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ABSTRACT
Massive black hole binaries (MBHBs) with masses of ∼104 to ∼ 1010 M� are one of the main targets for currently operating
and forthcoming space-borne gravitational wave observatories. In this paper, we explore the effect of the stellar host rotation
on the bound binary hardening efficiency, driven by three-body stellar interactions. As seen in previous studies, we find that
the centre of mass (CoM) of a prograde MBHB embedded in a rotating environment starts moving on a nearly circular orbit
about the centre of the system shortly after the MBHB binding. In our runs, the oscillation radius is ≈ 0.25 (≈ 0.1) times the
binary influence radius for equal mass MBHBs (MBHBs with mass ratio 1:4). Conversely, retrograde binaries remain anchored
about the centre of the host. The binary shrinking rate is twice as fast when the binary CoM exhibits a net orbital motion, owing
to a more efficient loss cone repopulation even in our spherical stellar systems. We develop a model that captures the CoM
oscillations of prograde binaries; we argue that the CoM angular momentum gain per time unit scales with the internal binary
angular momentum, so that most of the displacement is induced by stellar interactions occurring around the time of MBHB
binding, while the subsequent angular momentum enhancement gets eventually quashed by the effect of dynamical friction.
The effect of the background rotation on the MBHB evolution may be relevant for LISA sources, that are expected to form in
significantly rotating stellar systems.

Key words: black hole physics – gravitational waves – methods: numerical – stars: kinematics and dynamics – Galaxy: kinemat-
ics and dynamics.

1 IN T RO D U C T I O N

In the past two decades, massive black holes (MBHs) have been
recognized as an integral component of the galaxy formation and
evolution process (e.g. Croton et al. 2006; Hopkins et al. 2008).
Dark massive compact objects (i.e. MBHs) have been observed to
be ubiquitous in galaxy centres (see Kormendy & Ho 2013, and
references therein) and their black hole nature have been recently
corroborated by the Event Horizon Telescope observations of the
nucleus of M87 (Event Horizon Telescope Collaboration et al. 2019).

In the hierarchical clustering scenario, these MBHs grow along the
cosmic history together with their galaxy hosts, increasing their mass
primarily via accretion of cold gas promoted by secular instabilities
within the galactic potential and/or by mergers with other galaxies
(e.g. Kauffmann & Haehnelt 2000; Volonteri, Haardt & Madau
2003). In this scenario, following the merger of two galaxies each
hosting an MBH, an MBH binary (MBHB) is expected to form
(Begelman, Blandford & Rees 1980). The dynamical evolution of
MBHBs has received a lot of attention in recent years, owing to
the possibility of revealing their gravitational wave (GW) signals
with current pulsar timing array (PTA) experiments (Desvignes et al.
2016; Reardon et al. 2016; Perera et al. 2019; Arzoumanian et al.
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2020), sensitive to MBHBs of ∼ 109 M� at z < 1 (Sesana, Vecchio &
Colacino 2008a), and with the planned Laser Interferometer Space
Antenna (LISA, Amaro-Seoane et al. 2017), which will detect coa-
lescing MBHBs with masses in the range 103 − 107 M� anywhere
in the Universe (Klein et al. 2016).

The ‘vanilla’ evolution of MBHBs has been laid out already in
(Begelman et al. 1980). In the aftermath of a galaxy merger, dy-
namical friction (DF) (against stars, gas and dark matter) efficiently
brings the two MBHs hosted by the parent galaxies to the centre of
the merger remnant. When the two MBHs feel each other potential,
they form a bound binary which responds to the collective torque
of the large-scale distribution of matter as a single object, making
DF inefficient. For typical MBHs of 106−109 M�, this occurs at
∼1−10 pc, whereas GW emission can only drive the system to
coalescence in less than a Hubble time from a separation of few
milliparsecs (e.g. Sesana, Haardt & Madau 2007). The bridging of
the three orders of magnitude gap in between goes under the name of
final parsec problem (Milosavljević & Merritt 2003), and its solution
relies on the local interaction of the binary with its immediate dense
surrounding of stars and gas (see Dotti, Sesana & Decarli 2012, for
a review).

Since the 1990s, it has been realized that three-body interactions
between the MBHB and stars intersecting its orbit can efficiently
extract energy and angular momentum from the binary: which is
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known as slingshot mechanism (Mikkola & Valtonen 1992; Quinlan
1996). Shrinking the binary by orders of magnitudes to prompt a GW-
driven coalescence, however, requires to supply the system with a
mass in stars which is several time larger than its own mass (Merritt &
Milosavljević 2005) in a ‘cosmologically short’ time-scale (i.e. �
Gyr). Since stars interacting with the MBHB are expelled from the
core of the galaxy, the coalescence of MBHBs require an efficient
mechanism to repopulate stars on orbits intersecting the binary path,
i.e. the binary loss cone. In spherically symmetric stellar systems, the
loss cone repopulation relies on two-body relaxation, and for typical
galaxies it turns out to be of the order of the Hubble time or longer
(Milosavljević & Merritt 2001).

This observation has triggered both (semi)analytical (e.g. Mer-
ritt & Poon 2004; Vasiliev & Merritt 2013) and numerical (e.g.
Berczik et al. 2006; Khan, Just & Merritt 2011; Preto et al. 2011;
Khan et al. 2013; Gualandris et al. 2017; Bortolas, Mapelli &
Spera 2018a) investigations of MBHB evolution in more realistic
stellar systems, including flattening, traxiality and rotation, which
are expected as a result of the merger of the progenitor galax-
ies (e.g. Bortolas et al. 2018b). The general consensus emerging
from this body of work is that the bulge resulting from a galaxy
merger has enough level of triaxiality to allow loss cone repop-
ulation in a relatively short timescale,1 leading to final coales-
cence on time-scales of Gyrs or less (Vasiliev, Antonini & Merritt
2015).

Besides geometry (sphericity, axisimmetry, triaxiality), another
fundamental property of a stellar bulge that can influence the
evolution of the hosted MBHB is net rotation. It is in fact known
that retrograde stars extract more efficiently angular momentum
leading to eccentricity growth, whereas prograde stars promote
circularization2 (Sesana, Gualandris & Dotti 2011). Moreover, an
MBHB embedded in retrograde stellar systems secularly change
its orbital plane to align its orbital angular momentum to that
of the stars (Gualandris, Dotti & Sesana 2012). The importance
of these findings stem from the fact that GW emission is much
more efficient in eccentric binaries (Peters 1964), thus significantly
reducing MBHB merger time-scales. Moreover, LISA will have the
capability of measuring the MBHB eccentricity (Nishizawa et al.
2016), thus providing important information in the reconstruction
of the dynamical processes driving the pairing and hardening
phase.

The aforementioned early results have been subsequently more
rigorously formalized in Rasskazov & Merritt (2017) and extensively
investigated numerically in Holley-Bockelmann & Khan (2015),
Mirza et al. (2017) and Khan, Mirza & Holley-Bockelmann (2020).
These latter works found that the centre of mass (CoM) of a
prograde binary within rotating systems does not stay put in the
centre (except for the traditional Brownian motion that was already
studied e.g. by Merritt 2001; Chatterjee, Hernquist & Loeb 2003;
Milosavljević & Merritt 2003; Bortolas et al. 2016), but starts to
move in approximately circular orbits around the CoM of the stellar
system. Contextually, the binary is found to shrink more effectively.
Since in those simulations the stellar system is also flattened by

1This is because in a triaxial potential individual orbits do not preserve their
angular momentum and can diffuse into the loss cone over time-scales which
are much shorter than two-body relaxiation time.
2Assuming a Cartesian reference centred in the MBHB centre of mass, and
the binary orbiting in the x−y plane, a prograde (retrograde) star has the
z component of its angular momentum aligned (antialigned) to the MBHB
angular momentum.

rotation, it is not clear whether those effects are purely induced
by rotation, and their physical origin has not been investigated in
depth.

In this paper, we perform a detailed study of the wandering
of the MBHB CoM in a rotating stellar system. By means of
controlled N-body experiments that keep the shape of the stellar
distribution spherically symmetric while introducing net rotation,
we isolate the role of rotation in the dynamical evolution of the
MBHB CoM and build a sound analytical model that describes
the outcome of the simulations. The paper is organized as follows.
The setup of our N-body experiments is described in Section 2 and
the resulting MBHB CoM evolution is presented in Section 3 and
modelled analytically in Section 4. Finally, we discuss the relevance
of this physical mechanism for real-life astrophysical systems in
Section 5.

2 SI MULATI ONS SETUP

In order study the effects of the system rotation on the evolution
of MBHBs, we chose to initialize the host system as a spherically
symmetric distribution of stars. This allows us to isolate the effect
of the system rotation from the impact of galaxy morphology, thus
preventing the MBHB evolution to be affected by the combined
effect of both rotation and deviation from spherical symmetry. The
host system is first initialized following an Hernquist (1990) density
profile:

ρ(r) = Mtot

2π

r0

r

1

(r0 + r)3
(1)

with total mass of stars Mtot, inner density slope γ = 1, and scale
radius r0. We set our model units (MU) such that Mtot = G = r0 = 1,
with G is the gravitational constant.

The stellar velocities are initialized at equilibrium in the potential
well generated by the stellar distribution itself and by a primary MBH
of M• = 0.005 Mtot, at rest in the origin of the system.

We introduced rotation in our model following the same procedure
adopted by Khan et al. (2020), i.e. by flipping the z-component of
the angular momentum (Lz) of particles with initially negative Lz, for
the corotating cases, and flipping those with positive initial Lz, for
the counterrotating case. In principle, we could initialize a flattened
system with a morphology directly linked to the degree of rotation
by sampling a distribution function of the form f(E, Lz), as done, e.g.
in Wang et al. (2014). We, however, decided to enforce the spherical
symmetry of the stellar spatial distribution, to isolate the effect of
rotation only, as clarified above. A secondary MBH is introduced in
the system at an initial separation of r0 with initial tangential velocity
equal to 70 per cent the circular velocity at r0 and with null radial
velocity. In all simulations, the angular momentum of the MBH pair
is initially perfectly aligned (or antialigned, for the counterrotating
case) with the system angular momentum.

We performed a suite of direct summation N-body simulations
varying the mass resolution (i.e. the total number of particles N)
and the binary mass ratio q ≤ 1 (q = 1, 0.25). The simulations
initializing parameters are summarized in Table 1. The labels of the
runs are assigned so that the trailing capital letter refers to whether
the (spherical) host system rotation is prograde (‘P’) or retrograde
(‘R’) with respect to the MBHB initial orbit; the subsequent number
indicates the number of particles in the simulation (1 for N = 256 k,
2 for N = 512 k and 3 for N = 1 M); finally, the letter ‘e’ refers
to equal mass MBHs (q = 1) while ‘u’ indicates unequal mass
MBHs (q = 0.25). Note that the parameters of run P3e and P3u are
similar to the runs P1.00 and P0.25 in Khan et al. (2020). In particular,
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Table 1. Parameters of the simulations presented in this work.
The model names have been chosen as follows: the capital
letter ‘P’ refers to prograde rotators while ‘R’ refers to the
retrograde rotators, the number indicates number of particles
of the simulation (1 for N = 256 k particles, 2 for N = 512
k particles and 3 for N = 1 M particles); finally, the letter ‘e’
refers to equal mass binaries (q = 1) while ‘u’ indicates unequal
mass binaries (q = 0.25). See the text for more details.

Model N q Rotation

P1e 256 k 1 Corotating
P1u 256 k 0.25 Corotating
P2e 512 k 1 Corotating
P2u 512 k 0.25 Corotating
P3e 1 M 1 Corotating
P3u 1 M 0.25 Corotating
R2e 512 k 1 Counterrotating
AP3e 1 M 1 Corotating, anchored

the aforementioned runs present the same total number of particles
(N = 1M) and the same MBH mass ratios (q = 1 and q = 0.25,
respectively). However, it is important to remember that the main
difference of our work with respect to Khan et al. (2020) consists in
the different geometry of the host system: while Khan et al. (2020)
study the evolution of an MBHB in a rotating flattened Dehnen profile
(with γ = 1 and with a minor to major axial ratio of 0.8), we study
how an MBHB evolve in a spherical rotating stellar system. This
is because we are interested in investigating the effect of the pure
net system rotation on the MBHB evolution and hardening, and the
introduction of a flattening would entangle the interpretation of our
results.

We additionally performed a simulation with the same parameters
as the P3e model (i.e. the highest resolution simulation with equal-
mass binary corotating with the spherical stellar distribution) in
which we forced the binary to stay anchored in the centre of the
system; we labelled this run as AP3e. More specifically, we took
the snapshot at time t = 30.375 (shortly after the formation of the
bound binary): at this time, we restarted the run forcing the binary
centre of mass (CoM) to sit at the centre of the system. Every �t =
1.5625 × 10−2, we recursively computed the CoM position and
velocity of all particles (excluding the MBHs) within 2.35r0, which
roughly coincides with the half mass radius of the system.3 Then,
we set the CoM position and velocity of the binary equal to the
aforementioned one for the entire duration of the run. Note that the
recentering significantly slowed down the integration: For this, AP3e
was only evolved for t ≈ 45 time units after the restart, while all other
runs were evolved for at least 160 time units.

The initial conditions were evolved using the direct-summation N-
body code HIGPUS, designed to run on GPU accelerators. HIGPUS

features a very accurate, sixth-order Hermite scheme with block time-
steps (Capuzzo-Dolcetta, Spera & Punzo 2013). The computation
of the time-step is performed by combining the fourth and sixth
order Aarseth criterion (Aarseth 2003; Nitadori & Makino 2008),
with the respective accuracy parameters equal to 0.01, 0.45. We set
the softening parameter ε = 10−4 for star–star interactions, ε =
10−6 for MBH–MBH interactions, while the softening for mixed
stellar–MBH interactions is set equal to the geometric average
of the 2. For a typical run with 1M particles, evolved for ≈200
time units, the wall clock time needed is ≈110 h, using one node

3The recentering is performed 5 times per step, with the binary centre of mass
as the initial guess.

Figure 1. Time evolution of eccentricity (upper panel) and inverse semimajor
axis (bottom panel) for each simulation. Note that prior to the binary formation
time (indicated with a vertical dashed line) the binary orbital parameters are
computed via equation (2), while the standard Keplerian parameters are shown
after the binary formation time.

equipped with two NVIDIA TeslaTM V100 GPUs, and four cpu
cores.

3 R ESULTS

3.1 Evolution of the orbital parameters

Fig. 1 shows the evolution of the MBHB properties as a function
of time, and specifically the binary eccentricity e and the inverse
of its semimajor axis, 1/a. The dashed vertical lines indicate the
binary formation time tbf, chosen as the instant at which a bound
Keplerian binary forms. Note that the eccentricity and semimajor
axis are computed as the standard Keplerian parameters from the
binary formation time. Prior to that, these quantities are evaluated
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Figure 2. Evolution of the stellar density profile at different simulated times
for model P3e. Density profiles are drawn at six different times: From the
dark purple line, at t = 0 to the yellow line at t = 150. Each profile was
obtained averaging over five subsequent time-steps. The black solid line is
the initialized theoretical Hernquist profile. The vertical dashed lines, with
the same colour code of the density profiles, indicate the binary CoM radius
at the corresponding time. The position of the binary CoM is not shown for
t = 0 since a bound binary has not formed yet. It is evident that, even though
at larger radii all the profiles are consistent with the model, the central density
is progressively reduced with time as an effect of slingshot interactions; the
binary CoM always remains within the carved, almost constant density inner
region.

as

aunbound = ra + rp

2
,

eunbound = ra − rp

ra + rp
,

(2)

where rp and ra represent the pericentre and apocentre separations,
respectively, computed once for each complete radial oscillation.

Fig. 1 shows the different stages characterizing the MBHs orbital
evolution. Initially, the MBHs mutual separation is reduced via DF
(Chandrasekhar 1943). In our models, the two MBHs are initially
placed at a relatively small separation, thus this phase is very short,
and it ends roughly with the formation of a bound binary. When
the binary reaches a separation comparable to the MBHB influence
radius, defined as the radius of a sphere containing twice the MBHB
mass in stars:

M∗(r < rinf ) = 2Mb. (3)

Three-body scatterings with stars start to efficiently extract energy
and angular momentum from the binary, adding up to the effect
of DF and excavating a core in the stellar density profile (e.g.
Milosavljević & Merritt 2003; Sesana, Haardt & Madau 2008b); the
scouring of the density profile in time is shown in Fig. 2 for model
P3e. The MBHB eventually reaches the hard binary separation ah,
i.e. the separation at which the binary binding energy exceeds the
kinetic energy of the field stars:

ah = GM2

4σ 2∗
, (4)

where M2 is the mass of the secondary MBH and σ ∗ is the velocity
dispersion of field stars. At this stage, the binary hardening occurs
by stellar interactions only, and the binary hardens at a slower pace,

until it reaches the separation at which GWs start to dominate its
evolution.4

Fig. 1 shows that the DF-driven inspiral is more efficient for equal
mass binaries, as the intruding MBH has a larger mass. After the
binary formation, the binary tends to circularize in all the prograde
models. In the retrograde rotators, instead, the binary eccentricity
follows a significantly different trend: After a short phase of slow
decrease, e starts rising and it reaches e � 0.8 by the end of the run.
This result is aligned with what found in previous studies addressing
the binary eccentricity evolution in rotationally supported systems
(e.g. Gualandris et al. 2012) in which the perturber interacts with stars
with a net tangential (prograde or retrograde) motion. The evolution
of the inverse semimajor axis, showed in the lower panel of Fig. 1,
is an important measure of the binary energy change as a function of
time. All the simulated models follow a similar qualitative evolution:
Once the binary forms, the inverse semimajor axis undergoes a short
phase of fast increase after which it increases almost linearly with
time. As expected, the models with lower mass-ratio show a faster
binary shrinking compared to the corresponding equal mass case
(Sesana, Haardt & Madau 2006).

In all runs, the slight dependence of the shrinking efficiency on the
total number of particles may be at least partially ascribed to two-
body relaxation, which refills the binary loss cone more efficiently
for the less resolved runs. We would like to stress once more
that, in our runs, the idealized assumption of spherical symmetry
in the mass distribution is made in order to isolate the impact of
the system rotation on the binary shrinking rate; deviations from
sphericity would tangle the interpretation of our results, as global
gravitational torques induced by a non-spherical morphology would
non-trivially impact the evolution of the binary hardening; the impact
of rotation and axisymmetry combined have been investigated in
Holley-Bockelmann & Khan (2015), Mirza et al. (2017), and Khan
et al. (2020). It is important to note that the counterrotating case
shows a significantly lower binary hardening compared to all the
corotating models. This aspect is better dissected in the sections
below.

3.2 Centre of mass evolution

In line with previous literature on the topic (Holley-Bockelmann &
Khan 2015; Mirza et al. 2017; Khan et al. 2020), we found that the
binary CoM in the prograde runs starts moving on a nearly circular
orbit about the centre of the system shortly after the binary formation
time. In this section, we investigate such behaviour in detail. In order
to characterize the binary CoM motion, we first need to define a
reference centre of the host stellar system. To define the system centre
we proceed as follows. As a first guess, we set the system CoM to
coincide with the binary CoM. We proceed computing the CoM of
the stars contained within a radius of 2.35 r0 and then recentering the
whole system at that position. The iteration is repeated five times per
snapshot.

All our results are presented in a reference frame centred in the
above defined position.5

4Note that the integrator implements a purely Newtonian approach and the
GW phase cannot be followed in the current setup.
5Note that the strategy described here to find the centre of the stellar
distribution is the same used for anchoring the binary at runtime for run
AP3e. In addition, we explored another possibility for computing the centre
of the system: we recursively computed the CoM of particles in a shrinking
sphere whose maximum (minimum) radius was set to 100r0 (1.5r0); the
radius was halved at each iteration. We found a very good match between the
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Figure 3. The figures show the three-dimensional evolution of the MBHB
CoM trajectory for each of the runs presented in the current study. In each
panel, the colour code maps different time intervals in the orbital evolution,
as shown in the legend. The initial time corresponds to the instant at which a
bound Keplerian binary forms.

Fig. 3 shows the three-dimensional trajectory of the MBHB CoM
for all the simulated models. The top panel in Fig. 4 reports the
temporal evolution of the distance between the MBHB CoM and
the host centre (Rb) after the binary formation time. For corotating
models, soon after the binary formation time tbf, the MBHB CoM
starts orbiting the host centre with a rapidly increasing Rb. After just
few tens of time units the CoM settles on a nearly stable orbit. In
particular, equal mass binaries show a faster rise of the CoM radius
compared to the lower mass ratio cases. Moreover, the higher the
binary mass ratio, the larger the final orbital radius: the two differ
by nearly a factor of 2. The retrograde run does not show the same
behaviour, and the binary CoM remains very close to the centre,
only experiencing the traditional Brownian wandering (as detailed
below). Table 2 reports the mean value of the final CoM radius for
each model, computed averaging Rb over the time interval from t =

two described centering strategies, with mismatches much smaller that the
wandering radius Rb.

Figure 4. Upper panel: On the left-hand panel is time evolution of the MBHB
CoM radius Rb for the different runs presented in the paper; and on the right-
hand panel, the dots indicate, for each run, the value of the binary CoM radius
averaged between t = 75 and 175, while the error bars show the amplitude of
the Brownian wandering radius (see Table 2). Bottom panels: On the left-hand
panel is shown the time evolution of the binary CoM orbit in the x-coordinate
for run P3e, the dots indicating the local maxima. The analogus is shown on
the right-hand panel for the orbit in the y-coordinate.

Table 2. For each run, the binary CoM radius is averaged over the
time interval from t = 75, where all models have settled around a
nearly constant value, to t = 175. The binary influence radius is
computed using the definition in equation (3) and averaged over the
same time interval of Rb, while the Brownian radius is computed via
equation (5), as better detailed in the text.

Model Binary CoM Binary influence Binary Brownian
final radius (MU) radius (MU) radius (MU)

P1e 0.047 0.22 0.011
P1u 0.020 0.16 0.014
P2e 0.058 0.22 0.008
P2u 0.012 0.16 0.010
P3e 0.065 0.22 0.006
P3u 0.026 0.15 0.007
R2e 0.010 0.20 0.008

75, where all models have settled around a nearly constant value,
to t = 175, along with the binary influence radius, Rinf, averaged
over the same time interval. Bottom panels of Fig. 4 show the time
evolution of the binary CoM orbit in the x and y-coordinate (left- and
right-hand panels, respectively) for the run 3Pe, thus pointing out the
quasi-periodicity of the binary CoM orbit. In corotating runs hosting
equal-mass binaries the influence radius is Rinf = 0.22 while for
corotating unequal-mass binaries is Rinf � 0.16. This difference is,
at least partially, due to the different total mass of the MBHB (Mb =
0.01 if q = 1, Mb = 0.006 25 for q = 1/4). The binary CoM oscillation
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in the prograde runs is much larger than the binary separation (see
e.g. the values of 1/a in Fig. 1), but smaller than the MBHB influence
radius by a factor of 3−5 for the equal mass and by a factor of 6−13
for the unequal mass cases.

Note that the binary CoM oscillation found in the prograde runs
is different than the traditional MBHB Brownian motion (see e.g.
Merritt 2001; Chatterjee et al. 2003; Milosavljević & Merritt 2003;
Bortolas et al. 2016). The latter is caused by the fact that slingshot
ejections of stars with isotropic velocities with respect to the binary
CoM induce a recoil in the binary CoM in random directions. The
associated displacement is contrasted by the effect of DF on to
the binary as a whole: These two phenomena balance each other
and result in a small and non-coherent wandering of the binary
CoM, which, however, does not exhibit, on average, any net angular
momentum. The typical scale of the traditional Brownian wandering
is smaller than the oscillation radius we find in prograde runs. In fact,
the Brownian wandering radius scales as

rBrown ∝ (m�/Mb)1/2, (5)

where m� is the typical particle mass in the run and Mb is the binary
total mass (Merritt 2001). Bortolas et al. (2016) report a value of
rBrown ≈ 0.008 for m�/Mb ≈ 2 × 10−4 in a system whose initializing
properties are analogue to the ones considered in the present work
(i.e. an initial Hernquist profile with unitary scale radius and total
mass). By rescaling this value via equation (5) we can infer the
magnitude of the Brownian wandering in our runs: the computed
values are shown in the left-hand column of Table 2, and as error-
bars in the upper right-hand panel of Fig. 4. The Brownian radius
is significantly smaller than the oscillation radius for prograde runs
with the best adopted resolution, especially for the equal mass cases.
The binary CoM displacement found in the retrograde case is instead
compatible with being caused by the traditional Brownian motion.
It is reasonable to interpret the trends shown in the upper panel of
Fig. 4 for prograde runs as the combination of the net rotation of
the binary CoM, induced by the system rotation, and the traditional
Brownian motion, that is likely responsible for at least part of the
noise in the plotted curves. This idea is supported by the fact that the
runs featuring a larger N are less noisy than the lower resolution ones,
as expected from equation (5); part of the oscillations in the trend of
the CoM radius (especially at early times, and in the low-resolution
cases) is due to the fact that the CoM orbital motion does not span
a perfectly circular orbit, but exhibits some residual eccentricity. It
is also important to notice that the final radius at which the MBHB
CoM settles does not depend on the number of particles adopted
in the run, supporting the fact that the CoM oscillations are not an
effect of limited resolution (which instead plays a significant role in
the traditional Brownian motion, equation 5).

3.3 Effect of the MBHB centre of mass motion on binary
hardening

In this section, we explore the impact of the CoM oscillation on the
MBHB hardening rate. This aspect is relevant as the MBHB CoM
wandering allows it to explore a region of space where it can interact
with stars which otherwise would not be able to approach the binary.
In this way, the binary loss cone can be considered to be always full:
the CoM oscillation may thus enhance the binary shrinking efficiency
even for spherical systems in the collisionless limit.

To quantify the efficiency at which the binary shrinks, it is
customary to define the binary hardening rate s as the time derivative

Figure 5. Time evolution of the hardening rates (equation 6) for the different
runs presented in the paper.

of the inverse semimajor axis:

s = d

dt

(
1

a

)
. (6)

This quantity is a measure of the binary energy loss as a function of
time. Fig. 5 shows the time evolution of the hardening rate for the
presented runs, and it is computed by fitting the slope of the inverse
semimajor axis over short time intervals (�t = 1.25). The hardening
rate evolution for the prograde runs does not show a substantial
dependence on the number of particles for each fixed mass ratio, and it
stabilizes to s ≈ 10 (s ≈ 15) for equal (unequal) mass binaries. On the
other hand, the retrograde run (R2e) features a significantly smaller
hardening rate (nearly a factor of 2 smaller) compared to the prograde
equal mass runs. The fact that the retrograde run does not feature
any oscillation about the centre apart from the traditional Brownian
wandering, contrarily to the prograde cases, is an indication of the
fact that the binary coherent oscillations ensure a more efficient loss
cone refilling.

In order to have a deeper insight on the role of the binary oscillation
on the loss-cone refilling, we performed a run forcing the corotating
binary in the P3e model to stay anchored to the system’s centre (A3Pe
model), as detailed in Section 2. In Fig. 6, the hardening rate of the
anchored binary in AP3e is compared to that of the free corotating
binary in the same resolution run, P3e, and of the counterrotating
run, R2e. What emerges is that once the binary CoM orbital motion
is inhibited, the binary hardening rate is nearly equal to that of the
counterrotating case. This is a very strong indication of the fact that
the loss cone refilling within rotating systems hosting a prograde
binary is induced by the MBHB CoM oscillation.

3.4 CoM evolution for a single MBH

In order to better understand the nature of the MBHB wandering,
and especially if slingshot interactions with passing stars are the
responsible for the non-Brownian oscillation of prograde binaries,
we perform an additional run in which we manually merge the MBHB
in model P2e into a single MBH at time t = 70. From this moment on,
we track the displacement of the single MBH from the centre of the
stellar distribution as a function of time. Fig. 7 shows that after the
forced binary coalescence the MBH gradually sinks back towards the
centre of the stellar distribution, and it stabilizes its oscillation radius
to ≈0.01 by t ≈ 100; the final radius nearly coincides with its expected
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Figure 6. Time evolution of the hardening rates (equation 6) for the prograde
equal mass run P3e, the retrograde equal mass run R2e and the model AP3e,
in which the CoM of the equal mass, prograde binary is fixed at the centre of
the stellar distribution. If the binary is anchored in the centre, its hardening
rate gets very similar to that of the retrograde run.

Figure 7. Displacement from the centre of the stellar distribution of a single
MBH initialized by manually merging the binary in run P2e. Time t = 0
corresponds to the instant at which the MBHs in the progenitor binary are
merged. The MBH gradually inspirals towards the centre of the system in
response to DF, and it does no longer exhibit coherent oscillations about the
system centre.

Brownian wandering radius (see equation 5 and Table 2).6 This
behaviour is a strong indication of the fact that slingshot interactions
with the binary sustain its CoM displacement and oscillation about
the centre; once the binary has merged, the single MBH can sink back
near the origin of the distribution as a result of DF. This proves that
single MBHs only experience the traditional Brownian wandering,
regardless of the system rotation.

4 MO D E L L I N G O F TH E C O M EVO L U T I O N

To explain the behaviour of the MBHB CoM in spherical rotating
models, it is important to consider that, in the prograde scenario,
virtually all stars approach the binary with a z-component of their

6Note that the Brownian wandering radius of a single MBH is expected to be
nearly equal to the one of a binary with the same mass (equation 5, Merritt
2001).

angular momentum aligned with the binary angular momentum and
typically larger than that of the binary, at least for the stages just
after the binary formation, during which the binary external angular
momentum experiences a significant growth. In addition, in the
prograde runs, the binary eccentricity remains always very close
to 0, or in other words, the MBHB has nearly the maximum angular
momentum allowed for that given semimajor axis. At each prograde
interaction, each star is thus likely to enhance the binary angular
momentum. This enhancement can result in (i) an enlargement of
the binary semimajor axis, but this almost never happens, as the
interactions are typically found to shrink the binary (Fig. 1); (ii) a
reduction of the binary eccentricity, which is however already near its
minimum, and it cannot decrease further; and (iii) an enhancement
of the external angular momentum of the binary, which is then the
only viable option. In this situation, the time variation of the external
binary angular momentum7 Lext = MbRbvb, with Rb, vb radius and
velocity of the binary CoM, should be equal to the rate at which the
binary encounters stars times the typical angular momentum gained
by the binary for each encounter. The stellar encounter rate can be
written as dN/dt = 2πGMban�/σ , where a is the binary semimajor
axis, while n� and σ , respectively, represent the stellar number
density and velocity dispersion about the binary; the typical angular
momentum exchange per stellar interaction is �L� ≈ (m�/Mb)Lint,
where Lint = μ

√
GMba is its internal angular momentum (in the –

verified – assumption of a circular binary), and μ is the reduced mass
of the binary. It follows that

dLext

dt
= 2πGρ

σ
μ
√

GMba3, (7)

where ρ = m�n�. The CoM velocity vb is the circular velocity at the
radius of the binary CoM; since the density profile remains nearly
flat in the central region after the initial scouring, we can write

vb =
√

4πGρ

3
Rb, (8)

i.e. the expected circular velocity at Rb; we checked the validity of
this expression, and we found a very good match in our runs. On the
right-hand side of equation (7), a exhibits the strongest dependence
on time (see e.g. 1/a in Fig. 1): from equation (6), we can write

a(t) = a0

1 + a0st
, (9)

with a0 = a(t = 0).8 In this model, we neglect the much milder time
dependence of σ (whose value within a radius of ≈Rb only varies by
nearly 10 per cent in our models) and ρ (which nearly halves its value
at ≈Rb by the end of the integrations). Combining Equations (7)–(9),
we obtain

d

dt
R2

b =
√

3πG2ρ

σ 2

μ2

Mb
a3(t), (10)

7Here, we assume that the external binary angular momentum is aligned with
the system rotation, as we find in our runs, and that the binary CoM orbital
motion remains perfectly circular.
8Note that, in principle, this expression is valid only when the binary is
hard, but for simplicity we assume it to be valid from the moment Rb starts
increasing; this is an approximation, but it is supported by the relatively
limited variation of s(t) in Fig. 5.
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Figure 8. Time evolution of the binary CoM displacement from the centre
of the system, Rb, as obtained from the simulations (solid lines) and from our
theoretical modelling (equation 11). For model P3e, we solved equation (11)
assuming ρ = 0.8, σ = 0.7, a0 = 0.05, s = 10, and we initialize Rb = 0 at
t = 7.5; for model P3u, we set ρ = 2, σ = 0.75 a0 = 0.01, s = 15, and we
initialize Rb = 0 at t = 12. These are characteristic values we extracted from
the simulation. The most uncertaity is associated to the choice of a0, as better
detailed in the text and in footnote 9.

whose solution reads, setting R2
b = 0 at t = t0

Rb =
√

2A
B

(
1 − 1√

1+B(t−t0)

)
(11)

A =
√

3πG2ρ

σ 2
μ2

Mb
a3

0 B = a0s;

it is obviously valid only for t ≥ t0.
Fig. 8 compares the evolution of Rb in the simulations to what

obtained from the above equation, for models P3e and P3u: Our
model seems to well reproduce the data. It is worth noting that the
normalization of the curve in the plots (i.e. the value of

√
2A/B)

is somewhat arbitrary, depending on the value one picks for the
MBHB semimajor axis a0 at which Rb starts growing.9 This is due to
the fact that the angular momentum exchange is proportional to the
internal binary angular momentum, which is much larger near the
binary formation time and strongly declines later. This also means
that the interactions effectively displacing the binary from the centre
are those occurring shortly after the binary formation time, while the
ones occurring later impact less and less the external binary angular
momentum evolution.

It is also worth accounting for the fact that DF should be acting
on the binary CoM to bring it back to the centre, as it happens for
the single MBH (Fig. 7). While in the beginning of the evolution the
simulations clearly show that DF is subdominant compared to stellar
interactions in inducing the evolution of Rb, this could be no longer
true at later times. In order to check the relative importance of the
two effects, we can compare the torque on the binary CoM, on the
right-hand side, of equation (7) to the torque we expect from DF.

9Shortly after the binary formation (and in coincidence with the onset of
the growth of Rb) the binary shrinks very quickly. Given the dependence
of Rb ∝ a

3/4
0 , by picking different values of a0 we obtain curves whose

value gets larger or smaller by a factor of a few; we believe this uncertainty
is intrinsic in our simple treatment and we still believe our modelling can
capture the evolution of Rb to a decent degree.

However, the magnitude of DF in the present configuration cannot
be trivially estimated, owing to the fact that the binary moves very
close to the centre of a cored stellar distribution, in which fast-moving
stars may have an important contribution, and in which the estimate
of the minimum and maximum impact parameter can be somewhat
arbitrary. For this, we estimated the DF empirically, only focussing
on the equal mass prograde runs. We start considering the time over
which the single MBH of run P2u shown in Fig. 7 is dragged back into
the centre, given its initial angular momentum Lext = MbRbvb(Rb) ≈
6 × 10−5 (Table 2 and equation 8), to write the associated DF torque
as dLDF/dt ≈ �Lext/�t ≈ 5 × 10−7. This should be compared to the
right-hand hand side of equation (7), which can be rewritten, for the
equal mass prograde cases, as dLext/dt ≈ 1.8 × 10−3a3/2; this implies
the two contributions to the evolution of the binary external angular
momentum to be equal for a ≈ 4.3 × 10−3, and DF to be a factor
of 10 more efficient than stellar interactions at a ≈ 9.2 × 10−4. As a
consequence, we expect that the binary should sink back towards the
centre less than a hundred-time units after the end of our prograde
runs at t ≈ 180.

The model presented so far also allows to understand why the CoM
does not undergo analogous oscillations in the retrograde scenario:
In that case, stars can only deposit angular momentum that has
opposite sign compared to the binary one, thus they reduce the binary
internal angular momentum instead of inducing a net oscillation
in its CoM: this is supported by the fact that the eccentricity
undergoes a continuous growth in the counterrotating run (Fig. 1).
In principle, over sufficiently long time-scales, the counterrotating
binary is expected to eventually flip the sign of its angular momentum
and finally circularize (Sesana et al. 2011; Gualandris et al. 2012).
However, since the external angular momentum growth occurs about
the binary binding, and it is much less efficient at later times, we
expect counterrotating binaries to always remain close to the centre,
even once they become prograde.

5 D I SCUSSI ON AND C ONCLUSI ON

In this paper, we tested the effect of spherical rotating stellar systems
on to the dynamics of forming MBHBs. While we are perfectly
aware that realistic rotating systems typically display some degree of
flattening, we investigated rotating spherical systems as this allowed
us to isolate the effect of rotation, avoiding additional effects possibly
caused by the global torques induced by deviations from spherical
symmetry.10

We found that prograde binaries (i.e. binaries with an angular
momentum aligned with the net angular momentum of the stellar
core) are forced out of the centre of their host galaxies due to the
interaction with their background. The CoM of prograde binaries
starts moving on quasi-circular orbits around the centre of the
stellar core. Such motion is considerably larger than the typical
Brownian wandering experienced by MBHBs evolving in isotropic
backgrounds, and introduces a time-dependence in loss-cone of
the binaries, that remains full during their whole shrinking. We
demonstrated through dedicated numerical experiments that such
results (the enhanced binary CoM wandering and the fast-hardening
rate) are not valid for retrograde binaries nor for single MBHs: indeed
the artificial merger of a wandering prograde MBHB leads to the
return of the MBH remnant to the centre of the system, demonstrating

10Note that Holley-Bockelmann & Khan (2015) and Khan et al. (2020) do
indeed have flattened systems, but the rotation in their models is artificially
introduced using our same procedure.
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that the physical process driving the CoM motion is the energy and
angular momentum exchange between (prograde) binaries and single
stars.

Our investigation improves upon the previous papers presenting
the circling of the binary CoM and the binary enhanced hardening
evolving in rotating axi-symmetric systems (Holley-Bockelmann &
Khan 2015; Mirza et al. 2017; Khan et al. 2020) in two respects:
(1) The deviations from spherical symmetry in the initial condition
of such seminal investigations prevented a clear identification of
the physical driver of the observed binary evolution. Indeed, in
such geometries, the global torques exerted by the whole stellar
distribution on to single stars could play a role in the refilling of the
loss-cones of the MBHBs (but see Vasiliev et al. 2015, for a different
point of view). With our simplified (spherical) stellar distribution we
proved that rotation alone can cause both the MBHB circling and the
boosted hardening observed; (2) we complemented our numerical
study with a phenomenological analytical model that reproduces
the evolution of the binary CoM observed in the prograde runs,
strenghtening the proposed physical interpretation of the behaviours
observed in the simulations.

A remarkable difference between our results and those obtained
by Holley-Bockelmann & Khan (2015) regards the hardening rates
of retrograde binaries. In the rotating-spherical scenario, we find
that retrograde binaries shrink at a significantly slower pace than
their prograde counterparts, while such difference is not observed
in the rotating-flattened scenario discussed by Holley–Bockelmann
and collaborators. In our analytical model, the different behaviours
are due to the absence of any binary CoM motion larger than
the Brownian motion typically observed in isotropic systems, that
prevent any significant collisionless loss-cone refilling associated to
the motion of the binary CoM. The disagreement with the findings
of Holley-Bockelmann & Khan (2015) could, in principle, be due to
the different geometries of the stellar distributions, motivating further
modeling of axi-symmetric systems.

Our analytical model and our numerical experiments agree on the
fact that MBHBs experience the most external angular momentum
growth right after their formation, at large semimajor axes. This
implies that binaries forming with their internal angular momentum
significantly offset from that of the surrounding environment would
neither experience the CoM circling nor the enhanced hardening,11

as they would have shrunk their semimajor axis significantly before
getting aligned with the environmental angular momentum. It is
however possible that, in systems with a significant amount of
rotation at large scales, the internal angular momentum of the
forming binaries is already aligned with the angular momentum of
the surrounding environment. Such configurations are expected even
for initially strongly misaligned galaxy mergers, as (1) at large-scale
DF on to rotating systems would act on the massive bodies dragging
them towards a prograde, circular orbit (e.g. Dotti, Colpi & Haardt
2006; Bonetti et al. 2020, 2021), and (2) the same process can take
place even at smaller scales immediately before the binary formation
(Mirza et al. 2017; Khan et al. 2020).

The relevance of the background rotation for the evolution of
MBHBs depends ultimately on the typical dynamical properties of
their hosts. For light host galaxies hosting light MBHs 105−107

M�, in the mass range detectable by the forthcoming LISA mission,
clear rotation is commonly observed at low redshift both at galactic
and sub-kpc scales (e.g. Kormendy 2013). It is yet unclear for which

11But see the discussion above about the comparison with Holley-
Bockelmann & Khan (2015).

mass ratios and up to which redshift the same rotationally dominated
structures are expected in galaxy mergers. Dedicated observational
studies and detailed analyses of cosmologically motivated galaxy-
merger simulations are needed to properly gauge the impact of the
presented results on the whole population of MBHBs.
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