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ABSTRACT
Emulation of the Global (sky-averaged) 21-cm signal with neural networks has been shown to be an essential tool for physical
signal modelling. In this paper, we present GLOBALEMU, a Global 21-cm signal emulator that uses redshift as a character-defining
variable alongside a set of astrophysical parameters to estimate the signal brightness temperature. Combined with physically
motivated data pre-processing, this makes for a reliable and fast emulator that is relatively insensitive to the network design.
GLOBALEMU can emulate a high-resolution signal in 1.3 ms in comparison to 133 ms, a factor of 102 improvement, when using
the existing public state-of-the-art 21CMGEM. We illustrate, with the standard astrophysical models used to train 21CMGEM,
that GLOBALEMU is almost twice as accurate and for a test set of ≈1700 signals we achieve a mean root mean squared error
of 2.52 mK across the band z = 7–28 [≈10 per cent the expected noise of the Radio Experiment for the Analysis of Cosmic
Hydrogen (REACH)]. The models are parametrized by the star formation efficiency, f∗, minimum virial circular velocity, Vc,
X-ray efficiency, fX, cosmic microwave background optical depth, τ , the slope and low energy cut-off of the X-ray spectral
energy density, α and νmin, respectively, and the mean free path of ionizing photons, Rmfp. GLOBALEMU provides a flexible
framework for easily emulating updated simulations of the Global signal and in addition the neutral fraction history. The
emulator is pip installable and available at https://github.com/htjb/globalemu. GLOBALEMU will be used extensively by the
REACH collaboration.
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1 IN T RO D U C T I O N

The Global 21-cm signal from the cosmic dawn (CD) and epoch
of reionization (EoR), if observed, will provide detailed information
about the large scale properties of the early universe. The observable
signal is the sky-averaged 21-cm emission from the spin flip tran-
sition in neutral hydrogen at redshifts z = 5–50 and redshifted to
frequencies of approximately ν = 50–200 MHz.

An absorption signal was reported at 78 MHz by the Experiment
to Detect the Global Epoch of Reionization Signature (EDGES)
collaboration in 2018 (Bowman et al. 2018). However, the reported
signal is significantly larger in amplitude than that predicted by
standard Lambda cold dark matter cosmology (Reis, Fialkov &
Barkana 2021) and there are concerns about the data analysis
used (Hills et al. 2018; Singh & Subrahmanyan 2019; Sims &
Pober 2020; Bevins et al. 2021). Efforts are underway to make
further observations of the signature with a variety of different radio
telescopes including SARAS (Shaped Antenna measurement of the
background RAdio Spectrum; Singh et al. 2018), REACH (Radio
Experiment for the Analysis of Cosmic Hydrogen; de Lera Acedo
2019), PRIZM (Probing Radio Intensity at High-Z from Marion;
Philip et al. 2019), LEDA (Large-aperture Experiment to Detect the
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Dark Ages; Price et al. 2018), DAPPER (Dark Ages Polarimeter
PathfindER, https://www.colorado.edu/project/dark-ages-polarimet
er-pathfinder/), and MIST (Mapper of the IGM Spin Temperature,
http://www.physics.mcgill.ca/mist/) among others.

The intensity of the signal is measured against the radio back-
ground, typically assumed to be equal to the cosmic microwave
background (CMB) temperature, and characterized by an absorption
trough and an emission at late redshifts. The relative magnitude of
the signal features is determined by various astrophysical processes
including the Wouthuysen–Field effect (Wouthuysen 1952; Field
1959), Lyman α heating and CMB heating (Chuzhoy & Shapiro
2007; Venumadhav et al. 2018; Mittal & Kulkarni 2020; Villanueva-
Domingo, Mena & Miralda-Escudé 2020; Reis et al. 2021), X-
ray heating, and ionization of the hydrogen gas by UV emission
(Madau, Meiksin & Rees 1997). A detailed discussion of the physics
describing the Global 21-cm signal can be found in Furlanetto,
Oh & Briggs (2006), Pritchard & Loeb (2012), Barkana (2016),
and Mesinger (2019). The physical processes themselves and hence
the Global signal can be characterized by a set of astrophysical
parameters (see Section 3 and Cohen et al. 2020): the star formation
efficiency, f∗, the minimal virial circular velocity, Vc, the X-ray
efficiency, fX, the CMB optical depth, τ , the slope of the X-ray
spectral energy density (SED), α, the low energy cut-off of the
X-ray SED, νmin, and the mean free path of ionizing photons,
Rmfp.
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Hybrid approaches are used to calculate realizations of the 21-cm
signal, over a large cosmological volume and redshift range, which
then can be averaged at every redshift separately to give the Global
signal (e.g. Mesinger, Furlanetto & Cen 2011; Visbal et al. 2012;
Fialkov & Barkana 2014; Cohen et al. 2017; Reis et al. 2021). Each
simulation takes several hours to perform on a desktop (Monsalve
et al. 2019) and though this is much faster than hydrodynamical
simulations this time is too long to allow us to constrain astrophysical
parameters using data. Therefore, the desire to emulate the Global
signal with neural networks, trained on the results of the large-
scale simulations, has arisen. The neural networks can produce
a realization of the Global signal in a fraction of a second by
interpolating between the simulated cosmological and astrophysical
models. This means that they can be used to physically model the
signal in, for example, Bayesian nested sampling loops,1 as in the
REACH data analysis pipeline (Anstey, de Lera Acedo & Handley
2020), in which millions of calculations need to be made to infer
cosmological parameters [List & Lewis 2020; Liu & Shaw 2020;
Chatterjee, Choudhury & Mitra 2021; Sims et al. (in preparation)].

A number of papers have considered emulation of the 21-cm power
spectrum using convolutional neural networks and other techniques
(e.g. Jennings et al. 2018; Schmit & Pritchard 2018; Mondal et al.
2020). At the time of writing, 21CMGEM is the only publicly
available emulator used to accurately, with a maximum normalized
root mean squared error (RMSE) of 10.55 per cent, and quickly (see
Section 6.1) emulate the Global 21-cm signal (Cohen et al. 2020).2

It has previously been used to provide constraints on the parameter
space of the 21-cm signal using EDGES high-band data (Monsalve
et al. 2019). The emulator uses principal component analysis (PCA;
Pearson 1901), the seven astrophysical parameters detailed above
and in Section 3, additional information about the mean collapsed
fraction of haloes as a function of redshift, fcoll(z), and the fraction of
X-ray energy above 1 keV, fXR>1 keV, and 2 keV, fXR>2 keV, and relies
on a division of the signal into two or three distinct segments defined
by the turning points. It involves the application of a decision tree
for classification and several regression neural networks estimating
PCA components, the frequencies and temperatures of turning points
as well as additional parameters such as the frequency at which the
neutral fraction equals 0.16, ν(xH I = 0.16).

In this paper, we present GLOBALEMU that uses a novel and robust
approach with a single small-scale neural network to emulate the
Global 21-cm signal given a comprehensive set of astrophysical
parameters and redshift range. Where previously 21CMGEM was
designed to take in astrophysical parameters and return a low
dimensional representation of the Global signal as a function of
redshift, GLOBALEMU takes in the same astrophysical parameters
and redshift and returns the signal temperature at the corresponding
redshift (see Fig. 1). This greatly simplifies the complexity of the
relationship being learnt by the neural network. It means we can
achieve accurate results, with the smoothness of the signal imposed
by the interpolation of the neural network between signals in the
training data set, using a small network and without the need for a
compressed representation of the signals like PCA where there is
a potential loss of information. Additionally, GLOBALEMU relies on

1Note that here we are not referring to a Bayesian Neural Network (see Javid
et al. 2020) but rather parameter optimization algorithms such as POLYCHORD

(see Handley, Hobson & Lasenby 2015a, b).
2During review of this work, a pre-print describing the global signal emulator
21CMVAE has been published (Hellum Bye, Portillo & Fialkov 2021) in
which the comparative performance of GLOBALEMU is discussed.

a physically motivated pre-processing of the training data and can
emulate a high-resolution, δz = 0.1 over the range z = 5–50, Global
21-cm signal in ≈1.3 ms. GLOBALEMU will be used extensively by
the REACH collaboration and has been designed to have an average
accuracy less than or equal to 10 per cent of the expected noise in
the REACH system, estimated at 25 mK (REACH Collaboration, in
preparation).

GLOBALEMU is written in PYTHON using tensorflow and the
KERAS backend; it is pip installable via pip install glob-
alemu and available at https://github.com/htjb/globalemu. It is flex-
ible enough to be retrained on any set of Global 21-cm signal models
while maintaining the novel design and physically motivated pre-
processing. We provide a demonstration of its accuracy and efficiency
in this paper using the same data used to train 21CMGEM and the
corresponding trained models are publicly available on GitHub. We
use GitHub actions to perform continuous integration.

In Section 2, we describe the novel approach used to parametrize
GLOBALEMU. Section 3 describes the training and test data used
to illustrate the capabilities of GLOBALEMU in this paper and the
astrophysical parameters in the simulations of the Global signal. We
then describe the predominantly physically motivated pre-processing
of the inputs and outputs of the neural network in Section 4. A
discussion of the neural network structure follows in Section 5 and
the quality of emulation is assessed in Section 6. We conclude in
Section 7.

2 PARAMETRI ZI NG THE PROBLEM

There are several approaches that can be used to emulate the Global
21-cm signal with a neural network. The ultimate goal of the emulator
is to take in a set of astrophysical parameters and return an estimate
of the signal brightness temperature as a function of redshift, δT(z),
where the relationship has been learned from detailed numerical
simulations. This can be done directly with a neural network that
returns a value of δT for each redshift data point it has been trained
on. However, assuming that the network is trained on high-resolution
signals this would result in a large number of outputs, making it hard
to train, and would be limited in predictive power to specific values
of redshift. The process can also be achieved by estimating, via a
neural network, coefficients of a compressed representation of the
signal space. For example, using PCA as with 21CMGEM (Cohen
et al. 2020) or learning coefficients of basis functions for polynomials
or wavelets that when combined return the Global signal. However,
while this approach reduces the number of outputs compared to a
direct emulation, if incorrectly designed this can result in information
loss and is equally limited in predictive power.

We take the novel approach of using redshift as an input to the
network alongside the astrophysical parameters and returning from
the network a single temperature corresponding to the given redshift.
This is beneficial for two reasons; the small number of inputs and
outputs means that the network can retain a simple structure and
secondly the network will be able to interpolate between the values
of redshift that it has been trained on. The smooth structure of the
output from the network is guaranteed by the smooth interpolation
performed by the neural network and by the smooth structure of the
signals it is learning. Vectorized calls to the network are used to
emulate the temperature as a function of redshift.

In GLOBALEMU, we also provide the ability to emulate the evolution
of the neutral fraction, xH I, of hydrogen as a function of redshift. We
use an identical framework as when emulating the Global signal to
do this with a set of astrophysical parameters and a redshift as inputs
to a neural network and a corresponding value of xH I as an output.
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GLOBALEMU 2925

Figure 1. Left-hand panel: There currently exists only one other global signal emulator, 21CMGEM, and we provide here an illustration of the regression neural
networks used there. Note that 21CMGEM uses either five or six of these networks and a decision tree when making predictions. For one of the regression
networks used, the only input parameters are the seven astrophysical parameters detailed in Section 3 (excluding redshift). However, for the others there are
an additional five derived parameters (see the text and Cohen et al. 2020) and we illustrate the full set of 12 inputs. The number of output nodes depends on
the specific application of the network and they can correspond to either PCA components (four nodes), additional parameters such as ν(xH I = 0.16) (one
node), and the frequencies and brightness temperatures of turning points in the signal (seven or five nodes). The hidden layer in all of the 21CMGEM regression
networks has 40 nodes. For a full illustration of the 21CMGEM algorithm and detailed description, see fig. 11 and section 4.2 in Cohen et al. (2020). Right-hand
panel: An illustration of the GLOBALEMU neural network. Note the use of only one network to emulate the global signal in comparison to the five or six used for
21CMGEM. Here, the input layer has eight nodes (seven astrophysical parameters plus redshift) and the output layer is a single node returning the brightness
temperature corresponding to the input redshift. We show a sizable hidden layer structure here with the red nodes and ‘...’; however, we note that the reduced
number of inputs and outputs implies that a small architecture will be sufficient to achieve a high level of accuracy in the emulation (see Section 5).

We have built a network that can emulate the Global 21-cm
signal to a high degree of accuracy without the need for L1 and L2
regularization, dropout (Srivastava et al. 2014), batch normalization
(Ioffe & Szegedy 2015), or other similar concepts. We have achieved
this by focusing on the pre-processing of the network inputs and
outputs in the desire to set our problem up in a way that is simple to
solve with a basic neural network of a ‘reasonable’ size.

3 TH E T R A I N I N G A N D T E S T DATA

In this paper, we use the same model signals and corresponding
astrophysical parameters used to train and test 21CMGEM (avail-
able at https://doi.org/10.5281/zenodo.4541500; Cohen et al. 2021).
Examples of the Global signals from the training set are shown in
Fig. 2. In total, the data set contains 27 292 training models and 2174
test models with each model being dependent on seven astrophysical
parameters. Each Global signal in the data set has 451 redshift data
points and this means that each signal corresponds to 451 training
points with the same astrophysical parameters and different redshifts.
Therefore, for GLOBALEMU the 27 292 training models become
12 308 692 training data points. However, we continue throughout
this paper to talk generally of training signals rather than data points
because the emulator will be used to determine the signal structure
over a redshift range (see Section 6 for more details).

Figure 2. A subsample of 50 Global 21-cm signals from the 21CMGEM train-
ing set used here to demonstrate the efficiency of GLOBALEMU. The signals
show the expected variety of structure with deep and shallow absorption
troughs caused by Lyman α coupling and terminated by X-ray heating. We
also see emission against the CMB background at low redshifts in some of
the models where there has been sufficient heating. Also shown in black is
the Astrophysics Free Baseline (AFB; Section 4.1) that we model and remove
from the training signals before we pass them through the neural network.
Subtraction of the AFB prevents our network from attempting to learn a
steadily decreasing temperature at high redshifts prior to star formation.

MNRAS 508, 2923–2936 (2021)
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The data pre-processing is explained in detail in Section 4.
Explicitly, the inputs (Cohen et al. 2017, 2020; Monsalve et al. 2019)
to the neural network when training on the 21CMGEM data are as
follows (ranges are based on those in the 21CMGEM training data
set; see section 2.5 of Cohen et al. 2020):

(i) f∗: The star formation efficiency takes values in the range of
0.0001–0.5 and characterizes the amount of gas converted to stars
in the dark matter haloes. A low star formation rate results in a low
Lyman α flux and late onset of X-ray heating, leading to a shallower
absorption trough and weak or non-existent emission above 0 mK in
the signal.

(ii) Vc: The minimal virial circular velocity has a value in the
range of 4.2–100 km s−1 and is proportional to the cube root of
the minimum threshold mass for star formation. A low value of Vc

corresponds to a small minimum mass threshold that in turn leads to
an earlier onset of Lyman α coupling, responsible for the absorption
feature in the Global 21-cm signal, and shifts the minimum of the
signal to higher redshifts.

(iii) fX: The X-ray efficiency of sources has a range between
0 and 1000 and a high value corresponds to a high total X-ray
luminosity. This leads to an earlier onset of X-ray heating that also
shifts the minimum of the signal to higher redshifts, contributes to
a shallower absorption, and results in a significant emission feature
during reionization at low redshifts.

(iv) τ : The CMB optical depth in the 21CMGEM data sets takes a
value in the range of 0.04–0.2 and a higher value of τ corresponds to
a higher value of the ionizing efficiency of sources, ζ . For high τ , we
would see an earlier reionization of the hydrogen gas. We note that
τ is given as 0.054 ± 0.007 by Planck Collaboration VI (2020) and
that this falls at the lower end of the range in our training and testing
data sets. More recent parameter studies have explored lower values
of τ in greater detail (Reis et al. 2021). However, the 21CMGEM data
are sufficient to demonstrate the abilities of GLOBALEMU.

(v) α: The power defining the slope of the X-ray SED with a
range given by 1–1.5. The Global 21-cm signal is expected to have a
very weak dependence on α with the largest effect happening at low
redshifts.

(vi) νmin: The low energy cut-off of the X-ray SED has a range
of 0.1–3 keV. Low values of νmin correspond to a soft X-ray SED,
efficient X-ray heating, and a weak absorption feature in the 21-cm
signal.

(vii) Rmfp: The mean free path of ionizing photons, with a range of
10–50 Mpc. Rmfp is expected to have a very weak effect and only at
low redshifts (see e.g. Monsalve et al. 2019). A low Rmfp corresponds
to a slower ionization of the neutral hydrogen gas.

(viii) z: The redshift of the 21-cm brightness temperature is a
measure of time and provides details about when each feature of the
signal occurred. For example, the brightness temperature is expected
to reach 0 mK, corresponding to the end of the EoR, at low redshifts
or more recent times. It is interchangeable with frequency given that
the rest frequency, νr, of the 21-cm line is 1420 MHz

z + 1 = νr

ν
. (1)

To ensure that we make a fair comparison of our results with
those found when using 21CMGEM, we make the same physically
motivated cuts to the test data as are detailed in section 2.4 of Cohen
et al. (2020). This equates to limits on the ionizing efficiency of
sources, ζ < ζ max = 40 000f∗, and on the neutral fraction history at
z = 5.9, xH I(z = 5.9) < 0.16. Respectively the limits are motivated
by stellar models (Bromm, Kudritzki & Loeb 2001) and quasar
absorption troughs (McGreer, Mesinger & D’Odorico 2014). We

Figure 3. A subsample of 50 neutral fraction histories from the training
set used in this paper. At high redshift, the hydrogen in the universe is
predominantly neutral and consequently xH I = 1. As the gas is ionized by
UV emission from the first stars that form, the neutral fraction decreases until
xH I = 0 at the end of the EoR.

also note that some of the parameters in the testing data have
different ranges and the ranges are as follows; f∗: 0.0001–0.5, Vc:
4.2–76.5 km s−1, fX: 0–10, τ : 0.055–0.1, α: 1–1.5, νmin: 0.1–3 keV,
and Rmfp: 10–50 Mpc. In total, the final testing data set is comprised
of 1703 models.

GLOBALEMU includes a simple to use PYTHON graphical user
interface (GUI)3 in which the variation of the signal with each of
the astrophysical parameters listed above can be explored in more
detail. We note that the GUI is a feature made possible by the speed
of emulation when using GLOBALEMU (see Section 6). There is an
equivalent GUI for the neutral fraction history emulation.

As previously stated, GLOBALEMU is not limited to emulating
signals modelled with the above astrophysical parameters. It is
flexible enough that more complicated astrophysical relationships
can also be emulated. For example, one explanation for the unex-
pected depth of the EDGES absorption trough is the presence of a
higher than expected radio background that can be characterized
with a quantity fradio determining the normalization of the radio
emissivity (assuming that the source of the excess radio background
is stellar; Reis, Fialkov & Barkana 2020). GLOBALEMU is in principle
capable of being trained on models that consider fradio in addition to
the above seven astrophysical parameters and redshift as inputs since
it assumes nothing about the astrophysical parameters themselves.
Equally, GLOBALEMU could be trained on less complex models.

For the neutral fraction, xH I, we use a set of models produced as a
by-product of the detailed 21CMGEM Global signal simulations. The
data set is smaller with 10 047 training models and 791 test models;
however, the relationship between the astrophysical parameters and
xH I is expected to be (and shown to be, Section 6) simpler. We note
that for z � 30 the neutral fraction is expected to be always 1 and
so we only emulate the neutral fraction over the range z = 5–30.
The models have not been released publicly but the parameter ranges
are the same for this data set as detailed above. A subsample of the
training models is shown in Fig. 3.

We note that a non-uniform coverage of the parameter space in the
training data set, as with the 21CMGEM Global signal and neutral

3After installation via PIP or from source, the GUI can be called from the
terminal using the command globalemu. See the documentation at https:
//globalemu.readthedocs.io/ for more details.
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Figure 4. The pre-processing applied to the training data in GLOBALEMU.
Each box is outlined in more detail in the corresponding sections. The red
path is the pre-processing steps used for the Global 21-cm signals, the blue
path is for the neutral fraction histories, and the gold path is steps that occur
when training both neural networks.

fraction data, may introduce bias in the neural network. The network
will tend to learn regions of the astrophysical parameter space where
the sampling is heavier better than others. For the purposes of
illustrating the accuracy of the emulation in this paper, this is not
an issue. However, it can become an issue when using an emulator
to physically model a signal in a data set where parameter estimation
may be biased towards a false set of parameters. Training a network
on a more uniform data set can alleviate this issue and we leave
further exploration of this for future work.

4 DATA PRE-PROCESSING

The details in the following discussion4 outline the pre-processing for
the network predicting the Global 21-cm signal. In Section 4.4, we
briefly discuss the pre-processing for the neutral fraction networks
that is a largely similar process. The pre-processing is summarized
as a flow chart in Fig. 4.

4.1 Astrophysics free baseline subtraction

In the region where the structure of the Global 21-cm signal is
expected to be dominated by collisional coupling, it is independent

4Specifically, the discussion details the steps used in this paper when training
with the 21CMGEM data. However, the various pre-processing steps outlined
can be switched on and off by a user when training an emulator with
GLOBALEMU.

on the seven astrophysical parameters used here as inputs to the
emulator. This means that, in the corresponding redshift range,
each of the signals in our training and testing data sets has the
same brightness temperatures. To prevent our network unnecessarily
attempting to learn a non-trivial structure in this region, we can treat
it as an astrophysics free baseline (AFB), and model and remove it
from the signals before they are passed to the network for training.
By doing this, our network will learn a simpler relationship at high
redshift between the parameters and δT(z) than the existing steadily
decreasing trend (see Fig. 2).

In Appendix A, we give an approximate calculation of the AFB
for the simulated signals that comprise the training data sets. The
calculation is approximate because it follows the mean evolution of
the signal and in contrast the simulations are produced over large-
scale cosmological volumes evolved over cosmological time and then
averaged. We therefore normalize our result to the temperature of the
signals in the training set at z = 50 and find that this is sufficient to
represent the astrophysics free component of the models.

As stated, the AFB is then subtracted from the models before
training the network and added back in after making predictions.

21CMGEM uses five extra parameters in addition to the seven
astrophysical parameters used here. In principle, these parameters
could be passed to the neural network during training due to the
flexible nature of GLOBALEMU. However, three of these additional
parameters rely on the fraction of mass contained in haloes above
the minimum cooling threshold, fcoll(z), and help the network learn
the signal structure at high redshift where collisional coupling
(cosmology) dominates. Here, we do not consider these parameters,
which are derived from the seven astrophysical parameters described
above, as we are instead removing the AFB. The final two parameters,
for reference, are the fractions of X-ray energy above 1 and 2 keV.
These parameters are added to further characterize the X-ray SED,
but we find with GLOBALEMU that we do not need to consider them
to achieve accurate results.

4.2 Resampling of signals

The turning points, and gradients between them, of the Global
21-cm signal encode all of the information about the efficiency
of Lyman α coupling, X-ray heating, and reionization. They are
therefore highly dependent on the relevant astrophysical parameters
and in the region where the features typically occur variation in
the signals is significant. The original signal models are sampled
uniformly in redshift and there is no particular physical motivation
for this. However, to improve the quality of modelling we resample
the signals at a higher rate across the redshift ranges that typically
correspond to the locations of the turning points and at a lower rate
where the signal structure deviates less from the ‘average’ signal
(e.g. above z ≈ 30 where the signal is free of astrophysics).

To do this, we look at the variation in the signal amplitudes, after
subtracting the AFB, across the training data set

�(δT (z)) = δTmax(z) − δTmin(z), (2)

and we treat this as a probability distribution

P (�(δT (z))) = �(δT (z))∑
z �(δT (z))

. (3)

Where the variation in the signal at a given redshift across the
training data set is large, the probability distribution is also large (see
Fig. 5). We then calculate the corresponding cumulative distribution
function (CDF) and use inverse transform sampling to produce a
new redshift distribution with a high sampling rate in regions of high
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Figure 5. Top panel: The probability distribution calculated from the
difference between the maximum and minimum signal temperatures in the
21CMGEM training data set using equations (2) and (3). Bottom panel: The
CDF corresponding to the probability distribution in the top panel. We use
this CDF to resample the training Global 21-cm signals in order to capture
the variation at low redshifts across the distribution and allow the emulator
to better learn this behaviour.

variation. For each signal, we can then perform an interpolation to
get the corresponding δT values.

4.3 Output and input normalization

Neural networks typically perform better when the outputs and inputs
are of order unity and uniformly distributed. Hence, it is typical
to manipulate the data sets via logarithms, normalization, and/or
standardization to improve performance.

After subtracting the AFB and resampling our signals, we also
proceed to divide the signals by the standard deviation across
the training data set. This type of scaling was motivated by the
typically used standardization technique; however, we wanted to
ensure that when scaling our signals a value of δT = 0 remained as 0
because it holds physical meaning (an equivalence between the spin
temperature and radio background, Ts = Tr). The signals shown in
Fig. 2, as seen by the neural network, after pre-processing are shown
in Fig. 6.

For the input redshift distribution, we transform our resampled
redshifts back on to a uniform distribution between 0 and 1, before
they are input into the network, using the CDF detailed in the previous
section. It is the combination of resampling and uniform redshift

Figure 6. The equivalent signals from Fig. 2 after pre-processing. Subtrac-
tion of the AFB and the subsequent resampling mean that the important
information encoding the dependence on the astrophysical parameters is
retained and appropriately emphasized in the training data. Here, we have
plotted the resampled redshift data points as being uniformly distributed
since this is how the network is set up to interpret the input. The following
division by the standard deviation across the training data set scales the signals
to order unity without changing the physically significant value of δT(z) = 0
where the spin temperature of the neutral hydrogen is equivalent to the radio
background temperature. Minor ticks are at intervals of one on the x-axis.

input that ensures the neural network ‘sees’ ‘stretched’ signals as in
Fig. 6. This technique allows the neural network to interpolate the
signal at redshifts it has not been trained on to a higher degree of
accuracy where the signals vary greatly than if we had used uniform
sampling.

For the other input astrophysical parameters, we use a Min–Max
normalization scaling each feature between 0 and 1. For example,
considering the distribution of the CMB optical depth, τ in our
training data as a vector we normalize it such that

τ̃ = τ − τmin

τmax − τmin
. (4)

The decision to use this type of normalization was arrived at after
testing standardization, Min–Max normalization, and division by the
max values for the input parameters while maintaining the physically
motivated pre-processing for the signal temperatures detailed in the
above subsections.

For fX, f∗, and Vc, the distributions are uniform in log-space and
so we perform the Min–Max normalization on the logarithm of these
variables and use these as our inputs.

4.4 xH I pre-processing

As discussed, we provide provision in GLOBALEMU to emulate the
neutral fraction of hydrogen as a function of redshift. For this
network, the pre-processing just involves resampling of the signals
since

(i) The equivalent AFB for the neutral fraction has a value of 1
at all redshifts and to subtract this from our training data set would
invert our signals providing no benefit to training.

(ii) The neutral fraction has a value between 0 and 1 by definition
and so we do not need to normalize the output of the network to be
of order unity.

The benefits of performing resampling for the neutral fraction
histories are the same as for the Global signal network. It allows the
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Figure 7. The equivalent neutral fraction histories from Fig. 3 after pre-
processing. For the neutral fraction histories, since the signals are already of
order unity and subtraction of the equivalent AFB would not be beneficial,
the pre-processing just involves resampling of the signals around regions of
high variation. As with Fig. 6, the minor ticks are at intervals of one on the
x-axis.

network to learn the variation in the training models and interpolation
across redshift with a higher degree of accuracy. We perform the
resampling with the equivalent of equations (2) and (3). Fig. 7
shows the same set of neutral fraction histories as in Fig. 3 after
pre-processing.

5 N E U R A L N E T WO R K ST RU C T U R E

As stated, the goal with GLOBALEMU is to maintain a simple network
that is highly accurate without having to use dropout, regularization,
batch normalization, etc. However, in the design of any neural
network the optimizer, the architecture, loss function, activation
function, and learning rate are core considerations.

5.1 Architecture

Dropout (Srivastava et al. 2014) and the commonly used L1 and L2
regularization are typically employed to prevent overfitting where the
network learns the training data to such a high degree of accuracy
that it is unable to generalize. Overfitting is generally a result of
using a neural network that is too big and has an excessive number of
layers and nodes. On the other hand, a network that is too small often
produces poor-quality predictions and consequently the aim is to
produce a ‘reasonably’ sized network. The scope of what constitutes a
reasonably sized network is dependent on the number of input/output
nodes, the variation in the training data, and the complexity of the
relationship between the inputs and outputs.

By using the novel approach of having redshift as an input to
the network, both our Global signal and neutral fraction emulators
have, in the case of the 21CMGEM data, eight input nodes and
one output node, meaning that our network can remain small in
size. Additionally, we have made a significant effort to simplify the
problem with physically motivated pre-processing, which also helps
us to reduce what constitutes as a ‘reasonable’ size for our networks.

GLOBALEMU is set up in such a way that the number of layers and
layer sizes can be adjusted by the user. As a result, we do not provide
a prescription of what constitutes a ‘reasonable’ size as this may
not be pragmatic. We note, however, that a significant effort can be
undertaken to determine the optimum ‘reasonable’ architecture that

Figure 8. The mean and 95 percentile RMSE (see Section 6.2) for a set of
different network architectures trained for 12 h (approximately 250 epochs)
on an HPC with the 21CMGEM Global signal training data and assessed with
the corresponding test data. The architectures have between 1 and 4 layers
of varying sizes between 4 and 64 nodes. They are ordered based on the
number of weights in the network (equivalent to the number of connections)
as this is a useful measure of network size and an indication of predictive
power. The graph is used to determine a ‘reasonable’ architecture considering
the practical target accuracy of on average 10 per cent the expected noise of
a Global 21-cm experiment (here illustrated by the black dashed line at
2.5 mK). Throughout the rest of the paper, we use a network with 3 layers
each consisting of 16 nodes, which is the first to produce a mean value within
our target accuracy. Our choice is highlighted with a dotted vertical line.

maximizes accuracy and that this can also be impractical. Instead,
we suggest that as a minimum requirement a ‘reasonable’ archi-
tecture for a trained GLOBALEMU model should meet the following
criteria:

(i) The network should not overfit the training data; otherwise, the
predictive power will be lost.

(ii) The network should have an average accuracy �10 per cent
the noise of a typical Global 21-cm experiment (see Section 6.2 for
a further discussion).

Based on the above criteria, the size of our input and output layers
and a minimal exploration starting from a small network, trained with
the pre-processed signals, and increasing the size until our accuracy
criteria were met without overfitting (see Appendix B), we use a
network with three hidden layers all of size 16 for both the Global
signal and neutral fraction emulation in this paper.

Fig. 8 illustrates the processes used to determine our architecture
for the Global network. We consider a set of different network
sizes with one to four layers and 4, 8, 16, 32, or 64 nodes in
each layer. For each of the tested networks, we run a ‘full’, 12 h
on an HPC equating to approximately 250 epochs using the full
21CMGEM training data, training of GLOBALEMU. We then assess
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Figure 9. The top three panels show the mean, 95 percentile, and the
worst emulations, respectively, based on the RMSE, for the Global 21-cm
signal across the entire test set of 1703 models. The bottom panel shows the
difference between the simulations and predictions as a function of redshift.
Full details of the accuracy of the emulation can be found in Table 1 and a
discussion can be found in the text.

the accuracy of the trained models using the ≈1700 testing models
in the 21CMGEM data set. We compare the mean and 95 percentile
RMSE (see Section 6.2) for each architecture. We find that a
network of size [16, 16, 16] is the first to meet our target accuracy
of on average 10 per cent the expected noise in a Global 21-cm
experiment.

While we may be able to achieve a better accuracy with a larger
network, this pragmatic approach leads to a sufficiently accurate
network for physical signal modelling in the data analysis pipeline
of a Global experiment like REACH. We also note that a smaller
network can be evaluated faster than a larger architecture and that

this is important when we are making multiple evaluations inside a
nested sampling loop.

5.2 Loss function and learning rate

GLOBALEMU uses the mean squared error, typical for a regression
network, as the loss function. In the case of the Global signal, network
is given by

MSE = 1

N

N∑
i=0

(δTsim,i(zi) − δTpred,i(zi))
2, (5)

where N is a batch size equivalent to the number of redshift data points
in each signal. δTsim(z) is the simulated signal temperature at a given
redshift and δTpred(z) is the emulated equivalent. GLOBALEMU trains
the neural networks in batches primarily to prevent memory related
issues since the training data can be large (≈27 000 models times
451 redshift points ≈12 million data points for the 21CMGEM data).
We find that a reasonable batch size is equal to the number of redshift
data points in each model.

For the 21CMGEM data and the GLOBALEMU framework, we deter-
mine an effective learning rate to be 0.001. As with the architecture,
the learning rate can be adjusted by the user of GLOBALEMU to meet
the requirements of the data that they are training on.

5.3 Optimizer

The neural network optimizer is used to change the network hyper-
parameters to minimize the loss function. There are a number of
different optimizers available (Ruder 2016) and the choice can
be dependent on the complexity of the problem and loss surface.
A more robust optimizer is less likely to fall into and get stuck
in local minima when training the network, resulting in more
accurate emulation. Therefore, the choice of optimizer is important
in designing an effective emulator. However, since GLOBALEMU is
designed to minimize the complexity of the relationship between the
inputs and outputs and an MSE loss surface is relatively smooth5 our
choice is less consequential. We use therefore the commonly applied
ADAM (Kingma & Ba 2014) optimizer that is a momentum-based
modified stochastic gradient descent algorithm.

5.4 Activation functions

For both the Global signal and neutral fraction history network, we
use a tanh activation function in the hidden layers that can range
between (−1, 1). However, for our final layer in the Global signal
network we use a linear activation since the pre-processed temper-
ature can be positive or negative and range between approximately
−4 and 0.5. Similar consideration is given to the output layer in
the neutral fraction network where we use a ReLU (Rectified Linear
Unit) activation that ensures that the output is always positive. Again,
the activation functions can be changed by the user of GLOBALEMU to
meet the requirements of their data. We note that the above output
layer activations are designed to prevent unphysical outputs and that
this is a crucial consideration for any user.

5This can be assessed with a plot of the loss versus epoch number during
training. We find that for the results presented in Section 6 the surface is
smooth up until the loss has plateaued and training is complete at which point
we see noise-like behaviour.
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Table 1. Detailed results of the emulation using GLOBALEMU and the 21CMGEM training and test data for both the
Global signal and the neutral fraction history. We find that GLOBALEMU achieves the desired accuracy of on average
≈10 per cent the expected noise of a typical Global 21-cm experiment (equating to ≈2.5 mK in the REACH band of
z = 7–28). Of note are the recorded 95 per cent percentiles, the RMSE for which 95 per cent of the models have values
smaller than or equal to, which are significantly lower than the maximum RMSE values. A discussion comparing the

results of 21CMGEM and GLOBALEMU, in terms of ˜RMSE, can be found in the text. Briefly we find that our Global

signal emulator has a maximum ˜RMSE approximately half that achieved with 21CMGEM. For the neutral fraction,

RMSE = ˜RMSE and so we only report one set of results. We find a higher degree of accuracy here with an identical
network and similar pre-processing indicating a simpler relationship.

Global signal Neutral fraction
z = 5–50 z = 7–28 z = 5–30 z = 7–28

RMSE Minimum 0.30 mK 0.31 mK 0.09 per cent 0.08 per cent
Mean 1.85 mK 2.52 mK 0.29 per cent 0.26 per cent

95th percentile 3.90 mK 5.37 mK 0.47 per cent 0.44 per cent
Maximum 10.26 mK 15.10 mK 1.12 per cent 0.65 per cent

˜RMSE Minimum 0.21 per cent 0.26 per cent – –
Mean 1.12 per cent 1.53 per cent – –

95th percentile 2.41 per cent 3.22 per cent – –
Maximum 6.32 per cent 9.31 per cent – –

6 R ESULTS

6.1 Emulation time

In Cohen et al. (2020), the reported average time taken per signal with
21CMGEM is 160 ms when emulating a set of signals in a vectorized
call. Here, we compare the speed of 21CMGEM and GLOBALEMU by
emulating the 1703 test models and taking an average time per signal.
The tests are performed with MATLAB and PYTHON, respectively, on
the same computer with the following processors: Intel R© CoreTM

i3-10110U CPU @ 2.10 GHz × 4. For 21CMGEM, we make a
vectorized call to the emulator as this results in a quicker performance
than repeated single calls. We use a for loop to repeatedly call
GLOBALEMU that currently does not support such vectorized calls
as they are not needed for physical signal modelling in a nested
sampling loop.

For GLOBALEMU, we record a total time of 2.29 s and a correspond-
ing average time per signal of 1.3 ± 0.01 mK. In comparison when
emulating the same signals in a vectorized call with 21CMGEM we
record a total time of 227.18 s and an average time per signal of
133 ms. We therefore achieve a factor of 102 improvement in emu-
lation time with GLOBALEMU. We note that when using the PYMAT-
BRIDGE (https://github.com/arokem/python-matlab-bridge) PYTHON

wrapper for MATLAB the average time taken to run a single prediction
with 21CMGEM using a vectorized call is comparable to a direct call
in MATLAB.

6.2 Measuring accuracy

In this section, we primarily consider the accuracy of the Global
signal emulator because the neutral fraction network has a similar
design. We note, as previously stated, that the relationship between
the neutral fraction and the astrophysical parameters is expected to
be simpler and therefore easier to learn.

To assess the accuracy of GLOBALEMU when emulating a Global
21-cm signal simulation, we use a combination of two metrics: the
RMSE and the normalized RMSE given in Cohen et al. (2020) as

˜RMSE = RMSE

max|δTsim(z)| , (6)

where

RMSE =
√√√√ 1

N

N∑
i=0

(δTsim,i(zi) − δTpred,i(zi))2. (7)

For the neutral fraction network, ˜RMSE and RMSE [with xH I
sim(z)

and the equivalent for the emulation in place of temperature] are
equal since max|xH I

sim(z)| = 1. We assess the accuracy in the uniform
redshift space and consequently our assessment is independent of the
loss function used for training.

˜RMSE is a dimensionless quantity used by 21CMGEM and by
assessing the quality of our network with this metric we can make
direct comparisons between the two emulators. We also want our
emulator to have an accuracy significantly lower than the expected
noise floor of Global 21-cm experiments. This is required if the
emulator is to be used to confidently model the Global 21-cm signal
and draw conclusions about the astrophysics during the CD and EoR.
To assess this accuracy requirement, we can use the dimensionful
RMSE metric.

As highlighted in the previous section, we suggest an average
accuracy of �10 per cent the expected noise of a Global 21-cm
experiment such as REACH, equivalent to an RMSE � 2.5 mK,
to be a sufficient limit. Since the accuracy of emulation is a function
of the bandwidth, we report the accuracy across the entire range
of the simulations z = 5–50 (z = 5–30 for the neutral fraction
network) and across the expected REACH Phase I bandwidth of
z = 7–28 (REACH Collaboration, in preparation). The target is
demonstratively achievable (see the following section). It is also
a practical target, if we want to use GLOBALEMU for physical
signal modelling, given that the noise in a 21-cm experiment has a
fundamental effect on our confidence in any astrophysical parameter
values inferred from the data and that this will likely be larger than
the uncertainty introduced from GLOBALEMU.

6.3 Global 21-cm signal

Fig. 9 shows that the mean RMSE value across the redshift range z =
5–50 is 1.85 mK and that the maximum value is 10.26 mK. Further,
Table 1 shows that performing the same calculation of the RMSE
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Figure 10. The top three panels show the mean, 95 percentile, and the worst
emulations, respectively, for the neutral history across the entire test set of 791
models and the difference between the simulations and predictions is shown
in the bottom panel. The level of accuracy here is higher than that for the
Global signal, despite using a similar pre-processing and identical network,
demonstrating that the relationship between the astrophysical parameters,
redshift, and the network output is simpler here.

inside the REACH band, z = 7–28 gives a mean value of 2.52 mK
that is very close to the desired 2.5 mK limit. We also report in the
table the RMSE value for which 95% of the models have a value
smaller than or equal to. In the REACH band, this equates to 5.37
mK. For all of the reported results, the 95 percentile is significantly
lower than the maximum values (a factor of 3 for the Global signal
and a factor of approximately 1.5–2 depending on bandwidth for the
neutral fraction histories). This means that out of a set of 1703 Global
signals only 85 have RMSE values above 3.90 mK across the band
z = 5–50 for example. We note that the values reported, averages

across redshift ranges, in the REACH band are generally higher than
across the whole redshift range because the REACH band excludes
redshifts �30 where the emulation is expected to be very precise.

Section C shows the explored parameter space for the Global 21-
cm signal in the 21CMGEM test data set and the corresponding error
when emulating the signals with GLOBALEMU.

Finally, in Table 1 we also report the ˜RMSE values in both the
REACH band and across the whole redshift range. Cohen et al.
(2020) report similar results for 21CMGEM and particularly we note
that, when training and testing on the same data sets, we recover

a mean ˜RMSE of 1.12 per cent compared to 1.59 per cent when
using 21CMGEM. Similarly, we report a maximum value of 6.32%
in comparison to the value of 10.55% reported by Cohen et al. for
21CMGEM. This further demonstrates that GLOBALEMU can achieve
a high degree of accuracy in its emulation.

6.4 Neutral fraction

For the neutral fraction history network, we show similar results.
Fig. 10 demonstrates the quality of the emulation with the mean, 95
percentile, and the worst results when emulating the neutral fraction
and these values are detailed in Table 1. The results generally are of
higher quality than those for the Global signal and, noting that the pre-
processing for the two networks is near identical and the networks
themselves are of the same size, this supports the understanding
that the relationship between the inputs and outputs is simpler here.

In the band z = 5–50, only 39 of 791 test models have ˜RMSE ≥
0.47 per cent.

7 C O N C L U S I O N S

GLOBALEMU uses a novel approach to emulate, with neural networks,
the Global 21-cm signal and the evolution of the neutral fraction
during the CD and EoR by considering redshift as an input to the
neural networks alongside the astrophysical parameters. In tandem
with this reparametrization of the problem, we use a predominantly
physically motivated pre-processing for both the Global signal and
neutral fraction. We subtract from the Global signals an AFB that
obviates the need for the network learning a non-trivial but well-
understood relationship at high redshift. We then resample both the
Global signals and neutral fractions so that the regions that vary
significantly across the training data sets can be better characterized
by the networks.

The above framework allows the complex relationships between
the astrophysical parameters and the Global signal or neutral fraction
history as functions of redshift to be effectively learnt with small
neural networks. Each Global signal of 451 redshift data points can
be emulated in on average 1.3 ms. We note that this is a factor
of approximately 102 improvement on the 133 ms we record with
MATLAB when predicting the same signals on the same computer
with 21CMGEM.

We demonstrate the effectiveness of GLOBALEMU by using the
21CMGEM training and testing data. This allows for a direct
comparison between our results and the results of 21CMGEM. We
find that GLOBALEMU can emulate to a higher degree of accuracy the
Global 21-cm signal than 21CMGEM with a maximum normalized
RMSE of 6.32 per cent in comparison to 10.55 per cent over the range
z = 5 − 50. We also demonstrate that GLOBALEMU can emulate a
Global 21-cm signal to, on average, less than 10 per cent the expected
noise of a Global 21-cm experiment like REACH.

MNRAS 508, 2923–2936 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/2/2923/6375431 by guest on 20 April 2024



GLOBALEMU 2933

Finally, GLOBALEMU is a flexible PYTHON package that can be eas-
ily retrained on updated models with new astrophysical dependences.
For example, additional astrophysical phenomena such as Lyman α

heating (Reis et al. 2021) or additional radio background produced
by galaxies (or an indeterminate synchrotron-like source; Fialkov &
Barkana 2019; Reis et al. 2020) can be incorporated and easily trained
upon. While the results achieved with the 21CMGEM data are im-
pressive, the novelty of GLOBALEMU is in its flexibility, incorporation
of redshift as an input, and physically motivated pre-processing.
Particularly, the final two points allow for an accurate mapping from
parameters to temperature with a single neural network reducing the
points of failure and need for excessive fine-tuning.
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APPENDI X A : CALCULATI NG THE AFB

To approximate the AFB, we need to consider the physics defining the
signal structure during the period dominated by collision coupling.
During this period, neutral hydrogen atoms collide with other neutral
hydrogen atoms, protons, and electrons. The spin temperature of
hydrogen is coupled to the gas temperature, TK, via the collisions
and that temperature cools adiabatically at a faster rate than the
background radiation, Tr. The spin temperature, Ts, that encodes the
number of hydrogen atoms in the two hyperfine levels of the ground
state (Furlanetto et al. 2006) during this period is given by

1

Ts
= 1/Tr + xc/TK

1 + xc
, (A1)

where xc is the collisional coupling coefficient. For our approxima-
tion of the AFB calculated here, we use a reference value for the gas
temperature of TK,ref = 33.7340 K at zref = 40 from the simulations
used to produce the training and test data sets. We then scale TK,ref

adiabatically using

TK = TK,ref
(1 + z)2

(1 + zref )2
(A2)

to get TK as a function of redshift.
The coupling is dominated by H–H collisions and so we only

consider these in our simulation. The coupling coefficient for this
interaction is given by Furlanetto et al. (2006)

xHH
c = nHκHH

10 T∗
A10Tr

, (A3)

where κHH
10 is the rate coefficient for the spin deactivation of neutral

hydrogen, T∗ is the energy defect, and A10 is the spontaneous emission
coefficient of the 21-cm transition. nH is the relative number density
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of neutral hydrogen given by

nH = 3.403 68 × 1068 ρc

mp
(1 − Y )�b(1 + z)3, (A4)

where Y = 0.274 and is the Helium abundance by mass, ρc is the
critical mass density of the universe in Msol/cMpc3, mp is the proton
mass in Msol, and �b is the baryon density parameter.

From the above, we can then calculate δT as

δT = Ts − Tr

1 + z
(1 − exp(−τν0 )), (A5)

where τν0 is the 21-cm optical depth of the diffuse IGM

τν0 = 3hc3A10xH InH

32πkbTsν
2
0H (z)

, (A6)

where ν0 is the rest frequency of the 21-cm emission and H(z) is
the Hubble rate. In our calculation, we use the same cosmological
parameters that were used to generate the signals (see Cohen et al.
2020). Here, the neutral fraction, xH I, has a value of 1 since there is
no astrophysics involved in the AFB.

APPENDIX B: TESTING THE NEURAL
N E T WO R K S F O R OV E R F I T T I N G

We can demonstrate that, for both the Global signal and neutral
fraction, the chosen network sizes of 3 hidden layers of 16 nodes
do not overfit the training data by comparing the distribution of loss
values across the training and test data sets. This is shown in Figs B1
and B2 for the Global signal and neutral fraction, respectively. Again,

Figure B1. The probability density for the loss distribution found when
emulating the training and test data sets for the Global 21-cm signal with
GLOBALEMU.

Figure B2. The probability density for the loss distribution found when
emulating the training and test data sets for the neutral fraction with
GLOBALEMU.

we have used a Gaussian kernel density estimation to calculate
continuous probability density curves from the discrete histograms
of losses. We can see in both cases that the losses, evaluated with
equation (6), for the testing and training data sets, when emulated
with the trained neural networks, have similar distributions and can
consequently conclude that the neural networks are not overfitting the
training data. In the event that the training data were being overfitted,
the purple distribution, showing the training data losses, would peak
to the left of the orange distribution, showing the test data losses,
because the network would have learnt the training data to such a
high degree of accuracy that it cannot generalize well to the testing
data.

A P P E N D I X C : ER RO R V E R S U S PA R A M E T E R

Fig. C1 shows the parameter space explored in the 21CMGEM test
data set as a scatter plot. The data points are coloured based on
the RMSE value calculated when comparing the corresponding
true signal with the emulation, over the range z = 5–50, from
GLOBALEMU.

Fig. C2 shows the equivalent graph with the colours determined

using the dimensionless ˜RMSE metric across the band z = 5–50.
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Figure C1. The parameter space explored by the 21CMGEM test data set. Each panel shows the 1703 models plotted as data points based on the corresponding
astrophysical parameter values. They are coloured according to the RMSE calculated when comparing the true signals to the emulation from GLOBALEMU across
the range z = 5–50.
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Figure C2. The equivalent of Fig. C1 with the data points coloured based on the dimensionless ˜RMSE error calculated across the band z = 5–50.
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