spectrum
on large scales is known, from cosmic microwave background
observations, for example, and then assuming this shape consider
measuring the amplitude of the velocity power (i.e. the growth rate
of structure) in the late Universe.

Equations (3) and (4) show the dependence of the parallel and
perpendicular components of the velocity correlation tensor on
the parameter (fσ 8)2, after separating out a fiducial value of σ 8,
highlighting the usefulness of these equations in constraining this
combined parameter. We assume linear theory throughout this study
(hence restrict our analysis to large scales), noting that extensions
have been studied by Okumura et al. (2014).

As we can only measure the radial component of a galaxy’s
velocity in practice, the correlation tensor cannot be measured
directly. From equation (2), the correlation for line-of-sight velocities
of two galaxies uA and uB with separation �r can be written as

〈uA(�x) uB (�x + �r)〉 = 
⊥ cos θAB + [
‖ − 
⊥] cos θA cos θB, (7)

where (with reference to Fig. 1), the angles between the galaxies are
cos θAB = �̂rA · �̂rB , cos θA = �̂r · �̂rA and cos θB = �̂r · �̂rB .

Gorski et al. (1989) expressed the functions 
�(r) and 
⊥(r) in
terms of ψ1 and ψ2, velocity correlation statistics that depend on the
radial peculiar velocity, which are described by
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Figure 1. An example pair of galaxies A and B, as seen by an observer O,
illustrating the geometry of the scenario.

ψ1(r) ≡ � wAwB uAuB cos θAB

� wAwB cos2 θAB

, (8)

ψ2(r) ≡ � wAwB uAuB cos θA cos θB

� wAwB cos θAB cos θA cos θB

, (9)

where the sums are taken over pairs of galaxies in a separation bin
around r. In the case of a pair of galaxies A and B, at positions
�rA and �rB with peculiar velocities �vA and �vB , the radial component
of peculiar velocity is �uA,B = (�vA,B · �̂rA,B ) · �̂rA,B . These quantities
are expressed visually in Fig. 1. wA, B are galaxy-specific weights
related to the error in velocity measurement, and are discussed
more in Section 4.1.The numerators of equations (8) and (9) sum
over the dot product of the radial peculiar velocities, and the
product of the components of the radial peculiar velocities along the
separation vector, respectively. The denominators in these equations
normalize the sums such that the norm of the velocity field is
preserved.

Using equation (7) the models for ψ1 and ψ2 can be expressed as
a function of both 
�(r) and 
⊥(r):

〈ψ1(r)〉 = � wAwB 〈uAuB〉 cos θAB

� wAwB cos2 θAB

= A(r)
‖(r) + [1 − A(r)]
⊥(r), (10)

〈ψ2(r)〉 = � wAwB 〈uAuB〉 cos θA cos θB

� wAwB cos θAB cos θA cos θB

= B(r)
‖(r) + [1 − B(r)]
⊥(r), (11)

where A and B are functions describing the geometry of the survey,
dictating the contributions of 
� and 
⊥ to ψ1 and ψ2, respectively,

A(r) = � wAwB cos θA cos θB cos θAB

� wAwB cos2 θAB

, (12)

B(r) = � wAwB cos2 θA cos2 θB

� wAwB cos θA cos θB cos θAB

, (13)

Analyses of the peculiar velocity correlation functions using these
statistics can be found in several previous studies including Borgani
et al. (2000), Wang et al. (2018), and Dupuy et al. (2019).

2.2 Galaxy–velocity cross-correlation function

We now extend our models to encompass the cross-correlation
between the peculiar velocity and galaxy density fields (see also,
Nusser 2017 and Adams & Blake 2017). The cross-correlation
between the velocity and density fields is given by

ξgv(r) r̂ = 〈δ(�x) �v(�x + �r)〉, (14)

where

ξgv(r) = −Ha(f σ8)(bσ8)

2π2

∫
dk k

P (k)

σ 2
8,fid

j1(kr) (15)

(see Fisher 1995; Adams & Blake 2017).
The cross-correlation function between the line-of-sight velocity

(at position B) and galaxy overdensity (at position A) is hence

〈δA(�x) uB (�x + �r)〉 = ξgv(r) cos θB, (16)

where θB is defined in Fig. 1. Thus, for a given galaxy–velocity pair
separated by r, an estimator of ξ gv(r) is uB/cos θB. By summing over
many such pairs in this separation bin, taking a weighted mean across
those pairs using inverse-variance weighting wθ = 1/σ 2, where σ ∝
1/cos θB is the error in each individual estimate due to the varying
angle with respect to the line of sight, we form an estimator for the
galaxy–velocity cross-correlation function that is also dependent on
radial peculiar velocities, which we call ψ3,

ψ3(r) ≡ � wθwB (uB/ cos θB )

� wθwB

= � wB uB cos θB

� wB cos2 θB

, (17)

where 〈ψ3(r)〉 = ξ gv(r), wθ is given above, and wB is the same weight
applied in equations (8) and (9), discussed further in Section 4.1. This
estimator follows the same structure as ψ1 and ψ2 from Gorski et al.
(1989). The numerator of equation (17) sums the component of the
peculiar velocity of galaxy B along the separation vector towards
galaxy A for all pairs of galaxies. The cos 2θB that appears in the
denominator due to the wθ weighting also preserves the norm of
the velocity field, similar to the denominators in equations (8) and
(9). We note that ψ3 is equivalent to the mean pairwise velocity
estimator v12 that can be measured from observational catalogues
using an estimator introduced by Ferreira et al. (1999):

v12 = 2�(uA + uB )(cos θA + cos θB )

�(cos θA + cos θB )2
. (18)

2.3 Spatial two-point correlation function

To complete the set of galaxy–velocity correlations, we use in
this study we also consider galaxy clustering, which is useful for
constraining the galaxy bias, breaking the degeneracy between the
bias, and the growth rate in the galaxy–velocity cross-correlation in
equation (15). The galaxy autocorrelation function is defined as

ξgg(r) = 〈δ(�x) δ(�x + �r)〉 (19)

and measures the tendency for galaxies to cluster under the influence
of gravity at a fixed separation �r . The linear-theory model for ξ gg is

ξgg(r) = (bσ8)2

2π2

∫
dk k2 P (k)

σ 2
8,fid

j0(kr) e−k2a2
, (20)

where the term e−k2a2
with a = 1 h−1 Mpc does not affect the

large-scale correlation function but ensures more efficient numerical
convergence.

We measure the correlation function on large scales, and must
therefore include the baryon acoustic oscillation (BAO) peak in our
model. This peak is not well described by a linear power spectrum
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model because it is smeared out by the motion of galaxies. This effect
can be represented by modifying the linear power spectrum model
(Anderson et al. 2012) as

P (k) = Pnw(k)

[
1 +

(
Plin(k)

Pnw(k)
− 1

)
e− 1

2 k2�2
nl

]
, (21)

where Plin(k) is the linear power spectrum of our cosmological model
and Pnw(k) is a no-wiggles matter power spectrum model created
using formulae from Eisenstein & Hu (1998) in which the BAO
peak is removed, and �nl is a parameter describing the damping of
the acoustic peak due to galaxy displacement. We set �nl = 10 h−1

Mpc for this analysis, typical for low redshift and ensuring a good
description of our data.

3 SI M U L AT I O N S

We investigate our correlation function estimators using simulations,
in order to compare the different estimators defined in Section 4 and
demonstrate that they recover unbiased cosmological parameters.
For this analysis, we use dark matter halo catalogues generated
for the Taipan Galaxy Survey project (da Cunha et al. 2017)
using the L-PICOLA (Howlett, Manera & Percival 2015) N-body
simulation code in a box of scale length 1800 h−1 Mpc. L-PICOLA is
a fast, distributed-memory, planar-parallel code based on co-moving
Lagrangian acceleration (COLA, Tassev, Zaldarriaga & Eisenstein
2013) that generates dark matter fields. By taking fewer time-steps
in the simulation process, COLA is able to perform faster than full
N-body simulations, at the cost of poorer resolution on small scales.
Velocity statistics are dominated by large-scale modes, and so worse
accuracy on small scales is not a concern for this work (Koda et al.
2016). See Howlett et al. (2015) for information on how L-PICOLA

calculates velocity and position values.
The mocks were constructed from initial conditions corresponding

to a fiducial cosmological model with parameters �m = 0.3121,
�b = 0.0491, ns = 0.9653, h = 0.6751, and σ 8 = 0.8150, and
built from snapshots generated at redshift z = 0. At this redshift,
the fiducial value of the parameter fσ 8 = 0.4296. We select 30 of
these mocks, containing dark matter haloes with masses in the range
12.4 < log10(h−1 M�) < 12.6. Our results are not sensitive to the
range of halo mass used for this study, given that velocity bias is ∼1
on large scales (Desjacques et al. 2010).

We subdivide these mocks into 36 hemispherical regions with
radius 300 h−1 Mpc, for a total of 1080 independent data sets that
share no common haloes. This geometry matches a typical wide-area
observational survey across a hemisphere to z = 0.1, such as the 6◦

Field Galaxy Survey or the Taipan Galaxy Survey. Each of these
mocks initially contain approximately 24 000 haloes, and we select
a subsample of ND = 10 000 haloes before proceeding with our
analysis, matching the approximate size of current PV data sets. The
random data sets needed for this analysis, as outlined in Section 3,
are populated with NR = 50 000 haloes. The observers in each of
these data sets are placed at the centre of the hemisphere’s face along
the y-z plane, and radial peculiar velocities are calculated for each
data set with respect to the central observer.

We introduce a random error to our velocities in order to mimic the
scaling of the observational error with distance that is seen in survey
data. We sample errors for each galaxy from a normal distribution
with standard deviation σ = H0d · e = 100h · d · e, where σ has
units of km s−1, d is the distance to the galaxy from the observer in
h−1 Mpc, and e is some value describing the fractional error in the
measurement of the distance. We take e to be 0.15, representative
of the accuracy of distance measurements from the Tully–Fisher

relation. We do not consider any other observational effects – such
as redshift-space distortions – at this time, in order to isolate the
information arising from the velocity field, and its cross-correlation
with the density field.

We perform a growth rate analysis of individual mocks, and we also
analyse sets of ‘stacked’ mocks where we reduce sample variance
by averaging correlation function measurements over groups of 20
realizations. Individual mocks are representative of results from
current PV surveys, and mock averages allow us to verify that our
linear-theory model for the galaxy and velocity correlation functions
holds at an accuracy significantly better than required, and to test
our conclusions with a higher degree of precision. We average over
20 mocks as it produces a significantly more accurate representation
than existing data samples, whilst still being susceptible to accurate
modelling on large scales by our linear-theory representation

For one average of 20 randomly chosen mocks, Fig. 2 shows
each of the models unscaled and recalculated using the best-fitting
parameters derived from fitting three combinations of correlation
statistics to the amplitude of the galaxy and velocity auto and cross-
correlation functions: (ψ3 + ξ gg), (ψ1 + ψ2 + ψ3), and (ψ1 + ψ2

+ ψ3 + ξ gg). The shaded regions in Fig. 2 indicate the range used
to fit for fσ 8 and bσ 8. We fit the ranges 15 < r < 129 h−1 Mpc for
ψ1, ψ2, and ψ3, and 15 < r < 99 h−1 Mpc for ξ gg, in bins of width
6 h−1 Mpc. We exclude the very smallest scales, restricting ourselves
to larger scales for which linear-theory modelling is expected to
apply, and choose the upper limits for our fitting ranges by testing
different values and using those which optimize our final results for
signal to noise and the stability of the resulting covariance matrix.

In Fig. 2, the unscaled models for each statistic are shown in black
and each differently coloured line represents a model calculated
from a set of best-fitting cosmological parameters derived from
different combinations of statistics. Whilst the inclusion or exclusion
of individual statistics has some influence on the best-fitting models,
the overall amplitudes of fσ 8 and bσ 8 are statistically consistent, as
we will discuss in Section 5.

Measurements in different separation bins and between different
statistics will be correlated, owing to the common sample variance
and the fact that individual galaxies join pairs in multiple separation
bins. Accounting for this correlation requires the covariance between
our statistics to be considered across all separations when fitting for
model parameters.

A joint fit to multiple statistics is necessary to break the degen-
eracies between the parameters fσ 8 and bσ 8 (or β). To construct the
covariance matrix between the different statistics and separation bins,
we first concatenate the sequence of statistics used in the analysis to
form a total data vector A(i). We use the 1080 realizations to compute
the covariance between our statistics. The covariance between two
bins i and j is measured by

Cij = 1

N − 1

N∑
k=1

[
Ak(i) − A(i)

] [
Ak(j ) − A(j )

]
, (22)

where N is the number of realizations and A(i) and A(j ) are the
mock means of the statistics for bins i and j, respectively. We scale
the resulting covariance to match the number of realizations forming
our mock means.

The correlation matrix for the vector A = [ψ1(r), ψ2(r), ψ3(r),
ξ gg(r)] is shown in Fig. 3. Along the diagonal, when we measure the
correlation between the measurement of statistic A in bin i and itself,
we see perfect correlation. The velocity correlation functions ψ1 and
ψ2 are reasonably correlated between statistics and scales, shown
by the faint diagonals in the (ψ1, ψ2) and (ψ2, ψ1) sections of the
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Figure 2. An example of parameter fitting for each of the four statistics considered in this work. The unscaled model for each statistic is shown in black, and
the model rescaled using the best-fitting fσ 8 and bσ 8 (calculated from β) from the combinations (ψ1 + ψ2 + ψ3 + ξgg), (ψ1 + ψ2 + ψ3), and (ψ3 + ξgg) are
shown in different colours given in the legend in the top left-hand panel. Errors represent the standard deviation in the measured values across one sample of 20
mocks. Shaded regions in each panel depict the parts of the data used to fit for fσ 8 and bσ 8. Top left: ξgg, multiplied by the separation squared r2. Top right: ψ1,
multiplied by r/105. Bottom left: ψ3, multiplied by the separation r/102. Bottom right: ψ2, multiplied by r/105. Note that the green line representing the joint
four correlation statistic case is often obfuscated by the yellow line representing the (ψ3 + ξgg) case.

matrix, but the correlation in the off diagonal terms is mitigated by
the velocity errors we select. The minimum correlation coefficient
in this region of our reduced covariance matrix in Fig. 3 is ≈−0.12,
when correlating ψ1 measurements at the smallest scales with ψ2

measurements at the largest scales. The off-diagonal correlations
involving ψ3 are lower, but there is some correlation between ψ3

and (ψ1, ψ2). ξ gg has the lowest amplitude of cross-correlation with
the other statistics.

4 C O R R E L AT I O N FU N C T I O N ES T I M ATO R S

We measure the four statistics ψ1, ψ2, ψ3, ξ gg discussed above
using configuration-space estimators. We use a combination of

a position and peculiar velocity mock data set of ND galaxies
and a corresponding randomly generated data set of NR points.
The randomly generated data are distributed over the same vol-
ume, with positions sampled from the same distribution as the
mock data and uncorrelated peculiar velocities sampled from a
normal distribution with variance including both sample variance
(290 km s−1, matching the distribution of the mock data) and
measurement noise (σ introduced in Section 3) – which we term
‘random velocities’. These data sets can be used to construct
different pair counts at separations r, which can be used to es-
timate our ensemble of statistics. We attribute weights to these
randomly distributed galaxies using the method described in Sec-
tion 4.1.
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Figure 3. Reduced covariance matrix, dimensions 75 × 75, for the (ψ1 + ψ2

+ψ3 + ξgg) combination of statistics. Each cell corresponds to one separation
bin in the fitting range of each statistic, given in Section 5, increasing from
left to right and bottom to top. The diagonal elements of the covariance matrix
are unity by definition, and are shown in white.

Starting with the galaxy correlation function, a basic, unbiased
estimator of ξ gg was introduced by Peebles & Hauser (1974):

ξ̂gg(r) = N2
R

N2
D

DgDg(r)

RgRg(r)
− 1, (23)

combining the DgDg(r) and RgRg(r) galaxy–galaxy pair counts from
our data set and random catalogues, respectively, in a separation bin
around r. The error in this estimator can be reduced by introducing
the pair count DgRg, representing the cross-pairs between the data
and random catalogues, to form the new estimator (Landy & Szalay
1993):

ξ̂gg(r) = N2
R

N2
D

DgDg(r)

RgRg(r)
− 2

NR

ND

DgRg(r)

RgRg(r)
+ 1, (24)

This extension reduces the variance in the estimator by lowering the
statistical error in the measurement associated with the distribution
of data points with respect to the sample boundaries.

This argument can be extended to estimators involving the line-of-
sight peculiar velocity components as well as position components. A
simple short-form estimator of the galaxy–velocity cross-correlation
function is

ψ̂3(r) = N2
R

N2
D

DDψ3,n
(r)

RRψ3,d
(r)

(25)

where DDψ3,n
= ∑

A,B wb uB cos θB is the numerator of the ψ3 esti-
mator shown in equation (17), evaluated for cross-pairs between data
galaxies A and data velocities B, and RRψ3,d

= ∑
A,B wB cos2 θB is

the denominator of the same ψ3 estimator, evaluated for random
galaxies A and random velocities B. This estimator can be extended
by including random position and random velocity components,
written in the same notation as above:

ψ̂3(r) = N2
R

N2
D

DDψ3,n
(r)

RRψ3,d
(r)

− NR

ND

DRψ3,n
(r)

RRψ3,d
(r)

− NR

ND

RDψ3,n
(r)

RRψ3,d
(r)

+ RRψ3,n
(r)

RRψ3,d
(r)

. (26)

This extended estimator has a similar effect of reducing variance in
the measured cross-correlation function (see Fig. 4 and the discussion
below).

Likewise, the short-form and long-form estimators for ψ1, 2 have
the form

ψ̂1,2(r) = N2
R

N2
D

DDψ(1,2),n (r)

RRψ(1,2),d (r)
(27)

and

ψ̂1,2(r) = N2
R

N2
D

DDψ(1,2),n (r)

RRψ(1,2),d (r)
− NR

ND

DRψ(1,2),n (r)

RRψ(1,2),d (r)
+ RRψ(1,2),n (r)

RRψ(1,2),d (r)
,

(28)

where the notation DDψ(1,2),(n,d) refers to the pair count associated
with the numerator (n) or denominator (d) of the estimator for the ψ1

statistic (equation 8) or the ψ2 statistic (equation 9), evaluated for
data–data (DD), data–random (DR), or random–random (RR) pairs.
In Section 5, we consider the relative performance of these different
estimators.

The normalization of the ξ gg correlation function requires knowl-
edge of the true number density of galaxies, but this quantity can
only be estimated from the data itself. This results in an additive bias
to the measured correlation function known as the integral constraint
correction (Peebles 1974, 1980; Landy & Szalay 1993; Scranton
et al. 2002).

I .C. =
∑

i ξgg(ri) RgRg(ri)∑
i RgRg(ri)

, (29)

where the sum is taken over all separation bins to the maximum that
may be embedded in the survey, and we take the ξ gg term in the
numerator as our fiducial model. We find that I.C. = 2.56 × 10−4

for our hemispherical geometry, which we add to our measurement
of ξ gg. As the expectation value of the average velocity is zero,
there is no analogous integral constraint for the galaxy–velocity or
velocity–velocity correlations.

4.1 Weighting

As well as introducing extensions to the estimators, we also need
to include a weight for each object in our estimators, due to
the distance-dependent errors associated with each galaxy. The
minimum-variance weight has the form

w = 1

Pv · ng + σ 2
(30)

similar to a weight chosen by Qin et al. (2019) based on work
done by Feldman, Kaiser & Peacock (1994), where Pv is the
value of the velocity power spectrum at a desired scale in units
of (h−1Mpc)3(km s−1)2, ng is the number density of galaxies in
the sample in units of (h−1Mpc)−3 and σ is the galaxy-specific
standard deviation, in units of km s−1, used to derive the velocity
error in Section 3. We set ng = 10−3 (h−1 Mpc)−3 to match our
mock catalogues, and find that a value of Pv = 109 h−3 Mpc3 km2

s−2, which is characteristic of the model velocity power at scale
k ≈ 0.05 h Mpc−1, produces the most accurate measurement of
the resulting growth rate (after trialling different choices for this
quantity). This weight is applied to each galaxy contributing to the
PV estimator. The weights we apply to each galaxy scale with their
error and up-weight galaxies with more accurately measured peculiar
velocities, which improves our measurements on small scales where
random noise would otherwise dominate. Conversely, large-scale
measurements, where cosmic variance dominates, are made slightly

MNRAS 502, 2087–2096 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/502/2/2087/6119929 by guest on 13 M
arch 2024



Galaxy–velocity correlations in simulations 2093

Figure 4. Comparison between the short form of the correlation function estimators (red), evaluated using equations (23), (25), and (27), and the long form
of the estimators including additional random pair counts (blue), evaluated using equations (24), (26), and (28). Errors represent the standard deviation in the
measured values across one sample of 20 mocks, and are centred on the mean of the measured values. The variance of the short-form and long-form estimators
is very similar for ψ1 and ψ2, the velocity autocorrelation functions, but much larger reductions are seen in ξgg and ψ3, which have a dependence on scale. Top
left: ξgg, multiplied by the separation r for clarity of display. Top right: ψ1, multiplied by 1/105. Bottom left: ψ3. Bottom right: ψ2, multiplied by 1/105.

noisier by the inclusion of the weight as each galaxy no longer
contributes to the measurement equally.

5 R ESULTS

We test our estimators and models by determining the best-fitting
values of the normalized growth rate fσ 8 and parameter β for our
mock data sets, from which we can also produce a best-fitting value
of the galaxy bias factor bσ 8 to input into our models for ψ3 and ξ gg.
We generate fiducial models using the input cosmological parameters
of the simulation, and rescale these models using the trial parameters
based on the dependencies described in Section 2. We use a χ2

minimization procedure to obtain the best-fitting fσ 8 and β values by
fitting the models for ψ1, ψ2, ψ3, and ξ gg against our measurements

of those statistics. The best-fitting value of the model is obtained by
minimizing

χ2(f σ8, β) =
N∑

i,j=1

(Ad(i) − Am(i; f σ8, β)) C−1
ij

× (Ad(j ) − Am(j ; f σ8, β)), (31)

where Ad, m represents the concatenation of statistics for the data
and model, respectively. The likelihood function of each of these
models is proportional to exp (− χ2/2). We recover fσ 8 and β from
joint parameter fits (Fig. 5) by marginalizing the two-dimensional
posterior probability distribution to find separate constraints for each
parameter (Fig. 6). We apply these fits both to individual mocks, and
averages over groups of 20 mocks. This enables us to both study the
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2094 R. J. Turner, C. Blake and R. Ruggeri

Figure 5. Contours in fσ 8 − β parameter space for combinations (ψ1 + ψ2

+ ψ3 + ξgg), (ψ1 + ψ2 + ψ3), and (ψ3 + ξgg), derived from the same 20-
mock sample used in Fig. 6. Contours represent 1σ , 2σ , and 3σ confidence
intervals.

Figure 6. One-dimensional posterior distributions for fσ 8 from a sample
of 20 mocks using various different treatments of the statistics considered
in this work. (ψ1 + ψ2 + ψ3 + ξgg), (ψ1 + ψ2 + ψ3), and (ψ3 + ξgg)
are dependent on both fσ 8 and β through bσ 8, and so must be marginalized
to recover the 1D posterior. The addition of ψ3 improves the PDF, and the
addition of ξgg improves the PDF further.

precision of the fits for representative current PV samples, as well
as test that our conclusions hold at a higher level of precision. To
understand the dispersion of our results across different samples of
20 mocks, we repeat the best-fitting procedure 1000 times, in each
case randomly selecting a new sample of 20 mocks from the overall
ensemble of 1080 L-PICOLA hemispheres.

The distribution of values of fσ 8 recovered from the marginalized
posteriors such as those in Fig. 6 is shown in Fig. 7 for individual
mocks (left-hand panel) and groups of 20 averaged mocks (right-
hand panel). The fits to individual mocks span a larger range than
the 20-mock averaged results, as is to be expected, and the effect of
including ψ3 is clearly seen when comparing the results in blue for
(ψ1 + ψ2) to the results in red for (ψ1 + ψ2 + ψ3). The results from

the right side of Fig. 7 are in good agreement with the posteriors
shown in Fig. 6, which we would expect.

In Table 1, we present the mean fσ 8 and β values, and their
corresponding 1σ confidence intervals, recovered from the posteriors
of 1000 20-mock samples and 1080 individual L-PICOLA mocks
– both shown in Fig. 7 – for various combinations of correlation
statistics. We also report the degrees of freedom involved in each
combination and the corresponding average reduced χ2. The values
for ψ1, ψ2 and ψ1 + ψ2 are found from a one-dimensional posterior,
as these statistics only depend on fσ 8. The other combinations include
some dependence on β through bσ 8, and so must be found by
marginalizing over the two-dimensional posterior. The χ2 values
typically indicate that the models are a good fit to the data, and
the recovered growth rates are generally consistent with the fiducial
value of fσ 8, fid = 0.4296.

The one-dimensional posteriors for an example 20-mock sample
are shown in Fig. 6. It can be seen that the fσ 8 posteriors are narrowed
by the introduction of ψ3, and narrowed further when considering
ξ gg in conjunction. By showing the mean values recovered from the
20-mock samples, as well as for the individual mocks, it can be seen
that the improvement in our results gained by the inclusion of ψ3

and ξ gg is present in both the individual mock and average-mock
analyses.

The same data presented in Fig. 6 are also shown in Fig. 5,
which shows the joint fit in fσ 8 − β parameter space for the
three combinations of statistics that are dependent on both. In
this particular case, the three combinations produce best-fitting
parameters that all recover the fiducial value of fσ 8, depicted by
a vertical dashed line, with varying degrees of accuracy. (ψ3 + ξ gg)
and (ψ1 + ψ2 + ψ3) present visually different contours, and agree
with each other on a 1σ level. The combination of all four statistics,
(ψ1 + ψ2 + ψ3 + ξ gg), agrees with the other combinations on a
1σ level and presents comparatively tighter constraints than either
combination.

We now consider the accuracy with which different combinations
of statistics are able to recover the growth rate. We consider here
the individual-mock fits, although the 20-mock average results are
similar, and the two cases may be compared in Table 1. The error in
the measurements from the individual mocks is roughly a factor of√

20 larger than in the corresponding 20-mock average case, which
is to be expected. In the case of our individual-mock fits, ψ1 and
ψ2 used separately are able to constrain the value of the normalized
growth rate to fσ 8 = 0.3664 ± 0.1358 and fσ 8 = 0.3666 ± 0.1548,
respectively. ψ2 alone places weaker constraints on fσ 8 than if we
were to use ψ1, producing an average error that is approximately
14 per cent larger. When used together, however, (ψ1 + ψ2) are able
to predict a value of fσ 8 = 0.3679 ± 0.1312 – producing constraints
that are 3 per cent tighter when compared to ψ1 and 15 per cent
tighter when compared to ψ2. For our chosen configuration, (ψ3 +
ξ gg) is also a robust probe of fσ 8 despite its weaker dependence on the
parameter, predicting fσ 8 = 0.4144 ± 0.0663. The addition of these
statistics to the (ψ1 + ψ2) fit further improves the accuracy of our
measurement to fσ 8 = 0.4151 ± 0.0632, producing the smallest error
of any considered combination and recovering fσ 8 with 15 per cent
accuracy.

Presenting our results in this manner also allows us to comment
on the efficacy of ψ2. This was originally discussed in Gorski et al.
(1989) where ψ2 was introduced, in which it was stated that the
statistic was unstable when applied to data sets of the time and
was subsequently dropped from further analysis. This is supported
by Dupuy et al. (2019), who state that ψ2 is not robust enough to
estimate fσ 8 on cosmicflows type catalogues, but challenged by Wang
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Galaxy–velocity correlations in simulations 2095

Figure 7. Distribution of recovered fσ 8 values, calculated from marginalized joint posteriors such as those shown in Fig. 6, for (ψ1 + ψ2 + ψ3 + ξgg), (ψ1

+ ψ2 + ψ3), (ψ3 + ξgg), and (ψ1 + ψ2) from all 1080 individual mocks (left) and from all 1000 samples of 20 random mocks (right). The combination of
statistics (ψ3 + ξgg) is able to constrain fσ 8 well despite its weaker dependence on the growth rate, but (ψ1 + ψ2 + ψ3 + ξgg) is the strongest combination. In
the individual mock results, the inclusion of ψ3 noticeably improves the results, as can be seen in the difference between the red and blue histograms.

Table 1. Mean fσ 8 and β values and errors from 1000 χ2 analyses of different combinations of statistics measured from 20 randomly chosen mocks from
our 1080 total L-PICOLA mocks, as well as the mean values and errors as measured from each of those 1080 mocks individually. We also report the degrees of
freedom ν for each combination of statistics, and corresponding average reduced χ2, 〈χ2

ν 〉.

Individual mocks 20-mock average
Statistic(s) ν 〈fσ 8〉 ± 〈1σ 〉 〈β〉 ± 〈1σ 〉 〈χ2

ν 〉 〈fσ 8〉 ± 〈1σ 〉 〈β〉 ± 〈1σ 〉 〈χ2
ν 〉

ψ1 19 0.3664 ± 0.1358 – 1.0005 0.4316 ± 0.0279 – 1.0409
ψ2 19 0.3666 ± 0.1548 – 1.0006 0.4217 ± 0.0381 – 0.9872
ψ1 + ψ2 39 0.3679 ± 0.1312 – 1.0002 0.4336 ± 0.0262 – 1.0041
ψ3 + ξgg 33 0.4144 ± 0.0663 0.6835 ± 0.0379 1.0018 0.4362 ± 0.0130 0.6873 ± 0.0084 1.0888
ψ1 + ψ2 + ψ3 58 0.3872 ± 0.0954 0.6252 ± 0.2091 1.0031 0.4313 ± 0.0243 0.6677 ± 0.0674 1.0156
ψ1 + ψ2 + ψ3 + ξgg 73 0.4151 ± 0.0632 0.6836 ± 0.0364 1.0012 0.4366 ± 0.0124 0.6876 ± 0.0080 1.0416

et al. (2018) who state that ψ2 is well behaved on such catalogues.
Using our methodology over the fitting range outlined in Section 3,
we can recover the fiducial cosmology to within 1σ using ψ2,
indicating its robustness on catalogues similar to those we use in our
analysis.

6 C O N C L U S I O N S

In this work, we have developed a joint framework for studying
galaxy and peculiar velocity correlation functions in configuration
space, and tested this framework using accurate mock data sets. We
have particularly considered the galaxy–velocity cross-correlation
function, introducing a new correlation function estimator ψ3 that
is analogous to the mean pairwise velocity estimator v12, written
in a similar formalism to the velocity autocorrelation estimators
ψ1 and ψ2 introduced by Gorski et al. (1989). We have also
investigated the form of these estimators, demonstrating that the
variance of the cross-correlation estimator may be significantly
reduced by including pair counts against random catalogues in
a similar manner to galaxy autocorrelation functions (Landy &
Szalay 1993). We also increase the accuracy of our measurements at
small scales by introducing a weight to the estimators that scales
with the error in the measurement of peculiar velocity for each
galaxy.

Using ψ3 and our improved cross-correlation estimators, along-
side established peculiar velocity statistics ψ1 and ψ2, we measure
the value of combined parameters fσ 8 and β from large-scale
cosmological simulation halo catalogues generated in the L-PICOLA

framework. We compute the covariance between our statistics using
1080 L-PICOLA hemispherical mocks, across a range of separations,
and measure the average values and errors of fσ 8 and β over each
of the 1080 L-PICOLA mocks. Using this method, we are able to
successfully recover the intrinsic L-PICOLA value of fσ 8 = 0.4296
to within 1σ for all combinations of statistics, and when using the
joint combination of (ψ1 + ψ2 + ψ3 + ξ gg) we measure fσ 8 =
0.4151 ± 0.0632. Applying this framework to all four correlation
statistics available to us, we are able to recover the fiducial L-PICOLA

growth rate with 15 per cent accuracy. We repeat this process and
measure fσ 8 and β from an ensemble of 1000 different samples of
20 mocks randomly chosen from our 1080 mocks, and find again
that we are able to recover the fiducial fσ 8 to within 1σ , while also
reducing the error in our measurement by approximately a factor of√

20. In this case, we measure fσ 8 = 0.4366 ± 0.0124 from the joint
consideration of all four statistics, recovering the fiducial L-PICOLA

growth rate with 2.8 per cent accuracy.
The best-fitting parameters that we derive from various combi-

nations of these statistics are able to accurately model the data on
large scales. While the velocity autocorrelation estimators ψ1 and
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ψ2 can accurately recover the normalized growth rate fσ 8, both
by themselves and when used in conjunction with one another, the
addition of the cross-correlation estimator ψ3 and two-point spatial
correlation function ξ gg adds further information to these fits, which
reduces the errors in our measurements. By extending the considered
statistics from just (ψ1 +ψ2) to (ψ1 +ψ2 +ψ3 + ξ gg), we can obtain
an average error reduction in the individual mock fσ 8 measurement
of approximately 52 per cent without impacting the average reduced
χ2. A larger improvement is seen in the average error of β, as the
two statistics impacted by our new, extended estimators ψ3 and ξ gg

contain dependencies on the combined parameter bσ 8, which we can
measure from our recovered values of fσ 8 and β. Considering all
four correlation statistics rather than just (ψ3 + ξ gg) or (ψ1 + ψ2

+ ψ3) reduces the average error in β by approximately 4 per cent
and 83 per cent, respectively. Similar reductions are also seen in the
20-mock averaged measurements of fσ 8 and β.

In future work, we intend to extend this framework to include
redshift-space distortions quantified using the correlation function
multipoles, and apply our method to data sets from existing and up-
coming redshift and peculiar velocity surveys, such as Cosmicflows-
3, 6dFGS, and the Taipan Galaxy Survey. This will result in accurate
measurements of cosmological parameters from galaxy–velocity
correlations, hence tests of the gravitational physics of the late-time
Universe.
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