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ABSTRACT
Recent observations have indicated a strong connection between compact (a � 0.5 au) super-Earth and mini-Neptune systems
and their outer (a � a few au) giant planet companions. We study the dynamical evolution of such inner systems subject to
the gravitational effect of an unstable system of outer giant planets, focusing on systems whose end configurations feature
only a single remaining outer giant. In contrast to similar studies which used on N-body simulations with specific (and limited)
parameters or scenarios, we implement a novel hybrid algorithm which combines N-body simulations with secular dynamics with
aims of obtaining analytical understanding and scaling relations. We find that the dynamical evolution of the inner planet system
depends crucially on Nej, the number of mutual close encounters between the outer planets prior to eventual ejection/merger.
When Nej is small, the eventual evolution of the inner planets can be well described by secular dynamics. For larger values of
Nej, the inner planets gain orbital inclination and eccentricity in a stochastic fashion analogous to Brownian motion. We develop
a theoretical model, and compute scaling laws for the final orbital parameters of the inner system. We show that our model
can account for the observed eccentric super-Earths/mini-Neptunes with inclined cold Jupiter companions, such as HAT-P-11,
Gliese 777, and π Men.
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1 IN T RO D U C T I O N

Exoplanets with masses and radii between that of the Earth and Nep-
tune, commonly referred to as ‘super-Earths’ or ‘mini-Neptunes’,
have been discovered in large quantities in recent years. Indeed, such
planets appear to be ubiquitous in the Galaxy: about 30 per cent of
Sun-like stars host super-Earth planets, with each system containing
an average of 3 planets (Zhu et al. 2018). The observed super-
Earth systems have compact orbits, with periods typically less than
200 d. In recent years, an increasing number of such systems have
been found to host long-period giant planet companions (i.e. ‘Cold
Jupiters’ or CJs). Zhu et al. (2018) analysed a sample of ground-
based radial velocity (RV) observations of super-Earth systems and
an independent sample of Kepler transiting Super-Earths with RV
follow-up, and found that cold Jupiters are three times more common
around hosts of super-Earths than around field stars: about 30 per cent
of the inner super-Earth systems have cold Jupiter companions, and
the fraction increases to 60 per cent for metal-rich stars. Bryan et al.
(2019) found a similar result, and gave the estimated occurrence
rate of 39 ± 7 per cent for companions between 0.5–20MJ and 1–
20 au. There is evidence that that stars with cold Jupiters or with
high metallicities have smaller multiplicity of inner Super-Earths,
suggesting that cold Jupiters have influenced the inner planetary
system. Masuda, Winn & Kawahara (2020) found that these CJ
companions are typically mildly misaligned with their inner systems
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with a mutual of �θ ∼ 12 deg. These mild inner-outer misalignments
could potentially explain the apparent excess of Kepler single-transit
Super-Earth systems (Lai & Pu 2017).

The question of how low-mass inner planet systems may be
influenced by the presence of one or more external giant planets
has attracted recent attention (e.g. Carrera, Davies & Johansen 2016;
Becker & Adams 2017; Gratia & Fabrycky 2017; Hansen 2017;
Huang, Petrovich & Deibert 2017; Jontof-Hutter et al. 2017; Lai &
Pu 2017; Mustill, Davies & Johansen 2017; Read, Wyatt & Triaud
2017; Pu & Lai 2018; Denham et al. 2019). This paper is the third
in a series where we systematically investigate the effect of outer
companions on the architecture of inner super-Earth systems. In Lai
& Pu (2017) and Pu & Lai (2018), we study the secular evolution
of an inner multiplanet system perturbed by an inclined and/or
eccentric external companion. Combining analytical calculations and
numerical simulations (based on secular and N-body codes), we
quantify to what extent eccentricities and mutual inclinations can be
excited in the inner system for different masses and orbital parameters
of super-Earths and cold Jupiter. When the perturber is sufficiently
strong compared to the mutual gravitational coupling between the
inner planets, the inner system becomes dynamically hot and may be
unstable. Even for milder perturbers that do not disrupt integrity of the
inner system, the small/modest excitation of mutual inclinations can
nevertheless disrupt the co-transiting geometry of the inner planets
and thereby reduce the number of transiting planets (e.g. Brakensiek
& Ragozzine 2016). Other related works can be found in Boué &
Fabrycky (2014a), Hansen (2017), Becker & Adams (2017), Read
et al. (2017), Jontof-Hutter et al. (2017), Denham et al. (2019) (see
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also Boué & Fabrycky 2014b; Lai, Anderson & Pu 2018; Anderson &
Lai 2018, for the effect of external companion on the stellar obliquity
relative to the inner planets).

In this paper, we study the dynamical evolution of inner planet
systems under the influence of a pair of external giant planets with
initially unstable orbits. A number of previous works (based on N-
body simulations) have already investigated this problem, illustrating
that the strong scatterings of unstable giant planets can affect the
orbits of the inner planets in different ways (e.g. Matsumura, Ida &
Nagasawa 2013; Carrera et al. 2016; Gratia & Fabrycky 2017; Huang
et al. 2017; Mustill et al. 2017). For example, the outer scatterings can
send a giant planet inward, sweeping up all the inner planets along
its wake and totally destroying the inner system. Also, the scattering
events can excite the eccentricities and mutual inclinations of the
inner planets beyond the threshold of their stability, causing the inner
system to also undergo scattering events of their own, resulting in a
pared down inner system. In this paper, we attack this problem more
systematically, going beyond previous works in several ways. Our
rationales are: (i) Previous works were restricted to small number of
numerical examples, often considering specific orbital parameters.
As such, it is difficult to obtain a quantitative understanding or scaling
relations (even approximate) in order to know ‘what systems lead
to what outcomes’. (ii) Previous works often considered systems
where the inner planets are not too detached from the outer planets.
This was adopted for numerical reason: If the inner planets have
too small a semimajor axis compared to the outer planets, their
dynamical times would be much shorter than the outer planets, and
it would be difficult to simulate the whole system over a long time
or simulate a large number of systems. As a result, previous works
tended to overemphasize the more ‘disruptive’ events. In reality,
for sufficiently hierarchical systems, the scattering events may only
mildly excite the eccentricities and mutual inclinations of the inner
planets; in this case, the super-Earths themselves are preserved, but
their mutual inclinations may be large enough to ‘hide’ the inner
planets from simultaneously transiting their host stars – such ‘mild’
systems or events may be most relevant to the currently observed
super-Earths with cold Jupiter companions. (iii) Most importantly,
there is a wide range of ‘ejection times’ associated with the evolution
of the unstable giant planets (e.g. for some systems, the lighter cold
Jupiter may be ejected very quickly, while for others the ejection
may take place over much longer time). As we show in this paper,
the degree of influences on the inner system from the outer planets is
directly correlated with the ejection time of the unstable giant planets.
Thus, numerical studies that only consider restricted examples would
not capture the whole range of dynamical behaviours of the ‘inner
planets + outer giants’ system.

Thus, the goal of this paper is to systematically examine how
strong scatterings of outer giant planets influence the inner super-
Earth system. We aim at obtaining an understanding of the whole
range of different outcomes and deriving relevant scaling relations for
different systems (with various planet masses and orbital parameters)
and different ejection times. Of particular interest are the ‘mild’
systems where the inner planets survive the ‘outer violence’. We
elucidate the connections between the ‘violent’ phase and the ensuing
‘secular’ phase studied in our previous papers (Lai & Pu 2017; Pu
& Lai 2018). As mentioned above, because of the hierarchy of
dynamical time-scales, it is difficult to study the systems where
the inner super-Earths and outer giants are well-separated using
brute-force N-body simulations, especially when the ejection time
of giant planet is large – and yet such systems are most relevant to
the observed super-Earths with cold Jupiter companions. To this end,
we developed a hybrid algorithm, combining N-body simulations of

outer giant planets undergoing strong scatterings with secular forcing
on the inner planets, to compute the evolution of the inner planets
throughout the ‘violent’ phase.

A major part of this paper is devoted to the dynamics of strong
scatterings between two giant planets (Section 2). Although there
have been many previous studies on giant planet scatterings (e.g.
Rasio & Ford 1996; Weidenschilling & Marzari 1996; Lin & Ida
1997; Ford, Kozinsky & Rasio 2000; Chatterjee et al. 2008; Ford
& Rasio 2008; Jurić & Tremaine 2008; Matsumura et al. 2013;
Petrovich, Tremaine & Rafikov 2014; Frelikh et al. 2019; Anderson,
Lai & Pu 2020; Li et al. 2020), they all focused on the final outcomes
of the unstable giant planets (e.g. the eccentricity distribution of the
remaining planets), and did not investigate the time-scale (‘ejection
time’) of violent phase. As noted above, this ‘ejection time’ directly
influences the perturbations the inner planets receive from the ‘outer
violence’. In addition to obtaining the ‘ejection time’ distribution, we
also obtain a number of new analytic and scaling results for strong
scatterings between two giant planets.

We then develop a theoretical model for the ‘violent’ phase of the
scattering process, and model the inner planet’s secular evolution as
a linear stochastic differential equation. We obtain analytic estimates
for both the expectation values and the distributions of the final
orbital parameters of the inner planets, and test these results against
direct numerical integrations. A major achievement of this work is the
derivation for the marginalized ‘violent-phase’ boost factor γ , which
summarizes the entire dynamics of the ‘1+2’ scattering process in a
single, dimensionless parameter. We derive an analytical expression
for the distribution of γ , which agrees robustly with numerical
simulations over a wide range of initial system parameters.

This paper is structured as follows. In Section 2, we study the
scattering process between two unstable giant planets using N-body
simulations, focusing in particular on the planet ejection time-scale
through N-body simulations. In Section 3, we outline our hybrid
N-body and secular algorithm to study the effect of giant planet
scatterings on the inner super-Earth system. In Section 4, we present
the results of these simulations, as well as theoretical scaling results
for the final outcome of these systems. These results are extended to
systems with more than one inner planets in Section 5. We provide
a summary of our results, and apply them to several ‘Super-Earth +
CJ’ systems of interest in Section 6, as well as providing suggestions
for further studies.

2 G R AV I TAT I O NA L SC AT T E R I N G S O F T WO
G I A N T P L A N E T S

The topic of gravitational scatterings between two or more giant
planets on unstable orbits is a classic one and has been the subject of
numerous previous studies (e.g. Rasio & Ford 1996; Weidenschilling
& Marzari 1996; Lin & Ida 1997; Ford et al. 2000; Chatterjee
et al. 2008; Ford & Rasio 2008; Jurić & Tremaine 2008; Ida, Lin
& Nagasawa 2013; Matsumura et al. 2013; Petrovich et al. 2014;
Frelikh et al. 2019; Anderson et al. 2020; Li et al. 2020). These
studies focused on the final states of unstable systems, such as the
eccentricity distribution of the remaining planets. We return to this
topic to re-focus our attention on the scattering/ejection time-scale
tej, a quantity that plays a key role in the interaction between the
scattering CJs and the inner super-Earth system, but hitherto ignored
by previous studies (but see fig. 1 of Anderson et al. 2020 and fig. 7
of Li et al. 2020). In particular, we seek to understand the distribution
of tej and how the ejection outcome may scale with various system
parameters, such as the planet masses and spacing. In this section,
we present our numerical results (based on N-body simulations) –
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Scattering 1+2 599

Figure 1. A histogram of the final eccentricity of the remaining planet, for
a system of two initial planets that have undergone an ejection event. The
different colours correspond to various values of the mass ratio m1/m2. Each
histogram represents 600 simulations, with k0 ∈ [1.5, 2.0, 2.5] (where k0 ≡
(a2 − a1)/rH) and m1 ∈ [3.0, 1.0] MJ . Runs with different m1 were binned
together as their distributions were indistinguishable statistically.

these empirical findings serve as the basis for our theoretical model
and analytical understanding discussed in Section 3.

Consider a pair of planets with masses m1 and m2, radii R1 and
R2 and semimajor axes a1 and a2 orbiting a star with mass M�. We
assume the planets are initially on circular orbits and have a mutual
inclination 0 < θ12 � 1 radians. The planets are stable against close
encounters for all time if the condition

|a2 − a1| > 2
√

3rH (1)

is satisfied (Gladman 1993), where the mutual Hill radius rH is given
by:

rH ≡
(

a1 + a2

2

)(
m1 + m2

3M∗

)1/3

. (2)

If this condition is not satisfied, the resulting system is gravitation-
ally unstable and will inevitably undergo mutual close encounters.
Generally, such an unstable system will result in either the merger of
two planets or the ejection of one of the planets. The exact prevalence
depends on the initial system parameters, and planetary systems with
smaller semimajor axes and/or larger planetary radii are more likely
to result in collisions/mergers rather than planet ejections. For gas
giant planets with semimajor axes beyond a few au’s, the most likely
outcome appears to be eventual ejection of the least massive planet
from the system. We focus on such ejection events in this section.

2.1 Numerical set-up

We perform N-body simulations of the orbital evolution of giant
planets orbiting a solar mass star, using the IAS15 integrator included
as part of the REBOUND N-body software (Rein & Liu 2012; Rein
& Spiegel 2015). IAS15 is a 15th-order integrator based on Gauss–
Radau quadruature with automatic time-stepping that is capable of
achieving machine precision; it is well suited for problems involving
close encounters and high-eccentricity orbits.

We performed an array of N-body simulations involving the
scattering of hypothetical unstable 2-planet systems. Each system
had an inner planet with semimajor axis a1 = 5 au, with the outer
planet’s semimajor axis given by a2 = a1 + k0RH, with k0 ∈ [1.5, 2.0,
2.5]. The inner planet had mass m1 ∈ [10.0, 3.0, 1.0, 0.3] MJ while

the outer planet’s mass is m2, with the mass ratio m2/m1 chosen from
[1, 2/3, 1/2, 1/3, 1/5, 1/10]. Note that in our simulations, the outer
planet is less massive than the inner planet, although our analytic
results apply to cases with the inner planet being more massive as
well. The planets were treated as point particles (their radius were set
to zero), and the possibility for collisions between planets were not
considered. Both planets were started on initially circular orbits, and
their initial orbital mutual inclination is set to be θ12, 0 = 3◦. The initial
mean anomaly f, longitude of the ascending node �, and longitude of
pericentre � were each drawn from uniform distributions on [0, 2π ].
We computed each system for up to 3 × 107 orbits of the inner planet,
terminating simulations once an ejection has occurred (i.e. the orbit
of one of the planets becomes unbounded). For each combination of
k0, m1, and m2/m1 we performed computations until 200 systems that
resulted in ejected systems were obtained. The reason we perform
such large numbers of simulations is to have sufficient data to test
various statistical hypotheses that will arise later in the paper. The
results of these simulations are summarized in the following sections.

2.2 Final outcomes of scatterings: orbital parameters

After the scattering process has completed, we are interested in the
final semimajor axis, eccentricity, and inclination (relative to either
the initial plane or the ejected planet) of remaining planet, which
we denote as a1, ej, e1, ej, and θ1, ej, respectively, with the subscripts
‘0’ and ‘ej’ denoting the quantity being at time zero and at the final
time immediately after the ejection of the final planet. Although
these results have been known and presented previously in various
contexts (see references at the beginning of Section 2), we explore a
broader range of planets masses and mass ratios and test the analytical
scalings against simulations.

(i) Final semimajor axis a1, ej: The final semimajor axis is
determined by the conservation of energy,

Etot = −GM�m1

2a1,0
− GM�m2

2a2,0

 −GM�m1

2a1,ej
, (3)

which gives a final semimajor axis of

a1,ej = a1,0

(
1 + a1,0m2

a2,0m1

)−1

(4)

for the remaining, non-ejected planet.
In our simulations, we find that given the same set of initial planet
masses and semimajor axes, the final distribution of the semimajor
axis is determined by equation (4) to within 1 per cent. This is a
consequence of the diffusive nature of the ejection process, which
proceed over many orbits through a series of energy exchanges, each
exchange shifting the ejected planet’s orbital energy by an amount
δE12 � E2, 0. At ejection, the ejected planet deposits all its initial
energy into planet 1, and the scatter in its final (positive) orbital
energy is of the order of δE12 and is negligible compared to the total
energy lost E2, 0.

(ii) Final eccentricity e1, ej: Our simulations show that the final
eccentricity of the remaining planet depends strongly on the mass
ratio m2/m1, and weakly on the initial separation of the two planets.
Fig. 1 shows a plot of the distribution density of e1 as a function of
the mass ratio m2/m1 for a system with m1 = 1MJ. For m2 � m1 with
initial separation of order rH, a good empirical scaling for the typical
value of e1, ej is

〈e1,ej〉 ≈ 0.7m2/m1. (5)

The spread in the value of e1, ej increases with the mass ratio of the
planet: for the case where m2/m1 � 1 (i.e. m2 being a test particle),
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Figure 2. A histogram of the final inclination of the remaining planet (relative
to the initial plane), for a system of two initial planets that have undergone
an ejection event. The initial mutual inclination of the two planets is 3◦. The
different colours correspond to various values of the mass ratio m2/m1. Each
histogram represents 600 simulations, with k0 ∈ [1.5, 2.0, 2.5] and m1 = MJ.
Simulations with different k0 were binned together as their distributions were
approximately identical statistically.

the standard deviation σ (e1, ej) is of the order of ∼0.25〈e1, ej〉, while
for the case of m2/m1 ∼ 0.5 the standard deviation is ∼0.5〈e1, ej〉.
The scaling of eccentricity can be understood as a consequence of
the conservation of angular momentum:

m1

√
GM�a1

(
1 − e2

1

) + m2

√
GM�a2

(
1 − e2

2

) = const. (6)

We make the approximation that the apsis of the outer planet and
the periapsis of the inner planet change much more slowly than their
eccentricities and semimajor axes during close encounters, i.e.

p1 ≡ a1(1 + e1) = a1,0 
 const. (7)

q2 ≡ a2(1 − e2) = a2,0 
 const. (8)

Combining equations (7) and (8) with equation (6) and substituting
a final value of e2 = 1, we have√

1 − e1,f 
 1 + (1 −
√

2)(m2/m1)α−1/2
0 , (9)

where α0 is the initial value of the semimajor axial ratio a1/a2. In the
limit that (m2/m1) � 1, equation (9) reduces to

e1,ej ≈ 0.8(m2/m1). (10)

(iii) Final inclination θ1, ej: We find θ1, ej to be determined most
strongly by the mass ratio m2/m1, and somewhat independent of
the other parameters. Fig. 2 shows our empirical results for the
distribution of the inclination as a function of m2/m1. We find that
θ1, ej is well-fit by a Rayleigh distribution with scale parameter σ

∼ 0.7θ12, 0. This can be understood as a consequence of angular
momentum conservation. Since the ejected planet picks up a change
in its angular momentum about the z-axis of order sin θ12, 0L2, 0,
angular momentum conservation requires the remaining planet to
gain angular momentum in equal and opposite direction. As a result,
planet 1 will pick up an inclination relative to its original plane of
order

θ1,ej ∼ (L2,0/L1,0) sin θ12,0 ∼ (m2/m1) sin θ12,0. (11)

2.3 Time-scale to ejection

An important quantity in the dynamical evolution of inner planet
systems with scattering CJs is the time-scale required to finally eject
one of the planets. We present our empirical results on the scaling
and dependence of the ejection time-scale with system parameters.
However, before proceeding, there are some caveats with regards to
the correct metric to use for the ejection time-scale.

First, an unstable pair of planets on initially circular orbits will
first pass through a metastable phase where the eccentricities of both
planets ramp up gradually, without the planets undergoing violent
close encounters. This ramp-up phase is called the ‘instability time-
scale’ tinst in other contexts and its length depends on the parameters
of the system. The scaling dependence of tinst has been the subject
of many studies (e.g. Chambers, Wetherill & Boss 1996; Zhou, Lin
& Sun 2007; Smith & Lissauer 2009; Pu & Wu 2015; Obertas, Van
Laerhoven & Tamayo 2017; Wu et al. 2019), the results of which
show that generally the instability time-scale scales exponentially
with the planet spacing, i.e. ln tinst∝�a. In this study we are interested
in the time-scale required for an initially unstable system to finally
eject one of the planets, a process which only occurs after tinst has
already been reached (see also Rice, Rasio & Steffen 2018, for a study
on the time-scale to the first planet–planet collision). Therefore, it
is convenient to separate the ramp-up phase from the ejection time-
scale by counting time only after the first close encounter. We do
so by starting our count of the passage of time for planet ejections
only after the planets 1 and 2 have orbits that are separated by a Hill
radius or less, i.e. when a2(1 − e2) − a1(1 + e1) ≤ rH is satisfied.

We define tej and Nej respectively as the time and the number of
pericentre passages the ejected planet (planet 2) takes between the
first Hill-sphere crossing event and the final ejection event. Note
that we use the number of orbits of the ejected planet as opposed to
the number of synodic periods, because at higher eccentricities the
energy exchange mainly occurs at pericentre passages and not orbital
conjunctions. Nej and tej can be converted from each other using the
transformations

N (t) 
 1

2π

∫ t

0

(
GM∗
a3(t)

)1/2

dt (12)

t(N ) 
 2π

∫ N

0

(
GM∗
a3(N )

)−1/2

dN. (13)

We focus on Nej below, as it is the more physically relevant quantity
in the scattering and ejection process. The results of our numerical
simulations are shown in Figs 3 and 6. We summarize the key results
below:

(i) Dependence on m1: We find a strong dependence in our
simulations of Nej on the mass of the more massive planet m1.
The histograms in Fig. 3 show the different probability density
distributions of Nej for systems with various m1 ranging from 3MJ

to 0.3MJ. In our simulations, while systems with m1 = 3MJ have Nej

∼ 103, the same system with a m1 = 0.3MJ had a typical ejection
time-scale that is nearly a hundred times greater. We find that the
scaling is very close to Nej ∝ m−2

1 .
(ii) Dependence on m2/m1: For a given m1, Nej generally depends

on m2/m1. When m2/m1 � 1, there is little dependence on m2. On
the other hand, as m2 increases to be of similar order as m1, the
ejection time-scale starts to increase significantly. Fig. 4 shows the
density distribution of Nej for a system with all other parameters
fixed, except the ratio m2/m1, which is varied from 1/5–1/2. We find
that in comparison to the test-particle limit (m2/m1 � 1), a mass
ratio of 1/2 results in an ejection time-scale that is ∼10 times larger.
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Figure 3. Probability density distribution of Nej from our two planet
scattering simulations. The different colours represent different values of m1,
with red, green, and blue corresponding to m1 = 3, 1, 0.3MJ, respectively.
For each histogram, we fix m2/m1 = 1/10 and k0 = 2.0. The histograms
are empirical results from our N-body simulations, while the solid curves
are obtained using the theoretical model in equation (19), with b empirically
determined using equation (22).

Figure 4. Same as Fig. 3, except we fix m1 = MJ, while m2/m1 varies as
indicated in the legend.

We find a scaling of Nej∝(1 + m2/m1)4.0, the functional form being
somewhat arbitrary.

(iii) Variance of Nej: in our simulations, we find significant
variance in the distribution of Nej for systems that have different
initial orbital phases but otherwise identical orbital parameters. This
can be seen clearly in Figs 3 and 4, where similar systems can have
ejection time-scales that range 4–5 orders of magnitude. We find that
the standard deviation of log10Nej is approximately 0.9; this variance
is empirically independent of the other system parameters such as
planet masses.

(iv) Dependence on k0: We found that the initial planet spacing
�a = k0rH plays little role in determining the final ejection time-
scale, as long as the initial ramp-up period of meta-stability is
accounted for. Fig. 5 shows a comparison in the density distribution
of Nej for systems with otherwise identical parameters, except with
k0 varying from 1 to 2.5.

(v) Relation between Nej and ejection time tej: Since the semi-
major axis of the planet increases as it is being ejected, the ejection
time tej is usually significantly larger than the naive estimate tej ∼

Figure 5. Same as Fig. 3, except we fix m1 = MJ, while the initial separation
parameter k0 = �a/rH varies as indicated in the legend.

NejP2, 0 where P2, 0 is the initial orbital period. The discrepancy grows
larger when m1 is smaller, due to the fact that the to-be-ejected planet
can maintain larger semimajor axes before finally being ejected. We
find a best-fitting power law with the form:

tej ∼ 8P2,0N
0.7
ej

(
m1

M�

)0.46

. (14)

2.4 Theoretical model for CJ scattering

We present a simple theoretical model for the process of CJ
scattering to explain our empirical results of Section 2.3. As we shall
demonstrate in this section, by assuming that the planet orbital energy
undergo a random walk during the scattering process, this model can
explain both the distribution and the scaling of the ejection time of
CJ scatterings.

Consider the limiting case of a pair of planets with m1 � m2. The
two planet orbits are ‘unstable’ such that their orbits come very close
to each other and experience repeated crossings. At larger orbital
distances it is common for the two planets to remain orbit-crossing
for extended periods of time without physically colliding. Since m1

� m2, we assume the orbital parameters of m1 stay constant during
the scattering process.

At every pericentre passage (or apocentre passage if a2 < a1),
planet 2 exchanges a certain amount of orbital energy with planet
1. The amount of energy exchanged, δE12 depends on the orbital
properties of the two planets. We hypothesize that δE12 can be
approximated as follows:

δE12 ∼
(

Gm1m2

a1

)
F (a2, f12) , (15)

where F is a dimensionless function, and f12 is the difference of the
two planets’ true longitudes at time of pericentre passage of planet
2. Note that in general, F should depend on e2 as well. However,
given some a2, the possible values of e2 is narrowly constrained
due to conservation laws (see Section 2.5 below), so to a first-order
approximation, it is sufficient to know only a2.

Due to symmetry, for a fixed value of a2 the function F is odd with
respect to f12, i.e. the energy exchange is equally likely to be positive
and negative, and averaging over f12 gives 〈F(a2, f12)〉 = 0. As a result,
even though at each close approach between planet 1 and planet 2
there is a finite amount of energy exchange, in the limit that |δE12|
� E2, the long-term energy exchange is small, since f12 is sampled
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602 B. Pu and D. Lai

almost periodically and uniformly. On the other hand, if |δE12| ∼ E2,
then each close encounter changes the period of planet 2 materially,
such that the value of f12 on the next approach is randomized. It is
this randomization of the relative phase that causes energy exchange
at iterative encounters to behave chaotically, resulting in a drift in
orbital energy of planet 2 (a similar phenomenon occurs when highly
eccentric binaries experiences chaotic tides; see, e.g. Vick & Lai
2018).

In general, the amount of random diffusion in E2 scales inversely
proportional to the time-scale in which the relative orbital phases f12

at successive encounters can be randomized, so the energy exchange
is most efficient at large values of a2, and suppressed when a2 is
small. When eventually E2 drifts to a positive value, the planet is
ejected and the process terminates.

Now we study the question of for how long this process occurs,
i.e. the mean value and distribution of Nej. To do this, we make use
of a Brownian motion approximation in E2 (for a recent application
of this idea in a different context, see Mushkin & Katz 2020).

Suppose we are able to find the RMS value of the function F(a2, f12)
over the course of two-planet scattering, weighted by the likelihood of
each a2 occurring during the scattering process. We call this quantity
δ̄(m1, m2, a1, a2,0), which depends on the initial separations, i.e.

δ̄ ≡
(

1

2π

∫ 2π

0

∫ ∞

0
F 2(a2, f12)f (a2) da2 df12

)1/2

, (16)

where f(a2) is the (unknown) probability density function of a2 over
the course of the scattering event. Then we may assume that the
distribution of energy exchanges over the scattering process can be
approximated as a Gaussian distribution with a mean of zero and
width of δ̄. We do not attempt to compute F(a2, f12) or f(a2) explicitly;
instead, we constrain them statistically from our N-body simulations
by measuring the related parameter b, which is the ratio of the initial
orbital energy and the RMS energy exchange and is given by

b ≡ |E2,0|
(

Gm1m2δ̄

a1

)−1

. (17)

In the limit of many successive passages, each giving a kick in energy
that is small relative to the initial orbital energy |E2, 0| (i.e. N � 1
and b � 1), the probability density distribution in �E2/E2, 0 after N
orbits is given by

f (�E2/|E2,0|) = 1√
2πN

exp

(−(�E2/E2,0)2

2Nb2

)
. (18)

Nej is the lowest value of N such that �E2/|E2, 0| = 1; it is known as
the ‘stopping time’ of the Weiner process and its probability density
distribution is given by the Levy distribution (see e.g. Borodin &
Salminen 2002):

f (Nej|b) = b√
2πN3

ej

exp (−b2/2Nej). (19)

The distribution in equation (19) is long-tailed since f (Nej) ∝ N
−3/2
ej

for Nej � b2, and all of its moments including the arithmetic mean
diverge. The geometric mean is 〈Nej〉GM = exp (2γ EM)b2 ≈ 3.17b2

(where γ EM ≈ 0.57 is the Euler–Mascheroni constant) and its mode
is equal to b2/3. Another useful quantity is the harmonic mean, given
by

〈Nej〉HM ≡ 〈1/Nej〉−1 = b2. (20)

The standard deviation of the quantity ln Nej is Var(ln Nej) =
π/

√
2 ≈ 2.2, regardless of the value of b, and the 68 per cent and

95 per cent quantile ranges are Nej ∈ [0.25b2, 13b2] and [0.1b2,

Figure 6. The maximum-likelihood estimate (MLE) estimate of b, as a
function of m1, for various combinations of the planet mass ratio m2/m1.
The filled circles are the results of numerical N-body simulations, while the
solid lines are given by equation (24). The error bars are computed using the
asymptotic variance of the MLE (equation 23).

500b2], respectively. In short, Nej is distributed with a long tail
at larger values and its distribution can easily span several orders
magnitude.

The next step is to empirically determine the value of b from
the results of our numerical simulations, given the set of system
parameters (m1, m2, a2, 0, etc.). To do so, we make use of the
maximum-likelihood estimate (MLE). The likelihood function for
K observations of Nej, i, i ∈ [1, 2,...K] is given by

L(b) =
K∏
i

b√
2πN3

ej,i

exp (−b2/2Nej,i). (21)

Maximizing ln L with respect to b, we have

bMLE = argmax
b

L(b) =
√

K

(
K∑
i

N−1
ej,i

)−1/2

. (22)

Its variance is given by the asymptotic variance of the MLE:

Var(bMLE) =
(

K
∂2L(b)

∂b2

)−1

b=bMLE

= −2b2
MLE/K. (23)

In Fig. 6 we show the empirical values of bMLE estimated using
equation (22) as functions of m1 and m2/m1. We find that b can be
well-approximated by

b ≈ c1

(
m1

M�

)c2
(

1 + m2

m1

)c3
(

a1,0

a2,0

)c4

, (24)

with c1 = 0.06 ± 0.02, c2 = −0.98 ± 0.03, c3 = 2.14 ± 0.07, and c4

= −1.4 ± 0.5; the above model has a value of R2 = 0.99 when fitted
against the empirical values of b (as estimated by MLE).

This empirical scaling is in fact consistent with the results of past
studies, which showed that for comets with a2 � a1 and (1 − e2) �
1, the RMS energy exchange per pericentre passage is of the order
of δE12 ∼ Gm1m2/a1 (see, e.g. Wiegert & Tremaine 1999; Fouchard
et al. 2013). This result would imply that c2 = c4 = −1, which is in
agreement with our empirical results.

Equations (19) and (24) provides an accurate description of the
distribution for Nej as long as m2/m1 � 1/3. However, this model
breaks down in the comparable mass regime (m1 ∼ m2), where Nej is
usually much larger than predicted by equation (24). This is because
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Scattering 1+2 603

Figure 7. Top: empirical values of a2, min as function of m2/m1. Each data
point represents the global minimum over all simulations. The blue, green,
and red circles correspond to m1 = 10, 3, 1MJ respectively. The dashed lines
are derived from minimizing a2 under the constraints given by equations (25)–
(27) in the limit of m2/m1 � 1. We suppress error bars in the empirical results
because it is unclear how to estimate the minimum of a set of observations
without prior assumptions about the distribution of our data. The bottom
panel is similar to the upper panel, except we plot r2, min = min [a2(1 − e2)]
instead of a2, min.

for planets of comparable mass, as a2 increases a1 will decrease by
a comparable value. As a result, the energy exchange becomes much
less efficient as a2 increases since the planet can only come close
to one another when planet 1 and planet 2 are simultaneously at
their apocentre and pericentre, respectively. A theoretical model for
this strong scattering process at comparable masses is an intriguing
question in its own right, and necessary for further refinements on
the results presented here, but beyond the scope of this paper.

2.5 Scattering into inner system

Aside from the orbital parameters and ejection time-scale, another
quantity we are interested in is the minimum approach distance a
planet might have with its host star. Since planet ejections occur
gradually in a random walk-like manner, the ejected planet may
first meander a significant amount inwards before being eventually
ejected. If the to-be-ejected giant planet at some point comes too
close to the inner system, it can undergo non-secular interactions

with the inner system, causing our semisecular approximation (see
Section 3) to break down. Therefore, it is important to quantify the
extent to which the giant planet might first move inward.

First, due to conservation laws, there is a limit to how deeply
inwards a planet can meander during the scattering process. If we
assume the planet orbits remain (approximately) co-planar, then the
4 relevant variables are a1, a2, e1, and e2, which satisfy the constraints

(i) Energy conservation:∑
j

mj/aj,0 =
∑

j

mj/aj . (25)

(ii) Angular momentum conservation:

∑
j

mj

√
aj,0

(
1 − e2

j,0

) =
∑

j

mj

√
aj

(
1 − e2

j

)
. (26)

(iii) Second law of thermodynamics: The system must not spon-
taneously ‘scatter’ itself into a state that is indefinitely stable, even
if this is permitted by the conservation laws. In general, the stability
criterion for two planets with general masses, eccentricities, and
inclinations is complicated (see e.g. Petrovich 2015). In the limit
of co-planar orbits with m1 � m2, we find that requiring planets to
follow the criterion below results in best agreement with the empirical
results:

a2(1 − e2)

a1(1 + e1)
� 1 + 2(m1/3M�)1/3. (27)

The above constraint asserts that the maximal planet separation
should not exceed 2 Hill radii at all times.

The above three constraints reduce the degree of freedom to 1,
which means that given any one variable, the other three variables are
uniquely determined. One can then optimize for the lowest allowed
values of a2 and a2(1 − e2). This then produces a theoretical lower
limit on a2 during the scattering process. However, it is not a given
that this minimum can always be reached, for two reasons: First,
since �E2 undergoes an approximate Brownian motion, it is likely
to spend large fractions of time being positive, such that a2 is never
much below its initial value. Secondly, energy exchange becomes less
efficient as a2 decreases, since the time-scale for the randomization
of the relative orbital phase becomes larger.

We show these limits for a2 and r2 ≡ a2(1 − e2), compared
with empirical results from our simulations, in Fig. 7. We see that
generally, a2, min/a1, 0 ∼ 1/2, and decreases with increasing m1. The
theoretical constraints agreed well with empirical results when m2/m1

� 1, but breaks down when m2/m1 � 0.2. We also find that r2, min

decreases strongly with increasing m2/m1, and can reach r2, min/a1, 0

� 0.05 for m2 ∼ m1.
While it is possible for the less massive planet to be sent deep

into the inner system during the scattering process when m2 
 m1, in
practice this is an unlikely outcome. In Fig. 8 we show the cumulative
density distribution of realized a2, min/a1, 0 and r2, min/a1, 0 from our
suite of N-body simulations. We find that a2, min/a1, 0 and r2, min/a1, 0

have a broad distribution: for m1 = 10MJ and m2 
 m1, a2, min/a1, 0

reaches below 1/10 only ∼ 10 per cent of the time. When m1 

m2, the empirical distribution for a1, min/a1, 0 and r1, min/a1, 0 are very
similar to r2, min/a1, 0 and a2, min/a1, 0 respectively, due to symmetry.
Thus, even for initial parameters most likely to result in giant planets
scattered deep into the inner system (i.e. m1 = 10MJ and m2 
 m1),
the likelihood of one of the planets reaching a pericentre distance
less than 1/10th of the initial semimajor axis is only ∼ 20 per cent.
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604 B. Pu and D. Lai

Figure 8. Top: empirical cumulative distribution of a2, min as function of
m1 and m2/m1 from our sample of N-body simulations. The red and blue
histograms m1 = 10, 1MJ respectively. The thick lines correspond to m1/m2

= 3/2 while the thin lines correspond to m1/m2 = 10. Bottom panel: similar
to the upper panel, except we plot r2, min = min [a2(1 − e2)] instead of a2, min.

3 SE M I S E C U L A R A L G O R I T H M FO R ‘ N+2 ’
S C AT T E R I N G S

We now consider how an inner low-mass planet system respond to
an outer pair of giant planets undergoing strong scatterings. We label
the inner planets as j ∈ [a, b, c,...], while the outer planets are labelled
p ∈ [1, 2]. In Section 4, we focus on inner systems with only one
planet, and we extend our results to cases with two inner planets in
Section 5, although our method can work for a general number of
inner and outer planets. We imagine the inner system to be consistent
with those discovered by Kepler, i.e. the planets have semimajor axes
typically between 0.02 and 0.5 au and are super-Earths in mass (mj

∼ 3 − 20M⊕). We have a system of outer planets with semimajor
axes beyond ∼2–3 au that are gravitationally unstable (k0 ≤ 2

√
3),

and at least one of the planets have a fairly large mass (≥100M⊕),
although m2 may be more comparable to super-Earths in size. We
assume that the inner system is well-separated from the outer system
(aj � a1, a2), such that the inner planets do not participate directly
in the outer scattering process.

As noted in Section 1, to address the question of how the inner
planets are affected by the outer scattering, a direct approach based
on N-body simulations is inadequate. The issue lies in the differing
time-scales involved: The inner planets have short orbits on the time-
scale of days, which forces the time-step of the N-body simulation

to not more than a few hours. On the other hand, the outer planets
have periods of ∼10 yr and an ejection time-scale of potentially
hundreds of Myrs. To make matters even worse, the prospect of
scattering events driven constantly by close encounters between
planets preclude the use of fast and efficient symplectic integrators
(e.g. the Wisdom–Holman mapping).

Here, we develop a hybrid method to evaluate the dynamical
evolution of an inner system perturbed by a system of unstable outer
CJs. In this method, we decouple the time-scale of the inner planets
and outer planets by computing their orbital evolutions separately.
This is possible because we can safely neglect the backreaction on
the outer planets by the inners: since the inner planets are much
less massive compared to their outer companions, the gravitational
influence of the inner planets on the outer planets is negligible
in comparison with the outer planets’ own violent scatterings.
Furthermore, since the inner planets are sufficiently far from the outer
planets as to avoid direct scattering interactions, the gravitational
influence by the outer planets is well described by secular dynamics
(Matsumura et al. 2013).

Our algorithm is as follows. First, we evolve the gravitational
interaction between the outer planets, in the absence of any inner
planets. We then obtain a time-series of the position–velocity vectors
of each of the outer planets from beginning until final ejection. In
the case of two giant planets, we have rp(t) and vp(t) for p = 1, 2.
These will be used as forcing terms to calculate the evolution of the
inner planets, as follows.

Define j and e as a planet’s dimensionless angular momentum and
eccentricity vectors:

j =
√

1 − e2n̂, e = e û (28)

where n and u are unit vectors, n is in the direction normal to the
orbital plane and u is pointed along the pericentre. We compute the
time evolution of these vectors for the outer planet p using

jp(t) = 1

(GM�ap)1/2

[
rp(t) × vp(t)

]
(29)

ep(t) = 1

GM�

[
vp(t) × (rp(t) × vp(t))

]
. (30)

According to Laplace–Lagrange theory (e.g. Murray & Dermott
1999), the evolution equations for the eccentricity vector ej and unit
angular momentum vector jj on the planet j due to the action of
planet k, in the limit that ej, ek, θ jk are small, are given by:(

dej

dt

)
k

= −ωjk(ej × jk) + νjk(ek × jj ), (31)(
djj
dt

)
k

= ωjk(jj × jk). (32)

The quantities ωjk and ν jk are the quadrupole and octupole precession
frequencies of the j-th planet due to the action of the k-th planet, given
by:

ωjk = Gmjmka<

a2
>Lj

b
(1)
3/2(α), (33)

νjk = Gmjmka<

a2
>Lj

b
(2)
3/2(α). (34)

Here a< = min(aj, ak), a> = max(aj, ak), α = a</a>, Lj 

mj

√
GM∗aj is the angular momentum of the j-th planet, and the

b
(n)
3/2(α) are the Laplace coefficients defined by:

b
(n)
3/2(α) = 1

2π

∫ π

0

cos (nt)

(α2 + 1 − 2α cos t)3/2
dt . (35)
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Laplace–Lagrange theory breaks down for more general values
of ej and θ jk, and therefore, in this work we instead adopt a set
of modified secular equations that interpolates between Laplace–
Lagrange theory and secular multipole expansion. The equations are
given in equations (A2)–(A5) in Pu & Lai (2018) and have better
performance than equations (31)–(32) when ej and θ jk are large but
(aa/a1) � 1. Thus we use these hybrid equations from Pu & Lai
(2018) in place of equations (31)–(32) to compute the gravitational
influence of the outer planets on the inner planets. Note that the
adopted equations employ orbital averaging over both the inner planet
and outer planet orbits. Even though the outer planet orbits vary on
orbital time-scales due to the strong mutual scatterings, the use of
secular orbital averaging is appropriate since the interactions between
the outer and inner planets are secular and accumulate over large
number of orbits, the orbit-to-orbit variations can be ignored so long
as the orbital period of outer planets is much shorter than the secular
time-scale.

In summary, we compute the evolution of the inner planets j ∈ [a,
b, c...], by the action of other inner planets k ∈ [a, b, c...] as well as
outer planets p ∈ [1, 2] as follows:

djj
dt

=
∑

k=a,b...

(
djj
dt

)
k

+
∑
p=1,2

(
djj
dt

)
p

, (36)

dej

dt
=

∑
k=a,b...

(
dej

dt

)
k

+
∑
p=1,2

(
dej

dt

)
p

. (37)

The results of the calculations are discussed in Section 4.

4 1+2 SC AT T E R I N G

We consider a single inner planet (‘a’) with two outer CJs. Planet a
has mass 3M⊕ and semimajor axis chosen from aa ∈ {0.1, 0.15, 0.2,
0.25, 0.375, 0.5, 0.75, 1.0}, these are much smaller than the initial
semimajor axes (≥5 au) of the outer planets so that planet a typically
does not participate directly in the scattering between planets 1 and
2. We assume all planets have initially circular and co-planar orbits,
except that θ2, 0 = 3 degrees. We integrate this system using the
semisecular algorithm described in Section 3. A simulation is halted
if any pair of planets undergo orbit crossings, or if planet a attains
an eccentricity greater than 0.99. We discuss the results of these
simulations below.

4.1 Empirical results

In our simulations we find a wide range of the final possible values
of the inner planet eccentricity ea, inclination θa measured relative to
the original orbital plane of planet a (note the orbits of planets a and
the remaining CJ are initially aligned), and mutual inclination θa1

between the inner planet and the remaining CJ. As mentioned earlier,
the evolution has two phases: the first phase is when the system
has three planets total, with the outer two planets (planets 1 and
2) undergoing scattering and the inner planet (planet a) interacting
secularly with both planets. At some point, an outer planet is ejected,
and the inner planet interacts with only the remaining CJ, whose
orbital properties remain a constant in time.

We define the eccentricity and inclination of the inner planet at
the time of ejection as ea, ej and θa, ej respectively. After ejection, the
inner planet still undergoes secular oscillations in eccentricity and
inclination due to interactions with the remaining CJ. We thus define
the time-averaged RMS eccentricity and inclination at infinity as

ea,∞ ≡
(

lim
t→∞

1

t − tej

∫ t

tej

e2
a(t)dt

)1/2

, (38)

θa,∞ ≡
(

lim
t→∞

1

t − tej

∫ t

tej

θ2
a (t)dt

)1/2

. (39)

These quantities can be easily evaluated using secular theory (see
e.g. Pu & Lai 2018). For the mutual inclination, θa1 remains constant
once ejection has occurred, thus θa1,∞ = θa1,ej. Since the final value
of θ1,ej is small (see Section 2.2), in general θa1, ∞ ≈ θa, ∞. We focus
on ea, ∞ and θa, ∞ as they are more representative of the long-term
post-scattering dynamics of the inner planet.

Fig. 9 shows the values of ea, ∞ and θa, ∞ for a subset of our
simulations. According to Fig. 9, ea, ∞ and θa, ∞ tends to increase
roughly as

√
Nej. We provide a theoretical model for this behaviour

in Section 4.2. Secondly, we find a strong dependence of the final
values of ea, ∞ and θa, ∞ on the planet mass ratio m2/m1, with
outer planet pairs having comparable masses leading to much higher
values of ea, ∞ and θa, ∞ compared with cases where m1 � m2.
The main reason is that these final values increase as the mass ratio
m2/m1 increases, and more eccentric/inclined perturbers tend to drive
stronger perturbations on the inner planet.

How to understand the diversity of final results in this parameter
space? The picture becomes clearer if we normalize the results by
the ‘scattering-free’ theoretical expectations. We introduce these
‘scattering-free’ quantities as the ‘secular’ eccentricity and inclina-
tion ea, sec and θa, sec that are the (RMS) eccentricities and inclinations
that would be expected on planet a, if the dynamical history of
the two-planet scattering were to be ignored, and the inner planets
started their orbital evolution with m1 at its final orbital state and
m2 removed. In other words, ea, sec and θa, sec are RMS eccentricity
and inclination that planet ‘a’ would finally obtain, if it started
on an initially circular, non-inclined orbit under the influence of
the perturber planet ‘1’ with initial eccentricity and inclination
e1 = e1, ej, θa = θa, ej. For La � L1, we have (e.g. Pu & Lai
2018):

ea,sec = 5
√

2aae1,ej

4a1

(
1 − e2

1,ej

) (40)

θa,sec =
√

2θ1,ej (41)

θa1,sec = θ1,ej (42)

(note that θ1, ej is the inclination of planet 1 measured relative to
its initial orbital plane). Fig. 10 shows our numerical results of
Fig. 9 for the final RMS values of ea, ∞ and θa, ∞, normalized by
the secular expectations ea, sec and θa, sec. We find that the scaling
for the final values of ea, ∞ and θa, ∞ can be divided into two
regimes. In the case where Nej is small, ea, ∞ and θa, ∞ reduce to
their ‘secular’ expectations. In the case that Nej is large, the ratio
ea, ∞/ea, sec and θa, ∞/θa, sec can be either larger or smaller than 1,
and is bounded from below by

√
2/2; the average values scale

proportionally to
√

Nej, albeit with a large spread. The transition
between the two regimes occur approximately at Nej ∼ Nsec, with
Nsec given by

Nsec ≡
(

ωa1,0P1,0

2π

)−1

= 1

2π

(
m1

M�

)−1 (
aa

a1

)−3/2

, (43)

where ωa1, 0 is the (initial) secular quadrupolar precession frequency
of planet a driven by planet 1 (see equation 33) and P1, 0 is the
initial orbital period of planet 1. This boundary is consistent with
the inner planet a being driven by stochastic secular forcing from
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606 B. Pu and D. Lai

Figure 9. The final values of ea, ∞ (top panels) and θa, ∞ (in radians, bottom panels) as defined by equations (38)–(39), as a function of Nej, for a 1-planet
inner system subject to the gravitational influence of two scattering giant planets. The masses of the outer planets are varied with m1 = 10, 3, 1, or 0.3MJ (the
red, green, blue, and magenta points, respectively), while the mass ratio m2/m1 = 1/2, 1/5, 1/10 for the filled circles, triangles, and stars, respectively. The initial
semimajor axes of the outer planets are a1 = 6.0 au and a2 = a1 + k0rH with rH being the mutual Hill radius and k0 chosen randomly from [1.5, 2.0, 2.5]; the
value of k0 matters little for the final results. The left-hand panels show systems where the initial aa/a1 = 1/20, while the right-hand panels have aa/a1 = 1/10.

planets 1 and 2 during the ejection process: When Nej � Nsec,
the ejection occurs much more quickly than the time-scale of
secular interactions, and the dynamical history of the ejection can
be ignored. On the other hand, when Nej � Nsec, the stochastic
‘forcing’ on planet a driven by the scattering perturbers will cause
ea and θa to undergo a random walk of its own, with the value of
ea, ∞ and θa, ∞ scaling proportionally to

√
Nej.

The final results can be summarized most succinctly if we consider
the deviation of the final values of ea and θa from their secular
predictions and define the ‘boost factors’:

γ 2
e ≡

∣∣e2
a,∞ − e2

a,sec

∣∣
e2
a,sec

(44)

γ 2
θ ≡

∣∣θ2
a,∞ − θ2

a,sec

∣∣
θ2
a,sec

. (45)

Figs 11 and 12 show the comparison of our numerical results for the
values of γ e and γ θ for a subset of our numerical integrations. We
find that across a wide range of parameters for aa, a1, ma, m1, and
m2, the quantities γ e, γ θ have a universal scaling given by (shown
as the solid black line in Figs 11 and 12):

γe ∼ γθ ∼ √
Nej/Nsec. (46)

The boost factor for the mutual inclination, defined as

γ 2
θ,a1 ≡

∣∣θ2
a1,∞ − θ2

a1,sec

∣∣
θ2
a1,sec

(47)

also shows the same scaling, but with different normalization. We
find that γ θ , a1 ∼ 1.4γ θ ; we provide a theoretical explanation for this
in Section 4.3.

To make this scaling even clearer, and to show its robustness
over a range of system parameters, in Figs 13–15 we show the
mean square values of γ 2

e , binned by logarithmic increments of
Nej/Nsec for various combinations of aa, m1 and m2. We see that
the approximate scaling given by equation (46) agrees very well
with the simulations for values of aa/a1 ranging from 1/7–1/20, m1

from 3–0.3MJ, and m2/m1 from 1/10 to 1/2, although there is a trend
of increasing deviation from equation (46) when Nej/Nsec � 1. We
explore a possible reason for this deviation, and present a more
accurate analytic formula for 〈γ 2〉 in Section 4.2. In general, the
above scaling is accurate for m2/m1 � 1/2 and aa/a1 � 1/5. When
m1 ∼ m2 and/or aa/a1, 0 � 1/5, it is often the case that the ejected
planet can come very close to the orbit of planet a, resulting in strong
non-secular interactions that causes γ e, γ θ to be much greater than
predicted by equation (46).

The simple universal scaling
√

Nej can in fact be derived from the
first principles using secular Laplace–Lagrange theory, as we discuss
below.

4.2 Analytic model for ‘1+2’ secular evolution: eccentricity

We model the dynamical evolution of an inner planet a subject
to the gravitational influence of a pair of outer perturbers un-
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Scattering 1+2 607

Figure 10. Same as the Fig. 9, except the eccentricities and inclinations are normalized by the ‘secular’ expectation ea, sec and θa, sec given by equations (40)–(41).

Figure 11. The value of γ 2
e (equation 44) plotted as a function of Nej/Nsec

(see equation 43) for our simulations. Here aa = 0.3 au (corresponding to
aa/a1 = 1/20). The red, green, and blue points correspond to m1 = 3, 1, 0.3MJ,
respectively. The filled circles, triangles, and stars correspond to m2/m1 =
1/2, 1/5, 1/10, respectively. The black solid line is given by γ 2

e = Nej/Nsec.

dergoing gravitational scattering as a linear stochastic differential
equation (SDE). We define E ≡ e exp (i� ) and I ≡ θ exp (i�) as
the complex eccentricity and inclination, respectively. Note that
e = |E | and θ = |I|. In the discussion below we will focus on the

Figure 12. Same as Fig. 11, except we show γ 2
θ as defined by equation (45).

eccentricity evolution and derive the boost factor γ e, although the
inclination is completely analogous and will have the same scaling
as γ θ .

First, consider an inner planet ma with initial eccentricity Ea,0

undergoing secular evolution with an external planet m1 � ma that
has a constant eccentricity E1. For simplicity, we ignore for now the
secular interaction between planet a and 2. The evolution of Ea(t) is
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608 B. Pu and D. Lai

Figure 13. The average value of γ 2
e , binned by log (Nej/Nsec with 4 bins per

logarithmic decade, as a function of Nej/Nsec. For each of the points, m1 = MJ

and m2/m1 = 1/5. The red, green, blue, and magenta filled circles correspond
to aa/a1 = 1/20, 1/13, 1/10, and 1/7, respectively. The error bars are given by
the standard error, and the solid black line is given by 〈γ 2

e 〉 = Nej/Nsec.

Figure 14. Same as Fig. 13, except that we fix aa/a1 = 1/10, and m2/m1

varies as indicated by the plot legend.

Figure 15. Same as Fig. 13, except that we fix aa/a1 = 1/10, and m1 varies
as indicated by the plot legend.

governed by the ODE

dEa(t)

dt
= iωa1Ea(t) − iνa1E1(t), (48)

where ωa1, νa1 are given by equations (33) and (34). The solution to
the above equation is given by

Ea(t) = Ea,free(t) exp (iωa1t) + Ea,forced, (49)

where

Ea,forced = νa1

ωa1
E1, (50)

and

Ea,free = Ea,0 − Ea,forced. (51)

Applying equation (48) to the secular evolution of planet a after the
ejection of planet 2, we have that Ea,0 = Ea,ej (where Ea,ej = Ea(tej)),
and the RMS eccentricity |Ea,∞| is given by

|Ea,∞|2 = |Ea,free|2 + |Ea,forced|2

= |Ea,ej|2 + 2|Ea,forced|2 − 2Re
(
Ea,ejE∗

a,forced

)
. (52)

Note that |Ea,∞| is what we termed ea, ∞ in Section 4.1. If the initial
eccentricity of planet a is zero, then the free eccentricity is equal to
the forced eccentricity, and esec = √

2eforced.
Now we ask the question: What happens toEa(t) if, instead of being

a constant, E1(t) is a stochastically varying quantity, as is the case
during the scattering process. We study a version of equation (48)
with E1 being given by a Brownian motion stochastic process:
E1(t) = Z(t), where Z(t) is a Brownian motion in the complex
plane with diffusion constant equal to σE1, i.e. Z(t) = X(t) + iY(t)
where X(t), Y(t) are each given by a Gaussian distribution with mean
〈X〉 = 〈Y〉 = 0, variance Var(X) = Var(Y ) = σ 2

E1t , and covariance
Cov[(X(s), X(t)] = Cov[(Y (s), Y (t)] = σ 2

E1min(s, t).
The diffusion coefficient of the perturber eccentricity, σE1 is a

constant that can either be calculated analytically or numerically, or
derived empirically from the time-series of scattering planet systems.
We make a heuristic estimate of it here. Over the ejection time-scale,
the eccentricity of planet 1 changes from e1 = 0 → e1, ej (where e1,ej

is the eccentricity of planet 1 when planet 2 has been ejected; see
Section 2). On average, this process takes Nej ∼ tej/P1, 0 ∼ b2 orbits
(see equation 18). Thus, one might surmise:〈
e2

1,ej

〉 ∼ 2σ 2
E1b

2P1,0, (53)

where 〈e2
1,ej〉 ∼ (m2/m1) (see Section 2.2). This yields

σ 2
E1 ∼ 〈

e2
1,ej

〉/
(2P1,0b

2). (54)

We would like to know what are the mean, variance, and distributions
of Ea(t) given the initial conditions and parameters. Note that the
value of Ea(t) at ejection is not the ultimate quantity of interest here,
since planet a still undergoes secular coupling with planet 1 after
ejection. Our final goal is to derive the expectation, and if possible
the distribution of Ea,∞.

To proceed, note that equation (48), with E1(t) = Z(t), has the
solution

Ea(t) = −iνa1e
iωa t

∫ t

0
e−iωasZ(s)ds, (55)

where we have assumed Ea(0) = 0. The statistical property of Ea(t)
as determined by equation (55) depends on whether the final value
of E1(tej) = E1,ej is known (empirically measured, or otherwise
constrained by conservation laws). If E1,ej is unconstrained, then Z(s)
is the classic 2-D Brownian motion. If E1,ej is known a priori, then
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Scattering 1+2 609

Z(s) is not a Brownian motion but rather a Brownian bridge, which is
given by a different density distribution that has a reduced variance
towards the end of the stochastic process. We consider both cases
below. In this study, since the final values of perturber properties are
known, case 2 is the more appropriate one. We deal with case 1 first
as a stepping stone.

Case 1: Unknown E1,ej

We study the expected value and distribution of Ea at the time of
ejection, Ea,ej = Ea(tej). First, since 〈Z(s)〉 = 0 for all s, the integral
in equation (55) has expectation 〈Ea(t)〉 = 0 for all t. The variance
and covariances of interest can be computed using the linearity of
expectation. The variance of the final eccentricity is given by (see
Appendix A)

〈|Ea,ej|2〉 = 4

(
νa1

ωa

)2 [
1 − sin (ωa1tej)

ωa1tej

]
σ 2
E1tej, (56)

while the covariance between the final eccentricity and its forced
amount (see equation 50) is

〈
Re

(
Ea,ejE∗

a,forced

)〉 = 2

(
νa1

ωa1

)2 [
1 − sin (ωa1tej)

ωa1tej

]
σ 2
E1tej. (57)

The expectation of the forced eccentricity is

〈|Ea,forced|2〉 = 2

(
νa1

ωa

)2

σ 2
E1tej. (58)

From equations (52)-(54), the RMS eccentricity of planet a is

〈|Ea,∞|2〉 = 4

(
νa1

ωa

)2

σ 2
E1tej ∼ 25a2

a〈e1,ej〉2Nej

8a2
1b

2
. (59)

We see that 〈|Ea,∞|2〉 ∝ Nej. However, in this unconstrained case, it
is also the case that |Ea,forced|2 ∝ Nej, so that the scaling for the boost
factor is γ e = const., which is contrary to our empirical results. This
contradiction arises because we have not taken into account the fact
that E1,ej is a known quantity and not a random variable. Only when
we place a constraint on the Brownian motion at tej can the desired
scaling be derived.

Case 2: E1,ej is known or constrained

When the final value of E1 at t = tej is known, the evolution Ea(t) is
qualitatively similar, but the statistical properties change due to the
Brownian motion in E1 being ‘tied down’ at the final time, giving it
a lower variance. To recognise that this process is different from an
unconstrained Brownian motion, we label it B(t) instead of Z(t). At t
= 0, we have E1 = B(0) = 0, while at t = tej, E1 = B(tej) = E1,ej. In
between this time, B(t) executes a (complex) Brownian motion and is
normally distributed, with mean and variance (Borodin & Salminen
2002)

〈B(t)〉 =
(

t

tej

)
E1,ej (60)

Var[B(t)] ≡ 〈B2(t)〉 − 〈B(t)〉2 = 2t(tej − t)σ 2
E1

tej
. (61)

Another relevant quantity is the covariance of a Brownian bridge with
itself at a different time, which (without loss of generality, assuming
s < t) is given by

Cov[B(s), B(t)] ≡ 〈B(s)B∗(t)〉 = 2s(tej − t)σ 2
E1

tej
. (62)

We can now calculate the expectation of Ea,ej. Unlike the uncon-
strained case, the mean is non-zero:

〈Ea,ej〉 = iE1,ej

(
νa1

ωa1

)(
eiωa1tej − iωa1tej − 1

ωa1tej

)
, (63)

and the square of the mean eccentricity is

|〈Ea,ej〉|2 =
(

νa1

ωa1

)2

|E1,ej|2

×
[

1 + 2

(
1 − cos (ωa1tej) − ωa1tej sin(ωa1tej)

ω2
a1t

2
ej

)]
.

(64)

The variance of the eccentricity is given by

〈|Ea,ej|2〉 − |〈Ea,ej〉|2 = 2σ 2
E1

(
νa1

ωa1

)2

× tej

[
1 − 2

(
1 − cos(ωa1tej)

ω2
at

2
ej

)]
. (65)

In order to know the final RMS eccentricity Ea,∞, we also require
the covariance between Ea,ej and Ea,forced, which is given by

〈
Re

(
Ea,ejE∗

a,forced

)〉 = |Ea,forced|2
[

cos (ωa1tej) − 1

ωa1tej

]
. (66)

Combining these expressions with equation (52), the RMS eccen-
tricity at infinity is given by

〈|Ea,∞|2〉 = 2

(
νa1

ωa1

)2(
σ 2
E1tej

[
1 − 2

(
1 − cos(ωa1tej)

ω2
a1t

2
ej

)]

+ |E1,ej|2
[

3

2
+ 1 − cos (ωa1tej) − sin (ωa1tej)

ωa1tej

+ 1 − cos (ωa1tej)

ω2
a1t

2
ej

])
. (67)

In the above equation, when ωa1tej � 1, the second term of the RHS
dominates and we have |Ea,∞|2 ∝ tej. On the other hand, when ωa1tej

� 1, the first term dominates and we also have |Ea,∞|2 ∝ tej. In
order words, for all tej we have 〈|Ea,∞|2〉 ∝ tej, in agreement with our
numerical results. Since e2

a,sec = 2|Ea,forced|2, the ensemble RMS of
the boost factor 〈γ 2

e 〉 is given by

〈γ 2
e 〉 = 〈|Ea,∞|2〉 − 2|Ea,forced|2

2|Ea,forced|2 
 Ax

[
1 − 2

(
1 − cos (x)

x2

)]

+ 1 − cos (x) − sin (x)

x
+ 1 − cos (x)

x2
+ 1

2
, (68)

where we have defined x ≡ ωatej ∼ 2πNej/Nsec, and A is the
dimensionless constant

A ≡ σ 2
E1

ωa1|E1,ej|2 ∼ 1

ωa1b2P1,0
∼ 2π

( 〈Nej〉HM

Nsec

)
, (69)

and 〈Nej〉HM = b2 (equation 24) is the harmonic mean of Nej. Here we
have made use of the fact that the final eccentricity is well constrained
by conservation laws, so 〈e1,ej〉2 ≈ |E1,ej|2.

Equation (68) has two regimes: when x � 1, γe 
 √
x/2, while

when x � 1, we have γe 
 √
Ax. The transition between the two

regimes occurs when x ∼ π . Using our earlier estimates for b
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610 B. Pu and D. Lai

(equation 24), A is of order

A ∼ 7

(
m1

M�

)(
aa

a1

)−3/2 (
1 + m2

m1

)4 (
a1,0

a2,0

)−2

. (70)

For the typical range of parameters relevant to Kepler planets (m1 ∼
10−3 and aa/a1 ∼ 1/10) one obtains A ∼ 0.3. Given the inherent scatter
in the simulation results, the difference between the two regimes
in equation (68) is too subtle for us to empirically measure A in
this study. Thus in this paper we simply adopt the approximation
γe ∼ √

Nej/Nsec which agrees well with the empirical results.
Having computed the mean value 〈γ 2

e 〉 we now comment on
its distribution. The Brownian bridge has a distribution that is
normally distributed over an ensemble of simulations, and any linear
transformation of normally distributed variables is also normally
distributed. From equation (44) and equation (52), the boost factor
can be written as

γ 2
e =

∣∣|Ea,ej|2 − 2Re
(
Ea,ejE∗

a,forced

)∣∣
|Ea,forced|2 . (71)

The quantities Ea,ej and Ea,forced are normally distributed complex
variables with zero mean. In the limit that Nej � Nsec, we have
that |Ea,ej|2 � 2Re(Ea,ejE∗

a,forced), and γ e is then the length of a 2D
vector whose components are normally distributed with zero mean;
such a quantity has approximately a Rayleigh distribution. We define
γ̄e ≡ 〈γ 2

e 〉1/2 (see equation 68), then the distribution of γ e in this limit
is given by

f (γe) = γe

γ̄ 2
e

exp

(−γ 2
e

2γ̄ 2
e

)
. (72)

Empirically, we find that equation (72) is a good approximation for
the distribution of γ e even when it is not the case that Nej � Nsec.

4.3 Inclination evolution

In the above analysis we have considered the eccentricity evolution
of planet a subject to a stochastic forcing by the outer perturber. The
evolution of the inclination can be derived in the same manner as the
eccentricity, except, whenever appropriate, replacing the complex
eccentricities E with the corresponding complex inclinations I, and
replacing ωa1 → −ωa1 and νa1 → −ωa1. The forced inclination is
given by equation (41). One will eventually find that the scaling for
γ e and γ θ is the same:〈
γ 2

e

〉 = 〈
γ 2

θ

〉
. (73)

In addition, the probability density distribution for γ θ is also the
same as γ e, and is given by equation (72) (note that γ̄e = γ̄θ ). Since
γ e, γ θ have the same distribution, and γ̄e = γ̄θ , we hereafter refer to
the distribution of either quantity as γ (although note that γ e and γ θ

are uncorrelated and independently distributed).
Having computed the distribution of θa, we now derive the boost

factor for the mutual inclination γ θ , a1. Note that

θ2
a1,∞ = θ2

a1,ej = |Ia,ej − I1,ej|2

= |Ia,ej|2 + |I1,ej|2 − 2Re
(
Ia,ejI∗

1,ej

)
. (74)

From equation (52) (but replacing E → I), we thus have

θ2
a1,∞ = θ2

a,∞ − θ2
1,ej. (75)

Recall that θa1,sec = θa,sec/
√

2, thus from equation (45)–(47) we find

γθ,a1 =
√

2γθ . (76)

The above equation assumes that θa1, θa � 1 and ignores the
contribution from planet 2. In reality, γ θ , a1 will deviate from
equation (76), although the above scaling still holds on average. Once
we know the value of γ θ , we can convert it to the corresponding value
of γ θ , a1 to obtain the mutual inclination boost factor, and vice versa.

4.4 Marginal distribution of the boost factor

The distributions we have derived so far for γ e, γ θ are contingent
on Nej, which is not an observable quantity. However, since we
have some understanding of the distribution of Nej, we can now
marginalize over it and only deal with observable quantities. First,
combining equation (19) and equation (72) we can write the joint
distribution for Nej and γ as

f (Nej, γ ) = bγ

γ̄ 2
√

2πN3
ej

exp

(−b2

2Nej

)
exp

(−γ 2

2γ̄ 2

)
. (77)

Now, from equation (46) we have that γ̄ 2 ∼ Nej/Nsec. Substituting
into equation (77), and integrating over Nej we thus obtain the
distribution for γ in terms of observable quantities only:

f (γ ) =
∫ ∞

0
bγNsec

√
1

2πN5
ej

exp

(−b2 − γ 2Nsec

2Nej

)
dNej

= bγNsec

(b2 + Nsecγ 2)3/2
. (78)

Now, we define y as the ‘normalized’ boost factor

y ≡ γ
√

Nsec/〈Nej〉HM, (79)

(recall that b2 = 〈Nej〉HM), then we have the rather elegant expression
for the normalized boost factor y:

f (y) = y

(1 + y2)3/2
. (80)

In the distribution above, the probability that y is greater than some
constant y

′
is given by

P (y ≥ y ′) = 1√
1 + y ′2 . (81)

Just like the distribution for Nej (equation 19), the distribution f(y)
is a long-tailed one, such that all its higher moments (e.g. mean,
variance) fail to exist. Its mode occurs at y = 1/

√
2, its geometric

mean is 〈y〉GM = 2, its harmonic mean is 〈y〉HM = 1, and its median
is y = √

3. The 68 per cent and 95 per cent confidence intervals are
y ∈ [0.65, 6.2] and y ∈ [0.23, 40] respectively. Assuming that a2, 0 ∼
a1, 0, the harmonic mean of γ is given by the following scaling:

〈γ 〉HM = √〈Nej〉HM/Nsec ∼ 1.1

(
m1

M�

)−1/2 (
aa

a1,0

)3/4 (
1 + m2

m1

)2

.

(82)

From this scaling, we see that 〈γ 〉HM = y/γ , thus we re-interpret y
= γ /〈γ 〉HM as the boost factor ‘normalized’ by its harmonic mean
and define ye = γ e/〈γ e〉HM, yθ = γ θ /〈γ θ 〉HM for the normalized
eccentricity and inclination boost factors, respectively. Note that the
scaling relation in equation (82) applies equally to ye and yθ . We see
that the effect of CJ scatterings on inner planets is the greatest if the
CJ scatters are lower in mass, have semimajor axes more comparable
to the inner planets, and have comparable masses.

In Fig. 16, we show a comparison between our theoretical distri-
bution given by equation (80) for the normalized eccentricity boost
factor ye and the empirical distribution from our suite of simulations.
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Scattering 1+2 611

Figure 16. Distribution of ye ≡ γe

√
Nsec/〈Nej〉HM (see Section 4.4). The

histograms are empirical distributions obtained from our simulations, while
the black line is the theoretical distribution given by equations (80)–(82). On
the top panel, m2/m1 = 1/5 while m1 and aa/a1 varies as shown in the legend.
On the bottom panel, aa/a1 = 1/10 and m1 = 1MJ, while m2/m1 varies as
shown in the legend.

We find that for m2/m1 � 1/3, the theoretical distribution agrees well
with the empirical one over a range of different masses and aa/a1. The
empirical distribution starts to deviate somewhat from equation (80)
for more comparable masses: in particular, the distribution becomes
even more heavy-tailed, with significant fraction having y � 1,
although the empirical mode and harmonic mean still agreed with
equation (82) to with-in a factor of a few.

4.5 Theoretical model: simplifications and refinements

In developing our stochastic model for ‘1+2’ scattering, we have
made several simplifying assumptions. A more careful treatment
can yield refinements to the model and more accurate estimates for
the distribution of final parameters. We discuss the most crucial
simplifications and suggest possible ideas for refinement below.

(i) Secular forcing by planet 2: In our theoretical model we
have ignored the secular interaction between the inner planet and
planet 2 as it is being ejected from the system. This can be
justified in the limit that m2/m1 � 1. However, for more comparable
masses, m2 can have an equal or even greater effect than m1 on the
secular evolution of the inner system. Our simplification of ignoring

planet 2 is the main reason why our estimate from equation (68)
becomes less accurate when m2 ∼ m1. Since at the end of the
ejection process, the secular forcing by m2 vanishes, one way to
incorporate the influence of m2 is to absorb it into the variance
of the Brownian bridge, i.e. by replacing σE1 → σE1(1 + κ12),
where κ12 is a dimensionless ratio that depends on m2/m1 (and
possibly other quantities) that accounts for the added effect of
secular perturbations by m2. For certain initial configurations, 3-
body secular interactions can also give rise to secular resonances
that would increase the amount of eccentricity and inclination
excited in the inner planet (see Lai & Pu 2017; Pu & Lai
2018).

(ii) Linearity in E, I: In our theoretical model we have assumed
that the secular evolution in eccentricity and inclination is linear.
Note however that our hybrid algorithm (Section 3) allows for the
possibility of larger growths in eccentricity due to non-linear Lidov–
Kozai oscillations, and that such oscillations are indeed possible
when θa grows to large values. Unfortunately differential equations
with such stochastic terms become intractable when stochasticity is
involved, and one would have to resort to numerical integrations in
this regime.

(iii) Constancy of a1: In our theoretical model we have also
assumed that a1 (and therefore ωa1, νa1) is constant, which is
approximately the case when m2 � m1 but breaks down at more
comparable mass ratios. In reality, a1 changes randomly as a2

undergoes strong scatterings, and its final value can decrease by
as much as a1, ej/a1, 0 = 1/2 in the limit that m2 = m1. There are two
ways to refine our model to incorporate this: First, one can absorb
the stochastic changes in νa1 as additional variance in σE1, i.e. by
replacing σE1 →

√
σ 2
E1 + σ 2

ν1, where σ 2
ν1 is the RMS change in νa1

per unit time. In addition, one should replace ωa with its expectation,
i.e.

〈ωa(t)〉 = ωa,0 + (ωa,ej − ωa,0)(t/tej). (83)

The above addition still allows for an analytic estimate for the final
eccentricity and inclination, while incorporating the non-constancy
of a1, although the resulting final expressions are much less elegant.

(iv) Flat power spectrum of σE1: We assume that the σE1 is a
constant that is independent of time-scale. In reality, this assumption
could break down at time-scales much shorter than the orbital time-
scale of the outer giant planets, and the scaling γ ∝ √

Nej/Nsec

would break down. This would be most pertinent in cases where
ωa � 1/P1, 0, and would lead to an overestimation of the boost
factors.

5 EX T E N S I O N TO M O R E I N N E R PL A N E T S

Having understood the dynamics of ‘1+2’ scattering we now gen-
eralize our results to the case with more than one inner planets. The
parameter space is vast when additional planets are considered, but as
we shall demonstrate, the universal scalings given by equations (46)
and (80)–(82) remain valid.

5.1 Two inner planets

For each of our N-body simulations, we consider inner systems with
aa = a1/20 and ab = 1.5aa, and ma = mb = 3M⊕. The initial
eccentricities and inclinations of the inner planets are set to zero.
In our simulations, the inner planets effect each other secularly, and
are influenced by the outer perturbers through secular interactions,
as described by Section 3.
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612 B. Pu and D. Lai

Figure 17. Similar to Fig. 11, except with two inner planets. We have ma

= mb = 3M⊕, aa = a1/20 and ab = 1.5aa, while m1 varies as shown on
the plot legend and m2 = m1/5. The boost factor for the first inner planet
γ e, a corresponds to the filled circles, while that for the second inner planet
is shown as filled triangles.

For systems with two inner planets and an external perturber,
the dynamics of the system depends crucially on the dimensionless
coupling parameter εab (Lai & Pu 2017; Pu & Lai 2018), given
by

εab ≡ ωb1 − ωa1

ωab + ωba

≈
(

m1

mb

)(
ab

a1

)3
[

3aa/ab

b
(1)
3/2(aa/ab)

]
(ab/aa)3/2 − 1

1 + (La/Lb)
,

(84)

where Li ≡ mi

√
GM�ai is the circular angular momentum of the

planet, and b
(1)
3/2(aa/ab) is the Laplace coefficient given by equa-

tion (35).
In the parameter regime that we study in this work, the two inner

planets are invariably in the ‘strong coupling’ regime (εab � 1). In
this limit, assuming initially circular and co-planar orbits for planets
a and b, the ‘secular’ eccentricities and mutual inclinations are given
by (see Pu & Lai 2018)

ea,sec =
√

2

(
νa1ωb + νabνb1

ωaωb − νabνba

)
e1,ej, (85)

eb,sec =
√

2

(
νb1ωa + νbaνa1

ωaωb − ν12ν21

)
e1,ej, (86)

θa1,sec = θb1,sec ≈ θ1,ej, (87)

θab,sec = 2

(
ωa1 − ωb1√

(ωa − ωb)2 + 4ωabωba

)
θ1,ej, (88)

where ωa = ωab + ωa1 and ωb = ωba + ωb1, respectively. From these
‘secular’ values, we compute the values of γ e, a, γ e, b, and γ θ , ab

analogous to Section 4.1. We show the results of our simulations in
Figs 17–18. We see that in the ‘2+2’ case the boost factor is still
consistent with the scaling law equation (46), even though the values
of ωa, ωb and the forced eccentricities and inclinations are given by
very different expressions.

5.2 3 or more inner planets

Having briefly studied the ‘2+2’ scattering we make some remarks
on extending our theory to systems with three or more inner planets.

Figure 18. Similar to Fig. 15, except the simulations have two inner planets.
The system parameters are the same as those for Fig. 17. The top panel shows
the eccentricity boost factor γ 2

e while the bottom panel show the mutual
inclination boost factor γ 2

θ,ab .

The numerical algorithm described in Section 3 works for a general
number of inner (and outer) planets, so long as the inner and
outer systems are sufficiently detached that the outer planets do
not come in close contact with the inner planets. However, the
theoretical model in Section 4.2, and in particular equation (68)
must be modified if there are additional of more inner planets, due
to the more complex secular coupling between the inner planets.
In particular, one should deal with the amplitudes of the planet
eccentricity and inclination secular eigenmodes, and the secular
precession frequency should be replaced with the mode frequencies.
The (complex) eigenmode amplitude of the α-th mode should
scale as

Eα,ej ∝ Iα,ej ∝ √
Nej/Nα,sec, (89)

where Eα,ej, Iα,ej are the complex amplitude of the α-th eccentricity

and inclination eigenmodes respectively, and

Nα,sec ≡
(

ωα,0P1,0

2π

)−1

, (90)

where ωα, 0 is the initial eigenfrequency of the α-th eigenmode. An

empirical test of the above scaling is beyond the scope of this work,
but is promising ground for further research.
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6 SUMMARY AND DISCUSSION

6.1 Summary

In this work, we have studied CJ scatterings and their effect on inner
planet systems. Our main results are summarized below.

(i) Final outcome of CJ scattering: We have re-examined final
outcomes of strong scatterings between two CJs on gravitationally
unstable orbits. At the semimajor axis of a few au or larger, the most
likely outcome of such scatterings is ejection of the less massive
planet (see also Li et al. 2020). The remaining planet, which we call
planet 1, has a final semimajor axis that is consistent with orbital
energy conservation. The final eccentricity and inclination of the
planet is e1, ej ∼ 0.7m2/m1 and θ1, ej ∼ 0.7θ2, 0m2/m1 for m2/m1 �
0.5, where m2 is the mass of the ejected planet and θ2, 0 is the initial
mutual inclination of the two planets.

(ii) Ejection time-scale: The time-scale from the first planet–
planet Hill sphere crossing to the final ejection of planet 2 can
be understood as the stopping time of a Brownian motion. We
empirically measure the normalized dimensionless RMS energy
exchange (|δE12/E2, 0|) per pericentre passage b over an ensemble
of N-body simulations, and present a best-fitting law for it in
equation (24). Given b, the distribution of Nej (the number of orbits
of m2 prior to ejection) agrees well with equation (19).

(iii) Minimum a2 of ejected planet: We find that the possible
values of a2 during the strong scattering and ejection is constrained
by energy conservation, angular momentum conservation, and the
requirement that the system cannot spontaneously scatter itself into
an indefinitely stable state. Fig. 7 shows our empirical results for the
minimum value of a2 and r2 over the course of ejection. We find
that generally, a2, min ∼ a1, 0/2, and for m2/m1 � 1 we have r2, min ∼
a1, 0/4, although r2, min decreases strongly as m2/m1 increases.

(iv) ‘1+2’ scattering - numerical results: For well-separated
inner super-Earth and outer CJ systems, the effect of CJ scatterings
on the inner planet is secular. We develop a hybrid algorithm to
simulate such systems efficiently, by computing two CJ scatterings
and then simulating their effects on the inner planet via secular
evolution. We have performed such numerical integrations for ‘1+2’
systems over a wide range of parameters. We find that the eccentricity
and inclination of the inner planet induced by CJ scatterings can be
much larger than the secular values (equations 40–41) generated by
the remaining giant planet, and the enhancement increases with Nej

(see Figs 9–10). Despite the diversity of initial parameters and final
outcomes, the dynamics of the system can be succinctly summarized
by the dimensionless ‘boost’ factor γ (equations 44–45). In the range
of parameters we considered we find that equation (46) provides a
universal scaling law for the final eccentricity and inclination of the
inner planet, as a function of the system parameters (see Figs 11–15).

(v) ‘1+2’ scattering - Theoretical model: We develop a theo-
retical model to explain the empirical scaling law in equation (46),
by modelling the ‘1+2’ scattering process as a linear stochastic
differential equation. We compute analytically the expected moments
and distributions for the final inner planet eccentricity and inclination
in terms of the boost factors, which are given by equations (68)–(72).
We calculate the distribution of γ , averaged over all possible Nej, to
derive a universal distribution function for the boost factor in terms of
observable quantities only (equation 80); this analytical distribution
agrees well with empirical results (see Fig. 16).

(vi) Extension to ‘2+2’ systems: We have extended our empirical
investigation to ‘2+2’ systems. We find that analogous to ‘1+2’
systems, equation (46) is still valid for describing the dynamics of
the system, although the final values of eccentricities and inclinations

are substantially different due to strong secular coupling between
the inner planets. We also describe how the theoretical model in
Section 4.2 can be extended to inner systems with 3 or more planets.

6.2 Caveats

In our analysis we have considered the ‘clean’ cases. Several
important physical effects were neglected, and we comment on them
below.

(i) Direct scatterings between the inner planet and outer
giants: In this model we have ignored the possibility of direct hard
scattering between the inner planet system and the outer giants. In
our simulations, cases where the inner planet crosses orbits with one
of the outer giants is discarded from our tabulated results. As we
have discussed in Section 2.5, it is possible albeit unlikely for one
of the giant planets to meander deeply inwards during the scattering
process. For m1 � 3MJ and m2 
 m1, we expect such orbit crossings
to occur a small fraction (∼ 20 per cent) of the time for aa/a1, 0 =
1/10, while inner planets with aa/a1, 0 � 1/20 are generally protected
from participating directly in scatterings with the giant planets. Since
direct scatterings between the inner planet and outer giants can lead
to even greater excitation in eccentricity and inclination, our model
thus underestimates the potential to excite large eccentricities and
inclinations in the inner planet during ‘1+2’ scattering.

(ii) Physical collisions between CJs: We have focused on scat-
terings between CJs that result in ejection of the less massive planet.
A small fraction of systems will undergo collisional mergers instead.
If the final values of e1, θ1 are known, then our theoretical model
in Section 4.2 applies equally to systems that result in collisions.
However, the collisional case is less interesting in terms of its impact
on the inner planetary system, because the collisional time-scale
tends to be much shorter due to collisional probability being highest
at the initial time when planet eccentricities are low (Ida & Nakazawa
1989; Nakazawa, Ida & Nakagawa 1989). In addition, the final
eccentricity e1 and inclination θ1 of the merger product tend to be
low, due to collisions between CJs being highly inelastic (see Li
et al. 2020). Typically, one can assume that the scattering history is
unimportant for systems that result in collisions (i.e. the boost factor
γ � 1).

(iii) Spin-orbit coupling: We have neglected the coupling be-
tween the planets and stellar spin. In reality, the stellar spin and the
inner planets can exchange angular momentum, which can change
the inclination of the inner planets. Incorporating such evolution into
our theoretical model is beyond the scope of this work. In terms of
inclination evolution, including spin–orbit coupling is equivalent to
adding an extra inner planet (see Lai et al. 2018).

(iv) Short-ranged forces: In this study we assumed that the inner
planets are effected by secular forces from other planets only. In
particular, we have ignored the effects of short-ranged forces, such
as general relativistic (GR) apsidal precession, tidal precession, and
tidal dissipation (a discussion for the relative importance of these
effects is given in Pu & Lai 2019). The most important such effect is
GR apsidal precession, whose angular frequency (in the limit that ej

� 1)

ωj,GR = 3GM�

c2aj

nj ≈ 6 × 10−6

(
M�

M�

)3/2 ( aj

0.1au

)−5/2
yr−1. (91)

The main effect of this additional precession is to suppress eccen-
tricity generation. We define εj1, GR as the ratio between ωj,GR and
the apisdal precession frequency due to secular coupling (between

MNRAS 508, 597–616 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/1/597/6368342 by guest on 11 April 2024



614 B. Pu and D. Lai

planets j and 1):

εj1,GR ≡ ωj,GR

ωj1
= 3GM2

� a3
1

a4
j c

2m1
. (92)

In the ‘1+2’ case, the secular frequency of planet a is thus changed
from ωa1 to

ωa = ωa1(1 + εa1,GR), (93)

and the mean eccentricity boost factor from (equation 82) becomes

〈γe〉HM ∼ 1.1

(
m1

M�

)−1/2 (
aa

a1,0

)3/4 (
1 + m2

m1

)2

(1 + εa1,GR)1/2.

(94)

Note that the above equation applies only to 〈γ e〉HM and not the
inclination. Now the forced eccentricity on planet a is proportional
to ea, forced∝(1 + εa1, GR)−1, at the same time we also have 〈γ e〉∝(1 +
εa1, GR)1/2, thus the final eccentricity raised on planet a after scattering
scales as ea, ∞∝(1 + εa1, GR)−1/2.

In comparison, in the purely ‘secular’ scenario without scattering
events, the final eccentricity raised is proportional to ea, forced∝(1
+ εa1, GR)−1. Thus we see that in the stochastic forcing case, short
ranged forces such as GR apsidal precession still suppresses eccen-
tricity generation, but the suppression factor is only proportional to
the inverse square root of the strength of the short-ranged force.

6.3 Application to specific systems

We discuss our results in the context of a few specific planet systems
of interest. These systems feature an inner planet well separated
from an exterior CJ with high orbital eccentricities and/or mutual
inclinations. Such eccentric CJs are a natural consequence of strong
scatterings between CJs. As discussed below, the observed orbital
properties of these inner–outer systems can be explained using our
model.

(i) HAT-P-11 is a system with a transiting inner mini-Neptune
(HAT-P-11b, ma = 23.4 ± 1.5M⊕, aa = 0.0525 ± 0.0007 au.) first
discovered by photometry (Bakos et al. 2010) and an outer CJ (HAT-
P-11c) with m1sin I1 = 1.6 ± 0.1MJ and a1 = 4.13 ± 0.3 au around
a mid-K dwarf with M� = 0.81M·. RV measurements report values
of ea = 0.218 ± 0.03 and e1 = 0.6 ± 0.03 for the two planets. The
orbit of HAT-P-11c is highly misaligned relative to the stellar spin
λa ∼ 100 deg (Winn et al. 2010). Yee et al. (2018) argued that such
a misalignment can be explained if the two planets are also highly
mutually inclined with θa � 50 deg. This argument is supported by
recent measurements by Xuan & Wyatt (2020), who found that 54◦

< θbc < 126◦ at the 1σ level.
Due to the very tight orbit of HAT-P-11b, GR apsidal precession is

important, with εa1, GR ≈ 133. Note that despite the large inclination
between HAT-P-11b and HAT-P-11c, Kozai-Lidov oscillations are
suppressed due to the strong GR effect, and the forced eccentricity is
very small (ea, forced ∼ 1.1 × 10−4), and the required eccentricity
boost factor is γ e ∼ 2000. The observed value of ea is thus
highly incompatible with pure secular interactions without scattering
history.

Since e1 = 0.6, if the observed eccentricity is the result of strong
scattering between HAT-P-11c and an ejected planet, it is most likely
that m2 ∼ m1 (see Section 2). Thus, applying equation (94) we have
〈γ e〉HM ∼ 40. The observed value of γ e is therefore larger than its
typical value by a factor of ye = γ e/〈γ e〉HM ∼ 50. According to
equations (79)–(81), the likelihood of seeing such a boost factor is
P(ye ≥ 50) = 0.02. However, equation (81) underestimates ye at

larger values when m2 ∼ m1 (see Fig. 16); from our empirical results
we find that for m2/m1 � 0.7, P(ye ≥ 50) ∼ 0.09. In other words,
there is a 9 per cent chance to have ea � 0.2 as a result of ‘1+2’
scattering as given by the currently observed parameters.

Now turning to the mutual inclination, since the nodal precession
is not affected by GR precession, we have 〈γ θ ∼ 3.5 (equation 82).
On the other hand, the ‘forced’ mutual inclination depends on θ12, 0,
the initial misalignment angle between HAT-P-11c and the ejected
planet. The actual value of yθ is given by yθ = θa/(3.5

√
2θ12,0) − 1

(recall that the factor
√

2 arises due to the boost factor being larger
for the mutual inclination; see Section 4.3). If we take θa = 50 deg
and θ12, 0 = 3 deg, then yθ ∼ 3 and P(yθ ≥ 3) ∼ 0.4, i.e. there is a
40 per cent chance for the observed mutual inclination to be as large
as 50 deg. The probability decreases if θ12, 0 is smaller: for θ12, 0 =
1 deg., the p-value decreases to P(yθ ≥ 9) ∼ 0.1. Note again that the
empirical value of P is greater than predicted by equation (81) due
to the fact that m1 ∼ m2.

We conclude that for the HAT-P-11 system, the observed eccentric-
ity of the inner planet is marginally consistent with ‘1+2’ scattering
with a p-value of P ∼ 0.1 for the observed eccentricity boost factor,
while the observed inclination is consistent with ‘1+2’ scattering (at
P = 0.1 level) for θ12, 0 � 1 deg.

(ii) Gliese 777 A is a two-planet system detected by RV with an
inner planet with ma sinIa = 18 ± 2M⊕ and aa = 0.13 ± 0.008 au,
and an outer CJ with m1sin I1 = 1.56 ± 0.13MJ and a1 = 4 ± 0.2 au,
orbiting around a yellow subgiant with M� = 0.82 ± 0.17M· (Wright
et al. 2009). RV measurements report ea ≈ 0.24 ± 0.08 and e1 ≈
0.31 ± 0.02.

The value of εa1, GR ∼ 3 which gives a forced eccentricity of
3.5 × 10−3 and boost factor γ e ∼ 67, thus the value of ea cannot
be explained by pure secular forcing alone. Hypothesizing that the
current value of e1 is due to scattering with an ejected planet, the
value of e1 ≈ 0.3 suggests that m2/m1 ∼ 0.4, which gives 〈γ e〉HM ∼ 8
and ye ∼ 8. Evaluating equation (81), we find that P(ye ≥ 8) ≈ 0.12.
Thus, even though the observed value of ea is much greater than the
amount predicted by pure secular forcing, it is still consistent with
‘1+2’ scattering theory.

(iii) π Men is a two-planet system with an inner transiting super-
Earth (ma = 4.8M⊕, aa = 0.0684 au) discovered by TESS (Huang
et al. 2018) and an external companion discovered by RV with a1 =
3.3 au and m1 ≈ 12.9MJ. The host-star is G type with M� = 1.11M�.
Follow-up surveys have shown a significant orbital misalignment
between m1 and ma, with 49 deg < θa1 < 131 deg at 1σ level
(Xuan & Wyatt 2020; see also Damasso et al. 2020; Rosa, Dawson
& Nielsen 2020). The external companion has an eccentric orbit of
e1 ≈ 0.642 while the inner planet has ea ≈ 0.15 (Damasso et al.
2020).

For this system εa1,GR = 1.21, and ea,forced = 0.013, thus γ e ≈ 11,
which shows the current value of ea is inconsistent with pure secular
forcing from m1 alone. If the current value of e1 is due to strong
scattering, the ejected planet likely has m2 ∼ m1, corresponding to
〈γ e〉HM ∼ 3.3 when GR precession is taken into account. Thus ye ∼
3, which is consistent with ‘1+2’ scattering with p(ye ≥ 3) ∼ 0.3.
Thus we conclude that the observed value of e1 is highly compatible
with ‘1+2’ scattering.

Now turning to the mutual inclination, we have that 〈γ θ 〉HM

∼ 2.3. Taking a fiducial value of θa1 ≈ 90 deg., we have yθ =
90 deg./(2.3

√
2θ12,0) − 1. If θ12, 0 = 3 deg., then yθ ∼ 8 and

P(yθ ≥ 8) ∼ 0.2. On the other hand, if θ12, 0 = 1 deg., then yθ

∼ 27, corresponding to P(yθ ≥ 27) ∼ 0.12. Recall that we are
using empirical values for P(y) derived from simulations, since
equation (81) breaks down when m1 ∼ m2. To conclude, the observed
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mutual inclination in the system can be easily generated by ‘1+2’
scattering if θ12, 0 � 3 deg., and is still possible with P ∼ 0.12
probability for θ12, 0 ∼ 1 degree.

In summary, we have found that each of the systems HAT-P-11,
Gliese 777 A and π Men have inner planet eccentricities and mutual
inclinations that are inconsistent with being produced by secular
forcing from their external perturber alone, but is consistent with
the ‘1+2’ scattering hypothesis (p > 0.10 in all cases). In addition,
direct scatterings of the inner planet by the outer giants during ‘1+2’
scattering could under certain regimes produce additional excitation
in eccentricity and inclination, which further bolsters the prospects
the currently observed eccentricities and mutual inclinations being
explained by ‘1+2’ scattering.
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APPENDI X A : CALCULATI ON O F MOMENTS
O F Ea

We demonstrate how to calculate the various moments of an inner
planet subject to a stochastic secular forcing. For case 1, the
unconstrained perturber, from equation (55) the mean of Ea is given
by

〈Ea〉 =
〈∫ tej

0
eiωa1(s−tej)iνa1Z(s)ds

〉

=
∫ tej

0
eiωa1(s−tej)iνa1〈Z(s)〉ds = 0. (A1)

The variance of Ea is

〈|Ea |2〉 =
〈 ∣∣∣∣

∫ tej

0
e−iωa (s−tej)iνa1Z(s)ds

∣∣∣∣
2〉

= ν2
a1

〈(∫ tej

0
eiiωa1(s−tej)Z(s)ds

)(∫ tej

0
eiωa1(r−tej)Z∗(r)dr

)〉

= ν2
a1

(∫ tej

0

∫ tej

0
eiωa1(r−s)〈Z(s)Z∗(r)〉 ds dr

)

= 2σ 2
E1ν

2
a1

(∫ tej

0

∫ r

0
eiωa (r−s)sds dr

+
∫ tej

0

∫ tej

r

eiωa1(r−s)rds dr

)

= 4

(
νa1

ωa

)2 [
1 − sin (ωatej)

ωatej

]
σ 2
E1tej. (A2)
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Similarly the covariance between Ea,ej and its forced eccentricity is
given by

〈
Re

(
Ea,ejE∗

a,forced

)〉 =
〈

Re

(∫ tej

0
−iνa1e

−iωa1(s−tej)Z(s)
νa1

ωa1
Z∗(s)ds

)〉

= Im

(∫ tej

0
νa1e

−iωa1(s−tej)
νa1

ωa1
〈Z(s)Z∗(s)〉 ds

)

= 2 Im

(∫ tej

0
νa1e

−iωa (s−tej)
νa1

ωa1
σ 2
E1s ds

)

= 2

(
νa1

ωa1

)2 [
1 − sin (ωa1tej)

ωa1tej

]
σ 2
E1tej. (A3)

The case of the constrained perturber (Brownian bridge) is
analogous to the case for the unconstrained perturber, except with
Z(s) → B(s). The expectations of B(s) are given by equations (60)–
(62).
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