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A B S T R A C T 

Studying light pollution is an interest to researchers in a wide range of fields including astronomy , biology , civil engineering, 
ecology, and social science. Consequently, numerous sky brightness metrics have been developed over the years. Ho we ver, what 
metrics are truly representative of the night sky quality and unique to the measured feature? The US National Park Service 
Night Skies Program has collected more than 1500 sets of night skies data throughout the United States. For each data set, a 
maximum of 56 metrics were measured through the combination of the captured images, Sky Quality Meter readings, and visual 
observations. This paper analyses these measurements and identifies a distinctive set of night sky brightness metrics based on 

the principal component analysis. Three major findings emerge. First, the commonly used metrics, such as the zenith brightness, 
horizontal illuminance, maximum v ertical illuminance, all-sk y light pollution ratio, Bortle class, and limiting magnitude, are 
highly correlated. Secondly, the observed sky brightness often offers a good estimate of the artificial light level despite the natural 
varying night sky background. Thirdly, a set of six metrics that consists of the zenith brightness and sky brightness percentiles 
are more distinctive when used to concisely describe night sky characteristics. These findings suggest that long-term night sky 

monitoring can be efficiently carried out by measuring the sky brightness percentiles on the observed all-sky images. 

Key words: light pollution – methods: data analysis – techniques: photometric. 
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 I N T RO D U C T I O N  

tudying light pollution has became an interdisciplinary field of 
esearch. Artificially lit night sky impedes astronomical observa- 
ions, disrupts wildlife’s circadian rhythms, and degrades human 
xperience of living under starry sky. To quantify the sky brightness,
umerous metrics have been developed in different fields. 
Zenith sky brightness is a widely measured characteristic of night 

kies. Zenith brightness is an important indicator of sky quality for
stronomical observatories. At other places, the availability of an 
ne xpensiv e Sk y Quality Meter (SQM) has made measuring zenith
rightness easily achie v able by the general public (Pun & So 2012 ;
 yba et al. 2013 ). Ho we ver, zenith brightness is an insensiti ve
easure of light pollution, as the zenith is usually the last area of

he sky affected by artificial light. Furthermore, tracking the zenith 
rightness may not be enough when considering the outdoor scenic 
alues or ecological functions (e.g. Jechow et al. 2016 , 2018 ). 

These limitations moti v ated the diversification of methods and 
etrics for measuring night sky brightness (e.g. H ̈anel et al. 2018 ).
or ecologists, illuminance levels are commonly used for studying 
ow artificially lit environment affects animals and plants (Rich & 

ongcore 2013 ; Bennie et al. 2016 ). Ratios of the artificial light to
he natural sky brightness were first introduced by Cinzano et al. 
 2000 ). And recently, all-sky light pollution ratio (ALR) arises as
 fa v oured metric for measuring skyglow in both the ground-based
bservations (Duriscoe 2016 ) and satellite modelling (Duriscoe et al. 
018 ). Finally, visual assessments such as using the Bortle scale 
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Bortle 2001 ) and finding the limiting magnitude are often used by
mateur observers and citizen scientists (Kyba et al. 2013 ). 

This diversity of measurements raises questions about how to 
ompare studies and metrics. Numerous studies have examined 
he correlations among a small set of metrics. Some compare the
isual assessments to the measured sky brightness (e.g. Garstang 
000 ; Moore & Duriscoe 2015 ) while others try to determine the
orrelations among some commonly measured metrics (e.g. Duriscoe 
016 ). Although many studies relate different metrics to the zenith
rightness, a comprehensive study is warranted to examine the full 
elationships among all these metrics. 

In this paper, I use principal component analysis (PCA) to examine
he relationships among metrics and identify a set of metrics to
epresent unique dimensions of night sky quality. Section 2 describes 
he data and analysis. The results in Section 3 show the relationships
mong the metrics along with the correlations between visual and 
QM observations. In Sections 4 and 5 , the study concludes by
ummarizing the major findings and interpreting the significance of 
his result in informing the development of long-term monitoring 
lans. 

 DATA  A N D  ANALYSI S  

.1 Data source 

he foundation for this study is the data collected by the US
ational Park Service (NPS) Night Skies Program. The team uses a

ommercial Nikon lens, a V-band filter, and a research-grade Charged 
oupled Device (CCD; Duriscoe, Luginbuhl & Moore 2007 ) to 
apture high-resolution images of the entire sky. After basic reduc- 
S Go v ernment employee(s) and is in the public domain in the US. 
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Figure 1. Scree plot showing the percentage of explained variance for the 
first five principal components. Only five principal components are needed 
to explain 99 per cent of variations among the metrics. 

m  

t  

t  

d  

5

3

3

P  

o  

o  

t  

c  

t  

a  

c  

o  

a  

i
p

 

t  

l  

5  

e  

F  

s  

e  

l  

t  

T  

l
 

S  

i  

b  

s  

a  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/4/5683/6374878 by guest on 20 April 2024
ion, the images are subject to positional and absolute photometric
alibrations. Next, a model of the natural sky is constructed based on
he observing time and location (Duriscoe 2013 ). When the natural
ky model is subtracted from the data, the residual light shows the
kyglow caused by anthropogenic sources. In the end, each data
et yields a pair of calibrated panoramic images, one showing the
bserv ed sk y and the other showing the light only from anthropogenic
ources. 

The NPS Night Skies Program has been collecting data throughout
he United States since the early 2000s. This effort resulted in thou-
ands of night sky image data sets to date. Most of the observation
ites do not have very bright skyglow. This study uses a suite of sky
rightness metrics measured (Duriscoe 2016 ) for each image set. 
In additional to capturing the sky images, the Night Skies team also

ollects visual assessment and SQM readings whenever possible.
isual assessment includes using the Bortle Scale and naked eye

imiting magnitude. Bortle class is a nine-level numeric scale that
easures the night sky’s brightness based on visible sky objects.
imiting magnitude is the magnitude of the faintest star one can see
ith the naked eye. The hand-held SQM is aimed towards zenith
hen taking the measurement. 

.2 Data preparation 

or each data set, 70 sky brightness measurements were automat-
cally extracted from the captured images. Many of these numbers
ere representing the same metric but measured in different units.
3 unique metrics from each image set were left after removing
he redundant entries. If visual assessment and SQM readings were
ecorded, three additional metrics (Bortle scale, naked eye limiting
agnitude, and SQM) were also considered in the analysis. 
The 53 calculated metrics are derived from both the image con-

aining all light source and from the image containing only artificial
ight. These metrics include pix elwise sk y brightness percentiles,
lluminance values from the whole sky, illuminance from limited
rea of sk y, sk y surface brightness, ALR, and the percentage of
isible stars. Each metric is described in detail in Appendix A . 
Only data that pass through quality control are used in this study.
 high-quality data set must not have bad image frames and must
eemed usable during the data processing stage. Bad image frames,
or example, include ruined images due to a car’s headlight or images
ith inaccurate camera pointing. Among the thousands of data sets

hat were observed over 533 nights spread out through 360 sites
cross 126 NPS park units and 46 non-NPS locations, 1391 data sets
assed the quality control and were used in this study. The results
btained in this paper are based on these selected samples taken by
he NPS night skies team. 

.3 Principal component analysis 

CA is a statistical method that transforms possibly correlated
ariables into a set of linearly independent variables called principal
omponents. The principal components are ranked by the amount
f variance each component can capture, and all the principal
omponents are orthogonal to each other, forming an uncorrelated
asis set. In a highly correlated set of variables, PCA can be used
o reduce the dimensionality of the work space by using a lower
imension set of principal components to describe the data. All the
ata processing was done in PYTHON with the use of scikit-learn
Pedregosa et al. 2011 ) for doing the standardized PCA. 

This study uses PCA to examine the relationships among different
etrics and identify the latent dimensions. The input data are in a
NRAS 511, 5683–5688 (2022) 
atrix of 53 metrics × 1391 data sets. The data sets were scaled to
he mean of 0 and standard deviation of 1. A PYTHON PCA object was
hen fit to the data. After the PCA process, the 1391 dimensions (or
ata sets) were collapsed into a few principal components. Then, the
3 metrics were projected on to the first two principal components. 

 RESULTS  

.1 Relationships among the metrics 

CA successfully captures most of the variance with just a handful
f principal components. After PCA is applied to the original matrix
f 53 metrics × 1391 data sets, the new matrix reduces its dimension
o 53 metrics × 5 principal components. Using only five principal
omponents is enough to explain 99 per cent of the variance among
he 53 metrics. Fig. 1 shows the scree plot describing how the percent-
ge of explained variance is distributed across the first five principal
omponents. The 1 st principal component accounts for 87 per cent
f the variance across all metrics. Subsequent principal components
ccount for approximately half of the remaining variance, which
s significantly less compared to the variance accounted by the 1 st 

rincipal component. 
Projecting the metrics on the first two principal components reveals

he metrics’ uniqueness. If two metrics are similar, they are likely to
ocate close to each other in this PC1-PC2 space. Fig. 2 shows the
3 metrics plotted against the first two principal components. After
xamining the location of each metric, two observations are noted.
irst, most of the metrics are clustered towards the middle left-hand
ide. This clustered distribution means many metrics are similar to
ach other. Secondly, metrics derived from the image containing all
ight sources separate along the second principal component from
he metrics derived from the image containing only artificial light.
his finding is highlighted by the red (artificial light) and grey (all

ight) colours in Fig. 2 . 
Many commonly used metrics are closely related the each other.

ome of these metrics include horizontal and maximum vertical
lluminance, visible star counts, av erage sk y brightness, zenith sky
rightness, and ALR. These metrics are clustered in the tin y c yan box
hown in Fig. 2 . Based on their projected proximity, these metrics
re measuring related characteristics of the night sky quality. Fig. 3
hows the zoomed-in view of the cyan box. In this crowded space,

art/stab2662_f1.eps
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Figure 2. Metrics projected on to the first two principal components. Metrics 
derived from images containing only artificial light (red points) appear to 
separate along the second principal component from the ones derived from 

images containing all light (grey points). The commonly used metrics are all 
clustered in the cyan box (zoomed-in view shown in Fig. 3 ). Yellow-edged 
points are selected for forming a concise set of metrics proposed in this paper. 

Figure 3. Distribution of the commonly used metrics projected on to the first 
two principal components. This figure is the zoomed-in view of the cyan box 
shown in Fig. 2 . All these commonly used metrics are closely related to each 
other and can be subdivided into three groups: (i) illuminance measurements 
and the number of visible stars, (ii) average sky brightness and zenith sky 
brightness, and (iii) ALR. 
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Figure 4. Relationship between the limiting magnitude, SQM, and Bortle 
class. There are 176 data entries where all three measurements were made. 
The limiting magnitude, SQM, and Bortle class measurements are correlated 
with the correlation coefficients listed in Table 1 . 

Table 1. Correlation coefficients between limiting magnitude, Bortle scale, 
and SQM measurements. 

Limiting Bortle 
magnitude class SQM 

Limiting magnitude 1 −0.75 0.67 
Bortle class −0.75 1 −0.76 
SQM 0.67 −0.76 1 

s  

c  

9  

0
c

3

S
o  

m
T  

c
m  

l
s
t

3

I
m
A  

e
a  

o  

b
o  

F  

n
m

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/511/4/5683/6374878 by guest on 20 April 2024
he commonly used metrics can be subdivided into three groups: 
i) illuminance measurements and the number of visible stars, (ii) 
v erage sk y brightness and zenith sk y brightness, and (iii) ALR. 

Brightness percentiles are more distinctive metrics for describing 
ight sky characteristics. Opposite to forming a cluster, metrics that 
re more unique to each other tend to be farther apart in the PC1-
C2 space. Therefore, the key to identify a unique metric set is to
elect ones spread out in Fig. 2 , especially along the 1 st principal
omponent that captured the most amount of variance. One other 
spect to consider when selecting the metrics is the complexity 
ssociated in obtaining them. Compared to the artificial light metrics, 
he metrics derived from the images containing all light sources are 
uch easier to obtain because there is no need for doing natural sky
odelling and subtraction. With the consideration of selecting points 

cross the 1 st principal component and the preference of choosing 
impler metrics, the results of the analysis suggest using a concise 
et of metrics (yellow-edged points in Fig. 2 ), derived from images
ontaining all light sources, consists of the zenith brightness, 50 th ,
5 th , 99 th , 99.995 th (brightest square degree), and 99.999 th (brightest
.25 square degree) percentiles to adequately describe the night sky 
haracteristics. 

.2 SQM and visual obser v ations 

QM measurements and visual assessments are correlated with each 
ther. In addition to the images, 176 nights have three additional
easurements taken: limiting magnitude, Bortle scale, and SQM. 
hese data points are plotted in Fig. 4 . These measurements are
onsidered separately from the previous analysis because they are 
easured independently from the images of the night skies. Table 1

ists the correlation coefficients between limiting magnitude, Bortle 
cale, and SQM measurements. These three metrics show moderate 
o strong relationships among each other. 

.3 Estimating sky brightness metrics 

n cases where measurements are limited, some commonly used 
etrics that have physical or ecological significance can be estimated. 
s inferred in Figs 2 and 3 , zenith brightness can serve as a good

stimator for horizontal illuminance, maximum vertical illuminance, 
v erage sk y brightness, and ALR based on their close proximity
n the PC space. Fig. 5 shows the relationships between the zenith
rightness and some metrics that are commonly used in other physical 
r ecological studies based on the 1391 data sets used in this study.
or zenith brightness of about 21.2 and darker, zenith brightness is
ot a sensitive estimator for small amount of horizontal illuminance, 
ax vertical illuminance, and ALR. For sites with zenith brighter 
MNRAS 511, 5683–5688 (2022) 
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M

Figure 5. Relationships between commonly used metrics in physical or eco- 
logical studies and the zenith brightness. Horizontal illuminance, maximum 

v ertical illuminance, av erage sk y brightness, and ALR are plotted against 
the zenith brightness. In general, in cases where only zenith brightness were 
measured, scatter plots like these can be useful for estimating the metrics 
with physical or ecological significance. 
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han 21.2, the correlated relationships between zenith brightness and
orizontal illuminance, max vertical illuminance, and ALR become
ore apparent. 

 DISCUSSION  

onsidering how the metrics are calculated, it is not surprising that
he commonly used metrics are related to each other. These related

etrics often derived from the similar area of the sky . Specifically ,
orizontal illuminance, scalar illuminance, visible star counts, mean
ky brightness, and ALR all take the brightness o v er the whole sky
nto account. Moreo v er, zenith brightness and horizontal illuminance
re both heavily influenced by the brightness o v erhead. Vertical
lluminance is calculated based on the brightness from half of the sky.
here is a substantial o v erlap on the sky area where these metrics are
eriv ed. This wide o v erlap can e xplain why the PCA result shows
he commonly used metrics are closely related to each other. 

The six suggested metrics are more distinct because they form
n image brightness summary profile and are derived from different
arts of the sky. The six selected metrics are the zenith brightness,
0 th , 95 th , 99 th , 99.995 th , and 99.999 th percentiles. As zenith is
sually the darkest area of the sky, the zenith measurement is
qui v alent to a low brightness percentile. In other words, these six
etrics are essentially all percentile measurements. Percentiles are

atural candidates for preserving most of the 2D information in
D space. In this case, percentiles provide a 1D summary of the
mage. Additionally, percentile calculation a v oids using o v erlapped
ky area. Considering these two facts, it is not surprising why the
CA identifies percentiles as more independent metrics. 
SQM measurements and the visual assessments do not provide

nique information on sky quality in addition to the six suggested
etrics. Because SQMs are pointed towards zenith, the measure-
ents are directly affected by the zenith brightness. Bortle scale

nd limiting magnitude are correlated with SQM measurements
s shown in Table 1 . Note that the data explored here contain
NRAS 511, 5683–5688 (2022) 
 wide range of sky brightness. The correlation might be poorer
hen limiting the data to ALR < 3, and Bortle Class 1–5 are less
istinguishable with zenith brightness measurements alone (Moore &
uriscoe 2015 ). On a gross scale, limiting magnitude, Bortle scale,

nd SQM measurements can all be represented by measuring the
enith brightness. Note that visual observations such as limiting
agnitude and Bortle scale are inherently more uncertain because of

uman error. Thus, although many metrics are related, selecting the
bjectively measured zenith brightness as the representative metric
s preferred. 

This study focuses on examining the relationships among metrics,
ot proposing universal metrics to use for all fields of study. Indeed,
hat metrics to use are often best determined by the objective of

he study. Studies focused on astronomical observations, ecological
ffects, visitor experience, and skyglow modelling might naturally
hoose different metrics. And it is al w ays better to calculate or
easure the metrics directly instead of obtaining them through
odelling or correlations. The six suggested metrics represent unique

imensions of night sky quality and are better suited for studies
ocusing on using non-redundant metrics for monitoring the night
ky brightness. 

Other metrics not investigated in this study, such as spectral
easurements, could provide additional characterization of the night

ky quality. Outdoor lighting technology is evolving, with LEDs
ecoming more popular because of impro v ed energy efficiency,
etter control, and lower maintenance costs. However, retrofitting
utdoor lights to LEDs often changes the appearance of skyglow (e.g.
ung et al. 2021 ). Spectral measurements are therefore becoming an

ncreasingly important aspect for characterizing skyglow. This study
nly focuses on the relationship between the photometric metrics.
ue to the lack of available data, this study does not investigate the

elationship between multiwavelength or spectral measurements of
he skyglow. Once the multiwavelength data become more abundant,
uture research using the similar PCA analysis could reveal additional
nique metrics for characterizing the night sky quality. 

 C O N C L U S I O N S  

his data-driven analysis reveals two important relationships: (1)
he commonly used metrics, such as the horizontal illuminance,
aximum vertical illuminance, visible star counts, average sky

rightness, zenith sky brightness, and ALR, are closely related to
ach other. They track similar brightness characteristics of the night
ky. (2) Brightness percentiles, on the contrary, are more unique
etrics. These selected metrics consists of the zenith brightness, 50 th ,

5 th , 99 th , 99.995 th (brightest square degree), and 99.999 th (brightest
uarter square degree) percentiles. They form a concise metric set
uitable for summarizing brightness o v er the whole sky. 

Long-term monitoring needs to record sky brightness both at zenith
nd near horizon. The six distinctive metrics suggest that the sky
rightness percentile profile is often unique from place to place.
he uniqueness in brightness profiles also means that the zenith

s insensitive to bright lights near the horizon. Therefore, to fully
haracterize the entire night sky condition, monitoring zenith and
ear horizon are both necessary. 

Taking all-sky images is the most ef fecti ve way for long-term
onitoring. The PCA result shows that the observ ed sk y brightness

s often a good estimate of the artificial light level despite the natural
arying night sky background based on the statistical analysis. For
ny specific site, especially a dark site, a more detailed analysis
hould be carried out to monitor the e xact lev el of artificial light
 v er the whole sk y. In general, if all-sk y images are available,

art/stab2662_f5.eps
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ll metrics can be easily calculated. The six selected metrics do 
ot require natural sky subtraction, which greatly simplifies the 
ata processing requirement. In summary, simply capturing all-sky 
mages is a versatile way for ef fecti ve long-term monitoring. 
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PPEN D IX  A :  METRICS  D E R I V E D  F RO M  T H E  

MAG ES  

he 53 calculated metrics are derived from each image data set.
he nomenclature used in naming the metrics follows the rules 
elow. P stands for the percentile for brightness. The notation 
mmediately following P indicates the percentage of the pixels darker 
han the value of the metric. ALL means all light sources were
onsidered whereas ART means natural sky brightness has been 
ubtracted so only artificial light is measured. MLX denotes the 
nit of millilux. VERT is the short hand of vertical illuminance, 
nd HORIZ is horizontal illuminance. MCCD is microcandela per 
quare meter. LUM stands for luminance. The ALR can be calculated 
y dividing the metric (31) MEANLUM ART MCCD by 248.2818 
icrocandela per square meter. ZA70, ZA80, and ZA54 metrics are 

nly considering the area of the sky within the zenith angle of 70 ◦,
0 ◦, and 54 ◦ correspondingly. COS indicates that the pixel values are
ultiplied by the cosine of the incident angle. MSA is shorthanded

or magnitude per square arcsec. 

(i) P05DEG ALL: 99.999 th brightness percentile in the observed 
k y. The aggre gated area of pix els brighter than this value is roughly
.25 square degree (0.5 deg × 0.5 deg). 
(ii) P1DEG ALL: 99.995 th brightness percentile in the observed 

k y. The aggre gated area of pix els brighter than this value is roughly
 square degree. 
(iii) P99 ALL: 99 th brightness percentile in the observed sky. 
(iv) P98 ALL: 98 th brightness percentile in the observed sky. 
(v) P95 ALL: 95 th brightness percentile in the observed sky. 
(vi) P90 ALL: 90 th brightness percentile in the observed sky. 
(vii) P80 ALL: 80 th brightness percentile in the observed sky. 
(viii) P70 ALL: 70 th brightness percentile in the observed sky. 
(ix) P60 ALL: 60 th brightness percentile in the observed sky. 
(x) P50 ALL: 50 th brightness percentile in the observed sky. 
(xi) P01 ALL: 1 st brightness percentile in the observed sky. 
(xii) P0005 ALL: 0.05 th brightness percentile in the observed sky. 
(xiii) P05DEG ART: 99.999 th brightness percentile of the artifi- 

ial light. The aggregated area of pixels brighter than this value is
oughly 0.25 square degrees (0.5 deg × 0.5 deg). 

(xiv) P1DEG ART: 99.995 th brightness percentile of the artificial 
ight. The aggregated area of pixels brighter than this value is roughly
 square degrees. 
(xv) P99 ART: 99 th brightness percentile of the artificial light. 
(xvi) P98 ART: 98 th brightness percentile of the artificial light. 
(xvii) P95 ART: 95 th brightness percentile of the artificial light. 
(xviii) P90 ART: 90 th brightness percentile of the artificial light. 
(xix) P80 ART: 80 th brightness percentile of the artificial light. 
(xx) P70 ART: 70 th brightness percentile of the artificial light. 
(xxi) P60 ART: 60 th brightness percentile of the artificial light. 
(xxii) P50 ART: 50 th brightness percentile of the artificial light. 
(xxiii) P01 ART: 1 st brightness percentile of the artificial light. 
(xxiv) ALLSKY ART MLX: Scalar illuminance of all artificial 

ight sources in the sky in millilux. 
(xxv) MAXVER T AR T MLX: Maximum vertical illuminance 

rom artificial light sources in millilux. 
(xxvi) MEANVER T AR T MLX: Mean vertical illuminance from 

rtificial light sources in millilux. 
(xxvii) MINVER T AR T MLX: Minimum vertical illuminance 

rom artificial light sources in millilux. 
(xxviii) HORIZ ART MLX: Horizontal illuminance from artifi- 

ial light sources in millilux. 
(xxix) BRIGHTEST ART MCCD: Brightest sky luminance con- 

aining only artificial light measured in microcandela per square 
eter. 
(xxx) ZENITH LUM ART MCCD: Zenith brightness containing 

nly artificial light measured in microcandela per square meter. 
(xxxi) MEANLUM ART MCCD: Mean sky luminance contain- 

ng only artificial light measured in microcandela per square meter. 
he ALR can be calculated by dividing this value by the reference
atural sky brightness of 248.2818 microcandela per square meter. 
(xxxii) ZA70 ART MLX: Illuminance in millilux of all artificial 

ight sources within 70 ◦ zenith angle. 
(xxxiii) ZA70 MAXVERT ART MLX: Maximum vertical illu- 
inance in millilux from artificial light sources within 70 ◦ zenith 

ngle. 
(xxxiv) ZA70 MEANVERT ART MLX: Mean vertical illumi- 

ance in millilux from artificial light sources within 70 ◦ zenith angle.
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(xxxv) ZA70 MINVERT ART MLX: Minimum vertical illumi-
ance in millilux from artificial light sources within 70 ◦ zenith angle.

(xxxvi) ZA70 HORIZ ART MLX: Horizontal illuminance in
illilux from artificial light sources within 70 ◦ zenith angle. 
(xxxvii) ZA70 BRIGHTEST ART MCCD: Brightest sky lumi-

ance containing only artificial light measured in microcandela per
quare meter within 70 ◦ zenith angle. 

(xxxviii) ZA70 MEANLUM ART MCCD: Mean sky luminance
ontaining only artificial light measured in microcandela per square
eter within 70 ◦ zenith angle. 
(xxxix) ZA80 ART MLX: Illuminance in millilux of all artificial

ight sources within 80 ◦ zenith angle. 
(xl) ZA80 MAXVERT ART MLX: Maximum vertical illumi-

ance in millilux from artificial light sources within 80 ◦ zenith angle.
(xli) ZA80 MEANVERT ART MLX: Mean vertical illuminance

n millilux from artificial light sources within 80 ◦ zenith angle. 
(xlii) ZA80 MINVERT ART MLX: Minimum vertical illumi-

ance in millilux from artificial light sources within 80 ◦ zenith angle.
(xliii) ZA80 HORIZ ART MLX: Horizontal illuminance in
illilux from artificial light sources within 80 ◦ zenith angle. 
(xliv) ZA80 BRIGHTEST ART MCCD: Brightest sky lumi-

ance containing only artificial light measured in microcandela per
quare meter within 80 ◦ zenith angle. 

(xlv) ZA80 MEANLUM ART MCCD: Mean sky luminance
ontaining only artificial light measured in microcandela per square
eter within 80 ◦ zenith angle. 
NRAS 511, 5683–5688 (2022) 
(xlvi) ZA54 COSLUM MSA: Sky luminance calculated with
ixels within 54 ◦ zenith angle. Each pixel value is multiplied by
he cosine of the incident angle and weighted by the sustained area
f sky. 
(xlvii) AVE LUM MSA: Av erage sk y brightness containing all

ight sources measured in magnitude per square arcsec. 
(xlviii) ZENITH LUM MSA: Zenith sky brightness containing

ll light sources measured in magnitude per square arcsec. This is
alculated using the median pixel value within the 20-pixel-radius
perture centred at the zenith. The plate scale is 1 

′ 
.4/pix for most of

he NPS systems currently in use. 
(xlix) BRIGHTEST LUM MSA: Brightness sky luminance con-

aining all light sources measured in magnitude per square arcsec. 
(l) ALLSKY MLX: Scalar illuminance considering all light

ources in the sky in millilux. 
(li) HORIZ MLX: Horizontal illuminance from all light sources

n the sky in millilux. 
(lii) MAXVERT MLX: Maximum vertical illuminance from all

ight sources in the sky in millilux. 
(liii) VISSTARS RATIO: Ratio of the number of stars visible

nder skyglow to the number of stars visible under the natural sky. 
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