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ABSTRACT
We use galaxies from the ILLUSTRISTNG, MASSIVEBLACK-II, and ILLUSTRIS-1 hydrodynamic simulations to investigate the
behaviour of large scale galaxy intrinsic alignments. Our analysis spans four redshift slices over the approximate range of
contemporary lensing surveys z = 0−1. We construct comparable weighted samples from the three simulations, which we then
analyse using an alignment model that includes both linear and quadratic alignment contributions. Our data vector includes
galaxy–galaxy, galaxy–shape, and shape–shape projected correlations, with the joint covariance matrix estimated analytically. In
all of the simulations, we report non-zero IAs at the level of several σ . For a fixed lower mass threshold, we find a relatively strong
redshift dependence in all three simulations, with the linear IA amplitude increasing by a factor of ∼2 between redshifts z = 0
and z = 1. We report no significant evidence for non-zero values of the tidal torquing amplitude, A2, in TNG, above statistical
uncertainties, although MBII favours a moderately negative A2 ∼ −2. Examining the properties of the TATT model as a function
of colour, luminosity and galaxy type (satellite or central), our findings are consistent with the most recent measurements on
real data. We also outline a novel method for constraining the TATT model parameters directly from the pixelized tidal field,
alongside a proof-of-concept exercise using TNG. This technique is shown to be promising, although comparison with previous
results obtained via other methods is non-trivial.
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1 IN T RO D U C T I O N

It is now well established that the weak lensing of distant galaxies by
foreground mass provides a relatively clear window on to the large-
scale structure of the Universe. This is true whether that foreground
mass is in the form of discrete matter concentrations, as traced
by galaxies (i.e. galaxy–galaxy lensing; Mandelbaum et al. 2013;
Leauthaud et al. 2017; Joudaki et al. 2018; Prat et al. 2018; Blake et al.
2020), massive dark matter haloes (cluster lensing; Melchior et al.
2017; Dark Energy Survey Collaboration 2020), or the continuous
large-scale matter distribution (cosmic shear; Heymans et al. 2013;
Dark Energy Survey Collaboration 2016; Troxel et al. 2018; Chang
et al. 2019; Hamana et al. 2020; Hildebrandt et al. 2020; Amon et al.
2021; Asgari et al. 2021; Secco, Samuroff et al. 2021). Though the
measurement method and the exact form of the theory predictions
differ slightly in the three cases, they are all fundamentally probes of
the growth of structure at low redshift. Similarly cross-correlations
between galaxy lensing and other observables can be powerful
probes in their own right; recent examples include galaxy lensing
× CMB lensing (Schaan et al. 2017), voids correlated with CMB
lensing (Vielzeuf et al. 2021), and galaxy weak lensing crossed with
gamma-ray emission (Ammazzalorso et al. 2020), each of which
provide probes of dark matter with slightly different sensitivities. A
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measurement of cosmological weak lensing, however, is subject to a
range of systematic effects; that is, observational effects that mimic
a cosmological lensing signal, and so bias cosmological inference
if one neglects them. Depending on the systematic in question,
the most effective mitigation strategy may be quite different. In
broad terms, however, the standard approach is to either (i) mitigate
systematics where possible, either by applying a calibration to the
data, or discarding the data points most strongly affected or (ii)
marginalize over them with a parametric model. Often a combination
of the two is appropriate, and the prior used in (ii) is informed by
additional data or simulations, and detailed testing of the calibration
step in (i).

This work focuses on one particular source of systematic bias,
which enters all of the weak lensing measurements described above:
galaxy intrinsic alignments (IAs). The fact that the projected shapes
of galaxies residing in the same local region of the cosmic web
are correlated has been known for many years now (Catelan,
Kamionkowski & Blandford 2001; Heymans & Heavens 2003). For
pairs of galaxies at the same redshift, the physically localized intrinsic
shape–shape correlations can persist even on relatively large angular
scales. Fortunately, in practice this signal, commonly referred to as
the II contribution, is typically weak; it is also absent, by construction,
from a measurement of galaxy–galaxy lensing, which reduces the
sensitivity to II further in the context of a multiprobe analysis. Often
more dangerous are what are known as GI correlations, which arise
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due to the fact that foreground mass causes both local gravitational
interactions in foreground galaxies and lensing in background objects
(Hirata & Seljak 2004).

Unfortunately, many of the avenues available for understanding
other lensing systematics are not feasible in the case of intrinsic
alignments. For example image simulations, which have become an
invaluable tool for quantifying shear calibration errors (Mandelbaum
et al. 2018; Zuntz et al. 2018; Kannawadi et al. 2019; Sánchez
et al. 2020) cannot be used for understanding IAs due to their
fundamentally astrophysical nature. For quite different reasons,
the various sophisticated methods that the lensing community has
developed for calibrating photometric redshift errors in recent years
(e.g. Choi et al. 2016; Gruen & Brimioulle 2017; Gatti et al. 2018,
2021; Prat et al. 2019; Alarcon et al. 2020; Myles et al. 2021) have
limited potential for cross-use as IA mitigation tools. Although direct
mitigation methods have been proposed in the literature (Heymans
& Heavens 2003; Joachimi & Schneider 2010), to date these have
been limited in their applicability, in large part because they tend
to rely on having good single-galaxy redshift information. They
also often focus on the (typically subdominant) II contribution
(although the Joachimi & Schneider 2010 method can include both).
The standard approach in cosmological lensing studies is to model
IAs using a (semi-) physically motivated parametric model, and
marginalize over its (typically 2–5) parameters with wide flat priors.
Given this background, hydrodynamic simulations are one of a small
number of possible routes to understanding intrinsic alignments in
cosmological lensing surveys, either for model building, or deriving
informative priors for the existing models. Although analytic models
are relatively well motivated on very large physical scales, this is
much less true on small to intermediate scales. Extending beyond this
regime, then, either requires simulations or the addition of extra terms
to the model, controlled by new parameters (Schneider & Bridle
2010; Blazek, Vlah & Seljak 2015; Blazek et al. 2019; Fortuna et al.
2021). Although not the focus of this paper, another route is to use
real galaxies to make a direct IA measurement (see e.g. Hirata et al.
2007; Joachimi et al. 2011; Mandelbaum et al. 2011; Blazek et al.
2012; Singh, Mandelbaum & More 2015; Johnston et al. 2019). This
approach avoids questions about the realism of simulations. It does,
however, have its own challenges, not least the need for accurate per-
galaxy redshift information, and the typically fairly restricted galaxy
selections (often bright, red, low redshift samples).

Although a substantial amount of literature exists on the subject
of IAs in hydrodynamic simulations, it is fair to say that there is
significant variation in focus and methodology. For example, a series
of studies by a group working on the HORIZON-AGN simulation have
looked in detail at the alignment of 2D and 3D subhalo shapes with
their local large scale structure and the cosmic web (e.g. Dubois
et al. 2014; Codis et al. 2015a; Soussana et al. 2020). Intriguingly,
Codis et al. (2015a) found hints that blue galaxy IAs could survive in
projection at a level detectable by future surveys. A number of papers
based on MASSIVEBLACK-II (e.g. Tenneti et al. 2015a,b; Bhowmick
et al. 2020) and ILLUSTRIS-1 (Hilbert et al. 2017) have explored
similar themes. Minor discrepancies in the details of the IA signal,
and its dependence on galaxy properties, have been uncovered;
thus far, however, the interpretation of these differences has been
complicated by both the relatively low signal-to-noise on large
scales, and methodological differences. In a more recent addition
to this literature, Zjupa, Schäfer & Hahn (2020) explore IAs in the
ILLUSTRISTNG simulations. In that work, they fit linear and quadratic
alignment models to elliptical and spiral galaxies, over the range z =
0−1 and as a function of environment, with results consistent with
those presented in this paper.

This work is intended as a step towards a more complete un-
derstanding of intrinsic alignments in hydrodynamic simulations,
building on these earlier studies. We present a unified analysis
of samples from various recent simulations, with measurement
methods and selection functions matched in order to make a
meaningful quantitative comparison. Unlike many previous stud-
ies, we focus on two-point intrinsic-galaxy and intrinsic–intrinsic
alignment statistics wg + and w++, which are commonly used in
observational studies; this is primarily because one can derive well-
defined analytic predictions for them, which directly correspond
to the IA modelling used in cosmological lensing analyses. This
is less true of statistics like the 3D EE and ED correlations (e.g.
Chisari et al. 2015; Tenneti et al. 2015a), and halo misalignment
statistics (Codis, Pichon & Pogosyan 2015b; Tenneti et al. 2015b),
all of which have been used in many simulation-based studies. In
this work we perform a simultaneous analysis of these wg + and
w++, alongside the equivalent galaxy–galaxy correlations, in order
to fully exploit the large-scale IA information in these simulated
data sets.

The paper is structured as follows. In Section 2 we outline
the properties of the three simulated data sets used in this work,
ILLUSTRISTNG, MASSIVEBLACK-II, and ILLUSTRIS-1, and describe the
selection used to construct comparable object catalogues. Section 3
then sets out the pipeline taking us from public (stellar and dark
matter) particle data and SUBFIND group tables to shape catalogues,
and eventually to two-point measurements. The theory calculations,
which we use to connect these measurements to IA models, are
described in Section 4. In Section 5 we present the results of our
baseline-likelihood analyses using the two-point alignment data,
and then in Section 6 we discuss a series of extensions. We fit
one of the more sophisticated alignment models in the literature,
and consider the dependence of its parameters on various galaxy
properties. In addition to the two-point constraints, Section 7 presents
a novel method for extracting alignment information directly from
the simulated matter field. We develop the basic principles, and
present an example using ILLUSTRISTNG. Finally, we conclude
and briefly discuss our results in the context of the field in
Section 8.

2 DATA

We consider three discrete cosmological simulation volumes in
this study. Of these, ILLUSTRISTNG is chronologically the most
recent, and so benefits from the improvements derived from the
analysis of earlier simulation efforts. The simulation runs are evolved
according to Newtonian dynamics and assume similar but non-
identical cosmologies, which are set out in Table 1, with particles
evolved from a set of initial conditions at high redshift. In each
redshift snapshot, groups are identified using the SUBFIND friends-
of-friends (FoF) group finding algorithm (Springel et al. 2001).

2.1 MASSIVEBLACK-II

MASSIVEBLACK-II has been used in various previous studies, and
is described in a number of existing publications; details about
the approximations and modelling can be found in Khandai et al.
(2015) and Di Matteo et al. (2012). The simulation has a comoving
volume of (100 h−1 Mpc)3, and was generated using P-GADGET,
which is a version of GADGET3 (Springel 2005). Initial conditions
were generated with a transfer function generated by CMBFAST at
z = 159. Star formation is modelled as a binary phase process,
triggered when a region of gas reaches some threshold density.
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Table 1. Properties of the simulation volumes used in this work. The particle
mass quoted in the right-most column is the mean of gas particles. Note that
in MASSIVEBLACK-II all particles are equally weighted, while ILLUSTRISTNG

they cover a range (see Nelson et al. 2019). σ 8 is shown in parentheses as it
is a derived parameter.

Simulation Volume Cosmology Mean gas particle
/h−3 Mpc3 Mass/106M�

ILLUSTRISTNG 2053 As = 2.13 × 10−9 11.0
�m = 0.31
�b = 0.05
ns = 0.97
h = 0.68

(σ 8 = 0.816)
MBII 1003 As = 2.43 × 10−9 2.2

�m = 0.28
�b = 0.05
ns = 0.97
h = 0.70

(σ 8 = 0.816)
ILLUSTRIS-1 753 As = 2.23 × 10−9 1.3

�m = 0.27
�b = 0.05
ns = 0.96
h = 0.70

(σ 8 = 0.809)

Stellar particles are generated randomly from gas particles with a
probability determined by their star formation rate. Stellar winds are
modelled using the parametrization of Hernquist & Springel (2003).
AGN feedback, which is particularly relevant in high mass galaxy
populations, where IAs are also strong, is also included; details of
the black hole growth and AGN feedback models see Khandai et al.
(2015)’s Section 2.3. MASSIVEBLACK-II is several years old now, and
has a number of known deficiencies. Particularly, there are relatively
few spiral galaxies, and an overabundance of extended ellipticals
compared with data (Tenneti, Mandelbaum & Di Matteo 2016). The
AGN feedback prescription is also known to be weak, meaning that
there are more massive galaxies at low redshift than data suggests
(Khandai et al. 2015).

2.2 Illustris

ILLUSTRIS-1 is another hydrodynamic simulation whose data are
public. The smallest of the three considered in this work, the box has
a total comoving volume of V = (75 h−1 Mpc)3, which was evolved
using the moving mesh grid code, AREPO (Weinberger, Springel
& Pakmor 2020). The various physical processes approximated in
ILLUSTRIS-1, in brief, include radiative cooling (both primordial
and due to heavy elements) with self-shielding corrections; star-
formation in dense regions of gas; stellar evolution with associated
metal enrichment; supernova feedback and quasar-mode, radio-
mode, and radiative mode AGN feedback. The above prescriptions
have ∼15 tunable parameters, which were fixed to values obtained
using a significantly smaller volume, higher resolution, set of
simulations. Details of these models can be found in Vogelsberger
et al. (2014). Although it is useful as a comparison here, ILLUSTRIS-1
is known to have flaws; in particular the stellar and AGN feedback
prescription is extreme, making it something of an outlier compared
with other simulations in the literature such as MASSIVEBLACK-II,
Eagle and Horizon-AGN (see Nelson et al. 2015 for a summary).

2.3 ILLUSTRISTNG

ILLUSTRISTNG is the most recent hydrodynamic simulation included
here. The particle and group data are described in the release papers
(Springel et al. 2018; Nelson et al. 2019), and are available for
download.1 The ILLUSTRISTNG data are generated using AREPO. A
Monte Carlo tracer particle scheme is used to follow the Lagrangian
evolution of baryonic matter. The hydrodynamic element comprises
prescriptions for a handful of different physical processes, including
emission line radiative cooling; stochastic star formation; supernova
feedback, and AGN feedback. The latter has two modes (referred to as
‘quasar’ and ‘kinetic wind’ modes), depending on the accretion rate.
Details of these prescriptions can be found in Pillepich et al. (2018a).
It is worth remarking that ILLUSTRISTNG is tuned explicitly to match
observations at z = 0 using a number of statistics; specifically the
galaxy stellar mass function, the total gas mass content within the
virial radius of massive groups, the stellar mass-stellar size, and the
black hole–galaxy mass relations, and the overall shape of the cosmic
star formation rate density at high redshift.

2.4 Sample selection

2.4.1 Fiducial catalogues

To obtain a galaxy sample from which we can draw useful con-
clusions for each of the simulated data sets, we impose additional
quality cuts. Although our measurements are not subject to the
usual observational biases (due, for example, to fitting ellipticities
in the presence of pixel noise, or imperfect PSF modelling), they
are affected by convergence bias (e.g. Chisari et al. 2015). That
is, subhaloes with an insufficient number of particles to provide
a meaningful shape measurement alter the ensemble ellipticity
distribution of the sample. To avoid such effects, we impose a
selection based on the number of particles in a galaxy (dark matter
and stellar). The exact choice of cut here is based on the convergence
tests of Tenneti et al. (2015b). This translates into a slightly different
mass cut for each simulation due to the respective mass resolutions
of the three data sets. We thus additionally impose a direct cut on
stellar mass, such that the samples all have the same lower bound on
M∗. The final selection is then:

nDM > 1000

n∗ > 300 (1)

M∗ > 1.6 × 109h−1M�.

This leaves a total of ∼15 000, 35 000, and 170 000 usable galax-
ies in ILLUSTRIS-1, MASSIVEBLACK-II, and ILLUSTRISTNG samples,
respectively. Note that the cut in equation (1) is imposed on each
snapshot independently, resulting in the per-redshift numbers shown
in Table 2.

In Fig. 1, we show the ellipticity distribution and stellar mass func-
tion for each of the samples. ‘Ellipticity’ in this context is defined as
the magnitude of the spin-2 complex ellipticity defined in Section 3.1.
As discussed there, the exact value for a given galaxy is dependent on
the details of the measurement method (i.e. the relative weighting of
stellar matter at different radii). Given that the measurement pipeline
is applied consistently to the different simulations, however, Fig. 1
does allow a meaningful comparison. The striking discrepancy in the
upper panel has been noted elsewhere (see for example, Tenneti et al.
2016’s fig. 2); galaxies in ILLUSTRIS-1 are significantly rounder than

1http://www.tng-project.org/data
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Table 2. Physical properties of the galaxy samples considered in this work. The object selection is as set out in Section 2.4, and is applied independently at each
redshift. Here nc (fourth column) is the comoving galaxy number density of the sample. The methods used to separate red/blue and satellite/central galaxies are
described in Sections 6.2.4 and 6.2.1, respectively.

Simulation Redshift Number of galaxies nc/h3Mpc−3 Red fraction Satellite fraction Mean stellar mass/109M�

ILLUSTRISTNG 0.00 171 684 0.020 0.34 0.33 20.0
ILLUSTRISTNG 0.30 168 399 0.020 0.22 0.32 18.8
ILLUSTRISTNG 0.62 159 925 0.019 0.18 0.30 17.5
ILLUSTRISTNG 1.00 145 394 0.017 0.12 0.27 16.0
MASSIVEBLACK-II 0.00 33 578 0.033 N/A 0.45 15.0
MASSIVEBLACK-II 0.30 34 646 0.035 N/A 0.46 13.2
MASSIVEBLACK-II 0.62 35 523 0.036 N/A 0.48 11.6
MASSIVEBLACK-II 1.00 35 482 0.036 N/A 0.49 10.0
ILLUSTRIS-1 0.00 18 489 0.044 N/A 0.32 17.6
ILLUSTRIS-1 0.30 17 203 0.041 N/A 0.31 16.8
ILLUSTRIS-1 0.62 15 181 0.036 N/A 0.29 16.1
ILLUSTRIS-1 1.00 12 881 0.031 N/A 0.27 15.0

Figure 1. Upper: Normalized distributions of projected ellipticity for the z =
0 samples used in this work, with the cuts described in Section 2.4. Shown
are ILLUSTRISTNG (purple), MASSIVEBLACK-II (dark blue), and ILLUSTRIS-1
(green). Lower: the stellar mass functions for the same samples.

both comparable simulations and real data. The differences in the
mass function (lower panel) mean that, even with a common lower
bound, the mean stellar mass of the samples differs slightly (see the
right-hand column in Table 2). At given redshift, the mean masses are
ordered (descending) ILLUSTRISTNG, ILLUSTRIS-1, MASSIVEBLACK-
II. The differences in the low mass end of the stellar mass function

Figure 2. Normalized distributions of r-band apparent magnitude for our
ILLUSTRISTNG sample. We convert the absolute magnitude in the catalogues
to apparent magnitude at each snapshot, assuming the correct cosmology
of the simulation. A detailed description of how the simulated absolute
magnitudes are computed can be found in Nelson et al. (2018). A power-
law approximation for the SED is used to compute the k-corrections for the
apparent magnitudes; although this is not rigorously correct, it is sufficient for
our purposes, given that the k-corrections are comfortably subdominant to the
distance modulus, and that we are only attempting a qualitative comparison
here. For reference, the unfilled curve shows the equivalent distribution for
the fiducial Dark Energy Survey Year 1 shape catalogue, after quality cuts
(c.f. Zuntz et al. 2018’s fig. 3).

are thought to come primarily from changes in how stellar-driven
winds are implemented in ILLUSTRISTNG. For further discussion and
comparison with data, see Pillepich et al. (2018b).

ILLUSTRISTNG is unusual amongst hydrodynamic simulations, in
the sense that it has realistic galaxy magnitudes, integrated over a
number of different pass bands. We include the SDSS griz band
magnitudes in our processed catalogues, and will use them in the
following sections. Briefly, these are evaluated by summing the
luminosity of star particles in a particular subhalo, and the appropriate
filter band-pass is applied. More detail on this calculation can be
found in Nelson et al. (2018)’s section 3. The distribution of apparent
r-band magnitudes in three ILLUSTRISTNG snapshots is shown in
Fig. 2. For reference, the observed magnitude distribution from
the DES Y1 METACALIBRATION catalogue is also included (dashed
purple). It is worth remembering here that, unlike the simulated
data, DES is a flux-limited imaging survey, with galaxies distributed
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Figure 3. Normalized distributions of galaxy offsets from the centre of mass
of their host haloes, in the ILLUSTRISTNG simulation at z = 0. The central flag
used is defined in Section 2.4.2. Note that the distribution labelled ‘satellites’
is boosted by a factor of 15 for visibility.

across a range of redshifts (ensemble median redshift z ∼ 0.59; Zuntz
et al. 2018), and so direct comparison is not useful; they are shown
here to illustrate that the simulated galaxy samples here are not
representative of those in a typical lensing survey, but are a brighter
subset.

2.4.2 Central flagging

Key to halo model-based descriptions of galaxy alignments is the
ability to split galaxies cleanly into satellites and centrals (see Fortuna
et al. 2021 for a recent example). Galaxies residing at the centres of
their halo tend to be older and more massive than the satellites in
the same halo; in the halo model picture, the clustering and shape
properties of these two sets of galaxies is fundamentally different.
For this reason it is, then, interesting to explore the behaviour of
satellites and centrals separately. For this work we simply designate
the most massive galaxy in each FoF group as the central.2 Although
noisy, this definition is less prone to misclassification than one based
on geometry, particularly in high mass groups in which the region
around the bottom of the potential well is relatively crowded. We
show the distribution of galaxy–halo separations for centrals and
satellites at z = 0 in Fig. 3. Although not shown here, a similar
pattern is seen in the higher redshift snapshots. That the mass based
classifier is a strong indicator of galaxy position in the halo offers
some reassurance that the central flagging is, in fact, literally selecting
central galaxies. This is a relatively old problem, and various previous
studies have explored different ways to flag central galaxies (see for
example, Rykoff et al. 2016).

2.4.3 Galaxy colours

There is much evidence in the literature to indicate that IAs are
strongly dependent on galaxy colour (Joachimi et al. 2011; Heymans
et al. 2013; Singh et al. 2015; Johnston et al. 2019; Samuroff et al.
2019). Clearly photometric colour is a proxy for a host of other
physical properties, which ultimately determine how strongly the
galaxy sample is aligned, and one could equivalently use other

2In the nomenclature of the TNG data release, the central in each group is
identified using the ‘GroupFirstSub’ flag.

properties such as morphology and bulge/disc ratio. Although crude,
a binary type split is often useful, given that mixed galaxy samples
commonly exhibit a clear bimodality in colour (or colour–magnitude)
space (e.g. Baldry et al. 2004; Valentini et al. 2018), and that this maps
roughly on to differences in IA properties. That said, the IA signal in
the simulations (or indeed any galaxy sample) is a complex function
of many correlated quantities (e.g. colour, morphology, dynamical
properties). Although it is useful to study IAs in subpopulations
defined using proxies, it is worth proceeding with care, and bearing
in mind that the full picture is more complicated.

Whereas quantities like stellar mass and subhalo shapes are
relatively simple to obtain from hydrodynamic simulations, mapping
them on to observable quantities like fluxes and colours is non-trivial.
This has historically been a challenging problem, and there are doc-
umented deficiencies in the galaxy photometry for MASSIVEBLACK-II

and ILLUSTRIS-1; the equivalent quantities for ILLUSTRISTNG are,
however, thought to be fairly realistic (see e.g. Nelson et al. 2018).
In brief, in ILLUSTRISTNG a stellar synthesis model is used to
predict the stellar population of each particle in a subhalo as a
function of metallicity and age. This process includes basic models
for dust emission and nebular line emission. The predicted stellar
spectrum is multiplied by the SDSS optical/near-IR ugriz band-
passes (airmass 1.3), producing a magnitude in each filter. The per-
particle magnitudes are then summed over the ensemble bound to
the subhalo. This process is explained in more detail in Nelson et al.
(2018)’s section 3 (see their ‘Model (A)’).

We inspect the colour–magnitude diagrams and make a linear
division in g − i colour space

(g − i) = mgi × r + cgi, (2)

to roughly mimic the green valley division. The colour magnitude di-
agram evolves with redshift, and so we carry out this process indepen-
dently in each snapshot, giving mgi = (0.045, 0.045, 0.055, 0.022),
cgi = (1.84, 1.84, 1.95, 1.19). The red fraction resulting from this
split at each redshift is shown in Table 2. The numbers here are
roughly consistent with those seen in real data, and change with
redshift in an intuitively correct way (i.e. the low redshift Universe
has a larger abundance of massive red elliptical galaxies compared
with z = 1). The r − i colour magnitude diagram for our split
sample is shown in Fig. 4. Given that the split is imposed in g − i,
it is somewhat reassuring that we see clearly defined well separated
samples in this space.

3 MEASUREMENTS

3.1 Galaxy shapes

In a 3D cosmological volume, the most natural way to quantify
a galaxy’s shape is via its inertia tensor. Analogous to projected
ellipticities, which are constructed from the moments of a galaxy
light profile, the most general form for the inertia tensor is:

Iij = 1

W

Np∑
k=1

wkxi,kxj,k, (3)

where the indices ij indicate one of the three spatial coordinate axes i,
j ∈ (x, y, z), and the sum runs over the number of particles within the
subhalo. For our purposes, this means star particles, but one could
equivalently estimate the shape of the dark matter subhalo using the
same equation. The prefactor wk is the weight allocated to particle
k, and W is the sum of the weights; in the case of MASSIVEBLACK-
II, all of the star particles have the same mass, and so the weights
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Figure 4. Colour magnitude diagrams for our ILLUSTRISTNG sample at four
redshifts (labelled upper left-hand panel). The two sets of contours show the
distributions of the red and blue samples, as outlined in the text. Note that
the split is imposed in g − i versus r space; by construction it separates the
red/blue peaks in this space, but this is not true for other colour definitions
(such as the one shown here). The fine points show a randomly downsampled
selection of galaxies from each population. Note that unlike in Fig. 2, the
magnitudes used here (including for estimating colours) are absolute, not
apparent, ones.

are flat. In ILLUSTRISTNG and ILLUSTRIS-1, this is not the case, and
each particle is weighted by its mass. An alternative, known as the
reduced inertia tensor (see Chisari et al. 2015; Tenneti et al. 2016),
weights particles by their inverse square distance from the subhalo
centroid. This process is known to bias the measured ellipticities
low, necessitating a further iterative correction procedure. Although
we mention this here for context, since it has been used a handful
of times in the literature, it is not used in this work. Note also that
we have reason to think the IA signal is, in reality, dependent on the
radial weighting of the shape measurements, an effect that has been
observed in real data (Singh & Mandelbaum 2016).

By performing an eigenvalue decomposition on I, one can obtain
3D axis vectors and lengths, which in turn can be projected into the
2D second moments Qxx, Qyy, Qxy. The recipe is set out by Piras et al.
(2018) (see their equations 13–15), and we refer the reader to that
paper for the mathematical detail. Although for technical reasons
our pipeline goes via 3D shapes, it is also worth noting that one
could also simply measure the projected 2D moments of a subhalo
directly. With the projected moments, one can then construct the
spin-2 ellipticity of a galaxy as

(e1, e2) = (Qxx − Qyy, 2Qxy)

Q11 + Q22 + 2
√|Q| . (4)

It is worth bearing in mind that there are in fact two common
ellipticity definitions used for weak lensing. The one defined above is
equivalent to an ellipticity magnitude, written in terms of (projected)
axis ratios, e = (a − b)/(a + b); for detailed discussion of both this and
the alternative ellipticity definition, and their respective advantages,
see Melchior & Viola (2012). Note that this is a Cartesian projection
along one axis of the simulation box, not a light-cone projection
with conversion to angular coordinates. The positive and negative
e1 direction, then, is defined by the x, y coordinate directions of
the square simulation volume. Although this measurement does not
correspond directly to what one could do in reality, the difference
is not thought to be significant, given the statistical size and other
limitations of the samples considered in this work.

3.2 Two-point correlations

All correlation functions used in this paper are computed using
the public HALOTOOLS package34 (Hearin et al. 2017). The most
straightforward (and highest signal-to-noise) two-point measurement
one could make is that of galaxy clustering in three dimensions. We
adopt a common estimator of the form (Landy & Szalay 1993):

ξ ij
gg(rp,�) = DiDj − DiRj − DjRi + RiRj

RiRj
, (5)

where DD, RR, and DR are weighted counts of galaxy–galaxy,
random–random, and galaxy–random pairs, binned in perpendicular
and line-of-sight separation, rp and �. The indices i, j denote a pair
of catalogues (either galaxy positions, or random points), which are
correlated together. In both cases above, R represents the positions
of a set of random points drawn from a flat distribution within the
simulation volume.

The cross-correlation of galaxy positions and intrinsic ellipticities,
ξ g +(rp, �), can similarly be estimated, as a function of rp and �.
We use a modified Landy–Szalay estimator of the form:

ξ
ij
g+(rp, �) = Si

+Dj − Si
+Rj

RiRj
(6)

(see Mandelbaum et al. 2011). One can similarly measure the shape–
shape correlation:

ξ
ij
++(rp, �) = Si

+S
j
+

RiRj
. (7)

The terms in the numerator represent shape correlations and are
defined as

Si
+Dj ≡ 1

2

∑
α 	=β

wαwβe+(β|α), (8)

Si
+S

j
+ ≡ 1

4

∑
α 	=β

wαwβe+(α|β)e+(β|α), (9)

where the indices α, β run over galaxies and e+(β|α) is the
tangential ellipticity of galaxy β, rotated into the coordinate system
defined by the separation vector with galaxy α. For the fiducial
catalogue, ILLUSTRISTNG, the weights are equal and normalized to
the number of galaxies. In order to make a direct comparison of the
different samples, galaxies in the MASSIVEBLACK-II and ILLUSTRIS-
1 catalogues are assigned weights, such that the host halo mass
distributions of the three match. For detail about the weighting
scheme, which we refer to as halo-mass reweighting, and discussion
about the impact on our results, we refer the reader to Appendix C.
IAs are known to be dependent on cosmology and the host halo
mass distribution, and this process should remove differences due
to discrepancies in these factors. It is also true, however, that other
properties such as the details of the galaxy–halo connection and
the properties of the galaxies themselves also potentially have an
impact. Such differences represent a systematic uncertainty (since we
cannot say with certainty which of the simulations, if any, represents
reality, nor straightforwardly homogenize them), and so any resulting
differences should be treated as such.

In lensing studies it is also common to assign galaxies some-
thing approximating inverse variance (shape noise + measurement
uncertainty) weights (see for example, Zuntz et al. 2018). Since
this weighting tends to upweight bright, high S/N galaxies, it seems
likely it would also boost the IA signal. That said, in practice lensing

3https://github.com/duncandc/halotools ia
4https://halotools.readthedocs.io; v0.7
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Figure 5. The fiducial data vectors used in this work. Shown from top are galaxy–galaxy, galaxy–shape, and shape–shape two-point correlations, at four discrete
redshifts (left to right, as indicated). The point styles indicate measurements made on MASSIVEBLACK-II (dark blue stars), ILLUSTRIS-1 (pink open circles) and
ILLUSTRISTNG (purple filled circles). The solid lines are the theory predictions, evaluated at the best fitting point in the TATT parameter space for each data set.
Scales within the shaded regions (rp < 6 h−1 Mpc) are excluded from the fits, using both the TATT and NLA models.

weights tend to be shape noise dominated, and so relatively uniform
across the sample, meaning the magnitude of this effect is expected
to be small.

From these 3D measurements, obtaining the 2D projected corre-
lations is a case of integrating along the line of sight. One has,

wab(rp) =
∫ �max

−�max

d�ξab(rp, �). (10)

Here the lower indices ab denote a type of two-point correlation, a, b
∈ (g, +). �max is an integration limit, which is set by the simulation
volume. For this study we adopt a value equal to a third of the box
size, or �max = 68h−1 Mpc for ILLUSTRISTNG, �max = 33h−1 Mpc
for MASSIVEBLACK-II, and �max = 25h−1 Mpc for ILLUSTRIS-1. In
practice, for our purposes we wish to maximize �max

5; although it is
true that very long baselines will eventually harm the signal-to-noise
by including uncorrelated pairs, on scales of a few tens of Mpc we
are well within the regime where extending �max helps us to access

5The upper limit here is imposed to avoid artefacts due to the finite size of
the simulations. In principle, one could use even smaller �max, which would
have two effects: it would suppress the amplitude of the signal due to the
loss of correlated galaxy pairs, and also increase shot and shape noise. The
former can be incorporated into the model, and so is not an issue; the latter,
on the other hand, inescapably reduces our ability to draw conclusions from
the measurements.

additional large scale signal modes (see Joachimi et al. 2011’s App.
A2 for further discussion).

The measurements described above, for the three simulations, are
shown in Fig. 5 (left to right ascending in redshift, top to bottom
different correlations). Although by-eye comparison is complicated
by the differing box size (which translates into an effective k limit that
alters the relative amplitudes of the measured correlation functions,
albeit in a way that is included in the model) there are a few
notable features here. On large scales, the shape and amplitude
of the large scale galaxy–galaxy correlation roughly matches be-
tween ILLUSTRISTNG and MASSIVEBLACK-II (although ILLUSTRIS-1 is
somewhat lower and flatter). This is much less true of wg +; noticably
MASSIVEBLACK-II exhibits a much stronger scale-dependent signal on
scales approaching the one halo regime. On large scales too there are
hints at systematic differences in shape, although we are somewhat
limited here by cosmic variance.

3.3 Tidal and shape fields

In addition to the two-point measurements described above, we
also implement a new method to derive IA constraints at the field
level. We refer the reader to Section 7 for details, but the method
involves deriving constraints on IA parameters via a comparison of
the (pixelized) 3D tidal field and the intrinsic galaxy shape field (see
also Hilbert et al. 2017, who also use the tidal field directly to measure
IAs, albeit via two-point functions, and Bate et al. 2020, who use
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Figure 6. The z = 0 dark matter overdensity field and associated quantities from ILLUSTRISTNG. Here we show (left to right) the matter overdensity δm + 1, the
0,0 component of the 3 × 3 dark matter tidal tensor, and the same component of the 3 × 3 galaxy shape tensor γ I. The pixel resolution is 128/side, resulting in
a physical pixel scale of 1.59h−1 Mpc, which is at the finer end of the range of pixel scales presented in this work. While the full simulation box is clearly 3D,
for illustrative purposes we choose here to show a 2D slice through the centre. In the right-hand panel, white pixels indicate those containing no galaxies that
pass cuts into our final ILLUSTRISTNG shape catalogue.

similar measurements to explore the alignment of elliptical galaxy
progenitors). To this end, we need an estimate of that tidal tensor as
a function of position; we obtain this from the gridded particle data
as follows.

Starting with the table of particle positions at fixed redshift, we
divide the simulation box into 3D cubic pixels. The pixel size
L is an unconstrained analysis variable, and affects the physical
interpretation of the eventual results. We choose to perform our
measurements using three different scales, 16 pixels across (L ∼
12.8 h−1 Mpc), 32 pixels across (L ∼ 6.4 h−1 Mpc), and 64 pixels (L
∼ 3.2 h−1 Mpc). Within each pixel p in the grid, centred at position
xp , we measure the overdensity of matter and stars,

δ(xp) = Np

〈Np〉p − 1. (11)

That is, the total number of dark matter particles in pixel p, divided
by the mean occupation across all pixels. In the case of dark matter,
all particles in ILLUSTRISTNG are weighted equally, and the values
in the equation above are raw number counts, rather than sums of
masses. Using the Fourier space version of the Poisson equation,
one can show that the traceless tidal tensor can be obtained from the
overdensity field as:

sij (k) =
(

kikj

k2
− 1

3
δij

)
δ(k), (12)

where k2 = k2
1 + k2

2 + k2
3 . For more details about the mathematics see

Catelan & Porciani (2001), Alonso, Hadzhiyska & Strauss (2016).
The two indices here ij denote a single element of the 3 × 3 tensor
matrix within pixel p.

We also obtain a noisy estimate for the intrinsic shear in pixel p,
γ I

ij (xp), by averaging the trace-free inertia tensors of galaxies within
it. That is,

γ I
ij (xp) =

〈
Iij,k − 1

3
δij Tr [Ik]

〉
k

, (13)

where the subscript k denotes a particular galaxy from pixel p, and
the angle brackets 〈〉k indicate averaging over those galaxies. We
estimate the per-element variance of the 3 × 3 matrix γ I directly by
computing the RMS over all galaxies; that is, we assume that shape
noise dominates, such that the covariance matrix is diagonal, and can
be written as C−1

ij ,p = δij σ
−2
SNμ, or the inverse square shape variance for

component μ ∈ (1, 2). Note that this is a global quantity, computed
across pixels and applied to each of them. We confirm that the
covariance scales with pixel size roughly as one might expect from
geometric arguments as σ SNμ∝L−3/2. A 1D slice of the three fields
described here, as measured in the z = 0 ILLUSTRISTNG snapshot, can
be seen in Fig. 6. Shown are (left to right): dark matter overdensity,
the upper diagonal element of the dark matter tidal tensor, and the
smoothed galaxy shape field. It is apparent from Fig. 6 that there is
an obvious qualitative correspondence between the raw matter field
and the tidal tensor (compare the left-most and middle panels). The
sampling of galaxies is much sparser, which is evidenced by the
amount of white space in the right-most panel. Depending on the
pixel scale, the fraction of unoccupied pixels is between 20 per cent
and 80 per cent. Although striking in this figure, and worth noting,
the impact of this sampling is explicitly incorporated into our IA
modelling, as described in Section 4.

4 TH E O RY

Our analysis pipeline is built within COSMOSIS 6 (Zuntz et al. 2015).
The new modules introduced in this paper has been validated against
older free-standing code. Although we will not discuss this process
in detail here, a longer discussion can be found in Appendix A.
Sampling is performed using MULTINEST (Feroz et al. 2019), and
in the subset of chains where the Bayesian evidence is needed, we
also run using POLYCHORD (Handley, Hobson & Lasenby 2015), with

6https://bitbucket.org/joezuntz/cosmosis, v1.6; master branch
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Table 3. Free parameters for the IA model fits implemented in this work.
All fits are performed on a single snapshot, with the same priors applied
irrespective of redshift. Note that the linear galaxy bias bg is not an IA
parameter (i.e. it does not enter either the GI or II power spectra), but it is
included in the modelling and so is shown here. The choice of priors here is
designed to be conservative, and well clear of the posterior edges. We discuss
the possible impact of this choice, and demonstrate robustness to projection
effects in Section 5.

Model Parameter Prior

NLA A1 U[−6, 6]
bg U[0.05, 8]

TATT A1 U[−6, 6]
A2 U[−6, 6]
bTA U[−6, 6]
bg U[0.05, 8]

more stringent accuracy settings.7 In all cases, we fix the cosmology
to the input for the relevant simulation, with the parameters given
in Table 1 and zero neutrino mass. The matter power spectrum is
generated using CAMB with non-linear modifications from HALOFIT

(Takahashi et al. 2012). A simulation of finite box size (i.e. any
simulation) has an effective k limit, at which the power spectra are
truncated (see Power & Knebe 2006 and Bagla, Prasad & Khandai
2009 for discussion and quantification), an effect that primarily
impacts large physical scales, but potentially has ramifications at
smaller separations too. In order to avoid biasing our results, we
explicitly include this truncation in our modelling. Given the box
sizes, the actual effective small−k cutoff is at kmin = 2π /L, or
∼0.03 h−1 Mpc, ∼0.06 h−1 Mpc, and ∼0.08 h−1 Mpc in the cases of
ILLUSTRISTNG, MASSIVEBLACK-II, and ILLUSTRIS-1, respectively. We
assess the impact of this detail by repeating our fits with fixed kmin =
0.06h−1 Mpc for the three simulations. The resulting biases, arising
from ignoring the small-k cut off, is potentially quite significant
(∼20 per cent) in both the galaxy bias and IA parameters.

Our fiducial analysis includes physical scales in the range 6 < rp <

L/3 h−1 Mpc, where L is the length of the simulation box. Unlike in
real survey data, an upper cut is necessary to avoid edge effects due to
the finite simulation size. The lower cut follows several other studies
(Joachimi et al. 2011; Singh et al. 2015; Johnston et al. 2019), and is
intended to be conservative in removing data affected by non-linear
bias. We explicitly test this choice in Section 6.1.

4.1 Modelling intrinsic alignments

We consider two different IA scenarios in our fits, discussed in
more detail below. While it is useful to think of these as entirely
separate models, and indeed we will refer to them as such, it is worth
bearing in mind that they are nested. That is, the more complex model
reverts to the simpler one when a subset of its parameters are zero.
For reference, the free parameters in each of these models and the
associated priors in each case are shown in Table 3.

4.1.1 Non-linear alignment model

One common predictive IA model is the non-linear alignment (NLA)
model; in essence, it is an empirically motivated modification (see
Bridle & King 2007; Hirata et al. 2007) to a physically motivated (at
least partially, in certain regimes) prescription known as the Linear

7live points = 250, tolerance = 0.1, num repeats = 60

Alignment (LA) model (Catelan et al. 2001; Hirata & Seljak 2004;
Hirata & Seljak 2010; Blazek, McQuinn & Seljak 2011). Under the
assumption of linear alignments, one can write the intrinsic shape
of a galaxy in terms of the background gravitational potential at the
time of galaxy formation as:

(eI
+, eI

×) = − C̄1

4πG

(
∂2

∂x2
− ∂2

∂y2
, 2

∂2

∂x∂y

)
φ(χ∗), (14)

where C̄1 is a normalization constant, typically fixed at a value of
5 × 10−14M−1

� h−2 Mpc3 (Brown et al. 2002). Following Hirata &
Seljak (2004), the GI and II power spectra have the form:

PGI(k) = − C̄1ρ̄(z)

D(z)
a2(z)P lin

δ (k) (15)

and

PII(k) =
(

C̄1ρ̄(z)

D(z)

)2

a4(z)P lin
δ (k). (16)

Here ρ̄ is the (spatially averaged) mean matter density of the Universe
and D is the linear growth function. The model also predicts higher
order contributions, as well as non-zero B modes arising from galaxy
clustering, though these are typically neglected in implementations of
the NLA model (Hirata & Seljak 2004; Blazek et al. 2015; see the next
section for further discussion). We follow many previous analyses in
fixing C̄1 to Brown et al. (2002)’s value, and parametrizing deviations
in strength of alignment from this baseline with a free amplitude, such
that PGI → A1PGI and PII → A2

1PII.
The feature that defines the NLA is the substitution of the linear

power spectrum in equations (15) and (16) for the non-linear version.
The rationale for this change is as an attempt to capture the non-linear
tidal field, and indeed it does appears to improve the performance on
small to intermediate scales (see for example Bridle & King 2007;
Blazek et al. 2015; Singh et al. 2015), even if it is not necessarily
internally consistent.

4.1.2 Tidal alignment and tidal torque model

Our second IA model, referred to as the Tidal Alignment + Tidal
Torque (TATT) model, was first proposed by Blazek et al. (2019) and
has been employed a number of times in the context of cosmic shear
analyses in the recent past (see Troxel et al. 2018; Samuroff et al.
2019). We will provide a brief overview of the theory, and refer the
reader to those papers a more detailed description.

In this framework, a galaxy’s intrinsic shape8 is written as an
expansion in the trace-free tidal field tensor sij:

γ I
ij = C1sij︸ ︷︷ ︸

Tidal Alignment

+ C1δ(δ × sij )︸ ︷︷ ︸
Density Weighting

+C2

[
2∑

k=0

sikskj − 1

3
δij s

2

]
︸ ︷︷ ︸

Tidal Torquing

+ . . . ,

(17)

with both sides of the equation evaluated at a position x, which may
be either a Lagrangian or an Eulerian position. The two amplitudes
C1 and C2 describe the magnitude of alignment due to tidal alignment
and tidal torquing, respectively. It is worth bearing in mind, however,

8The intrinsic shape here is defined in an analogous way to the projected
ellipticity; it is the trace-free component of the moment matrix in three
dimensions, or equivalently, the eigenvector matrix of the 3D inertia tensor.
As noted in Blazek et al. (2019), it is not a uniquely defined quantity, and
depends on the radial weighting of the measurement algorithm.
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that these terms can absorb IAs due to other mechanisms when fit to
real data; for example, an effective non-zero C1 can in principle arise
in a pure tidal torquing IA scenario, when combined with non-linear
growth (Hui & Zhang 2002). The term, with the coefficient C1δ , is
a so-called density weighting contribution, and arises from the fact
that one can only measure galaxy shapes in a position where there
is actually a galaxy (see e.g. Hirata & Seljak 2004 and Blazek et al.
2015 for further discussion). Also note that the product of the matter
overdensity and tidal fields δsij implicitly assumes a smoothing scale,
a detail we will return to in Section 7. The real-space dark matter tidal
tensor is a 3 × 3 matrix, defined in relation to the overdensity field
in equation (12). If the tidal tensor is computed using the non-linear
matter field, then the leading term in equation (17) is equivalent to the
NLA prediction. If the TATT model parameters are varied together,
however, they can enter the data in potentially degenerate ways,
meaning that the A1 part of the full TATT space will not necessarily
match the NLA fit to the same data, if A2 	= 0 is preferred. One then
has:

C1 = −A1C̄1
�mρcrit

D(z)
, (18)

C2 = 5A2C̄1
�mρcrit

D2(z)
. (19)

and

C1δ = −A1δC̄1
�mρcrit

D(z)
. (20)

The constant C̄1 is the same as the one discussed in the previous sec-
tion. The IA power spectra (GI and II) are derived from perturbation
theory and are given by integrals over the matter power spectrum; for
details see sections A–C of Blazek et al. (2019). Our version of the
TATT model is identical to that of Troxel et al. (2018), Blazek et al.
(2019) and Samuroff et al. (2019). It makes use of the FAST-PT code
(McEwen et al. 2016; Fang et al. 2017), and is implemented within
COSMOSIS.

Following Blazek et al. (2015), we do not vary A1δ directly, but
rather assume the density weighting term is related to the tidal
alignment amplitude via a coefficient (i.e. C1δ = bTAC1). The original
motivation for this parametrization was that IA correlations scaling
with δsij were generated by the density weighting of the IA field,
which can only be observed where galaxies are located (see Blazek
et al. 2015 for a more detailed discussion). As with the other terms,
C1δ can be thought of more generally as describing any alignment
physics with large-scale correlations that depend on δsij, and so does
not necessarily correspond directly to the galaxy bias constrained by
wgg, as per the simple density weighting picture. Indeed, in a linear
and ‘local Lagrangian’ picture of IA formation, in which intrinsic
galaxy shapes are a linear function of the local tidal field initially
present where the halo (and galaxy) form, a C1δ ∼ C1 term will be
generated by the advection of galaxies between the Lagrangian and
Eulerian frames Schmitz et al. (2018). Given the potential for other
physical effects to be captured by the same term, it is safest to allow
it to vary as a free parameter over a similar range to the other IA
parameters (see Table 3). Previous studies have chosen to fix it to
unity (Troxel et al. 2018; Blazek et al. 2019; Samuroff et al. 2019),
based on physical arguments. In these cases, however, the density
weighting term has been subdominant, allowing only very broad
constraints on bTA; Samuroff et al. (2019), show that the decision to
fix it was not a significant source of uncertainty in the context of DES
Y1 3 × 2pt cosmology. This is likely to be less true for our direct IA
measurements.

Finally, we note that the TATT model predicts a non-zero IA-
induced B-mode term, which enters the II power spectrum, and is
sensitive to C1δ and C2 (see Blazek et al. 2019, equations 37–39).
These contributions are included in our modelling of w++. Again,
we demonstrated in Samuroff et al. (2019) (Appendix C) that this
choice has negligible impact on parameter constraints in the context
of a DES Y1 3 × 2pt analysis. This is not trivially true for the type
of measurement considered in this work, and so we include the extra
B-mode terms when fitting the TATT model here.

4.1.3 Modelling two-point correlations

Given an IA power spectrum from either of the models described,
one can predict the projected correlation functions at fixed redshift
via Hankel transforms. Under the Limber approximation one has:

wzs
g+(rp) = −bzs

g

∫
dkk

2π
J2(krp)PGI(k, z = zs), (21)

with the zs indicating a particular redshift (snapshot), and J2 being
a second-order Bessel function of the first kind. We assume linear
galaxy bias, bg ≡ δg/δ, which is marginalized with a wide prior
(Table 3). The range bg = [0.05, 8] is intended to be conservative,
and the bias is always well constrained within these bounds. An
important thing to note here, however, is that in a high dimensional
parameter space typical of cosmological analyses such wide priors
can cause shifts in the 2D constraints via projection effects (see e.g.
Joachimi et al. 2020; Secco, Samuroff et al. 2021 for discussion); in
our relatively simple setup we do not expect this to be an issue. We
verify this in our fiducial ILLUSTRISTNG TATT analysis by reducing
the bg prior width to [0.05,4], and confirm it does not alter our results.
A similar exercise, halving the volume of the prior on the less well
constrained bTA again has no significant impact.

In real data one would also need to evaluate an integral over
a redshift kernel, defined by the sample’s redshift distribution
(Mandelbaum et al. 2011’s Appendix A); in our case this reduces
to evaluating PGI(k) at a particular redshift zs. The other two-point
correlations follow by analogy as:

wzs
gg(rp) = bzs

g bzs
g

∫
dkk

2π
J0(krp)Pδ(k, z = zs), (22)

and

wzs++(rp) =
∫

dkk

2π

[
J0(krp) + J4(krp)

]
PII(k, z = zs). (23)

In the case where we are including an IA induced B-mode contribu-
tion, the above becomes a sum of two integrals (see e.g. Blazek et al.
2015, equation 2.8):

wzs++(rp) = wzs,EE
++ (rp) + wzs,BB

++ (rp)

=
∫

dkk

2π

[
J0(krp) + J4(krp)

]
P EE

II (k, z = zs)

+
∫

dkk

2π

[
J0(krp) − J4(krp)

]
P BB

II (k, z = zs). (24)

The TATT E and B mode power spectra here are given by Blazek
et al. (2019)’s equations (38) and (39). In the NLA case P BB

II = 0,
and equation (24) reduces to equation (23).

Although we do not compute the 3D correlations ξ ab(rp, �), we
do factor in the fact that the line of sight integral in the measurement
has a finite limit �max (e.g. equation 10). The effect of this is
to suppress the signal slightly, as correlated pairs are cut off. We
can test the magnitude of this by comparing our observables at a
fiducial point in parameter space with an external modelling code,
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Figure 7. The correlation matrix for our fiducial ILLUSTRISTNG two-point
measurements, as estimated using jackknife resampling (upper left-hand
triangle), and an analytic Gaussian approximation (lower right). Note that
the two covariance matrices are symmetric about the diagonal; the triangle
configuration is shown here for illustrative purposes only.

which explicitly includes �max. Since the impact is found to be
independent of rp on large scales, to the level of ∼0.5 per cent, we
incorporate it into our modelling as a single multiplicative factor μ,
which we compute for each correlation function, at each redshift
(i.e. 12 numbers per simulation). In the case of ILLUSTRISTNG, �max

is relatively large (68 h−1 Mpc), and so the signal damping is only
1 − 2 per cent (which is comfortably subdominant to uncertainty).
For MASSIVEBLACK-II and ILLUSTRIS-1 (�max = 33 and �max =
25 h−1 Mpc, respectively), however, μ is somewhat larger, which
shifts the IA parameters upwards slightly. Although our qualitative
conclusions are robust even without this correction, omitting it is
seen to bias the A1 and A2 towards low values by ∼10−50 per cent.

4.2 Covariance matrix of two-point functions

In order to derive robust parameter constraints from our measure-
ments we need a representative, numerically stable, estimate for
the covariance matrix of those measurements. The full data vector
consists of three two-point measurements for each of four snapshots;
this gives us N = 4 × 3 × Nrp data points for each simulated galaxy
sample (96, 144, and 192 in the case of ILLUSTRIS-1, MASSIVEBLACK-
II, and ILLUSTRISTNG, respectively). Our fiducial covariance estimate
is calculated analytically, a detail of this analysis that differs from
many previous studies, most of which have opted for an internal
covariance estimator such as jackknife resampling. The analytic
approach has a number of advantages, not least the ability to extend
to large scales where jackknife estimates break down. We show a
comparison of our fiducial correlation matrix, calculated using the
method described below, and a jackknife estimate in Fig. 7.

Although in principle the covariance has higher order contributions
resulting from mode mixing (e.g. Krause, Eifler & Blazek 2016),
given the limited statistical power of the simulations, and the fact
that shot and shape noise tend to dominate on the scales we fit,
the dominant Gaussian contribution is considered sufficient for our
purposes. In the Gaussian approximation, a given element is the sum
of a noise term and a cosmic variance contribution:

Cov
[
w

zs
αβ (rp,j ), wzs

δγ (rp,k)
] = CSN,zszs,kj

αβδγ + CCV,zszs,kj
αβδγ , (25)

where the Greek indices denote correlation types i.e. α, β, δ,
γ ∈ (g, +); zs identifies a particular redshift slice and j, k are

comoving scale bins. The cross-correlations between snapshots is
potentially complicated, given that the galaxy properties are strongly
(but not fully) correlated. However, since we will not attempt a
fully simultaneous analysis across redshifts, but rather restrict our
inference to one snapshot at a time, we will neglect these additional
covariance terms. One can write each element as:

Cov
[
w

zs
αβ (rp,i), w

zs
δγ (rp,j )

]
= δij

2π

Aprp,i�rp

∫
k dk �αβ (krp,i)�δγ (krp,i)

× [
P̃αδ(k, zs)P̃βγ (k, zs) + P̃αγ (k, zs)P̃βδ(k, zs)

]
, (26)

with the kernels

�μν(x) =
⎧⎨
⎩

J2(x) μν = g+
J0(x) μν = gg

J0(x) + J4(x) μν = ++
, (27)

where Jν is a Bessel function of the first kind of order ν. In IA
measurements on real data Ap is a function of redshift, and accounts
for the survey mask; in our case it is simply the cross-sectional area
of the simulation box in h−2 Mpc−2. One should also note that the
power spectra here are subject to a noise contribution,

P̃αβ (k, zs) = Pαβ (k, zs) + N
zs
αβ, (28)

where N
zs
αβ = 1/nzs

c for αβ = gg, Nαβ = (σ zs
e )2/nzs

c for αβ = + +,
and Nαβ = 0 for αβ = g +. The denominator nc is the comoving
volume number density of the sample at z = zs in h3 Mpc−3, and σ zs

e

is the projected ellipticity dispersion.
As is apparent from the above, the analytic covariance matrix is

sensitive to some extent on the input parameter values (cosmology,
galaxy bias, and IAs). As stated before, cosmological parameters
are fixed to those appropriate for the simulation in question, as
per Table 1. For the other (IA and bias) parameters, we generate
the fiducial matrix for each sample using an iterative procedure
similar to that of Krause et al. (2017). That is, we repeatedly fit
the data to obtain IA and galaxy bias parameter constrains, update
the covariance matrix and fit again. Our convergence criteria are that
(i) the marginalized 1D parameter posteriors are not systematically
different between iterations, and (ii) the χ2 and evidence values are
stable to within a few percent. In all samples, the covariance matrix
converges within 2−4 iterations.

We also test our fiducial analytic covariance matrix against a
version computed using jackknife resampling. In brief, the jackknife
method involves dividing the data into N spatial subregions, and
repeating the measurement N times, each time removing one of them.
The validity of this approach relies on various (potentially strong)
assumptions; not least it assumes the subregions are statistically inde-
pendent (see Anderson 2003; Hartlap, Simon & Schneider 2007 for
discussion), and that the scales of interest are much smaller than scale
of the subregions. These factors, combined with the relatively small
number of subregions allowed by even ILLUSTRISTNG (the largest of
the simulations considered here), are the primary reason we consider
jackknife as an approximate test of, and not a viable alternative to,
our analytic predictions. In the fiducial case (ILLUSTRISTNG), we
divide the 3D box into Njk = 43 = 64 cubic subvolumes. A visual
comparison of the correlation matrices can be found in Fig. 7. We
also compare the root diagonals of the two covariance matrices (see
Fig. A2). Although there is approximate agreement between the
two, the jackknife method tends to underestimate the variance on
virtually all scales in the three correlations. On the relevant scales
for our fits (>6 h−1 Mpc), the differences are at the level of up to
∼25−50 per cent in wg +.
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5 IA C ONSTRAINTS FRO M TWO -POINT
MEA SUREM ENTS

As discussed, our baseline methodology is to fit the joint data vector
of wgg, wg + and w++ simultaneously for a given simulation and
at a given redshift. In this section we present the results of these
likelihood analyses. This approach is analogous to cosmological
inference using 3 × 2pt data, with the significant difference that
our parameter space is several times smaller (and does not include
cosmological parameters). It carries a number of advantages, not least
benefitting from some level of complementarity in the degeneracies
of the different data vector elements.

We perform our IA model fits to each of the four redshift
snapshots independently, a choice primarily driven by the covariance
matrix; unlike in real data, where each galaxy can be assigned
(albeit not necessarily correctly) to a single tomographic bin, here
we effectively have one realization of the galaxy field, which is
evolved with redshift. The galaxy population, the shape noise, and
the cosmic variance are, then, potentially heavily correlated between
redshifts, which makes a fully simultaneous analysis complicated.
Modelling such correlations is non-trivial, and not considered a
valuable exercise within the scope of this paper.

As discussed, our baseline methodology is to fit the joint data
vector of wgg, wg + and w++ simultaneously for a given simulation
and at a given redshift. In this section we present the results of these
likelihood analyses. This approach is analogous to cosmological
inference using 3 × 2pt data, with the significant difference that
our parameter space is several times smaller (and does not include
cosmological parameters). It carries a number of advantages, not least
benefitting from some level of complementarity in the degeneracies
of the different data vector elements.

We perform our IA model fits to each of the four redshift snapshots
independently, a choice primarily driven by the covariance matrix;
unlike in real data, where each galaxy can be assigned (albeit not
necessarily correctly) to a single tomographic bin, here we effectively
have one realization of the galaxy field, which is evolved with
redshift. The galaxy population, the shape noise and the cosmic
variance are, then, potentially heavily correlated between redshifts,
which makes a fully simultaneous analysis complicated. Modelling
such correlations is non-trivial, and not considered a valuable
exercise within the scope of this paper. That said, the results presented
here are the first time a robust comparison has been attempted with
a homogenized sample, using wg + and w++ simultaneously, and
with an analytic covariance matrix that is numerically stable on large
scales.

5.1 NLA & TATT

The posteriors from NLA model fits to the various simulations
at z = 0 are shown in the upper panel of Fig. 8. As described
in Section 3.2, the MASSIVEBLACK-II and ILLUSTRIS-1 samples are
reweighted, such that the halo mass distributions match (see also the
discussion in Appendix C, where we demonstrate the importance
of this reweighting). This process is designed to allow meaningful
comparison between simulations by ensuring that differences in halo
mass distribution are not driving the offset in the IA-bias parameter
space. As noted above, the halo mass weighting is not guaranteed
to eliminate all differences due to sample composition arising from
differences in the galaxy halo connection in the simulations. For
clarity, we do not show the three other snapshots at z > 0, but note
that very similar qualitative trends are seen out to z = 1.

Figure 8. 1σ and 2σ confidence contours from our NLA (top) and
TATT (bottom) model fits to various hydrodynamic simulations at z =
0. Shown are ILLUSTRISTNG (purple, solid), ILLUSTRIS-1 (green, dotted),
and MASSIVEBLACK-II (blue, dashed). Note that the MASSIVEBLACK-II and
ILLUSTRIS-1 samples here are weighted, such that the distributions of host
halo masses match between the simulations, in order to allow meaningful
comparison with ILLUSTRISTNG (see Section 3.2). The three vertical lines in
the NLA panel show the A1 values of the respective posterior peaks; these
best-fitting values are ATNG

1 = 1.51, AMBII
1 = 2.37, and AIll

1 = 2.44. The
three simulations are consistent in the NLA space to ∼1σ , although some
mild disagreement is seen in the case of the more complex model.

The galaxy bias (horizontal axis, upper panel) differs slightly
between the different simulations, at the 1–2σ level. Although not
shown for TATT, the marginalized posterior on bias is close to
independent of the choice of IA parametrization, primarily because
wgg dominates the constraint. The relative agreement between the
detected NLA signal in the different simulations here is interesting,
in the context of existing literature. It has been observed (Chisari
et al. 2016; Tenneti et al. 2016) that MASSIVEBLACK-II tends to
prefer a slightly stronger IA amplitude than ILLUSTRIS-1. This
conclusion is supported at some level here; in the NLA case
MASSIVEBLACK-II favours slightly larger A1 values than either ILLUS-
TRISTNG or ILLUSTRIS-1 in all but the lowest redshift snapshot (Fig. 9
below).

The joint posteriors on the TATT model amplitudes A1, A2 are
shown in the lower panel of Fig. 8 (see also Appendix B for the full
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IA constraints from hydrodynamic simulations 649

Figure 9. The redshift evolution of the two TATT model amplitudes in our
three simulated data sets. The fits were performed on each redshift slice
independently. The simpler NLA fits are also shown for reference (stars).
The results from MASSIVEBLACK-II (dark blue), ILLUSTRIS-1 (green), and
ILLUSTRISTNG (purple) are shown. Note that the galaxy samples for a
given simulation at different redshifts strongly overlap, and so the errors
are potentially highly correlated, to an extent not reflected in the 1σ error
bars in this figure.

TATT posteriors from the three simulations). These amplitudes can
be thought of as controlling the strength of different IA contributions,
which are linear and quadratic in the tidal field, respectively. Note
that the TATT fits also include additional parameters (bTA and linear
galaxy bias bg), which are marginalized in this 2D representation
(see Section 4.1.2 and Table 3). In this limited parameter space we
do not believe our marginalized results to be significantly affected
by prior volume effects (e.g. the discussion in Joachimi et al. 2020).
We confirm that rerunning the TATT chains with a reduced bTA

prior U[0, 6] does not qualitatively change the TATT posteriors.
In the case of MASSIVEBLACK-II and ILLUSTRIS-1, the constraint
is weaker compared with ILLUSTRISTNG, to the extent that quite
different TATT IA scenarios are allowed within 1σ . That ILLUSTRIS-
1 offers little-to-no constraint on the extended model is unsurprising;
indeed we are fitting a small handful of relatively noisy points in the
>6 h−1 Mpc range, which provide no real information on the shape
of the correlation function.

We now see some notable disagreement between the different
simulations; whereas ILLUSTRISTNG favours a region of parameter
space that resembles NLA (i.e. A2 ∼ 0), MASSIVEBLACK-II prefers
A2 < 0 at 3σ . While this could be a sign of a real alignment signal,
generated by the physics models of MASSIVEBLACK-II, it is worth
being cautious here; the TATT model will respond to any structure
in the data, regardless of physical origin, and MASSIVEBLACK-II has
known limitations.9 Inspecting the data vector (Fig. 5) more closely,
it seems that the A2 < 0 is driven by the gradual slope in the shape of
the correlation functions between 1 and 10 h−1 Mpc. This feature is
seen in both wg + and w++, and it does indeed seem to be relatively

9In particular, there is a lack of realistic spiral type galaxies, and a relative
overabundance of diffuse elliptical objects compared with data. Due to
relatively weak AGN feedback, MASSIVEBLACK-II produces an overpredicts
the number of massive galaxies at low redshift (Khandai et al. 2015). Another
manifestation of this is seen in the impact of baryons on the non-linear matter
power spectrum, which is significantly different from that in other recent
hydrodynamic simulations compared by Huang et al. (2019), as shown in
their fig. 1.

well fit by the quadratic alignment contribution. It is also notable that
there is no corresponding feature at around the same scale in wgg.

In all cases we note that the data favour low values of bTA, albeit
with relatively large uncertainties. That said, the region of parameter
space where one could reasonably interpret the TATT tidal alignment
bias as a pure physical galaxy bias are still encompassed within
the ∼1σ confidence bounds, with bTNG

TA = 0.73 ± 1.75, bMBII
TA =

0.25 ± 0.73. Interestingly, in the upper redshift bins MASSIVEBLACK-
II prefers a weakly negative bTA (Table B1), the physical interpretation
of which is not immediately clear. Given the sample selection, and
the limitations of the simulations, it is not obvious that the low bTA

values transfer to real lensing data, but it is interesting, in the sense
that the data are (mostly) showing a preference for the simpler IA
scenario.

From the ILLUSTRISTNG fits, the final posterior mean TATT
parameter values at z = 0 are:

ATNG
1 = 0.68 ± 0.49, ATNG

2 = 0.60 ± 0.62,

bTNG
TA = 0.73 ± 1.75. (29)

The A1 constraint here is consistent with the equivalent NLA
amplitude from the two-parameter fits, a conclusion that largely
holds across the three simulations. That is, switching to TATT leads
to a degradation in the uncertainty on A1 (by roughly 50 per cent for
ILLUSTRISTNG at z = 0), but no significant shift in the favoured value.
Remarkably, although MASSIVEBLACK-II favours negative A2 =
−2.3 ± 1.0 at the level of ∼2 − 3σ , ILLUSTRIS-1 and ILLUSTRISTNG

are consistent with zero across the redshift range. The small A2

values differ slightly from recent studies on DES data (Troxel et al.
2018; Samuroff et al. 2019), which report a preference for A2 < 0
(although our ILLUSTRISTNG constraint is still at most ∼2σ from the
DES Y1 mixed sample; Samuroff et al. 2019 fig. 12). Note however
that in such analyses on photometric data like the studies cited above,
where the two-point functions are measured in broad redshift bins
as a function of angular scale, a significant amount of mode-mixing
can occur. Although this is included in the modelling, and so is not
a cause for concern, it does mean the mapping between minimum θ

and a minimum physical scale is not one-to-one. In addition to this,
it is worth bearing in mind that no analysis on real data can ever
be perfect; despite various robustness tests and validation carried
out for DES Y1, we cannot altogether rule out the leakage of other
modelling errors (e.g. in the photometric redshift distributions) into
the IA constraints. For these, amongst other, reasons that it is not
trivial to extrapolate from our results to comment on the detectability
of higher order IA contributions in real data.

The lack of a clear detection of higher order alignment terms
is not altogether surprising, given the relatively conservative scale
cuts implemented here (rp > 6 h−1 Mpc; see also Section 6.1).
Given the difference in physical scaling, naturally the alignment of
galaxies on very large scales should resemble the tidal alignment
scenario (A1 > 0, A2 = 0). Although we do not have a strong
first-principles prediction of the scales on which the quadratic terms
should become significant, we can make a rough estimate. Based on
theory predictions, in scenarios that are consistent with previous
observations (Samuroff et al. 2019), the regime where the tidal
torquing terms are not totally subdominant to tidal alignment is
somewhere on the scale of a few h−1 Mpc (see Blazek et al. 2015;
Blazek et al. 2019). This places our fits in the marginal regime, where
it is possible, but not certain that we might detect a non-NLA-like
alignment signal.
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5.2 Evolution with redshift

To illustrate the redshift evolution of the various IA parameters,
we show the marginalized best fits and 1σ uncertainties in Fig. 9.
As before, we show all three simulations in purple/blue/green. It
is worth keeping in mind here that there is significant overlap
between samples at different redshifts, meaning the shape noise is
potentially quite strongly correlated. The interpretation of the various
trends shown in this figure, then, are not trivial. That said, the basic
patterns noted above are seen to hold across the redshift range. That
is, with the partial, weak, exception of MASSIVEBLACK-II, the A1

values obtained in the NLA and the TATT analyses are consistent
with each other for a given simulation (compare the stars with the
triangles in Fig. 9). The TA alignment amplitude rises more or less
monotonically in ILLUSTRISTNG and MASSIVEBLACK-II, although the
latter predicts a slightly higher NLA amplitude at all redshifts. With
the extra freedom of the TATT model, we see some more striking
differences, with MASSIVEBLACK-II favouring a higher A1 by a factor
of ∼3−4 (although the upwards trend with redshift persists). This
seems to fit with an underlying assumption of the linear alignment
model: that IAs are frozen into a population of galaxies at early
times (see Kirk et al. 2012; Kiessling et al. 2015; and Schmitz
et al. 2018; particularly their App. A and references therein). As
the underlying large-scale structure evolves and haloes grow, the
subhalo mass distribution shifts upwards. In our case, then, the fixed
stellar mass cut is more stringent, and removes a larger fraction of
weakly aligned objects at high redshift than at low redshift. The net
effect of this is an increase in the measured IA signal with increasing
z. Though physically interesting, we reiterate that the flat lower mass
cut at each redshift is not representative of the selection function
in a real lensing catalogue. In real data with realistic flux- and
shape-based quality cuts, the changes in composition with redshift
will have a significant bearing on how the effective IA amplitude
evolves. A step in this direction (albeit still not capturing the full
complexity of a redshift-dependent selection in real data) would be
to evolve a mass cut imposed at a given redshift by tracing the
population through the simulation merger tree. Bhowmick et al.
(2020) attempt such an exercise for MASSIVEBLACK-II, with results
that are qualitatively consistent with this study. Although in the
consistently traced sample (SAMPLE-TREE in their terminology)
increasing halo-satellite misalignment tends to wash out alignments
at high z, the impact of the changing population opposes, and largely
outweighs this trend.

In contrast, A2 is more or less constant with redshift in all simu-
lations (the downward triangles in Fig. 9). Notably MASSIVEBLACK-
II ’s preference for A2 < 0 is not seen to persist across snapshots,
although the interpretation of this is non-trivial. Particularly in
the higher redshift slices, the MASSIVEBLACK-II posteriors exhibit
significant bimodality, which appears to arise from a degeneracy
between A2 and bTA. Although positive and negative A2 result in
quite different wg + predictions, all other parameters held fixed,
the combination bTA ∼ 0, A2 ∼ −3.5 and bTA ∼ −1, A2 ∼ 2.5
both produce theory curves that fit the z = 1 data adequately on
scales rp > 6 (see Fig. B2). The theory predictions differ somewhat
on smaller scales, suggesting that pushing below our fiducial scale
cut could potentially help to break this degeneracy. This distorts
the 1D point representation in Fig. 9; since what is shown in
this figure is a single Gaussian approximation, the presence of
bimodality both shifts the posterior mean (the points) and broadens
the 1σ standard deviation significantly, relative to either of the
peaks.

5.3 Tensions and model comparison

Beyond simple posterior constraints, one can also gauge the ability
of the data to support the extended modelling in a quantitative way.
A number of goodness-of-fit metrics exist in the literature, and
we consider a subset of those here. Since ILLUSTRIS-1 is relatively
unconstraining, and is known to have flaws (in the sense that it
overpredicts the strength of baryonic feedback, which is known to
interact with IAs; Soussana et al. 2020), we compare the results
using ILLUSTRISTNG and MASSIVEBLACK-II only. The simplest
metric is the raw shift in χ2 when switching between models (see
for example, Krause et al. 2016); in the ILLUSTRISTNG case, that
is �χ2 = −0.33, marginally favouring the extended model, with
similar values obtained at higher redshift. A somewhat stronger
preference is seen in MASSIVEBLACK-II, which gives �χ2 = −12.92.
One slightly more sophisticated indicator of model fit is the Bayesian
Information Criterion (BIC; Arevalo, Cid & Moya 2017), which
effectively balances reducing the theory-data residuals against the
extra complexity of the model. For ILLUSTRISTNG, �BIC = 4.6,
which translates into a ‘positive’ preference for NLA. That is, by
this indicator, the data do not warrent the additional parameters.
In contrast, the MASSIVEBLACK-II data, which we recall showed a
preference for non-zero A2, gives �BIC = −3.8, this time in favour
of the TATT model. Considering finally the Bayes factor (Marshall,
Rajguru & Slosar 2006), we see a similar picture: B = ZTATT/ZNLA =
0.02 for ILLUSTRISTNG, which indicates that the data favour the
simpler model (or rather, the extra TATT parameters do not provide
a sufficiently better fit to outweigh the added model complexity).
Again, in the case of MASSIVEBLACK-II, the results are slightly clearer,
with B = 5.65, which (just) falls into the category of ‘substantial’
evidence on the Jeffreys Scale. In summary, these numerical exercises
bear out the qualitative picture we saw earlier; while ILLUSTRISTNG,
on the relatively large scales considered, shows no evidence
that the NLA model is insufficient, MASSIVEBLACK-II does show
hints.

A different, but related, question one could ask is: given our results,
and assuming a particular underlying model, to what extent can we
say that there is disagreement between the simulations? Do the hints
at non-zero TATT parameters in MASSIVEBLACK-II point to systematic
tension between the underlying physical alignment models, or are
they in fact consistent with realizations of the same model? We
reiterate here that the samples are weighted, such that differences in
the underlying halo mass distribution should not be responsible for
any differences between the simulations. Again, there are a number of
metrics available, suited to different scenarios with different caveats
(see Lemos et al. 2020 for discussion), and we will not attempt a
comprehensive comparison. For our purposes, we adopt a slightly
different form of the Bayes ratio (see equation V.3, Dark Energy
Survey Collaboration 2018),

R = p (DTNG, DMBII|MIA)

p (DTNG|MIA) p (DMBII|MIA)
. (30)

The numerator here is the Bayesian evidence obtained from jointly
analysing the two-point data from the two simulations. The lower
terms are those from the separate analyses of ILLUSTRISTNG and
MASSIVEBLACK-II in isolation. Note that in the joint analysis, we
assume the two data sets are independent, with no cross-covariance.
In the TATT case, we find R < 0.1, which constitutes strong evidence
for tension on the Jeffreys Scale. Again, this is implied by the
differences we saw in the marginalized credibility contours, but it
is interesting that it is borne out by the numerical metric.
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6 EX T E N S I O N S B E YO N D TH E F I D U C I A L
T WO - P OIN T A NA LY SIS

In this section, we discuss a series of modifications to our baseline
analysis, with the aim of exploring the basic results above in more
depth. This includes a series of analyses with less stringent cuts,
probing scales down to 1 h−1 Mpc. We also examine the dependence
of the signal on various physical properties, including colour, type
(central or satellite) and luminosity.

6.1 Exploring smaller physical scales

As we have seen in Section 5, our fits to the large scale ILLUSTRISTNG

correlation functions are consistent with the NLA scenario (i.e. pure
tidal alignment). While there is a detectable IA signal, the parameters
controlling deviations from NLA are consistent with zero. At least
in principle, however, there exists a regime where the higher order
corrections are significant (and thus necessary to model the data
adequately), but one halo contributions are still subdominant (see
Blazek et al. 2019’s fig. 1). It is this that motivates us to extend our
fits below the fiducial cut off at 6 h−1 Mpc.

The fiducial cut follows Joachimi et al. (2011) and, as discussed
there, is conservative by design, intended to be well clear of the
scales on which non-linear bias enters the data. The precise scales on
which the linear approximation breaks down is, however, somewhat
dependent on the galaxy selection, as well as the statistical precision
of the measurement. One benefit of using simulated data, however, is
that we have access to the dark matter field directly; it is, then, possi-
ble to check where exactly non-linear galaxy bias begins to manifest
in our particular measurements. A longer discussion can be found in
Appendix D, but in brief we estimate the effective scale-dependent
bias as a function of rp as the ratio bg = (wgg/wδδ)

1
2 . Based on this

exercise, within ILLUSTRISTNG ’s statistical uncertainties, we see that
the linear bias assumption holds well down to ∼1 h−1 Mpc. Motivated
by this finding, we repeat our fiducial analysis, sequentially relaxing
the lower scale cut down to rp > 1 h−1 Mpc. The results can be found
in Fig. 10 (see also Table 4).

As we can see in Fig. 10, all the way down to 1 h−1 Mpc, the
higher order TATT model parameters favoured by the ILLUSTRISTNG

data are consistent with zero. This includes the density weighting
term bTA, as well as the quadratic amplitude A2. Although there
appears to be information on the smaller scales, evidenced by
the reduction in the size of the posteriors and the slight change
in the degeneracy direction, there is no clear sign of deviations
from NLA. The added constraining power is particularly clear
in the case of the A2 amplitude, although we also see a modest
tightening of the uncertainties on A1 and bTA about their central
values. This translates into best-fitting theory data vectors that differ
only negligibly compared with the error bars on the scales included
in the fits. It seems reasonable to draw from this that although we
have physical reason to think that the additional TATT contributions
exist in the Universe, they are small enough on the scales we use to
be undetectable, given the statistical precision of ILLUSTRISTNG. The
higher order terms scale rapidly with rp, and so it is quite possible
that they dominate in a similar regime to non-linear galaxy bias. This
is also consistent with the conclusions one might draw from naively
looking at the data vectors in Fig. 5; the purple points are reasonably
fitted by the purple lines (the best fitting NLA model), even down to
scales ∼1 h−1 Mpc. This is true of both wg + and w++ and, while
deviations do exist, they are at slightly smaller scales (<∼1 h−1 Mpc).
Fitting IAs on even smaller scales, where non-linear bias becomes
non-negligible, is possible, given that perturbation theory predicts

Figure 10. TATT parameter constraints from our z = 0 ILLUSTRISTNG sample
with a selection of lower scale cuts (as labelled). The three analyses favour
approximately the same A1, with slightly varying precision. Even in the case
of the least stringent cuts, the results are consistent with A2 = 0.

higher order bias contributions in much the same way as the higher
order IA contributions in TATT. It is, however, complicated by the
presence of non-linear bias – non-linear IA cross terms, which we
cannot safely assume are negligible. Although we do not attempt
such an analysis here, implementing a consistent perturbative model,
including the cross terms, is the focus of ongoing work. Although
for simplicity, we focus on the lowest redshift, inspection of Fig. 5
suggests potentially larger deviations at higher redshifts (where the
TATT model predictions based on fits to >6 h−1 Mpc appear to
extrapolate less well down to smaller scales).

We perform a similar exercise with MASSIVEBLACK-II, fitting the
z = 0 correlation functions down to 1 h−1 Mpc. Again, the constraints
tighten significantly; now, however, the contours shift in the negative
A2, positive A1 direction (A1 = 5.1 ± 0.6, A2 = −3.9 ± 0.3, bTA =
−0.1 ± 0.1). This shift appears to be driven by a feature in the two-
point measurements, which can be seen in the middle left-hand panel
of Fig. 5, peaking at ∼1 h−1 Mpc. The physical explanation for this
is not immediately clear, but it appears to persist at some level across
the redshift range.

6.2 Dependence on galaxy properties

In this section, we impose a series of catalogue level splits, with the
aim of understanding how our results depend on galaxy properties.
For two main reasons, we only consider the fiducial ILLUSTRISTNG

catalogues in this section. First, the larger volume allows some
leeway, such that sub-divisions can be made without degrading the
constraining power beyond the point of usefulness. Secondly, and
more importantly, only in ILLUSTRISTNG do we have sufficiently
realistic galaxy photometry (see Section 2.4.3). Although some of
the properties considered here are correlated, we seek to disentangle
the impact of each in so far as we can. For each of the cases discussed
below, the new data vectors are recomputed using the same pipeline
as before. For each subsample, we also repeat the iterative covariance
matrix calculation discussed in Section 4.2 with the appropriate
galaxy densities and ellipticity dispersions.
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Table 4. Quality metrics for TATT model fits to ILLUSTRISTNG at z = 0. The second column, labelled Npts

indicates the total number of points included in the joint fit to wgg, wg + and w++, after scale cuts.

Cut/h−1 Mpc Model Npts A1 A2 bTA bg

rp > 6 NLA 14 1.51 ± 0.18 0.0 0.0 1.08 ± 0.07
rp > 6 TATT 14 0.68 ± 0.50 0.60 ± 0.62 0.73 ± 1.75 1.05 ± 0.08
rp > 3 TATT 17 0.70 ± 0.53 0.65 ± 0.50 0.44 ± 2.03 1.05 ± 0.05
rp > 2 TATT 20 0.61 ± 0.51 0.69 ± 0.49 0.46 ± 2.32 1.05 ± 0.05
rp > 1 TATT 23 0.95 ± 0.44 0.20 ± 0.32 1.03 ± 1.41 0.91 ± 0.02

6.2.1 Galaxy colour

The first split we examine is in colour–magnitude space. The ability
to perform a colour cut, and retain a significant number of red and
blue objects, is a marked difference between this work and previous
direct IA measurements on real data, which have focused on bright
red samples at low redshift. We recompute the correlation functions
and covariance matrices for the red and blue subsamples described
in Section 2.4.3. As in all of our large scale fits, the full unsplit
catalogue is used for the density part of the correlations. This gives
us an analogous two new data vectors, Dred = (wRR

++, wR
g+, wgg) and

Dblue = (wBB
++, wB

g+, wgg), with the superscripts R and B denoting the
red and the blue samples. Note that the density tracer sample is not
split, and so wgg here is the same in the two data vectors (and the same
as that analysed in Section 5). We fit both IA models using each data
vector, with the results shown in Fig. 11. For the sake of clarity and
to aid comparison, rather show the full parameter contours, we have
condensed the IA amplitude parameters into 1D posterior means and
68 per cent error bounds. While this is useful for illustrative purposes,
it can be reductive in cases where the posterior is non-Gaussian, as
we will discuss below.

As before, the single NLA amplitude approximately agrees with
the A1 amplitude from the TATT fits in almost all cases; the exception
to this is the high z red sample, which favours a combination with
non-zero TT contribution and a correspondingly lower TA amplitude,
although the significance of A2 	= 0 is still only ∼1 − 2σ . Although
the details of the redshift distribution and the sample selection
make direct comparison non-trivial, it is interesting to note that this
disagrees mildly with the findings of Samuroff et al. (2019), which
are based on fits to real cosmological lensing measurements from
DES Y1, where positive values of A2 in a red source sample were
disfavoured at the level of ∼2σ (see their fig. 16). We also plot a
number of previous direct IA measurements in Fig. 11 (the pastel
coloured points in both panels), from BOSS LOWZ (Singh et al.
2015), KiDS, GAMA, and SDSS (Johnston et al. 2019), MegaZ
(Joachimi et al. 2011), and WiggleZ (Mandelbaum et al. 2011).
Although red galaxy measurements are more numerous, there are
a handful of comparable studies on blue galaxies. As one can see
from Fig. 11, our fits on ILLUSTRISTNG are largely consistent with
the measurements on data. The only slight deviation from this is
WiggleZ, which is lower than our results at equivalent redshift (albeit
only by ∼2σ ). It is, however, worth bearing in mind that WiggleZ is
atypical in terms of sample, comprising a bright starburst population,
rather than a simple colour-selected blue sample.

A notable, and perhaps worrying, feature of Fig. 11 is the
relatively strong IA signature in blue galaxies. The amplitude of
wB

g+, while significantly lower wR
g+, is persistently non-zero at z >

0.5. To aid in understanding this observation, we repeat the two-
point measurements and NLA fits on the upper redshift snapshot,
with an additional mass cut, considering only galaxies in the lower
25 per cent, M∗ < 2.1 × 1010h−1M� (mean stellar mass M∗ =
1.3 × 1010h−1M�). Even here, we see non-zero alignments at several

Figure 11. Best-fitting IA model parameters as a function of redshift for our
colour split ILLUSTRISTNG samples. Note that two TATT model amplitudes
are fit simultaneously for each of the two samples. The pink points in the
upper panel are measurements of the NLA model amplitude in red galaxies
from the literature. Specifically, we show SDSS main sample (z = 0.12;
Johnston et al. 2019), BOSS LOWZ (z = 0.28; Singh et al. 2015), GAMA
red sample (z = 0.17 and z = 0.33; Johnston et al. 2019) and MegaZ (z =
0.54; Joachimi et al. 2011). Similarly, the light blue points in the lower panel
represent published blue galaxy constraints: SDSS main sample (at z = 0.09;
Johnston et al. 2019), GAMA Z2B (z = 0.34; Johnston et al. 2019), and
WiggleZ (z = 0.51; Mandelbaum et al. 2011).

σ , A1 = 2.1 ± 0.6. Although lower than both the blue and unsplit
samples at z = 1, it is still a relatively strong signal. Remarkably,
we find that the high redshift blue IA feature persists under further
mass splitting, down to M∗ < 1.9 × 109h−1M�; at this point, there are
only ∼1000 blue galaxies in the shape sample, such that although the
measurement is consistent with null, the error bars still encompass
significant non-zero values. Although interesting, it is not clear
whether this is a function of the relatively stringent convergence
cut (M∗ > 1.6 × 109h−1M�), and if so how far down in mass
the alignment signal continues. It is also not obvious whether this
transfers to a significant IA lensing contaminant in a more realistic
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setup; implementing a redshift-dependent selection function, typical
of real cosmic shear is a topic we will explore in future work.

Given that the role of a galaxy within its halo is a significant
factor in determining its alignment, we also repeat the high z blue
measurements with an additional satellite/central split. The results
here are less ambiguous: the residual blue galaxy signal is generated
almost entirely by central galaxies. That is wg +, as measured
using satellite galaxy shapes is consistent with zero on scales rp >

6 h−1 Mpc. This result seems to support, at least in our case (which
is simplified relative to real data in a number of ways), the findings
of Johnston et al. (2019), which suggest colour alone is an imperfect
determinant of IA properties. Singh et al. (2015) also note similar,
although consider only LRGs (that is, their results were a statement
on the relative homogeneity of IAs in red sequence galaxies of given
luminosity, rather than on the efficacy of colour based splits). In the
absence of blue high z alignment measurements in real data, it is
difficult to say whether this is a fault in the simulations, generating
an artificially strong IA signal in blue centrals, or a real feature of
the Universe.

6.2.2 Stellar mass

Although stellar mass is not, in general, an observable quantity it is
an important one; this is true both in that IAs (and other galaxy
properties) significantly depend on it, and that it is a proxy for
actual observables. Indeed, this link is key to approaches such as
Halo Occupation Distribution (HOD) modelling. We compute each
galaxy’s stellar mass as an unweighted sum over the stellar particles
assigned to its subhalo. Unlike with colour and centrals/satellites
there is no natural dividing line for this split, and so we choose to
divide galaxies into equal number mass bins. For the moment we
will consider a simple upper/lower mass division, but will consider a
more complex binning in what follows. Again, the split is applied to
the shape sample only, leaving the density tracer intact (and so wgg

unchanged).
Though the satellite fraction is not systematically changed by the

division in any of the snapshots, we do see a shift in the abundance
of red galaxies. That is, the red fraction of the high mass sample is
boosted relative to the full sample, from ∼35 per cent to ∼60 per cent
at z= 0 and from ∼12 per cent to 24 per cent at z= 1. This qualitative
trend, that the red fraction increases with mass, and declines with
redshift, is consistent with the patterns seen in real data (see e.g.
Prescott et al. 2011). In the case of the NLA constraints we have a
relatively simple picture from the mass-split reanalysis; at a given
redshift, high mass galaxies are both more biased, and more strongly
aligned; the direction of the shift in bias-IA amplitude parameter
space when going from the high to low mass is roughly the same,
irrespective of redshift. The redshift trend can perhaps be understood
as follows: if we are to believe the basic LA model premise, then
intrinsic alignments are imprinted at early times, and persist into
the low redshift universe. In this picture, at least, if high mass red
galaxies at z = 0 are strongly aligned then it follows that the high-
redshift objects that will become bright red high mass galaxies are
also strongly aligned. In other words, as redshift increases, even if
the mean subhalo mass declines (which it does, in Table 2) the more
massive, redder section of the galaxy population will be strongly
aligned relative to the rest. Some evidence for this picture can be
seen in Bhowmick et al. (2020).

What does stay fixed, however, is the lower mass threshold we
impose on our catalogues. As the whole mass distribution shifts
downwards, then, we are preferentially cutting more of the lower

Figure 12. TATT model posterior constraints from ILLUSTRISTNG, under a
binary high/low mass split. The sample is divided about the median stellar
mass, M∗ = 7.8 × 109h−1M�, and the two subsamples are fit independently.

part of the mass distribution, and so discarding a larger fraction
of weakly aligned objects. The gradual evolution in IA and bias
parameters covers the range from virtually unaligned low mass
galaxies at z = 0 to A1 ∼ 3.5 in the high mass high redshift bin.
It is worth bearing in mind that, although physically interesting, this
pattern does not trivially carry over into real data, because in such
cases other observational effects become relevant. The fact that we
typically use flux-limited galaxy samples for lensing measurements,
for example, means that the mean stellar mass tends to increase with
redshift, not decline as in our case. Fully separating out these effects,
of sample composition and evolution of intrinsic alignments, would
require a more careful exploration using merger trees of the sort
presented by Bhowmick et al. (2020).

We also rerun our TATT analysis on the mass-split data vectors,
giving the marginalized parameter constraints shown in Fig. 12. For
clarity, we show only z = 0 here, but find similar patterns in all
snapshots. As before, A1 gradually increases over the range z = 0–1,
and the 1σ contour encompasses A2 = 0 in all cases. That said, there
is a relatively strong anticorrelation between the two IA amplitudes,
such that a range of scenarios with A2 > 0, combined with slightly
reduced A1, are also equally favoured.

6.2.3 Luminosity

In addition to the binary mass cut above, we also consider directly
the luminosity dependence of the measured IA signal, defining
four equal-number bins in r-band luminosity. To separate actual
luminosity dependence and changes in the red fraction between
bins, we impose the red/blue colour split described in Section 6.2.1.
The signal-to-noise in the upper red bin is particularly high, which
motivates a further equal number subdivision, slightly extend-
ing our luminosity coverage. We then have the luminosity bins
Lr, red/L0 = [(0.030 − 0.351), (0.351 − 0.575), (0.575 − 0.977),
(0.977 − 48.091)] and Lr, blue/L0 = [(0.028 − 0.131), (0.131 − 0.224),
(0.224 − 0.424), (0.424 − 16.341)], which roughly, but not exactly,
correspond to mass bins. In each one we recompute the correlation
functions and the covariance matrix, then fit using both IA models.
As before we impose the split only on the shape sample, which is
correlated with the full density sample. The results, as a function
of r–and luminosity, are shown for NLA and TATT respectively in
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Figure 13. Luminosity dependence of the measured NLA intrinsic alignment
amplitude. The red/blue diamonds show the two colour subsamples of
ILLUSTRISTNG at z = 0.3, and the dotted lines of the same colour show power-
law fits to these data. For reference, we also show comparable measurements
from MegaZ + SDSS LRG + L4 + L3 (Joachimi et al. 2011), BOSS
LOWZ (Singh et al. 2015) and KiDS×GAMA+SDSS (Johnston et al. 2019)
in purple, pink, and green. The shaded bands represent their fits and the
corresponding uncertainties.

Figure 14. Luminosity dependence of the measured TATT model intrinsic
alignment parameters. As in Fig. 13 the shaded bands show fits to MegaZ,
LOWZ, and SDSS+GAMA (points now omitted). The diamonds show
the tidal alignment amplitude A1, while the stars show the tidal torquing
contribution A2. We show the best-fitting power laws, parametrized Ai (L) =
Ai,z(L/L0)βi , for A1 (dotted) and A2 (dashed). The numerical values of the
power-law slopes are quoted in Section 6.2.3.

Figs 13 and 14. For the purposes of comparison with the literature,
we consider the second snapshot, z = 0.3 only here. This choice does
not significantly change the conclusions of this section.

Fig. 13 shows the NLA case, with open points indicating previous
constraints on the IA luminosity relation using data (Joachimi et al.
2011; Johnston et al. 2019; see also Fortuna et al. 2021’s fig. 5
and Singh et al. 2015’s fig. 10). All of these represent direct IA
measurements at low redshift, using relatively bright red samples.

The MegaZ + SDSS LRG + L4 + L3 fit (Joachimi et al. 2011)
in particular has been widely used in the literature to extrapolate
the luminosity dependence to fainter samples (see e.g. Krause et al.
2016). In addition, we show our new results from ILLUSTRISTNG,
both red and blue samples. The blue simulated subsample lies
towards the fainter end of this plot, going fainter than any of the
data measurements. The red, on the other hand, covers a wider
luminosity range, spanning both KiDS×GAMA+SDSS (Johnston
et al. 2019) and the MegaZ + SDSS LRG + L4 + L3 fit (Joachimi
et al. 2011) points. It is worth remarking here that unlike Fig. 11,
the points each represent a different set of galaxies. Whereas there
the different snapshots strongly overlap, and so are subject to highly
correlated errors, the noise realizations should now be independent,
making fitting a trend relatively simple. The luminosity dependence
is parametrized as

A1(L, z) = Az

(
L

L0

)β1

, (31)

where L0 is a pivot luminosity, corresponding to an absolute mag-
nitude Mr = −22. The amplitude Az and power-law index β1 are
left as free parameters in our fits. Doing a simple least-squares fit to
equation (31), we obtain β1, red = 0.38 ± 0.08, Az, red = 6.3 ± 0.5 for
the ILLUSTRISTNG red sample. Notably, this is somewhat shallower
than both MegaZ + SDSS LRG + L4 + L3 (β1,MegaZ = 1.13+0.25

−0.27;
shaded purple in Fig. 13) and LOWZ (β1, LOWZ = 1.27 ± 0.27;
pink shaded); it is slightly steeper than, but consistent to ∼1σ with,
the KiDS×GAMA+SDSS red sample (β1,GAMA = 0.18+0.20

−0.22; green
shaded). For the most part, this fits with the broken power-law picture
painted by the existing data sets (i.e. a relatively steep slope at high L,
turning into a much flatter function below L/L0 ∼ 0.8). Our uppermost
L bin, however, indicates something slightly different; the measured
IA amplitude in this bin is both relatively well constrained, and
below the extrapolated MegaZ power-law prediction by several σ .
Taken together with the third point A1(L/L0 = 0.74) = 6.6 ± 0.9,
which is slightly above the data, this seems to hint at some level of
disagreement between simulations and data.

One caveat here is that the x-axis positions are point estimates from
luminosity distributions, which have finite width. In the case of the
blue sample, the distributions are relatively compact and Gaussian;
in the case of the higher L red sample luminosity bin, this is not
the case, and the p(L) distribution is broad, with a trailing upper tail,
reaching a maximum luminosity of log(L/L0) = 1.6. Using the modal
luminosity as our point estimate, the rightmost point in Fig. 13 shifts
slightly to the left, thereby reducing the apparent tension with the
earlier results.

Another complicating factor here is the evolving satellite fraction
in both our, and the published, samples. In our case, the ILLUSTRISTNG

red sample satellite fraction changes significantly from fs = 0.7 in
the lowest luminosity bin (log〈L〉/L0 = −0.53) to fs = 0.18 in the
brightest bin (log〈L〉/L0 = 0.5). In contrast, the satellite fraction of
the ILLUSTRISTNG blue sample is quite stable at fs ∼ 0.3 across the
L range. We explore the impact of this directly by repeating the
measurements using red centrals only; as one might expect from
the numbers above, the amplitude in the lower bins shifts upwards
slightly (to A1 = 3.9 ± 1.0), to a value which is consistent with the
central only GAMA measurement (the yellow point in Fortuna et al.
2021’s fig. 14). The upper luminosity bins are almost completely
unchanged (since the IA signal in those bins is heavily dominated by
centrals anyway). That is, the central/satellite trend does not seem
to be sufficient on its own to explain the discrepancy between our
results on ILLUSTRISTNG and the steeper slope seen in LOWZ and
MegaZ.
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The trend in blue galaxies, β1, blue = 0.24 ± 0.21, Az, blue =
2.5 ± 0.7. is also interesting, particularly given the lack of existing
blue sample measurements. Our results are consistent with no
luminosity evolution in blue galaxies, at least at the faint end of
the luminosity function. More troubling, perhaps, is the persistence
of a relatively strong blue IA signal. This is in accordance with our
previous findings, but it is particularly striking here that even in the
faintest blue galaxies at z = 0.3, there is a non-negligible IA signal,
A1 = 1–2. Although the topic clearly warrants caution, and further
investigation in real data, if it bears out this could have significant
consequences for future cosmic shear anlayses.

An important point to bear in mind here is the choice of pivot
luminosity. By convention, and to facilitate comparison with previous
results on real data, we choose a pivot L0 corresponding to an r-band
absolute magnitude of Mr = −22 (see e.g. Joachimi et al. 2011;
Singh et al. 2015; Johnston et al. 2019). This is appropriate for those
studies, and for our red galaxy sample, in that L0 is more or less in the
centre of the luminosity range. In the case of the blue ILLUSTRISTNG

sample, however, the bulk of the sample is below L/L0 = 1. Although
this is a valid analysis choice, and indeed useful for comparison with
the literature, it does mean that Az and β are likely non-trivially
correlated in this case.

Finally, we repeat this exercise using the TATT model, again at z =
0.3, with the results shown in Fig. 14. Again, we show the best fits
to MegaZ, LOWZ, and KiDS×GAMA+SDSS, but now for clarity
we omit the corresponding data points. Although we fit power-law
slopes as before, the constraints are degraded relative to the NLA
case. Fitting to the red sample, we find β1, red = 0.31 ± 0.31, β2, red =
0.36 ± 0.35. As before, the red galaxy TA amplitude A1 increases
from faint to bright galaxies (β1, red > 0), as one would naively
expect. In all but the brightest two bins in the red galaxy sample, the
TT amplitude A2 remains consistent with zero to ∼1σ . Although we
report weak positive β2 here, the fits are extremely noisy, such that
very different scenarios are allowed within the uncertainties. At the
current precision, then, there is little hope of distinguishing between
power law and non-power-law forms of luminosity evolution, at least
for A2. In the blue sample, we find β1, blue = 0.14 ± 0.31, β2, blue =
0.34 ± 0.14, consistent with no coherent variation with L across the
range.

6.2.4 Centrals and satellites

As well as luminosity and colour, the IA signal is known to depend
on galaxy type, and so we next consider a satellite/central spit. We
divide the ILLUSTRISTNG shape catalogues into centrals and satellites
using the method described in Section 2.4.2, before remeasuring the
two-point functions and repeat the covariance matrix calculation.
This gives us two new data vectors Dc = (wcc

++, wc
g+, wgg), Ds =

(wss
++, ws

g+, wgg). In all cases the shape part of the correlation is either
central or satellite, and the density part uses the unsplit catalogue.
Note that we repeat this exercise with split density samples, and
confirm that we return consistent (albeit slightly degraded) IA
constraints when fitting on large scales.

The NLA analysis on these new satellite/central disaggregated
data vectors are shown in Fig. 15. As expected, the galaxy bias is
consistent between the two, and constrained primarily by wgg, which
is the same in the two data vectors. By construction the large scale
fits to these data are each sensitive to a particular combination of two
halo IA power spectra. Specifically Dc is sensitive to (P 2h,s

GI , P
2h,ss
II ),

and Ds probes (P 2h,c
GI , P

2h,cc
II ). Again, we assume that on two halo

scales, the satellite/central composition of the density tracer is not

Figure 15. NLA model constraints on our ILLUSTRISTNG sample, split into
satellites and centrals. In both cases the split is imposed on the shape sample;
the density tracer sample used in wg + and wgg is the full z = 0 ILLUSTRISTNG
catalogue. As shown, the large intrinsic alignment of satellites is weaker than
that of centrals by a factor of ∼2.

relevant. Notably, the amplitude of large-scale central alignments in
Fig. 15 is stronger than that of satellites by a factor of ∼2, at the level
of a few σ . The subject of satellite alignments has been discussed
quite extensively in the literature, and the overall picture fits with our
results here. A number of theoretical studies point to satellite IAs
being dominated by tidal torque induced radial alignments within
their haloes (Faltenbacher et al. 2007; Knebe et al. 2008; Pereira,
Bryan & Gill 2008), which scale rapidly with separation, and tend
to wash out on very large scales. There is also now evidence from
various observations on both cluster and galaxy scales supporting
the same picture (Sifón et al. 2015; Singh et al. 2015; Huang et al.
2018). This, again, is consistent with Johnston et al. (2019) and
Fortuna et al. (2021), who suggest satellite shapes are effectively
random on sufficiently large scales. Centrals, on the other hand, tend
to align with the host halo, and so trace the large scale correlations in
the background large-scale structure (Catelan et al. 2001; Kiessling
et al. 2015). Although not shown in Fig. 15, it is also worth noting that
the central galaxies show a clear monotonic increase in IA amplitude
with redshift, a trend which is not replicated in satellite galaxies.
There is also some evidence to suggest not only that satellites are
distributed in a significantly anisotropic way within their haloes
(Zentner et al. 2005; Piscionere et al. 2015; Butsky et al. 2016), but
also that this anisotropy can have a non-trivial impact on the IA signal,
even on large scales (Huang et al. 2016; Samuroff, Mandelbaum &
Di Matteo 2020).

We next repeat our analysis of the 4 split data vectors, but now
using the three parameter TATT model instead of NLA. Fig. 16 shows
the marginalized parameter constraints at four redshifts. As in the
simpler fits above, the central IA signal is stronger than that in satellite
galaxies by a factor of a few, although the constraints are degraded
to the extent that it is difficult to draw meaningful predictions from
this. Again, there is no clear evidence of non-zero favoured values
of either the tidal torquing amplitude A2, or the density term Aδ =
bTAA1, in either the satellite or the central population.

We also present the correlation functions of centrals and satellites
in Fig. 17. This is a worthwhile exercise for a variety of reasons, not
least that there is information on the small-scale IA signal missed
in the large-scale fits. While we cannot, at the present time, fit the
IA signal on scales <∼1 h−1 Mpc, the qualitative comparison can
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Figure 16. TATT model constraints from ILLUSTRISTNG at z = 0, after
decomposing the catalogue into central and satellite galaxies. The metric
used to define the two classes is outlined in Section 6.2.4. As in Fig. 15, the
density sample used here is the full, unsplit catalogue, and the satellite/central
split is imposed only on the shape sample.

be instructive. Given that there is some evidence that they behave
differently, we consider blue and red satellites/centrals separately
here. We also drop the full sample density tracer, and instead use one
of the four (red/blue, satellite/central) subsamples. The motivation
here is that, while on large scales, the density tracer is effectively
just that: a probe of the large-scale matter distribution multiplied by
a linear galaxy bias, on scales approaching the one halo regime this
no longer holds. Fig. 17 shows these new data vectors. As shown
we measure both wg + and w++, and recompute the covariance
matrices with the appropriate densities. For reference, the dark red
crosses also show the equivalent satellite/central red galaxy wg +
correlations from KiDS×GAMA here (c.f. Johnston et al. 2019
fig. 7, red points/band). On large scales at least, our ILLUSTRISTNG

red sample is consistent with their measurements. There are a few
interesting features here to note, however. First, we see a relatively
strong red galaxy 1h contribution on scales <1 h−1 Mpc. Although
the general trends match the real data, with ss and to a lesser extent cs
exhibiting strong scale-dependent IAs in this regime, the magnitude
is somewhat higher in our sample. This is particularly interesting,
given that our sample characteristics are similar (〈L〉/L0 = 0.91 and
0.34 for our red and blue samples, respectively, compared with
their ∼0.99 and 0.50). As discussed briefly in Section 6.2.1, we
observe a persistent non-zero IA signal in blue galaxies on large
scales; here we can see it is dominated by the cc correlation, with
a smaller contribution from sc. Also notable is that, in line with
some previous direct IA measurements (e.g. Singh et al. 2015), the
large-scale satellite correlations do not appear to vanish on large
scales. Focusing on the right-hand panels, the purple and pink points
are consistently positive and non-zero. While small compared with
the red central terms, and consistent with the dark red points from
GAMA, there appears to be a detectable signal at the precision
allowed by ILLUSTRISTNG.

Now considering the lower panel, we see shape–shape correlations
involving satellites do indeed appear to be zero on large scales,
irrespective of colour. Indeed, the large scale w++ is driven primarily
by the cc component, with all other subsets of the data apparently
consistent with null signal at >6 h−1 Mpc. As before, we see no
significant 1h cc term, down to ∼0.1 h−1 Mpc (a result which should

be true by construction, since each halo contains only one central
galaxy).

7 D I RECT IA C ONSTRAI NTS FRO M 3 D FIELDS

In earlier sections, we set out an analysis based on measuring and
modelling the two-point functions of intrinsic galaxy shapes. This is
the most common method for deriving information about intrinsic
alignments from data, be it simulated or real (see e.g. Hirata et al.
2007; Chisari et al. 2015; Singh et al. 2015). This section outlines
an alternative approach, which exploits the fact that cosmological
simulations allow direct access to the underlying matter field. The
basic idea is that, with a suitable choice of smoothing scale, one
can measure the components of equation (17) directly and perform a
linear fit to obtain constraints on the various amplitudes. Bypassing
two-point correlations in this way has several advantages, not least
that it is potentially less susceptible to noise.

The method for obtaining the tidal tensor and the intrinsic shape
field is described in Section 3.3. In brief, the process involves
pixelizing the simulation volume at given redshift, and so building
smoothed 3D shape and density fields. We can then compute the tidal
field by Fourier transforming the density field (see equation 12). One
important thing to bear in mind is that we are free to choose the pixel
scale, a choice which has some bearing on the physical interpretation
of the result.

With these ingredients in hand, we can proceed to fit for the
amplitudes in equation (17). By varying C1, C2, and bTA, we seek to
minimize

χ2(pIA) =
∑
i,j ,p

[
γ I

ij,p − γ
I,model
ij ,p

(
pIA

)]
C−1

ij ,p

×
[
γ I

ij,p − γ
I,model
ij ,p

(
pIA

)]
. (32)

Here the IA model parameters are pIA = (C1, C2, bTA). The indices i,
j indicate an element of the 3 × 3 shape tensor, and p identifies a pixel,
within which galaxy shapes are averaged. The theory prediction
γ

I,model
ij ,p is obtained by evaluating equation (17). We will refer to this

technique for constraining IA parameters, in contrast to the earlier
two-point methodology, as Direct Alignment Field Fitting (DAFF).
As in the two-point analysis, the likelihood sampling is performed
using COSMOSIS, using MULTINEST; one can find the modules for
this here: https://github.com/ssamuroff/direct ia theory/tree/master/
likelihood/field fit.

Our DAFF TATT constraints, using a range of pixel scales,
are presented in Fig. 18. For reference, the light purple contours
also show the equivalent z = 0 TATT model posterior from the
ILLUSTRISTNG two-point analysis.

Notably, on smaller smoothing scales particularly, there is a
significant gain in signal-to-noise. Although, perhaps unsurprisingly,
L > 12 h−1 Mpc offers little information on the higher order IA
contributions, with a suitable choice of scale, the TATT posterior
volume is reduced quite considerably. Although this is highly
promising in terms of the DAFF method’s future utility, we should
point out a few caveats in the comparison.

It is perhaps worth remembering here that these are not indepen-
dent data sets. The underlying galaxy field, and the shape noise are
the same in each, albeit smoothed on different scales. This is also
true of the matter tidal field. For such comparisons, it is difficult to
gauge the significance of parameter shifts, given that the confidence
contours do not account for these correlations.

The second consideration, which muddies the comparison, is
that of the scales probed. The earlier analyses of wg + and w++
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Figure 17. Upper: Projected galaxy-shape correlation functions wg +, for various subsamples of the z = 0 ILLUSTRISTNG sample. Shown clockwise from the
top right are the central autocorrelation; the satellite shape – central position correlation; the satellite autocorrelation; and the central shape – satellite position
cross correlation. In addition to the satellite/central split, galaxies are split by colour (shown by the different colour points). For reference, the shaded region
shows scales excluded in the fiducial analysis. The red crosses are analogous split measurements on real KiDS+GAMA data (Johnston et al. 2019; see their fig.
7). Lower: The same, but for shape-shape correlations w++.

have an explicit window of sensitivity determined by our choice of
scale cuts, 6 < rp < 68 h−1 Mpc. Within that window, however, all
scales are fit simultaneously (albeit with unequal weight). The TATT
implementation used in the two-point fits does not set an explicit
smoothing scale, which some previous incarnations of NLA have,
to suppress galaxy-scale fluctuations; rather the filter is included as

an implicit element of the model. The various IA amplitudes are
effectively renormalized to account for the impact of small scale
processes on mid-to-large scale modes (see Blazek et al. 2019,
Section F for discussion). The DAFF approach, in contrast, does
include a smoothing scale, in a way that is inherent and unavoidable.
The various fields are explicitly pixelized, and averaged on a fixed
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Figure 18. Posterior IA parameter constraints obtained via the DAFF fits
described in Section 7. Shown are results using three different pixel scales
(indicated in the legend); for reference, we also include the equivalent 1D
constraints from wgg + wg + + w++, with a scale cut-off at rp > 6h−1 Mpc.

scale with cubic pixels.10 While this allows some level of control
over the physical scales probed, it complicates direct comparison
with the two-point results.

One can, and people historically have, adopt a method similar
to DAFF in the case of galaxy bias, as discussed in some detail by
Desjacques, Jeong & Schmidt (2018) (see Section 4.2, pages 85–93).
In order to correctly interpret the results there are corrections of the
order of σ 2

L, (i.e. the variance of linear density field on scale L), which
convert between an N-point bias, and that of the moments/scatter.
These corrections are complicated to compute, and are the focus of
ongoing work. While it is necessary to have a robust estimate of
these terms in order to use the DAFF method to make constraints to
a precision of better than a factor of a few, we set out here only to
present a proof of concept, and so defer calculation of these (order
of unity on scales ∼6 h−1 Mpc) additional terms to a future work.
That said, these corrections should alter both the centring of the IA
posteriors and the width by roughly the same factor, such that the
signal to noise is approximately conserved. Based on this reasoning,
we expect an improvement in the signal-to-noise (posterior mean
divided by the 1σ marginalized error) on A1 of a factor of ∼4 relative
to the two-point constraints.

With these caveats firmly in mind, it is apparent that when one
goes to smaller smoothing scales, the favoured A2 starts to deviate
from zero. While the level of significance is still only ∼2 − 3σ at
most, this pattern makes sense.

8 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a detailed study of galaxy intrinsic alignments
using two-point measurements from three of the most recent public

10The use of cubic pixels is an explicit modelling choice in our DAFF
pipeline. One could conceivably apply e.g. Gaussian smoothing on top of
the pixelization.

hydrodynamic simulations. After halo mass reweighting of the
samples to simplify the comparison, we find mild differences in
the alignment signal in the three simulations, with MASSIVEBLACK-
II favouring a somewhat stronger IA signal. Our key results are
summarized below.

(i) We analysed each sample using the NLA model, which assumes
linearity in the tidal field. All three of the simulations considered
show strong evidence for a non-zero NLA amplitude. The results
from the three are consistent within ∼2σ , although MASSIVEBLACK-
II consistently displays a slightly stronger IA signal relative to the
other two across all snapshots.

(ii) For the first time, we fit the more complex TATT model to
these various simulated data sets. On scales rp > 6 h−1 Mpc we
find no clear indication of A2, bTA 	= 0 in ILLUSTRISTNG (A2 =
0.4 ± 0.6), and so no strong evidence for deviation from the NLA
scenario, at least within the (relatively large) statistical uncertainty of
the measurement. MASSIVEBLACK-II, on the other hand, shows a mild
preference for negative values (A2 =−2.3 ± 1.0). In all cases, the best
fitting A1 from the TATT fits is consistent with the amplitude from the
NLA only fits on the same data, albeit with greater uncertainty. There
is also some level of degeneracy between the two TATT amplitudes,
such that combinations with non-zero A2, combined with a slightly
reduced but still non-zero A2 are also allowed.

(iii) We discussed a series of fits extending to smaller scales.
We justified this by comparing galaxy–galaxy and matter–matter
correlations, finding the linear bias assumption to hold in our case
down to ∼1 h−1 Mpc. Even with these relaxed cuts, we do not report
a statistically significant detection of A2 or bTA in ILLUSTRISTNG.

(iv) We presented a colour split IA analysis on ILLUSTRISTNG, an
exercise enabled by the relatively realistic bimodal colour distribution
it exhibits. As expected, the red sample displays a strong alignment
signal across redshifts. Our results on blue galaxies are consistent
with observations at low redshifts; at higher redshifts, z > 0.5, where
direct constraints on real data are lacking, we detect a non-zero
IA signal A1 ∼ 2. We explored the origins of this blue IA feature,
reporting that it persists even in relatively faint blue subsamples
(down to M∗ < 1.9 × 109h−1M�), and is generated almost entirely
by blue centrals.

(v) We examined the luminosity dependence in red galaxies,
reporting results consistent with those of Johnston et al. (2019);
the red ILLUSTRISTNG sample favours a marginally shallower slope
than Joachimi et al. (2011) and Singh et al. (2015), whose fits
are dominated by brighter galaxies. We have also reported the
constraints on the luminosity dependence of the quadratic tidal
torquing amplitude A2. In the TATT fits, A1 and A2 exhibit consistent
luminosity evolution, which is significant at the level of 1 − 2σ .

(vi) We presented a similar exercise for blue galaxies, which
extend into the faint regime where there is a relative paucity of
constraints from real data. Our fits prefer a power-law index β1 ∼
0.24, which is consistent with the equivalent fit to the red sample.
In the TATT parameter space the constraining power is degraded,
yielding β1 and β2 values consistent with no luminosity dependence.

(vii) We also fitted disaggregated central and satellite correlations.
On large scales, our fits favour a weak but non-vanishing, satellite
shape alignment signal. Centrals show a stronger signal, and a
similar trend with redshift to the mixed sample. The TT and
density weighting components of the TATT model do not differ
systematically between satellites and centrals, with both A2 and bTA

consistent with zero. At the correlation function level, we see the
satellite alignment signal is dominated by the red cs correlation; it
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persists in the mixed sample, on rp > 6 h−1 Mpc, albeit subdominant
by a factor of several to the red central terms.

(viii) We have outlined a new method for recovering intrinsic
alignment information from hydrodynamic simulations, which we
refer to as DAFF. Although the results depend significantly on the
choice of smoothing scale (in part because we have omitted small
corrections, the computation of which is left for future work), the
approach potentially offers a significant boost in constraining power
relative to an equivalent two-point analysis, and greater control over
the physical scales probed.

This work is one of a relatively small number that focus on deriving
parametric IA constraints from hydrodynamic simulations (Chisari
et al. 2015; Codis et al. 2015a; Tenneti et al. 2015a; Hilbert et al.
2017; Bhowmick et al. 2020); it is the first to attempt a comprehensive
analysis of directly comparable samples from multiple simulations,
including the current state of the art (ILLUSTRISTNG). Unlike most
previous studies, we perform a simultaneous analysis, modelling a
joint wgg + wg + + w++ data vector. Our analysis also includes
an analytic covariance matrix, which is both numerically stable and
avoids the (potentially limiting) assumptions of internal estimators
such as jackknife.

Although our findings are a building block in our understanding
of the behaviour of large-scale galaxy alignments, we urge caution
in applying our findings directly to cosmological measurements.
That is, our samples are comparable with each other, but are not
tailored to match the more complex selection redshift-dependent
function of a typical lensing shape sample used in cosmic shear
and galaxy–galaxy lensing measurements. Another useful exercise
would be to use the observed trends with luminosity, colour and
galaxy type to extrapolate out a mock IA signal, more representative
of the contamination in real lensing data; in turn, this can be used
to test our IA models in a cosmological context. This is a relatively
straightforward extension of the results presented here, and is the
focus of future work.

Although our exploration of the dependence of IAs on galaxy
properties is extensive, it is by no means exhaustive. We have not,
for example, considered the question of galaxy morphology, and how
directly colour maps on to disc/bulge classification, in terms of IA
properties.

The novel DAFF method, which does not involve measuring two-
point correlations, is to our knowledge the first implementation in
the literature. Although an analogous idea exists in the literature
for galaxy bias (see Desjacques et al. 2018, Section 4.2 and the
references therein), it has never been discussed in the context of IAs
before. The analysis on the z = 0 ILLUSTRISTNG snapshot should be
seen as a proof-of-concept exercise; while promising, there are still
gaps in our interpretation (see Section 7), which are the subject of
ongoing work, but beyond the scope of this paper.

It is now well established that intrinsic alignments exist in the
Universe, and must be accounted for at some level to avoid biasing
cosmological analyses based on cosmic shear and galaxy–galaxy
lensing. IAs have been included in cosmic shear analyses for as
long as shear has been a competitive cosmological probe (Heymans
et al. 2013; Dark Energy Survey Collaboration 2016; Jee et al.
2016; Troxel et al. 2018; Chang et al. 2019; Hikage et al. 2019;
Hamana et al. 2020; Hildebrandt et al. 2020; Asgari et al. 2021). Only
recently, however, have the lensing data been of sufficient volume to
potentially incur biases due to model insufficiency (see Krause et al.
2016, and the Stage IV forecasts of Fortuna et al. 2021 and the tests in
the context of DES Y3 Secco, Samuroff et al. 2021; see also Joachimi
et al. 2020 for an interesting counter discussion). Developing a

fuller understanding of intrinsic alignments, then, will be crucial
for, arguably, the current generation of cosmological surveys, and
certainly the next. This paper is one small step in this direction,
providing the first detailed analysis at the level of model constraints
on the best available cosmological hydrodynamic simulations. Our
results, of course, come with a number of caveats. Most notably,
our selection function is not intended to accurately match current or
future lensing surveys. This is in part because recreating the complex
redshift-dependent selection function in a real lensing sample, which
would typically be based on a number of correlated observables, is
a difficult task; it is also, however, a function of our aim in this
study. We wish to understand the behaviour of IAs at a physical
level, in order to feed into understanding IAs and model building
efforts, rather than make a detailed prediction or robustness test
for a particular survey. The behaviour of intrinsic alignments on
small physical scales is an important topic for future investigation,
and one that could conceivably be addressed using hydrodynamic
simulations; indeed, due to the larger number of measureable modes,
the signal to noise on small scales is relatively high. The TATT
approach allows some hope of pushing to smaller scales (though not
into the regime of <∼1 h−1 Mpc, where one would need an explicit
model for 1h alignment contributions). Unfortunately, a number of
other poorly understood effects enter on small scales, particularly
non-linear galaxy bias and baryonic physics. In order to pursue IA
constraints on such scales, it is likely that one would need to consider
both higher order bias terms and the interplay with the higher order
IA terms.
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Schaan E., Krause E., Eifler T., Doré O., Miyatake H., Rhodes J., Spergel D.

N., 2017, Phys. Rev. D, 95, 123512
Schmitz D. M., Hirata C. M., Blazek J., Krause E., 2018, J. Cosmol. Astropart.

Phys., 2018, 030
Schneider M. D., Bridle S., 2010, MNRAS, 402, 2127
Secco L. F. et al., 2021, preprint (arXiv:2105.13544)
Sifón C., Hoekstra H., Cacciato M., Viola M., Köhlinger F., van der Burg R.
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A P P E N D I X A : PI P E L I N E A N D C OVA R I A N C E
MATR IX VA LIDATION

The likelihood pipeline used in this work is built from public code,
developed within the COSMOSIS framework. During the process of
developing this code base, we implemented a series of validation
exercises, intended to ensure our results are both accurate and
repeatable.

The first step in this process is a data vector-level comparison
between different theory codes. We generate a non-linear matter
power spectrum using COSMOSIS, which is then fed into (i) our
theory pipeline, which is used for inference in this work, and (ii)
an external code developed by an independent group, and used in
Singh et al. (2015). The two codes produce projected correlations
wgg(rp), wg +(rp), and w++(rp). The rp sampling is slightly different,
and so we interpolate to a comparable set of values. The result is
shown in Fig. A1; we can see here that the two agree relatively
well. Though the residuals in the two IA correlations are non-zero
and roughly scale-independent, the difference is comfortably within
∼0.5 per cent.

Though it is reassuring that the two codes are consistent with each
other at some (relatively sensible) set of input parameter values,
this is not in itself a rigorous demonstration that our pipeline is
unbiased. Using the Singh et al. (2015) code we then generate a
fiducial data vector, wgg, wg +, w++ at four redshifts z = (0.0, 0.30,
0.625, 1.00). Using these mock data, we run our inference pipeline
with the fiducial (analytic) covariance matrices obtained through the
process described in Section 4.2. We report that we can recover the
input parameters to comfortably within 0.5σ .

We also compare our analytic covariance matrix with an alterna-
tive, obtained by jackknife resampling. The jackknife covariance
is generated by dividing the ILLUSTRISTNG box into 43 = 64
subvolumes, and iteratively remeasuring our data vector. Although
the comparison is useful as a cross test, it is worth bearing in mind that
the jackknife estimator relies on a number of assumptions that do not
strictly hold in our case (Hartlap et al. 2007). That is, although order-
of-magnitude differences are not expected, we have first principles
reasons to trust our fiducial covariance.

Figure A1. A comparison of theory data vectors produced by two indepen-
dent codes. The dashed purple and black (solid) lines show the outputs of
the COSMOSIS module produced for this work, and an external theory code
used in Singh et al. (2015). In the lower panel we show the fractional residual
between the two.

The numerical comparison of the diagonals can be seen in
Fig. A2. As can be seen, the differences are significant, on all scales
considered. In most cases (all but wgg on small scales), jackknife
tends to underestimate the uncertainties at the level of 25 per cent or
more.
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Figure A2. A comparison of jackknife and analytic covariance matrices for ILLUSTRISTNG. Here we show the square root of the diagonal of the two covariances,
for four snapshots and three two-point functions, as labelled.

APPENDIX B: POSTERIOR C ONSTRAINTS
F RO M MASSIVEBLACK-I I & ILLUSTRIS-1

In this appendix, we present the full posterior constraints on our
three simulated samples. In the main body of this work we presented
only a selection of these to emphasize our most interesting findings.
For completeness, they are shown in Figs B1 and B2. This represents
the baseline TATT analysis on our three simulations at z = 0 and z =

Figure B1. Posterior TATT model constraints from the lowest redshift
snapshot of ILLUSTRISTNG, MASSIVEBLACK-II, and ILLUSTRIS-1.

Figure B2. The same as B1, but at z = 1.

Table B1. The best-fitting TATT parameters and 1σ posterior uncertainties
from all samples/redshifts considered in this work.

Simulation Redshift A1 A2 bTA

TNG 0.0 0.68 ± 0.50 0.60 ± 0.62 0.73 ± 1.75
TNG 0.3 1.48 ± 0.54 0.63 ± 0.68 0.36 ± 0.80
TNG 0.62 1.51 ± 0.50 0.68 ± 0.67 0.63 ± 0.88
TNG 1.0 1.96 ± 0.56 0.54 ± 0.81 0.66 ± 0.88
MBII 0.0 3.57 ± 1.07 − 2.76 ± 1.14 0.26 ± 0.63
MBII 0.3 3.24 ± 1.27 0.47 ± 1.82 − 0.28 ± 0.75
MBII 0.62 4.09 ± 1.15 1.85 ± 2.26 − 0.94 ± 0.58
MBII 1.0 4.53 ± 1.15 2.44 ± 2.73 − 0.70 ± 0.61
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Table B1 – continued

Simulation Redshift A1 A2 bTA

Illustris 0.0 0.48 ± 1.47 1.29 ± 1.49 − 0.05 ± 2.83
Illustris 0.3 3.07 ± 1.77 − 0.40 ± 1.53 − 1.03 ± 1.24
Illustris 0.62 1.03 ± 2.11 2.10 ± 1.72 − 0.09 ± 3.62
Illustris 1.0 1.32 ± 1.90 1.34 ± 1.61 1.34 ± 3.14

1. As described, the fiducial analysis has four free parameters (A1,
A2, bTA, bg), includes the joint data vector wgg + wg + + w++, and
scale cuts rp > 6 h−1 Mpc for all correlation functions.

A P P E N D I X C : IM PAC T O F G A L A X Y W E I G H T S

To allow a meaningful comparison of galaxy samples from the
three simulations included in this paper, we derive a set of galaxy
weights for our MASSIVEBLACK-II and ILLUSTRIS-1 catalogues. Our
comparison in Section 5 makes use of this scheme. The idea here
is to weight the galaxy samples such that the distribution of host
halo masses match exactly. The weight assigned to galaxy i from
simulation X is then:

wX
i = pTNG

(
M

j

h

)
/pX

(
M

j

h

)
, (C1)

where pX(Mh) is the normalized histogram of host halo masses in
simulation X, and j is a mass bin to which galaxy i belongs.

The impact of this weighting on our IA constraints is shown in
Fig. C1. Although for clarity we show only the contours from the
lowest redshift, we find very similar behaviour in the other three
snapshots. It has been established elsewhere that there is a relatively
tight relation between host halo mass and bias, at least on large
physical scales; it is, then, intuitively correct that the weighting
should bring the galaxy bias constraints (upper panel) from the two
simulations into relatively close agreement.

The reweighting scheme described above is motivated by the fact
that IAs are known to be dependent on galaxy (subhalo) mass, and
so differences in the stellar mass function can very easily translate
into differences in wg + measurements (see e.g. Velliscig et al.
2015’s figs 2 and 3). Although this does not account for inherent

Figure C1. Demonstration of the impact of galaxy reweighting on the
posterior IA constraints. Here we show the z = 0 constraints on the
NLA model amplitude and linear galaxy bias from MASSIVEBLACK-II and
ILLUSTRIS-1, with and without weighting. By construction ILLUSTRISTNG

(shown in purple) is unaffected by weighting.

differences in the galaxy–halo connection and the subgrid physics of
the simulations, such effects are both more interesting (in the sense
that the impact on IAs is less well understood at a basic level), and
more difficult to correct for.

APPENDI X D : VALI DI TY O F THE LI NEAR
GALAXY BI AS A PPROX I MATI ON

Since our perturbative TATT model includes higher order terms, there
is some value in seeking to push to slightly smaller scales. It is also
true, however, that as one does so, one eventually enters the regime
in which non-linear galaxy bias also starts to become relevant. Such
higher order bias contributions, and the cross-IA terms, are complex
to model and not fully implemented in our analysis; if it exists, then,
we would ideally like to identify a range of scales below our fiducal
cut at rp = 6 h−1 Mpc, on which the linear bias approximation
is valid (or, at least, deviations from it are subdominant to other
uncertainties).

We can obtain an estimate for the effective scale-dependent galaxy
bias in ILLUSTRISTNG as the ratio of the galaxy–galaxy projected
correlation, and the matter–matter equivalent:

b′
g(rp|z) =

√
wgg

wδδ

. (D1)

We refer to this as an ‘effective’ bias because, strictly speaking, the
galaxy bias is defined in terms of the 3D density field bg = δg/δ
(or equivalently in terms of 3D power spectra). Converting from
3D power spectra to projected correlations wgg and wg + involves an
integral over k (e.g. equations 21 and 22), and if bg is scale-dependent,
it no longer separates cleanly from that integral. What we measure,
then, is an effective bias b′

g , which is not quite the same as the true
3D galaxy bias bg(k).

The discrete snapshots in the simulation allow a relatively clean
measurement of b′

g at a given redshift. For this exercise, we use
the measured wgg correlation in a particular snapshot. Although, of
course, this includes some level of statistical noise, the signal-to-
noise is relatively high. For the matter–matter part it is sufficient
to use the theory prediction at the input ILLUSTRISTNG cosmology.
While HALOFIT is subject to its own uncertainties on small scales
(∼5 per cent at k < 1 h−1 Mpc; Takahashi et al. 2012), we do not
expect them to alter the conclusions of our approximate calculations.

Figure D1. Galaxy bias as a function of physical scale. The bias is estimated
as the ratio of the matter–matter and galaxy–galaxy projected correlations.
The horizontal shaded bands show the best-fitting linear bias values and the
1σ uncertainties, as obtained from fits to the large scale wgg correlations.
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The resulting effective scale-dependent bias estimates are shown
in Fig. D1. While the fiducial cut at 6 h−1 Mpc (the pink shaded
region) does indeed effectively exclude scales on which the bias
cannot be captured by a single coefficient, we can also see that it is
relatively conservative. That is, there is a region from rp ∼ 1 h−1 Mpc
upwards, in which (within uncertainties) the bias is linear, but which
are excluded by the fiducial cut. On the basis of these results, we carry
out fits (see Section 6.1) with lower cutoffs as low as 1 h−1 Mpc.

At z = 0, we see that the linear bias assumption begins to break
down in our ILLUSTRISTNG sample at 1 h−1 Mpc. It is worth bearing

in mind that in three dimensions, since one is measuring the actual

galaxy bias, rather than b′
g , the approximation likely becomes invalid

at some larger scale. By nature, the projected correlations at given
rp mix contributions from larger 3D separations, which bring them
closer to linear bias. The breaking scale seems to shift downwards
at high z, which is perhaps as a result of the growth of structure (i.e.
bias is closer to linear at high redshift at a given rp).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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