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ABSTRACT

The 1D evolution equations for warped discs come in two flavours: For very viscous discs, the internal torque vector G is
uniquely determined by the local conditions in the disc, and warps tend to damp out rapidly if they are not continuously driven.
For very inviscid discs, on the other hand, G becomes a dynamic quantity, and a warp will propagate through the disc as a
wave. The equations governing both regimes are usually treated separately. A unified set of equations was postulated recently
by Martin et al., but not yet derived from the underlying physics. The standard method for deriving these equations is based
on a perturbation series expansion, which is a powerful, but somewhat abstract technique. A more straightforward method is to
employ the warped shearing box framework of Ogilvie & Latter, which so far has not yet been used to derive the equations for
the wave-like regime. The goal of this paper is to analyse the warped disc equations in both regimes using the warped shearing
box framework, to derive a unified set of equations, valid for small warps, and to discuss how our results can be interpreted in

terms of the affine tilted-slab approach of Ogilvie.
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1 INTRODUCTION

In the last few years, numerous examples of non-planar proto-
planetary discs have been observed. The first direct observational
indication of such non-standard geometries came with the interpre-
tation of two mysterious shadows on the disc around HD 142527 as
being cast by an inner disc that is inclined 70° with respect to the
outer disc (Marino, Perez & Casassus 2015). Since then numerous
additional examples have been found (e.g. Benisty et al. 2017, 2018;
Stolker et al. 2017; Keppler et al. 2020). Lately, even more complex
warped, twisted and broken disc geometries have been discovered,
for instance, in the disc around HD 139614 (Muro-Arena et al. 2020)
and GW Ori (Bi et al. 2020; Kraus et al. 2020). Clearly, the topic
of warped and twisted discs has been cast back into the limelight by
these discoveries, even though the theory goes back several decades
(e.g. Papaloizou & Pringle 1983; Pringle 1992; Lubow & Pringle
1993).

Also in other areas of astrophysics warped disc geometries are
common. For instance, some X-ray binaries are thought to host
warped and tilted accretion discs. The occultation of an accreting
neutron star by a precessing, tilted accretion disc is thought to explain
the superorbital modulation in the light curves of LMC X-4, SMC X-
1, and Her X-1 (e.g. Charles et al. 2008; Brumback et al. 2020, 2021).
In addition, the narrow Fe K emission line in the X-ray binary and
black hole candidate MAXI J1535—571 is ascribed to a warp which
locally alters the profile of the accretion disc (Miller et al. 2018).
Active galactic nuclei (AGN) discs around supermassive black holes
have significant evidence for warps as well. The maser emission from
NGC 4258 (Herrnstein et al. 2005), Circinus (Greenhill et al. 2003),

* E-mail: dullemond @uni-heidelberg.de

© 2021 The Author(s)

Published by Oxford University Press on behalf of Royal Astronomical Society

and four of the seven megamaser discs in the Megamaser Cosmology
Project (Kuo et al. 2011) are best fit by warped AGN disc models.
Also, the jets of multiple AGN are not perpendicular to the galactic
plane, implying misalignment of an inner AGN accretion disc with
the galactic disc (Kinney et al. 2000).

While it has become increasingly clear that a full understanding
of warped discs requires 3D numerical simulations (e.g. Lodato
& Pringle 2007; Facchini, Lodato & Price 2013; Nixon, King &
Price 2013; Sorathia, Krolik & Hawley 2013; Nealon et al. 2016;
Martin, Zhu & Armitage 2020), these simulations are extremely
costly and therefore cannot be propagated in time over millions
of years. Furthermore, the complexity of these 3D models can
make it difficult to gain physical and mathematical insight into
the mechanisms responsible for the observed dynamics. Simple 1D
models of interacting concentric rings remain therefore an important
tool for the study of warped discs.

The equations for warped discs in the interacting concentric rings
approach have been formulated in several papers including e.g.
Ogilvie (1999) and Lubow & Ogilvie (2000). In these papers, the
equations were derived using a higher order perturbation theory
approach, leading to equations that showed the dynamic nature of the
internal torque vector G and the wave-like nature of the propagation
of a warp (bending waves). For very viscous discs, however, G loses
its dynamic nature, and will instead be purely a function of the
local conditions of the disc. The warp then propagates as a diffusive
mode, with the torque vector G acting to damp out the warp and
viscously transport mass. The expressions for G as a function of
the local conditions in the disc were derived by Ogilvie & Latter
(2013a) by introducing a local shearing box formulation of the disc
hydrodynamics. In contrast to the higher order perturbation analysis
method, this approach does not yield the global disc equations: Only
the G vector as a function of the local conditions is obtained. But
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the advantage is that it is much more straightforward to extend
the local warped shearing box formulation into the highly non-
linear regime. Moreover, it is more intuitive than the perturbation
analysis approach, since it directly solves for the motions of the
local fluid variables. Although the two methods yield mutually
compatible results in the relevant limits, the relation between the
two is not fully clarified. As a consequence, the time-dependent
evolution equations for the interacting concentric rings model for
the two regimes (low- and high-viscosity regime) are somewhat
disjunct.

Martin et al. (2019) introduced a generalized set of equations
for the interacting concentric rings model, which bridges the gap
between the two regimes. In their set of equations the dynamical na-
ture of G automatically appears for low viscosity, and automatically
vanishes for high viscosity. The equations for both limiting cases are
reproduced. In addition, they add two damping terms proportional
to a parameter they call B8, which are necessary to eliminate an
unphysical and spurious behaviour of the viscous evolution of the
surface density X (r, ) of the disc.

It is the purpose of this paper to derive a unified set of equations
directly from the warped shearing box model of Ogilvie & Latter
(2013a), and, through this, obtain a clearer picture of how the wave-
like and diffusive regimes are related. We show that they are in
agreement with the limiting cases of Ogilvie (1999), Lubow &
Ogilvie (2000), and Ogilvie & Latter (2013a), and that the general
case agrees with Martin et al. (2019), with the exception of Martin’s
B terms. We elucidate the role of Martin’s 8 terms, and introduce
an alternative way to eliminate the unphysical behaviour of the
unmodified equations.

In addition, an analytical theory of the nature of the gas motions in
a warped disc can be used as a starting point for further investigations
of physical processes occurring inside of warped discs, such as
hydrodynamic instabilities, the physics of dust in these discs, and
the interaction of the warped disc with planetesimal or planetary
objects that have formed in them.

2 PREVIEW

Since the derivations to come are somewhat lengthy, we start with
a preview of our approach. Consider two neighbouring disc annuli,
A and B, which are slightly inclined with respect to each other.
Annulus A is the inner one, B the outer one. As a convention we
define the unit vector perpendicular to annulus A to be along the
z-axis: I 4 = (0,0, 1). That of annulus B is I3 = (¢, 0, 1 — (1/2)€?)
to second order in €, for a small positive value of €. Annulus B is
therefore tilted in positive X-direction with respect to A. We assume
the orbital motion to be counter-clockwise, when viewed in the (X,
Y)-plane, and we define the azimuthal angle ¢ such that ¢ = 0 lies
on the Y =0, X > 0 plane and increases in the direction of the orbital
motion.

The question now is as follows: How do these two annuli affect
each other’s orbital orientation (I, and /3)?

At first glance, one may be tempted to compute the out-of-plane
component of the pressure force between the two annuli. This force
is maximal at ¢ = 0 and 7 as these are the locations where the two
annuli are maximally vertically offset from each other. This pressure
force would lead to a torque that annulus A exerts on annulus B
that lies in the Y-direction, i.e. perpendicular to both I, and Ip.
The opposite torque acts on annulus A. As a consequence, both
annuli would start precessing around their mean angular momentum
axis. However, a more detailed calculation would show that this
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Figure 1. A cartoon of how a warp leads to horizontal pressure gradients,
which lead to the ‘sloshing motion’ of gas in the disc (blue horizontal arrows).
At the inclined mid-plane, the gas pressure is the highest (‘high p’ in the
figure), while in the disc atmosphere it is lower (‘low p’ in the figure). The
coordinates x and z are the local coordinates used for the shearing box in this
paper. This cartoon was inspired by the cartoon in fig. 5 of Ogilvie & Latter
(2013a).

precession only happens under special circumstances, while in most
circumstances it is only a very minor effect.

On ‘second glance’ one may be tempted to compute the viscous
friction force between the two annuli as they switch sides (near ¢ =
/2 and 37/2). During the passage near 7/2, the gas of annulus B
moves upward with respect to the gas of annulus A. Shear viscosity
thus exerts a torque on annulus B that lies along the x-axis and points
in negative X-direction, while the opposite torque acts on annulus A.
As a result, the orientation vectors of two annuli /4 and I 3 approach
each other: They align to each other and their mutual inclination
damps out. While this picture is correct, it turns out that this torque
plays only a minor role compared to the torque originating from
oscillatory motions in the gas (Papaloizou & Pringle 1983).

It was shown by Papaloizou & Pringle (1983) that the oscillating
horizontal pressure gradients produced by the oscillating vertical
offset between adjacent annuli (see Fig. 1) leads to strong horizontal
epicyclic motions in the disc with an amplitude proportional to the
distance 7’ from the disc’s mid-plane. These oscillations, in turn,
produce an orbit-averaged torque that completely dominates any
of the viscous torques. These motions are similar to the ‘sloshing
motion’ of a layer of water on a tray that undergoes an oscillating
tilt. Although these are usually referred to as ‘resonant motions’ in
the literature, we will call them ‘sloshing motions’ from here on. The
key to understanding the internal torque in the disc is therefore to
understand the behaviour of these sloshing motions.

Papaloizou & Pringle (1983) and Papaloizou & Lin (1995) showed
that for viscosities oy > h,/r (where h;, is the pressure scaleheight of
the disc and « is the usual viscosity parameter), the global behaviour
of a disc warp is to damp out in a diffusive manner, while for
lower viscosity the warp propagates as a wave. Using an asymptotic
expansion method, Ogilvie (1999) and Lubow & Ogilvie (2000)
derived, from first principles, self-consistent equations for these two
regimes. In the diffusive regime (et; > h,/r), the sloshing motion is, at
all times, in a local steady state of oscillation that depends only on the
local conditions and the local warp amplitude. The resulting internal
torque vector G can therefore be computed uniquely from these local
conditions. In the wave-like regime (a; < hp/r), the sloshing motion
never finds the time to reach a local oscillatory steady state because
the disc geometry changes faster than this steady state can be reached.
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The resulting internal torque vector G therefore becomes a dynamic
quantity. The local conditions do not determine the torque, but only
determine its time derivative. As a result, a warp propagates as a
wave.

Finding a set of equations that is valid in both regimes, and also
self-consistently includes the radial viscous mass transport in the
disc, requires an understanding of how the sloshing motions and
the resulting internal torque behave when the time-scale for the
sloshing motion to reach a local steady-state oscillation is similar
to the time-scale by which the disc geometry itself changes. Martin
et al. (2019) have done this empirically by starting from the time-
dependent equation for the internal torque from the wave-like regime,
and adding terms such that, for sufficiently large ¢, the resulting
asymptotic torque becomes equal to the one derived for the diffusive
regime.

The aim of our paper is to derive the time-dependent equations for
G, valid in both the diffusive and the wave-like regime, from first
principles, by studying the sloshing motion itself. To this end we
will zoom in to a local annulus of the disc, and employ the warped
shearing box framework of Ogilvie & Latter (2013a) to derive these
equations. The resulting equations (83) and (84) are those of a driven
and damped harmonic oscillator. When initiated with a given initial
condition, the oscillation evolves, and eventually reaches a steady-
state oscillation (equations 88 and 89, provided the local warp does
not change). The steady-state oscillation solutions were described in
Ogilvie & Latter (2013a). The key to finding the link between the
diffusive and wave-like regime lies in including the dynamics that
can occur before this steady-state solution is reached (equations 90
and 91). For large amplitudes of the sloshing motion, the equations
become non-linear, which would require a numerical treatment. For
sufficiently small amplitudes, however, the linear set of equations
allow the solution to be written as a steady-state particular solution
plus a transient homogeneous solution (equations 85 and 86). The
steady-state particular solution is identical to the solution described
in Ogilvie & Latter (2013a). The transient homogeneous solution
describes how the sloshing motion approaches this particular solution
for any given initial condition. After transforming these solutions to
the lab frame (equations 103 and 104), we derive the resulting internal
torque vector components (equations 127 and 128).

Given that the decay of the homogeneous solution takes often
much more time than the change in the disc geometry, we cannot just
use this description of the sloshing motion and the resulting internal
torque vector. Instead, we cast this behaviour of the internal torque
vector into a local ordinary differential equation (equation 161). This
leads to the first version of the generalized warped disc equations we
propose in this paper (equation 165, together with the equations in
Section 3, valid for small warps). We will compare our equations to
those in the literature in the appropriate limits (diffusion limit and
wave-like limit) and find general agreement.

However, in agreement with Martin et al. (2019), we find that
the full set of equations display a spurious behaviour in the viscous
evolution of the surface density X(r, #) of the disc, even in regions
of the disc where the warp wave has already passed. The cause of
this behaviour lies in the fact that our equations, and those in the
literature, do not account for what happens when the orbital plane
of the disc annulus changes its orientation (which will doubtlessly
happen as a result of the torques themselves, and possibly due to an
external torque as well). The corresponding correction terms to the
equations cannot be readily derived from the shearing box analysis,
since in that analysis the box is kept at a fixed orientation. Instead,
we argue that the internal torque vector co-rotates along with any
rotation of the orientation vector because otherwise the torque vector
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will become unphysical. We propose a rotation-inducing correction
term to our equations and demonstrate that this yields a physically
correct behaviour of the combined evolution of the warp and the
surface density. This leads to the second and final version of our
proposed generalized equation for the internal torque, valid for small
warps (equation 172).

Martin et al. (2019) follow a different approach: They use damping
terms to damp away the unphysical parts of the internal torque vector.
We compare our approach to theirs and show that both approaches
lead to compatible results, though our approach results in a less stiff
set of equations and does not require a free tuning parameter such as
the B parameter of Martin et al. (2019).

Finally, we will show how our set of equations can be intuitively in-
terpreted using the affine tilted slab picture of Ogilvie (2018), thereby
resolving the apparent ‘first glance misconception’ mentioned above.

3 SETTING THE SCENE: GLOBAL
CONSERVATION EQUATIONS

Before zooming in on to the shearing box, it is useful to recall the
global conservation laws that govern the evolution of the disc. Mass
conservation is given by the following partial differential equation:
X 190
— 4+ ——(rX2v) =0, 1
ot r or ( r) M
where v, is the radial velocity of the gas and X is the surface
density. Angular momentum conservation is a vector-valued partial
differential equation. Define the angular momentum per unit surface
area

L, t) =S, 0)Qr)r2l(r, 1), 2)

where Q(r) is the orbital angular frequency at radius r, and I(r, 1)
is the unit vector perpendicular to the disc annulus of radius r. The
vector I(r, t) is a dynamic quantity describing the warp geometry
and its evolution. The angular momentum conservation is now given
by

% + ;%(err—i—rG) =T, 3)
where G is the internal torque vector and 7' is a possible external
torque. Although equation (3) is formulated in terms of L, it is,
actually, the equation of motion for I(r, t). The two conservation
equations can be combined to find an expression for the radial
velocity v, (Martin et al. 2019):

= owGy/or-1 )

T o(Qr2)/or’
The computation of the internal torque vector G is the subject of this
paper, which we will do by studying the disc with a shearing box
analysis. We will show that G is governed by equations (153), (156),
and (173). Some readers may be more familiar with another form
of the warped disc equations. We will discuss the relation between
these two forms in Appendix A.

4 LOCAL WARPED SHEARING BOX
EQUATIONS

4.1 Basics

Ogilvie & Latter (2013a) presented the ‘warped shearing box’
approach for studying the local internal dynamics of the gas in a
warped disc. We will largely follow their path, with only minor
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X-Z cut at ¢=0 (right) and ¢=m (left)

Figure 2. A cartoon of the geometry of the warped disc and coordinate
systems used, shown as a vertical cut through the disc. Here only the ¢ =0, ¢
=7 (i.e. the X-Z) plane is shown. The global coordinates (X, Y, Z) are, for the
derivation of the equations, chosen such that d//d Inr points in X-direction.

modifications of notation. We refer to that paper for an introduction
to the concepts of this approach.

In classical viscous disc theory, the disc is described as a con-
tinuous set of concentric annuli as a function of radius r. The mass
distribution is described by the surface density X (r), and viscous disc
theory describes how this function changes with time: X(7, ). In a
warped disc, also the inclination is dependent on radial coordinate.
Let I(r) be the unit vector perpendicular to the disc annulus at radius
r, then a non-zero dl/dr is what is called a warp. Let us define the
warp vector as

_ dl(r)
v = dlnr’ )
and the warp amplitude (Ogilvie 1999) as
V() =1y@)l. (0)

The viscous evolution of a warped disc describes the time-
dependence of X(r, t) and I(r, t) for a given initial condition. Since
this evolution is driven by the conservation and transport of angular
momentum through the disc (see Section 3), we need to derive
equations for the internal torque G(r, t). This is where the shearing
box model comes in. To apply the shearing box framework to a
warped disc, we choose a radius ry and define the global laboratory
frame (X, Y, Z) coordinate system such that I(ry) points in the Z-
direction, and that the warp vector d//d Inr points into positive X-
direction (see Fig. 2). Note that fig. 1 of Ogilvie & Latter (2013a)
gives a 3D illustration of this geometry, where their m vector is the
unit vector in X-direction, ey, and their n vector is the unit vector
in Y-direction, ey. Along the circular orbit at r = ry we define the
azimuthal coordinate ¢ counter-clockwise, with ¢ = 0 at the positive
X-axis, i.e. X(r = ry, ¢) = rocos (¢p) and Y(r = ry, ¢) = rosin (¢). The
gas rotates in the direction of increasing ¢ with an orbital angular
frequency 2y = Q(r = rp). As Ogilvie & Latter (2013a), we define
q as

dIn Q2

dlnr’
which, for perfectly Keplerian orbits, is ¢ = 3/2. However, in realistic
discs, g can deviate slightly from 3/2. In protoplanetary discs, this is
due to the radial pressure gradient, or external influences, such as a

binary companion (e.g. Zanazzi & Lai 2018b), or magnetic torques
(e.g. Lai 1999, 2003).

g = ™

4.2 Unwarped shearing box coordinates

In the classical shearing box framework, we follow the orbital motion
of the gas near radius ry and define local coordinates (x, y, z) such
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that the origin comoves along the orbit at » = r, at orbital angular
frequency Qo = Q(r = rp), and rotates such that x always points
outwards, y always stays tangent to the orbit, and z always points
upward (parallel to I(r = rp)). The velocity components (i, uy, u;)
are defined as the comoving time derivatives of the location of a test
particle or fluid parcel in this local coordinate system: u, = Dx(¢),
iy = Dyy(1), u; = Diz(1).

In this local coordinate system, the equations of motion of a test
particle or a fluid parcel are

Dx = u,, (8)
Dy = uy, ©
Dyz = u,, (10)
D, —2Q0u, = fi +2qQx, (11)
Doty + 2Q0u, = fy, (12)
D, = f, — Qz, (13)

where f; (with i = x, y, z) are the forces per unit mass acting on
the test particle or fluid parcel. In case of a fluid parcel, these forces
include the pressure gradient force and the viscous forces, which
we will discuss later, plus external forces, if present. The 2¢gQ3x
term in equation (11) is the sum of the outward-pointing centrifugal
force and the inward-pointing gravitational force, which, at x = 0,
are in perfect balance. The second terms on the left-hand side of
equations (11) and (12) are the Coriolis forces. The —Q%z term in
equation (13) is the vertical component of the gravitational force.

In the simple case of zero viscosity and no external forcing, only
the gradient of the gas pressure p enters in the f; terms (let us call
these f7):

fr=p"0p,  fr=p"0p,  fr=p"0.p, (14)

where p is the gas density. For a non-warped laminar disc, one can
set d,p = 0 and d,p = O (a global radial pressure gradient cannot
be consistently included in a local shearing box model, except as a
pseudo-force). A simple solution is then u, = 0, u, = —gQx, and u,
= 0. What remains is to solve for the vertical density structure from
equation (13):

1 0p(z)

p(z) 0z

For the simple isothermal case, we set p = ,ocf with the isothermal
sound speed c¢; set to a constant. The solution is then

()= ——exp [~ (16)
PO= o, TP\ o2 )

where X is the surface density, and h, = ¢,/ is the pressure
scaleheight.

= Q. 15)

4.3 Warped shearing box coordinates

For a warped disc, the geometry is pictographically shown in Fig. 2,
where the amplitude of the warp has been exaggerated for clarity.
The warped version of the shearing box framework of Ogilvie &
Latter (2013a) introduce ‘warped local coordinates’ (x’, y’, z’) that
adjust themselves to the warped geometry:

x =x, 17
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y=y, (18)
7 =27 — yx' cos(¢). (19)

The 7' coordinate thus follows the up-and-down oscillation of the
gas at x’ # 0 as a result of the disc warp. The (x', z’) coordinate
geometry is shown in Fig. 2 on the right-hand side of the figure. It
is also nicely visualized in the right-hand panel of fig. 4 of Ogilvie
& Latter (2013a). However, as one can see from equation (18), in
contrast to Ogilvie & Latter (2013a), we do not modify y’ to follow
the azimuthal shearing motion of the gas in the disc because it would
lead to an incessant ‘winding up’ of the y’ coordinate. Therefore, the
left-hand panel of fig. 4 of Ogilvie & Latter (2013a) does not apply
to our (x', y’) geometry.

The new vertical coordinate z’ is the vertical coordinate with
respect to the mid-plane of the warped disc. Therefore, in first
approximation, the vertical density structure for the warped disc
can thus be described by equation (16) with z replaced by z'.

As the fluid parcel orbits around the star, the azimuth will change
according to ¢ = Qt, where the zero time 7 = 0 is chosen to be when
the parcel was at ¢ = 0.

In the warped shearing box coordinates, one can define the velocity
components in a similar way as in the unwarped case: 1’ = Dyx/(t),
u’v = Dyy'(¢), u, =Dz'(¢). However, it is useful to define new
velocities (v}, v}, v}) such that

’ / / ’ !/
Uy =0y, Uy =0, —qQx,

u, = v, + ¥ cos(p)}, (20)

with ¢ = Qt for the fluid parcel we follow. In relation to the
unwarped coordinate velocities, we then have

Uy =, 21
uy = v, —qQx’, (22)
u; = v, + ¥ Qox’ sin(¢), (23)

where we used equation (B3) of Appendix B1. The advantage of
the velocities (v, v;,, v]) compared to (i, u’y, u’) is that they are
orthogonal velocities, in spite of the skewed coordinate system
(x',y', 7). We call this a ‘half-mixed frame’ because it is mixed-
frame in y-direction but fully comoving frame in z-direction (and in
x-direction, it remains fixed to the shearing box).

In terms of these ‘half-mixed frame’ warped coordinates and
velocities, the equations of motion of a test particle or a fluid parcel
are (see Appendix B1)

D’ = v/, (24)
Dy’ = v} — qQox', (25)
Dz’ = v + Yv), cos(¢), (26)
D), —2Qov, = f, (27
D, + (2 — ¢)Qv, = fy, (28)
D + ¥ Qo sin(p)v, = f. — Q7. (29)

For the fluid dynamics, we also need the continuity equation

Dy =—pV - u, (30)
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which can, with the help of equation (B12), be written in warped
coordinates as

DiInp = —(0, + ¥ cos(¢)0 v, — ay,u_;, — 0. 31)

Next we turn to the forces f; (with i = x, y, z), which consist of the
pressure gradient force £, the shear viscosity force £, and possibly
an external force f:

fi= I+ 1 (32)

The pressure gradient force components in warped coordinates
become (see equation B9)

S = —=(1/p)(0x + ¥ cos(¢)0.)p, (33)
17 =-01/p)dyp, (34)
12 =-1/p)o,p. (35)

The expressions for the shear viscosity forces f in warped
coordinates are complex and their derivation cumbersome, so we
defer this to Appendix B2.

The equations of this section are the fluid equations in Lagrange
form. The comoving time derivative D, in all the above equations
can be written as 0, plus partial derivatives in x’, y’, and 7’ using
equation (B13), yielding the equations in the comoving laboratory
frame (defined as the x’, y', and 7’ warped coordinate system). This
forms a set of coupled partial differential equations for the motion of
the fluid (gas) in the warped shearing box.

4.4 Dimensionless time

For the following analysis, it will be convenient to scale all the
equations to a dimensionless time defined by

T = Qot. (36)

It is no coincidence that for a particle or fluid parcel T = ¢, as the
dimensionless time corresponds to the location along the orbit. In the
following, we will use T when we follow the fluid parcel along its
orbit, and ¢ when we put emphasis on the geometric location along
the orbit. We can then write

D, = QyD,. (37)
Equations (31), (27), (28), and (29) then become

QoD Inp = — (0 + ¥ cos(¢)d, v, — ay,v; — 0.0, (38)
D.v, — v, = ;' f. (39)
Do) + 2 — v, = Q' f;, (40)
D,v, + ¥ sin(p)v], = Q' £, — Q7. (41)

4.5 Equations for laminar solutions

Although the equations derived so far are valid for general flows in the
warped shearing box framework, in the remainder of this paper, we
are concerned with laminar solutions that are locally translationally
symmetric in x” and y’. This allows an analytic treatment. It should,
however, be kept in mind that in making this assumption (and, in fact,
by using the shearing box approach in the first place), we are rejecting
potentially important physics, which may affect the outcome (see
further discussion in Section 8.3).
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The assumption of translational symmetry in x” and y’ has the
simplifying consequence that 0,» = 0 and 0,» = 0. Furthermore we
can safely set x’ = 0 and y’ = 0. This already removes a number of
terms in the equations.

Next we make the simplifying assumption of a vertically isother-
mal equation of state, as we did at the end of Section 4.2. The
vertical density structure is then identical to the Gaussian solution of
equation (16), but with z replaced by z':

o(Z' 1) = Lexp (— @) ) 42)
’ V27thy(7) 2hy(1)? )

In fact, if we make the additional assumption that all velocities
v, v, and v, are zero at ' = 0 and linearly proportional to z’,
then the Gaussian structure of equation (42) remains valid even
while 9./v] # 0, i.e. during vertical compression or expansion. The
time-dependence of the entire vertical density profile can then be
described by the time-dependence of a single parameter: the pressure
scaleheight 4,(7).

Following Ogilvie & Latter (2013a), we therefore look for solu-
tions to the velocity variables of the form'

v (2, 1) = V(D07 (43)
v (2, 7) = V) (1)07, (44)
vz, T) = V(107 45)
Inserting these into equations (38)—(41) yields

D:Inp = =y cos(p)V, — V., (46)
DV, -2V, = (7)) £, 47
B 2 n—1

D, Vy +2- PV = (QOZ ) fyv (48)
D, V. + ¥ sin(@)V, = (%) £ — 1, (49)

where D, V; (with i = x, y, 7) is defined as

_ 1
D.V; = D.V; + Vi~ D:2
Z

- aer + Vz (Vz + I/j COS(d))VX), (50)

where in the second term, we used equations (37) and (B13).
Clearly only forces are allowed that vanish at 7’ = 0, for otherwise
these equations become singular. In fact, for solutions to exist, the
/i forces also have to be linear in z'. Indeed, this happens to be
true automatically for the pressure gradient force f; and the shear
viscosity force f', if one applies the Gaussian vertical structure
of equation (42). For the pressure gradient force f”, we start with
equations (33)—(35) and set 9,y = 0 and 9,/ = 0 to obtain

11 =—/p)y cos(¢)d. p. Gh
Il =0, (52)
fr=—1/p)dp. (53)

Now use equation (42) for computing the 9. p by setting p = pc?
and keeping ¢ constant. This yields

’

d.p=coup = —,ocf%, (54)
P

!For the symbol V, we omit the prime to reduce notational cluttering.
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where h,(7) can be time-dependent. From the non-warped disc
geometry, we know that the equilibrium value of &, is ¢,/ (see
Section 4.2). So let us define the dimensionless pressure scaleheight
H as

CS

0

This then leads to

1 Q
;az/P = —FZZ s (56)

which leads to the following expressions for the pressure gradient
forces:

(23) ™ £7 = ¥ cos(p)H 2, 57)
(@) fr =0, (58)
(@) fr=H" (59)

Before we devote our attention to the viscosity forces, let us rewrite
the D.In p term in equation (46). Using again the Gaussian vertical
density structure of equation (42) and realizing that in the comoving
derivative the (z')*/h,(t)* inside the exponent stays constant (the
vertical structure shrinks or expands vertically in a self-similar way),
we find

D.Inp=-D,InH=-0,InH. (60)

This allows us to write the equations for Vi (1), Vy(1), V.(1), and
H(t) (equations 46—49) as

0;In H =y cos(p)Vy + V,, 61)
D, V, — 2V, =y cos(p)H > + F", (62)
DV, +Q2—q)V, = F), (63)
D.V, + ¢ sin(@)V, = H > — 1 + F°, (64)

where F;'® are the viscous and external forces in the form
Five = Fviv + Fvie = (Q%Z/)’l (flv + fie) . (65)

Bulk viscosity can be included as a hysteresis factor in the pressure,
dependent on V - u, but we will not include this in this analysis.

Note, incidentally, that the right-hand side of equation (61)
happens to be the same as the term in brackets in equation (50).
And so one can write equation (50) as

D.V,=09,V,+V;0.InH. (66)

Together with the expressions for the viscous forces F; from
Appendix B2 (equations B48—-B50), and any possible external F;,
the set of equations equations (61)-(64) with ¢ = t is complete,
and can be integrated in time 7 for any initial condition of H, V,,
Vy, and V,. A recommended way to integrate these is by using a
numerical integrator such as the solve_ivp () method from the
scipy.integrate library of pyTHON, which is a higher order
integration scheme that automatically adjusts step size to control the
error, and is easy to use (Virtanen et al. 2020).

5 SOLUTIONS FOR THE SLOSHING MOTION

5.1 Vertical and horizontal oscillations

As pointed out by Ogilvie & Latter (2013a), for the non-warped case
(¥ = 0), and for zero viscosity, the equation set equations (61)—
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(64) has two oscillating modes: a vertical oscillation (called the
‘breathing mode’ by Ogilvie & Latter 2013a) coupling equations (61)
and (64), and a horizontal epicyclic oscillation mode (which we call
the ‘sloshing motion’) coupling equations (62) and (63).

This can be seen a bit clearer if we linearize equations (61)—(64).
Let us define an alternative variable to H:

H=¢e"=14+W+0OW?, (67)

and assume |W| <« 1. Now we remove all terms that are of second or
higher order in (W, V,, V,, V). We arrive at

0. W = ¥ cos(d)Vy + V., (68)
0.V, — 2V, = ¢ cos(p)(1 — 2W) + F)°, (69)
0V, + 2 -V = FF, (70)
0. V. + ¥ sin(@)V, = —2W + F)°. (71)

For y =0and F;* = 0, the two modes decouple. The breathing mode
has a frequency Q, = /282, while the sloshing mode oscillates at
the epicyclic frequency

Qe = /22 — ) Q0. (72)

It will be convenient for the remainder of this paper to define these
(and other) frequencies in units of the dimensionless time t. From
here onward, we define the dimensionless breathing mode frequency
wp = Qp/ Qo = ﬁ, and the dimensionless epicyclic frequency « as

K =82/Q =22 —q). (73)

For an exactly Keplerian disc, ¢ = 3/2, and therefore k = 1.

If no bulk viscosity is included, the breathing mode remains
undamped. In practice, it is likely that such modes will propagate
as waves through the disc in radial direction, but that cannot be
described within the framework used here. If no shear viscosity is
included, the epicylic oscillation will also be undamped. Also, in
this case, it may be that the epicyclic oscillations of neighbouring
annuli interact, but, again, this is outside of the scope of the present
framework.

For a warped disc, ¥ # 0, the two modes couple, albeit only
weakly if ¥ < 1.

5.2 Solutions to the linearized equations

The linearized equations equations (68)—(71) allow simple analytic
solutions if all terms proportional to the product of ¥ with one of the
variables (W, V., V,, V.) are considered small and are ignored. The
equations then reduce to

0, W=V, (74)
9.V, — 2V, = yrcos(¢p) + F.°, (75)
0. Vy+ Q2 -V, = F*, (76)
3, V. = —2W + F"°. (77)
The viscous forces (equations B48—B50) then reduce to

F! = —o (Vi + ¥ sin(g)), (78)
F) = —a(Vy — g cos(9)), (79)
F! = —a (3V. + ¥ sin(¢) cos(¢h)) . (80)
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The removal of these W and vV, terms has the consequence
that the vertical and horizontal oscillations decouple completely. Of
relevance to the internal torque is only the oscillation in V, and V:
the sloshing motion. Let us set the external force F = 0, and insert
F! and F, f into equations (75) and (76):

0: Vi —2Vy = yr(cos(¢p) — asin(9)) — e, Vs, (81)

ar Vy + (2 - q)Vx = alqw COS(¢) - alvyv (82)

where, again, we use’ ¢ = 7. And so, after a long journey, we have
arrived at two coupled linear ordinary differential equations for the
sloshing motion that can be solved analytically for V() and V(7).

For this analytical treatment, it is convenient to replace cos (¢)
with e and sin (¢) with —ie', solve for the complex versions of
V.(7) and V,(7), and then take the real part of these. Equations (81)
and (82) become

3.V, =2V, = ¥(l +ia)e' —aVy, (83)
. Vy + 2 — q)Ve = agpe® — V. (84)
‘We now seek solutions of the form

V(@) = Vi (1) + Vi (2), (85)
Vy(t) = Vi, (T) + Vi (1), (86)

where V(1) are the harmonic particular solution and Vj,(7) are the
homogeneous solution. The particular solution can be written as

pr(f) = pr()eirv va(t) = Vyp()eitv (87)
with
a4 -k +i(l+a})
Vepo = R 88
P K24+ (i + a)? v (8%)
200(i + o) — 262 (a0 + 2 + 1
‘/ypo — l( t) 2 ( t t )1//’ (89)

K2+ (i + ay)?

where k = +/2(2 — ¢g). The homogeneous solution can be written as

Van(7) = Vinoe™™, Vi (7) = Vypoe™™, (90)
with
o =K+ io. 91)

The values of Vy,0 and Vy are related to the initial conditions V(T
= 0) and V,(z = 0) through

Vino = Vi(t = 0) — Vipo. 92)

With this, we now have the complete family of solutions for the
sloshing oscillation in the linear regime for sufficiently small
that the ¥ W and v V; terms can be neglected. For non-small ¢, the
inclusion of these terms still keeps the problem linear in (W, V,,
Vy, V), but the solution will acquire higher order modes, and the
problem will become substantially more difficult. In that case, as
well as in the case that the linear approximation becomes invalid, a
numerical treatment is preferable.

2The reason why we do not immediately replace ¢ by 7 in these equations
will become clear in Section 5.3.
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5.3 The (7, ¢) picture and the real time-dependence

So far we have looked at a parcel of gas in the azimuthal comoving
frame, where 7 can be regarded as equivalent to azimuth ¢. However,
if the solution at T = 2 is not the same as the starting point at ©
= 0, then this equivalence of T and ¢ is invalid. Furthermore, while
we see time-dependent behaviour when moving along with a fluid
parcel as it orbits around the star, the behaviour of the entire annulus,
seen in the lab frame, may be stationary or only slowly varying in
time.

It is therefore better to look at the dynamics as a function of time
T and azimuthal angle ¢, i.e. V,(t, ¢) and likewise for the other
quantities. We will now assume that the ¢-dependence is e at all
times, and choose m = 1 because a warp is by definition an m = 1
mode. So we have

Vi(t, ¢) = Vi(1)e?, 93)

and likewise for the other quantities. This assumption is valid for
the linearized equations in which all terms proportional to ¥ W and
Y V; are neglected (i.e. equations 74—77). And since in this case the
vertical ‘breathing’ and horizontal ‘sloshing’ motions decouple, we
will from here on focus only on the ‘sloshing’ motion, the solution
of which was presented in Section 5.2.

In the (r, ¢)-picture, V,(r) is a property of the entire 27
circumference of the annulus instead of a single fluid parcel. By
definition, V,(7) is the value of V,(7, ¢) at dimensionless time t and
azimuth ¢ = 0. The value at any other azimuth is then a rotation
e'? in the complex plane of this value. If in the previous comoving
picture the mode under consideration had angular frequency w = 1
(i.e. in dimensional units: angular frequency €2¢), then in the present
m = 1 mode picture, V,(t) does not vary with 7. If, on the other hand,
in the previous comoving picture the mode under consideration had
angular frequency w # 1, then in the m = 1 mode picture, V(1)
varies with time as V,(t)oel©@ ~ D7,

The comoving time derivative D, of the comoving picture now
gets replaced by

D, — 3, + 0y = 0, +i. (94)

The i arises due to d4e = ie’. The 9, now stands for the non-
comoving (lab frame) time derivative at ¢ = 0.

The new form of the dynamic equations for V.. and V, (equations 83
and 84) now becomes

0.V, =2V, =v( +ia)— ({0 +a)Vy, 95)
0.V, + 2 —q)Vy = aq¥ — (i +a)V,. (96)
‘We look for solutions of the form

V(1) = Vipo + Vanoe™", 97)
Vi (1) = Vipo + Vynoe'™®, (98)

where the first terms are the particular solution given by equa-
tions (88) and (89), and the second terms are the homogeneous
solution, where wy = w — 1 is the lab-frame frequency of the
homogeneous solution, where w is given by equation (91), hence

wy=Kk — 1 +ia. 99)

‘What this says is that for slightly non-Keplerian discs (0 < |« — 1| <
1), the homogeneous part of the sloshing motion of V,(t, ¢) slowly
phase-shifts in time, and at the same time (for o, > 0) decays, leaving
eventually only the steady-state sloshing motion Ve, which does
not phase-shift in time. The slow phase-shift of the homogeneous
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solution is simply the apsidal precession of the epicyclic motion for
K # 1.
Note that the V0 and V0 are nearly perpendicular in the complex
plane (V0 being a phase shift ~7/2 ahead of V), but not exactly.
For the homogeneous solution, we can choose V.o (a complex
number) at will: It determines the initial condition of the homoge-
neous solution. For a chosen V.0, the V0 follows as

1,
Vino = i Veno- (100)

So, for the homogeneous solution, Vy;,(7) has exactly a phase shift
/2 ahead of V(7).

If we wish to express the initial conditions explicitly, we can write
the solutions as

V(1) = Vipo + (Vag — Vipo)e' ™", (101)

Vy(t) = Vyp() + (‘/_VO - V)'pO)eiwory (102)

where Vo =V (r =0) and Vyy = V(v = 0) are the initial conditions.
In other words, Vi, = Vig — Vipo. Clearly, for o; > 0, the solution
converges to the steady-state particular solution on a dimensionless
time-scale 1/a,. And for k¥ # 1 the solution also rotates (in the
complex plane) around the steady-state particular solution on a time-
scale 1/|k — 1].

For completeness, let us write the full solution of the shoshing
motion, including the ¢-dependence, as well:

Vx(rv ¢) = Vx]l()eid) + (VXO - pro)eia)orﬁdqb’ (103)

Vy(z, §) = Vypoe'? + (Vyo — Vypo)e ™9, (104)

This gives, in the linear regime for sufficiently small i, a complete
description of the sloshing motion in an annulus of the disc. It
is time-dependent as long as the steady-state particular solution
is not reached. But this time-dependence vanishes as the solution
approaches the steady-state particular solution, in which case only
the m = 1 dependence on azimuth ¢ remains:

Vi(t — 00, ¢) = Vipoe?, (105)

Vy(t — 00, ¢) = Vy0e. (106)

Note that this assumes that ¥ stays constant, or more precisely that
¥ changes slower than the convergence of the solution to the steady-
state particular solution.

Fig. 3 is a geometric representation of the sloshing motion, seen
in an (x, z)-cut through the local disc. The sloshing motion is shown
by the red velocity arrows. The skewed box shows the effect this
motion has on a rectangular slab of disc material. The original slab
is shown with dotted lines and it is, in actuality, an annulus of disc
material. This figure shows, for four different pairs of (cty, ¥ — 1),
the skewing of the slab as a function of the azimuth ¢ along the
annulus. Two things are particularly noteworthy of the results shown
in this figure: First, it shows that for k — 1 = 0 the amplitude of the
sloshing, and the resulting degree of skewing of the box, becomes
very large for ar lower than 10~!. This is the result of the resonance
between the orbital and epicyclic frequencies (though note that these
high amplitudes may not be reached before v changes). For the two
[k — 1] = 0.1 models (bottom two panels), this divergence does not
occur. Secondly, the skewing in the bottom three panels are strongly
phase-shifted with respect to each other. This plays a fundamental
role in the nature of the internal torque arising from this sloshing
motion, which is the topic of Section 6.
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X=r—ro

Figure 3. The local (x, z) geometry of the sloshing motion of the steady-state particular solution equation (105) for a warp amplitude of ¥ = 0.1. The panels
are arranged horizontally according to azimuth ¢ along the annulus of the disc, and vertically according to four pairs of model parameters («(, « — 1). In each
of the panels, the grey line marks the rocking equatorial plane, and the colour scale represents the gas density in arbitrary units. The dashed rectangle is the (x,
z) cross-section of an annulus of the disc, if it would be unperturbed by the sloshing motion. The solid rectangle is the skewed shape this annulus acquires as a
result of the horizontal sloshing motion. The red arrows are the horizontal velocities. For each of these four models, the value of ¢y is also given, which is the
azimuth angle of minus the resulting internal torque vector, defined in Section 6.1 in equation (138). This angle is closely related to the phase of the sloshing

motion.

5.4 A note on non-linear solutions

In principle, the above procedure can also be applied to numerical
solutions of equations (61)—(64), which are more general since they
can also include solutions in the non-linear regime. To generalize
the V;(t) solutions to the Vi(t, ¢) form would require to divide the
¢ domain up into Ny orbiting grid points and numerically integrate
from the initial condition for each one. An interpolation from the
orbiting grid points to a fixed ¢ grid then yields the solution V;(z, ¢)
in numerical form. While this is technically possible, it is not clear
whether in this non-linear regime the local shearing box approach is
still justified in the first place. We will here, however, not consider
this.

6 FROM SLOSHING MOTION TO INTERNAL
TORQUE

The internal torque (written with the symbol G in Ogilvie & Latter
2013a) is the torque that one annulus of the disc (at radius ry) exerts
on its adjacent annulus just outside of it (at radius ry + dr). In other
words, it is the outward flow of angular momentum per unit time,
integrated over vertical height z and azimuth ry¢. For convenience,
we will, however, define ‘internal torque’ to be not the integral
over azimuth ry¢, but the azimuthal mean. In other words, in our
definition, the internal torque vector is G = G /(27trg). To compute
it, we first have to compute the local torque, then integrate this
vertically, and finally compute the mean over all azimuths.

6.1 Internal torque for the laminar solutions

We first compute the local internal torque, at a given annulus at r
= rp and height above the mid-plane 7', largely following the same

procedure as in Ogilvie & Latter (2013a). We have to start with the
total stress tensor,

tiy = puu + psy; — 1V, (107)
which is defined as the flux of i-momentum in j-direction, and where
u,(.') is the velocity including the orbital velocity,

ul = Qorodiy + uj, (108)

where §;, = 1 only for i = y. The first term is the unperturbed orbital
motion part, while the second term is the perturbed velocity.

We need, however, the flux of angular momentum, for which we
need the lever arm

r =roe, + ze, (109)

where we make the assumption that we will constrain our analysis to
the vertical column defined by x = 0, y = 0. The angular momentum
flux tensor g;; in the (x, y, z) shearing box system is

gij = €inritiy = inlrodix + 2821115, (110)

with g the Levi—Civita pseudo-tensor, defined as being &,,. = +1
and switching sign for each permutation of x, y, and z, and zero
otherwise. Einstein’s summation convention is used for indices k and
1. The tensor g; represents the transport of the i component of angular
momentum into j-direction. Note that g;; is not a symmetric tensor
(in contrast to #;;).

To get the local internal torque, we need to compute the x —
(outward) component of this tensor:

8x = 8xx = —ZUxy, (111)

8y = 8yx = —rolx; + 2lyx, (]]2)
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8z = 8w = Tolxy (113)
(see Appendix B3). We then vertically integrate these over z':
+0o0
& = / g.dz, (114)
—00
+00
& = / gydz/, (115)
—00
+00
g = / g.dz’ (116)
—00

(see Appendix B4), apply a rotation into the global X- and Y-
directions,

8x = cos(9)gx — sin(P)g,, (117)
gy = sin(P)g: + cos(P)gy. (118)
8z =&: (119)
(see Appendix BS5), and finally compute the azimuthal mean:
1 27t
Gy = 7/ gx dg, (120)
7t Jo
1 27t
Gy = 7/ gy do, (121)
7 Jo
1 27t
Gz = 7/ 8z d¢ (122)
7 Jo
(see Appendix BS5). The result is
2Gx/go = = V(1) —iaVi(7) — b, (123)
2Gy/go = —iVi(v) + V(7)) — i, (124)
Gz/g0 = qou. (125)
where G; are complex variables, and gy is defined as
g = QroThy. (126)

Note that Gy = iGy. Since, from a physics perspective, we are only
interested in the real values, the result is

2G%/go = —Vi(1) + o V™ (1) — ewy, (127)
2G¥ /g0 = V™(x) + oV (1), (128)
G /g0 = qa, (129)

where the superscripts " and ™ denote the real and imaginary part,
respectively. These expressions are the ones that can be directly
evaluated for a known solution V,(tr) consisting of a particular
solution and a homogeneous solution V,(7) = Vy,0 + Venoeo”, with
Vipo given by equation (88), Vo = Vi(t =0) — Vo, and wg =k —
1 + ioe (cf. equation 99).

The real and imaginary parts of the steady-state particular solution
(equation 88) are

2+3e+502 —€ (e +a)

Ve ~q (130)
w0 ' (e -|—0612)2 +4Olt2

. € —Sa? + a? (3¢ + o?
Voo = Gl ) (131)

(e +a?)’ + 4a?

where we defined € = «? — 1. Inserting these into equations (127)—
(128) gives the ‘steady-state particular solution’ of the internal torque
Gho (wWithi =X, Y, Z).
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Itis at this point where the dominance of the torque by the sloshing
motion over the viscous torque becomes clear, at least for the steady-
state particular solution. Looking at equation (127), the —V (1)
term, when inserting equation (130), can easily become of order
unity, while the viscous torque term, oy, will clearly be much less
than unity.

To make the comparison to the literature easier, we will write
this ‘steady-state particular solution’ of the internal torque as the
Q coefficients introduced by Ogilvie (1999) and Ogilvie & Latter
(2013a). Consistent with these papers, we define Q, 0>, and Qs as

G0 =—80 01, (132)
G0 = —8o¥ Q2 (133)
Gy, = —&V QOs. (134)
We then arrive at

01 = —qua, (135)
0, = 1+7a? +€(1 —af)a“ (136)

(e +0512)2 + 4ot
16—30([2—{-(6—6)(0([2—{-6)(1[2
2 (e+a3)2+4a12

03 = (137)

with, we recall, € = k2 — 1. These expressions are consistent with
equation (A39) of Ogilvie (1999) and equations (9) and (10) of
Zanazzi & Lai (2019).3

The physical interpretation of the three Qs is that Q; causes the
viscous evolution of the disc (the radial flow of mass X(r, 1)), Q>
damps the warp, and Q5 rotates the warp vector and may thus produce
a twist* in the disc. If the torque vector points into the negative X-
direction (Q, > 0 and Q3 = 0), the warp damps. If the torque vector
points into the negative or positive Y-direction (Q, = 0 and Q3 # 0),
the warp twists (precession of the annulli). In general (Q, > 0 and
Q3 # 0), both a twist and a damping of the warp occurs.

The magnitudes of @, and Q3 (or equivalently of G¥%,, and
Gy,) are intimately connected to each other because they are both
determined primarily by the amplitude and phase of the sloshing
motion. Ogilvie & Latter (2013a) symbolize this by defining the
complex variable Q4 = Q, + iQ3, which we shall write here as

Q4 = |Q4le', with | Qu = /03 + O3 and
$o = atan(Q3/ Q»). (138)

The horizontal components of G'}, are therefore
GXpo = —80¥[Qal cos(¢o), (139)

GYy,o = —8oV¥|Qal sin(¢o). (140)

The physical interpretation of ¢ is the phase of the torque. For
¢o = 0, we have only damping of the warp, while for ¢y # 0,
we also have a twisting component of the torque. In the extreme
cases of ¢g = (+ / —)m/2, we have only twisting, no damping, with
the internal torque pointing in (negative/positive) Y-direction. For
reasons of energy conservation, —/2 < ¢y < 7/2 (no antidamping).
For oy < 1, the complex-valued torque vector components Gxo and

3There is a typo in equation (10) of Zanazzi & Lai (2019), where the first
occurrence of +2& in the numerator should be —2%.

4We define the word “twist’ to denote the case when the direction of the warp
vector ¥ /|| varies with r.
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Gyypo are nearly proportional to the complex-valued sloshing velocity
—Vo (cf. equations 127 and 128 with the terms proportional to
o, neglected), and the phase ¢y of Q4 corresponds to the phase
Vipo = |pr0|e‘i4’0 of the sloshing motion.

In Fig. 4, the |Q4| and ¢ are shown. This figure also makes
clear the resonant behaviour of the torque: For k — 1 and o, —
0, the amplitude tends to infinity. Physically, the warp is like an
oscillator with natural dimensionless frequency «, driven by the
warp at dimensionless frequency 1. When « approaches unity, the
oscillator approaches the resonance, and only viscous damping can
prevent it from becoming infinite.

For the special case k = 1 (i.e. ¢ = 0), we find

Q1= —qu, (141)
14702\ 1

= —, 142

Q2 <4+a[2) o ( )

0= (273 (143)
3= ita? )’

which are identical to equations (95), (97), and (98) of Ogilvie &
Latter (2013a). This was to be expected, since we use the same
framework. For the special case that both 0 < oy < 1 and 0 < |« —
1] < 1, we have

01 = —qa, (144)
[o%%
(k2 =12 + 42’
=1 = Se?
(K2 —1)2 +4a?
This limit is of particular interest to protoplanetary discs, where it is

thought that the viscosity is low, and the deviations from Keplerian
rotation (x # 1, € # 0) are caused by the radial pressure gradient.

0, = (145)

03~ (146)

6.2 The role of the homogeneous solution of the sloshing motion

Let us now insert the full (particular+-homogeneous) solution of
V,(7) into the internal torque components:

2GX/g0 = _(prO + iat pr() + O(l]/,) - (Vth + i(XlehO)eiwor’
(147)

2GY/g0 = _(l prO — prO + iatw) - (l Vth — 0 Vth)einTa

(148)
Gz/80 = qa, (149)
with Vo = Vo — Vo, where Vyg is the initial condition of the
sloshing motion (a complex number), and wy = « — 1 + i,
(cf. equation 99). This can be re-written as
Gx = Gxpo + (Gxo — Gxpo)e ™", (150)
Gy = Gypo + (Gyo — GYpO)eiwory (151)
Gz = goqou, (152)

where Gxy = Gx(t = 0) is the initial condition for Gx(7), and likewise
for the Y component. The ‘steady-state particular solutions’ for the
internal torque Gxpo and Gyy are defined as in equations (123) and
(124) with V,(7) set to the steady-state particular solution for the
sloshing motion V.. So now we have expressed Gy(t) and Gy(1)
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in a similar way as for V,(7): as a sum of a steady-state particular
solution and a transient homogeneous solution. The dimensionless
time-scale of the decay of the transient is 1/¢, and the dimensionless
time-scale for the rotation of the transient around the steady-state
particular solution is 1/|k — 1|.

The interpretation of this result is that the Q;, 05, and Q5 values
determine the internal torque vector if the sloshing motion has
reached its steady-state oscillation, i.e. if the homogeneous solution
has decayed to zero and only the steady-state particular solution
remains. For large o, this is reached in a few orbits, on a time-scale
shorter than the time-scale at which the warp changes. For small «,
this steady-state oscillation may never be reached, as the warp may
change faster than that. The distinction between the diffusive regime
and the wave-like regime of warped discs is then simply whether or
not the transient part of G decays faster or slower than the change of
the warp .

7 ORDINARY DIFFERENTIAL EQUATION FOR
THE TORQUE VECTOR

With the results of Section 6.2, we now have a complete description
of how G(t) behaves as a function of the warp amplitude v,
dimensionless time T = 2¢¢, and the initial condition G(0). However,
our solution (equations 150-152) is only valid for a warp dI(r)/d Inr
that is constant in time. As a result of the torque G, however, the
orientations /(r) of the annuli change, and thereby the warp vector
¥ = dI(r)/dInr changes as well: both its amplitude v = || and
its direction e, = ¥ /. This introduces two problems:

(1) If ¢ changes with time, the simple expressions for G(7),
equations (150)—(152), no longer apply.

(i1) The orbital plane of the annulus changes, meaning that at a
later time, we need to perform a coordinate transformation from (X,
Y, Z) to the new coordinates (X', Y’, Z’) where the new orbital plane
lies again in the (X', Y’)-plane.

Problem (i) can be relatively easily solved by formulating an
ordinary differential equation (ODE) for G that has equations (150)—
(151) as a solution, as we will describe in Section 7.1. Problem (ii)
is harder to solve. We will propose a solution to this problem in
Section 7.2.

Both solutions rely on the splitting of G into a dynamic sloshing
torque G’ and a non-dynamic viscous torque G,

G =GY +GY, (153)

which, in the usual (X, Y, Z) coordinate system, have the following
components (see equations 127 and 129):

—VE(T) + o Vim(z)

GY(r) = % Vin(e) + V() | (154)
0
and
—a
GY = g 0 . (155)
qo
The latter can be expressed in coordinate-free form as follows:
G = gogad — goon¥r. (156)

For the dynamic G*)(t), we need to set up an ODE, which we do
next.

MNRAS 511, 2925-2947 (2022)
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Figure 4. The horizontal torque components for the steady-state particular solution, expressed in terms of Ogilvie’s Q4 = Q> + iQ3, where Q> and Q3 are
defined by equations (133) and (134). Left-hand panel: |Q4| = 4/ Q% + Q%. Right-hand panel: ¢ = arg(Q4) = atan(Q3/Q>).

7.1 Solution to problem (i): ODE for the sloshing torque

The most straightforward ODE for the sloshing torque components
G(;)(r) and Ggg)(r) that has equations (150)—(151) as a solution is

9.GY(t) = i (Ggp(f) - G(X,O) , (157)
3:GY(1) = iwy (G(y”(t) - G(,ff,o) . (158)

If ¢ changes, then the solution automatically adapts to the changing
value of . Using wyp =k — 1 + iovy and G(YS) = iG()f), and taking the
real parts of both sides of the equations, we obtain

0.GY"*(0) = (c = ) (G"() - G;X;{f)

o (G(;“e(r) - Ggg;{f) : (159)
0.GY"* (1) =~ — 1) (GV"(0) - Ggg;{f)

—a (G;”fe(r) - G(;j,{f) : (160)

where it is important to note the different sign of the first term of the
right-hand side in both equations. This suggests (but see Section 7.2
for an important addition) the following vectorial form of these
equations:

aG(S)
ot

where here the G is considered to be a real-valued vector, and G(,fg
is given by

=~ x (6V-6%) —a(6V-GR). a6

dl
dinr

G%=—m(& +QJXi%>, (162)
with O, and Q3 given by equations (136)—(137), and gy = Q(Z)ro Ehfj
(cf. equation 126).

To make it easier to compare our dynamic equation for G
(equation 161) to the literature, we can re-write it by bringing the
G terms to the left-hand side, and keeping the G% terms on the
right-hand side:

oG"Y _
—— 4 (k= DI x GV + oG = (k — DI x G4 + o, GY).

ot
(163)

(s)

MNRAS 511, 2925-2947 (2022)

By inserting the expression for G% (equation 162), we obtain

oGY ‘ :
o T = DIx G“ + o,GY

d d
= —( = Dgo (Qzl X =0 )

dinr  dinr

0,-3 L oux (164)
- — X —— ).
A\ 2 4y T Qi y

This equation is exactly the same as equation (161), just written out
more explicitly. For notational convenience, let us regroup the terms
on the right-hand side:

F) (s)
i + k- DI x G® + «,G®

ot

. dl . dl

= -4 <Q2dlnr + 03l x m) , (165)
with
0> = 0> — (k — 1)03, (166)
03 =(k — N0y + Q5. (167)

Fig. 5 shows the dependence of O, and Q3 on o and k — 1. In
the limit of ¢ < 1 and |k — 1| < 1, we find that
1 ()

0, — T @—w, (168)

so that, in this limit, our equation simplifies to

oGY go dl
RN () 6) ~ _ )
o1 + (k N x G 4+ G 7 dlnr

(169)

This equation is identical to equation (13) of Lubow & Ogilvie
(2000) if we set the total torque to be the sloshing torque G = G
(neglecting the viscous torque for reasons that o, < 1), and define

kr—1
2

>~k —1, (170)

W, =

where the last step is approximately valid for [k — 1] < 1.
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Figure 5. As Fig. 4, but for O, and O3, which are the coefficients entering the time-dependent equation for the torques (equation 165), where O> and Q3 are
defined by equations (166, 167). Left-hand panel: |Q4] = 4/ Q% + Q% Right-hand panel: ¢y = arg(Q4) = atan(Q3/0»).

[ A

G (s)

Figure 6. Cartoon of how the in-plane sloshing torque acquires a perpen-
dicular component upon a change of the orientation vector of the orbital
plane I — I’. Solid lines: before the change; dashed lines: after the change, at
which point G® has acquired a G - I % 0 component. This ‘leakage’ of the
sloshing torque into the perpendicular viscous torque can quickly dominate
over the true perpendicular viscous torque G, and can unphysically affect
the viscous evolution of X(r, 7).

7.2 Solution to problem (ii): rotating the torque vector

Problem (ii) is harder to solve because it requires knowledge about
if and how G changes when the orbital plane changes, i.e. when [
changes. If we look again at the individual components of G given
in equation (154), we see that the nature of G*) is fundamentally
fixed to the orientation of the orbital plane. The sloshing motion, and
thereby the sloshing torque, is strictly in the plane of the disc (the XY-
plane), or in other words, G*) - I = 0. If the orientation of the orbital
plane changes, i.e. dI/dt # 0, and if we leave the 3D orientation
of G¥ unchanged, then in the new coordinates (X', Y', Z’), which
describe the new orbital plane, we will see Ggé) and G(;) rotationally
mix into G(Zs,) . This means that the latter becomes non-zero, and the
condition G*) - I = 0 is broken. This is illustrated in Fig. 6.

Given that the sloshing torque is usually orders of magnitude larger
than the viscous torque (|G| > |G")|), even a comparatively small
non-zero G(ZY,) can easily dominate the much smaller perpendicular
viscous torque G(Z”/) = goqa. So this ‘leakage’ of the sloshing torque
into the perpendicular torque component is not harmless: It can
strongly affect the perpendicular component of G = G 4+ G
(i.e. the value of G - I), which is responsible for the radial accretion
of the disc material. This can therefore lead to strange effects in
the evolution of X(r, t), as is demonstrated in Martin et al. (2019),

their fig. 1 (upper right-hand panel), and will be further discussed in
Section 8.1.

This leads to the question: Is this ‘pollution’ of the G - I component
by the sloshing torque physical or not? If it is physical, then it
should be possible to find a sloshing motion that produces a non-
zero component of G in the direction of I. At least in the linear
regime, and assuming that v;(z') = V; Q02" (cf. equations 43-45),
no such motion can be found because, under these conditions, the
general form of the torque is given by equations (123)—(125), which
does not have a component of V in the expression for G ;.

Assuming that this holds also in the non-linear regime, we can say
that when I changes, the sloshing torque G changes as well, such
that G - I stays zero at all times.

We conjecture at this point that the sloshing torque G’ is simply
co-rotated with the change (i.e. rotation) of /. The rotation-per-unit-
dimensionless-time is defined by two vectors, [ and d/ /dz. Together
they define a rotation axis R = [ x dl/dt. Using Rodrigues’ formula
in the limit of infinitesimal rotations, we find that the rotation of G*
is given by

aG® dl
=(1x— ©, 171
ot ( x dt) G (a71)

Putting it all together, we add the rotation term of equation (171)
to the evolution equation for G (equation 164, or equation 169 in
the limit of small «; and |x — 1|), and we obtain the full evolution
equation for G that avoids the unphysical ‘leakage’ of the sloshing
torque into the perpendicular torque component. The general result
is

(s)

ai + (k= DI x G + 0 G
T

di ~
1 + Q3l X

- <Q2d nr dinr

) + (1 x dl) x GW. (172)
dr

In the limit of small o, and |« — 1], this simplifies to (cf. equation 169)

AG®
—— 4+ — DI x GV +«,GY
ot
~ = Ix—)xGY. 173
4 dlnr * < * dr x (173)

MNRAS 511, 2925-2947 (2022)

20z Iudy 60 U0 3senb Aq 81.508£9/5262/2/) | G/2101E/SEIUW/WOD dNO"DIWSPEedE//:SA)Y WO} PEPEOJUMO(


art/stab2791_f5.eps
art/stab2791_f6.eps

2938

The total torque, at each moment in time, is then
G =GV +G" =GV + qgoord — goou ¥, (174)

where G is the solution of equation (172) or (173), and where we
used equation (156) in the final step.

Together with the global mass and angular momentum equations
(see Section 3), the above equations for G(t) (equations 172/173
and 174) forms a full set of dynamic equations for the evolution of
a warped disc in the limit of small «. They unify the diffusive and
wave-like regime.

It should be kept in mind, however, that the rotational behaviour
of G according to equation (171) is a conjecture. It makes
intuitive sense, and it removes an unphysical property of the previous
equations, but in itself it remains unproven.

The extra rotational term in equation (173) is not seen in the
equations of Ogilvie (1999) and Lubow & Ogilvie (2000). Given
that these papers were not concerned with the co-evolution of X(r,
1), they were not concerned with the G -1 component of their
torque. Since

GY . [1x a x G¥ =0, (175)
dr

this term, at least in the limit of small warps, does not affect their
results for the wave-like propagation of the warp. But it is important
when, in addition, the viscous evolution of X(r, t) is considered.

When using equation (172) or (173) in a numerical integration
algorithm, it should, however, be kept in mind that even the slightest
numerical error in the rotation may still ‘leak’ too much of the
sloshing torque into the perpendicular torque component. This is
because, for small &, the magnitude of the in-plane sloshing torque
is so much larger than the perpendicular viscous torque. In practice
it may therefore improve the stability and reliability of the algorithm
to ‘reset’ the perpendicular component of the sloshing torque to zero
every time-step:

G :=GY —(GY - Il. (176)

In fact, numerical experimentation shows (see Section 8.1) that
this ‘resetting trick’ is so effective for sufficiently small time-steps
that the rotational term is no longer strictly needed: the ‘resetting’
does the rotation automatically. This is because the rotational term
is perpendicular to the orbital plane, and thus perpendicular to
the sloshing torque (as is true for any infinitesimal rotation). The
numerical errors in the orbital plane are quadratic in the rotation
angle, and thus become vanishingly small for sufficiently small time-
steps.

7.3 Alternative solution to problem (ii): Martin’s  terms

Martin et al. (2019) choose a different path to overcome the ‘leakage’
problem. They do not distinguish between the sloshing torque G’
and the viscous torque G, but instead add a strong damping term to
their equation for 9G /07 that forces the G - I component to converge
to the correct value on a short time-scale. This time-scale 7gamp =
1/B, with B being the proportionality parameter of their damping
term, can be chosen at will. The shorter this damping time-scale (i.e.
the larger ), the better the artificial ‘leakage’ is suppressed, but at
the cost of the equations becoming more stiff and thus harder to solve
numerically.

Let us derive their equation starting from our equations (161) and
(162) but with G* replaced by G:

oG

5. =~k = DI % (G = G o) — (G — G o). (177)
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and with G given by

G 0il+0Q ar + 03l al (178)
= — —_— X —
70 = 80 ¥ Zdinr 27 T dinr

(instead of equation 162). In other words, the G - I component is
now included in the equation, and the Q,/ term on the right-hand
side ensures that the G - I dynamically converges to the correct value
goqo, over a time-scale 1/a;. Following the same path as before, we
can derive the equivalent of equation (165):

0G
ik -DIxG+aG
ot

O+ 0 4 gt x - (179)
= — X —
SO T 2y T T dnr )
where Q1 = a,Q1, and the Qz and Q3 are defined by equations (166)
and (167). Following the same reasoning as before, we arrive, for
small oty and |« — 1], at the equivalent of equation (169):

0G go dl

— - DI xG+aG -2 .

gr T T DX GHaG =goqul =5 g
This is the equivalent of Martin et al. (2019)’s equation (15), without
their B-terms. If I changes very slowly with time, then equation (180)
assures that the G - I component dynamically converges to the correct
value. In principle, this convergence also automatically damps away
any ‘leaked’ sloshing torque, but the time-scale of T gump = /oty > 1
is too long to suppress this leakage. To ameliorate this, Martin et al.
(2019) add two terms to their equation:

(180)

0
—aG + Kk —-—DIXG+oG+ B(G-1)
T

go dl

= [l — 2= .
goqa(o + B) 4 dinr

(181)

For values of 8 > |dI/dr|~', we can estimate the behaviour of the
perpendicular torque component G - I by taking the inner product of
this equation with /:

oG-I
ot

where we neglected the G - dI /dt term. The solution to this equation
is the usual exponential convergence to the value

+ (e + PG -1 = goga(on + B), (182)

G-l — goqay, (183)

and the time-scale iS Tgamp = 1/(ot¢ + B). Martin et al. (2019) report
values of B 2 10 to lead to reasonably good results.

In the hypothetical limit of 8 — 0o, this method always guarantees
that G - I = goqgay, or equivalently that G - I = 0 at all times. In an
explicit numerical integration algorithm, this can, alternatively, be
achieved by applying the ‘resetting condition’ equation (176) at each
time-step. This avoids the numerical stiffness problem for large 8
values, and achieves the same effect as the S-terms in equation (181),
as will be discussed in Section 8.1.

8 DISCUSSION

8.1 Numerical analysis of the behaviour of the equations

To investigate the behaviour of our new equations, we perform the
same test calculation as presented by Martin et al. (2019) in their
Section 4. It is a dimensionless setup, with a disc ranging from r;, =
1 to oy = 20, with a surface density that has smooth cut-offs at both
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the inner and outer radius, and a warp of 10°, given by the equation
(see Martin et al. 2019)

. 4
S0t =0)= %, (ri) [1 - (2—“)1/2} 1

Here, X is a scaling constant and can be chosen arbitrarily. Initially,
the disc is only warped in one direction (‘untwisted’) and remains
that way throughout the simulations. This is due to the absence of
precession terms in the equations we use. Therefore, the initial shape
of the disc can be determined by the inclination angle i, which is the
angle between the local orbital plane and the xy-plane. We set the
initial inclination profile to (see Martin et al. 2019)

i(r,t=0)= 10[1tanh(m> +1}, (185)
2 Fywidth 2

with the location of the warp 7y, = 10 and the warp width ry;qn
= 2. At the start of the calculation, G(r, t = 0) is set to the viscous
torque GV (r), i.e. the sloshing torque is set to zero. The viscosity is
set to oy = 0.01 and the disc aspect ratio is set to h,/r = 0.1.

The procedure for the numerical integration method of our
generalized warped disc equation is described in Section 8.5.

We integrate until dimensionless time 2000, which is roughly one
wave-crossing time for the warp. We carry out these calculations in
five different ways, from the left- to right-hand side in Fig. 7:

—e ] (184)

(1) In the first calculation, we use use the equations of Martin et al.
(2019), with 8 = 0. This is equal to our equations without the rotation
term (i.e. without the (I x dI/dt) x G term). This calculation shows
what goes wrong when the G - I component of the internal torque
is left ‘untreated’. The surface density acquires a strong wiggle,
first identified by Martin et al. (2019), which is not seen in 3D
hydrodynamic simulations of warped discs (e.g. Nealon, Price &
Nixon 2015). We also see a strong effect on the inner edge of the disc,
which is equally suspicious. In the bottom panel the cause of these
phenomena can be seen. The G - I component should, physically,
be just the viscous torque. Yet, the ‘leakage’ of the sloshing torques
into this perpendicular component of G completely overpowers the
viscous torque, and even causes (inward of a radius of 10-20 code
units) a negative torque. This de-facto acts as a negative viscosity, and
thus violates the second law of thermodynamics. It must therefore
be an unphysical effect.

(ii) The same, but now with 8 = 10, to damp the G - I component
back to what it should be: G-I — G“ .1. Apart from small
deviations, this is indeed successful. The remaining ‘triangle like’
curve is the expected curve for the viscous G -I. As a result,
no spurious features appear in the X(r, ). The remaining viscous
evolution (very minor effects on these time-scales) are physical.

(iii) The same, but now with 8 = 100, i.e. even stronger damping.
The small remaining deviations from G - I are nearly gone. Both
this and the § = 10 case demonstrate that the method of Martin et al.
(2019) indeed works as advertised. However, a large 8 makes the
equations stiff and thus harder to solve numerically.

(iv) Instead of using the 8 damping, wereset G - I — G - [ after
each time-step. This is also successful, and achieves the same result
as for g = 100.

(v) Finally, including the rotational term to the equation (last term
of equation 173), but without 8 and without resetting. One can see
that G - I does not have any ‘leakage’ of the sloshing torque into
the perpendicular torque, and it is even closer to the correct value,
without any damping or resetting.

We conclude that our equation (equation 173) with the rotation
term, possibly with an occasional ‘reset’, is the most physically

Warped disc equations 2939

consistent equation for G for modelling the evolution of a warped
disc.

8.2 Shearing box versus tilted slab interpretation

The fact that the sloshing motion causes an internal torque is known
since Papaloizou & Pringle (1983). However, the physics behind this
fact is not intuitively obvious. In the top row of Fig. 8 the case of
pure warp-damping (¢o = 0) without twisting is pictographically
shown. In this porous shearing box picture, the torque is entirely
due to angular momentum advected between adjacent annuli (here
shown in blue and orange) by the horizontal velocity v, (z’). Gas
pressure plays no role from this point of view because the box walls
are vertical, so that the blue box cannot exert a vertical force on the
orange box and vice versa. The derivations in this paper were done
in this porous shearing box framework.

In the bottom row of Fig. 8, the exact same situation is depicted
from a Lagrange perspective (see the affine model of Ogilvie 2018).
Here, the annuli are not porous, but get tilted by the horizontal
velocity v/.(z). The advective transport of angular momentum no
longer plays a role. Instead, the angular momentum exchange
between the blue and the orange annuli is now entirely mediated
by the pressure because, due to the tilt, the pressure now causes the
two annuli to exert a vertical force on each other.

To show that the two perspectives are equivalent, we can compute
the tilt angle 6 as a function of 7. Comoving with the orbital motion,
it obeys the following ODE:
dtan6(7)

dr
If V.(7) is the m = 1 periodic solution, then in the (t, ¢)-picture
(see Section 5.3), the 7-coordinate is replaced by the ¢ coordinate.

So the above differential equation in T becomes the same differential
equation in ¢. Given that the m = 1 mode goes as ', the solution is

tan 6(¢) = Re[—i Vi (#)] = V."(9), (187)

where we set the integration constant to zero. Here 6 = 0 means the
slab is vertical and & > O means the slab is tilted clockwise, i.e. tan 6
= x/z for a gas parcel belonging to the slab going through (x, z) =
(0, 0). With a non-zero tilt, the gas pressure acquires the possibility
to transport z-momentum in z-direction from one slab to the next.
In other words, neighbouring tilted slabs can exchange y-angular
momentum with each other through the pressure force. The internal
torque is defined as the transmission of angular momentum from one
slab at ry to its neighbour at ry + Ar:

= V(1) (186)

8y = Vo/ p(z)) tan(@)dz’

= QroZhy tan(6($)) = go tan(6(¢)) = goV," (¢). (188)
In complex notation, we thus have
&y(®) = —igoVi(9). (189)

and g, = 0. Inserting these into equations (117) and (118) and the
results into equations (120) and (121), following the method outlined
in Appendix BS, gives

2Gx/go = —Vx(1), (190)

2Gy/go = =i V(7). 191)

which reproduces the same results as for the comoving lab-frame
(porous shearing box) analysis (equations 123 and 124) in the limit
a L 1.
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Figure 7. Results of the test model of Martin et al. (2019) for five different methods of handling the G - I component of the internal torque (from the left- to
right-hand side). In the first four, the equations of Martin et al. (2019) are used. In the fourth panel, § is again 0, but the G - I component is reset to the correct
value G - [ after each macroscopic time-step (i.e. not during the sub-time-stepping done by the odeint integrator of sc1py). In the final panel, the rotation
term is added to the equation for G (final term in equation 173), which is the equation proposed in this paper. Top row: the inclination i in degrees. Middle row:

the surface density X(r, 7). Bottom row: the G - I.

=0 o=n/2 p=n ¢ =3n/2 ¢o=0
VX VX 1..
M~———y | [ e e —1 e .
| *gT Ir i ] ‘IN——_;’ : If i Porous shearing
N ..r | | 1 | | "L | ! | : box picture
e L R I SOOOO N e S [ U N I SOO (Comoving lab
v frame)
Affine tilted
N slab picture
(Lagrange frame)
X X X X

Figure 8. Cartoon of the sloshing motion for the case ¢9 = 0 (Q2 > 0, Q3 = 0), i.e. pure warp-damping, without twisting. Two interpretations are shown. Top
row: the comoving lab frame picture, which is the way by which all equations in this paper have been derived (using a porous shearing box). The red arrows
show the radial velocity v} (z) of the gas, transporting angular momentum between the blue and the orange annuli. Bottom row: the Lagrange picture, in which
the slabs (annuli) are tilted due to the horizontal sloshing motion (see the affine tilted slab model of Ogilvie 2018). The green arrows show the vertical pressure
force exchange, which lead to a torque that the blue and the orange annuli exert on each other. The cartoons are qualitative, and not to scale.

For perfectly Keplerian discs (¢ = 1.5), the amplitude of the tilting
(for the case of strong viscous damping) is greatest at ¢ >~ /2 and
~3m/2, as illustrated in Fig. 8. A 3D version of this is shown in Fig. 9.
This means that the pressure-driven torque acts as an X-torque and
thus damps the warp in this case.

Twisting torques (Q3 # 0) can appear if the sloshing motion is
phase-shifted with respect to the pure damping case (¢ # 0). This
leads to a shift in the location ¢ along the annulus where the tilt is
maximal, and thus a rotation of the G vector around the / vector by
an amount ¢¢. This leads to non-zero Gy, which twists the disc.

MNRAS 511, 2925-2947 (2022)

8.3 Caveats of the model

While the equations for warped discs discussed in this paper are
easy to use and numerically cheap to integrate, they have strong
limitations. First, they assume that all orbits are circular. Eccentricity
can, in principle, be included (see e.g. Lynch & Ogilvie 2021), but
that requires also a treatment of the disc variables along each orbit,
making the model essentially 2D. There are also other reasons why
a 2D treatment (in the coordinates r and ¢) may be necessary. For
instance, any out-of-plane companion (planet or binary companion)
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Figure 9. A 3D rendering of the sloshing / tilting motion shown in Fig. 8
(i.e. for ¢g = 0, a purely damping torque), shown for two adjacent slabs,
following the ‘affine tilted slab’ approach of Ogilvie (2018). The inner blue
slab is at x = 0 and is thus not inclined. The outer orange slab is at x > 0 and
is inclined with respect to the blue slab. The large arrows are the I unit vectors
for the blue and orange annulus, respectively. The orbital motion is counter-
clockwise when seen from above (right-hand rule). Model parameters are ¢
=1.5,¢% = 0.1, and o = 0.1. The maximum tilting of the slabs is at ¢ = /2
and 37/2, and therefore the torque damps the warp.

that induces the warp in the disc may also induce m = 2 waves
(spirals) or higher modes in the disc that may be of equal importance
as the warp itself. A treatment similar to the 2D affine model of
Ogilvie (2018) may be necessary to overcome these limitations
without directly resorting to 3D models.

A further major caveat is that the equations of this paper are not
capable of treating the breaking of a warped disc. It has been found
in many 3D simulations that under certain conditions, the disc cannot
maintain a smooth continuous shape, but instead will break into two
(or more) disconnected discs (Larwood & Papaloizou 1997; Fragner
& Nelson 2010; Lodato & Price 2010; Nixon & King 2012; Facchini
et al. 2013; Nixon et al. 2013; Nealon et al. 2016; Raj, Nixon &
Dogan 2021). This phenomenon likely requires a fully 3D treatment.

On the other hand, for computational feasibility, fully global 3D
models of warped discs necessarily have limited numerical resolution
at the disc interior scale, i.e. at spatial scales smaller than the pressure
scaleheight. At low viscosity, the strong sloshing motion induced by
even small warps can induce turbulence (Kumar & Coleman 1993;
Ogilvie & Latter 2013b) that may be stronger than the background
turbulence (Torkelsson et al. 2000). A local 2D or 3D shearing box
calculation such as by Paardekooper & Ogilvie (2019) can, however,
be used to update the local turbulent viscosity coefficient oy, which
might then be used in the 1D warped disc equations again. Whether
a simple analytic ‘fitting formula’ can be found for this self-induced
turbulent viscosity is not yet clear.

Finally, there is the issue of irradiation. For discs around black
holes or neutron stars the radiation pressure of this radiation may
be strong enough to induce and enhance warping of a disc (Pringle
1996) and cause precession (Ogilvie & Dubus 2001). But even for
less strong irradiation, the warp causes the disc to be irradiated from
one side only, switching side each half orbit. This issue has been
studied very recently in the context of the chemistry (Young et al.
2021), but, to our knowledge, it has not yet been investigated if it
affects the internal dynamics of the disc and thus affects the internal
torque.
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8.4 Applications of the model

One of the reasons why the two regimes of warped disc dynamics
have traditionally been treated separately is because accretion discs
around black holes and neutron stars are usually geometrically very
thin (h, < r) and hot (T > 1000 K) so that they are firmly in the
diffusive regime (o > h,/r). This is because for sufficiently ionized
discs the magnetohydrodynamics is nearly ideal, and the saturated
magnetorotational turbulence reaches values of the order of a; ~
1072, ...,107" (e.g. Meheut et al. 2015). Protoplanetary discs, on the
other hand, are relatively cold (7" < 1500 K in the dusty outer parts)
and geometrically not very thin (hy/r ~ 0.05). They may thus be
much less turbulent than hot discs. The precise value of «; in those
discs is still a matter of active debate, (see Lesur, Ercolano & Flock
2022), but values of the order of ; ~ 10~ are often suggested, which
would put protoplanetary discs firmly in the wave-like regime.

However, at early times and close enough to the star, protoplan-
etary discs are likely to be much hotter, and fully saturated mag-
netorotational turbulence (; ~ 1072, ..., 10") should be expected,
putting these regions of the protoplanetary disc right in between
the two regimes, where the unified set of equations have to be used.
Furthermore, as discussed in Section 8.3, the vertical shear instability
driven by the sloshing motion may induce strong turbulence, perhaps
even stronger than the ‘traditional’ vertical shear instability (VSI)
driven by the baroclinic structure of flat discs (Arlt & Urpin 2004;
Nelson, Gressel & Umurhan 2013; Stoll & Kley 2014). It is not yet
clear if these instabilities may lead to «; of the order of A,/r, but if
they do, then again, we would be in between the two regimes.

And even if the disc is in the wave-like regime, this does not
mean that the viscous radial transport of mass within the disc is not
important. The warp waves have a short time-scale for travelling
through the disc, given that their phase velocity is ¢s/2 (Nelson
& Papaloizou 1999). However, the lifetime of these discs is much
longer, and during that time, the viscous evolution of the surface
density X is likely to be non-negligible. If the warp continues to be
driven, for instance, by a companion, then the warp dynamics and
viscous radial mass redistribution have to be treated simultaneously.
This required the use of the generalized warp equations.

When applying the equations to protoplanetary discs, it becomes
important to be able to include external torques from companions
(stars or planets) on to the disc. This can be done in the usual
way by adding an external torque T to the angular momentum
conservation equation (equation 3), for instance, using the equations
from Eggleton & Kiseleva-Eggleton (2001), (see also e.g. Liu,
Muiioz & Lai 2015; Zanazzi & Lai 2018a). However, this torque
will change the orbital orientation / of the annuli of the disc, leading
to the same ‘leakage’ problem as we discussed in Section 7 (‘problem
ii"). The solution is then the same as before: rotating G such that it
stays in the plane. In other words, the d//dr in the rotational terms
in equation (172 or 173) now should include the change of I due to
the external torque T'.

8.5 Numerical recipe for modelling warped discs

Given the complexity of the mathematical description of viscously
evolving warped discs, as described in this paper, we here summarize
our recommended set of equations and a method of solution for
modelling the dynamics of warped discs:

(i) The main conservation equation to solve is the equation of
angular momentum conservation equation (3).

(ii) Conservation of mass is given by equation (1), but this equation
is not explicitly needed. The reason is because once we know the
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angular momentum density L(r,t), we can use equation (2) to
compute the surface density X(r, 7) and the unit vector I(r, t) because
the Kepler frequency €2(r) is known. Deviations from Keplerian
rotation are not considered here. Optionally, one can solve the
mass conservation equation in addition to the angular momentum
conservation. This leads to a redundancy (see equation 2), which can
then serve as an indicator of the magnitude of the numerical error
made.

(iii) The torque vector G(r, t) is given by equation (174), where
G®(r, 1) obeys equation (172).

(iv) The values of O, and Q3 are obtained from equations (166)
and (167), which depend on Q, and Qs, the values of which are
obtained from equations (136) and (137). For small values of «, and
|k — 1|, one can, instead, use the values Q> = 1/4 and Q3 = 0.

(v) The value for g is given in equation (126).

(vi) The symbol g is defined in equation (7), and « is defined in
equation (73).

(vii) The dimensionless time 7, used in the above equations, is
defined by equation (36).

Numerically, one can make a linearly or logarithmically spaced
grid in r with N, grid points, and on each grid point, one places six
variables: Ly, Ly, Lz, Gx, Gy, Gz (or seven variables, if one opts to
include ¥ as mentioned above), where the coordinate system (X, Y, Z)
can be freely chosen (i.e. it is not necessarily aligned with the warp, as
it was during the derivation of the equations). This gives, at each time-
step, 6N, variables. Given that the equations for L; are conservation
equations, they are best discretized in finite volume conserved form.
The equations for G; are strictly local equations (no spatial derivatives
involved). They are best formulated at a staggered mesh (grid point
in between those of L;), although also a co-spatial gridding for L;
and G; is possible. An explicit integration of these equations sets the
usual time-step limit (Courant—Friedrichs—Lewy condition). Implicit
and/or higher order integration can be done using e.g. the integration
library of SCIPY, e.g. the solve_ivp () or odeint () routines of
SCIPY, where the full 6V, variables are given as a single vector to
solve_ivp () orodeint () asinitial condition, and for each time
point, the 6N, variables of that time are returned. The advantage of
using such a library is that these routines have internal handling of
integration step size and use an automatic internal computation of
the Jacobian for handling stiffness.

Since the rotation term in equation (172) involves d/ /dt, whichis a
time derivative itself, it is necessary to compute the time derivatives
of the six variables at each grid point in a particular order: First,
compute the time derivatives of Ly, Ly, and L, from which d/ /dz can
be computed. This can then be used to compute the time derivatives
of Gx, Gy, and GZ‘

Although mathematically the rotational term (I x dI/dr) x G*
in equation (172) should keep G .1 =0, it is reccommended, for
numerical stability, to ‘reset’ the G* - I component to zero using
equation (176) once in a while.

9 CONCLUSIONS

(1) The ‘sloshing’ motion (the resonant epicyclic motion) induced
by a warp obeys a time-dependent ODE, and approaches a steady-
state oscillation that depends on the local warp vector d//d Inr. The
time-scale for reaching this steady-state oscillation is 8¢ ~ 1/(«($2).

(ii) In the limit of small warps and weak ‘sloshing” motion, this
time-dependence can be described as the homogenous solution of
two coupled linear ODEs (equations 95 and 96). The full solution is
the sum of the steady-state particular solution and a homogeneous
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solution (equations 97 and 98). The amplitude of the homogeneous
solution is set by the initial condition: the difference between the
initial condition and the steady-state particular solution. The time
dependence of the homogeneous solution is through a factor e'*07,
with T = Qof and wg = k — 1 + io, where k is the dimensionless
epicyclic frequency 2./€2p and ¢, is the turbulence parameter. For
o, > 0, this homogeneous solution decays on a time-scale 8¢ ~
1/(a£2), so that the full solution approaches the steady-state one on
that time-scale.

(iii) The resulting torque vector G consists of the sum of the
sloshing torque G plus the viscous torque G. The viscous
torque is given by equation (156). The sloshing torque is caused
by the sloshing motion, and obeys a time-dependent local ordinary
differential equation (equation 172). For a fixed disc orientation / and
warp ¥, the solution to this equation is the sum of the steady-state
particular solution G(p‘g, (equation 162) and time-dependent decaying

homogeneous part Gf]s)(t) (equations 159 and 160). The decay time-
scale iS tgecay = 1/(20y).

(iv) Ifthe disc orientation / and warp ¥ change slowly compared to
1/a,, the sloshing torque G*) will be close to G(;S Taking G = G(]fé
will then be a good approximation, meaning that the torque vector
will be uniquely determined by the local conditions given by / and
¥. This is the diffusive regime.

(v) If the disc orientation / and warp ¥ change rapidly compared
to 1/a,, the sloshing torque G*” will never converge to G% Instead,
G will be a dynamic quantity, for which the ordinary differential
equation equation (172) has to be solved time-dependently. This is
the wave-like regime.

(vi) Equation (172) thus unifies the well-known diffusive and
wave-like regimes of warped discs. For small values of o and |k
— 1|, appropriate for protoplanetary discs for instance, this equation
simplifies to equation (173).

(vii) The in-plane —goo, ¥ component of the viscous torque G
(equation 156) is always much smaller than the sloshing torque, and
is thus insignificant.

(viii) The perpendicular gogoyl component of the viscous torque
G (equation 156) drives the viscous evolution of the surface density
3 (r, t) of the disc. On the time-scale of the typical wave crossing of
a warp through the disc, this viscous evolution is typically relatively
slow because warp waves move with half the sound speed (see
e.g. Nixon & King 2016), while the viscous disc time-scales are
of the order of 1/((hy/r)e;) times longer. However, if a warp is
continuously driven by an external body (through the external torque
T in equation 3), the warped disc equations have to be integrated over
long enough time-scales for the viscous evolution to matter. Under
these conditions, the viscous torque G cannot be neglected.

(ix) Compared to earlier work (Ogilvie 1999; Lubow & Ogilvie
2000), our equation (172), or its simplified form equation (173),
contains an extra term that rotates the sloshing torque G*’ along with
the rotation of the orbital plane as I changes with time. This rotation
avoids the emergence of an unphysical out-of-plane component of the
sloshing torque. This is necessary to avoid unphysical effects on the
evolution of X(r, f). Martin et al. (2019) first discussed the emergence
of such unphysical effects, and presented another approach to prevent
them, by introducing the 8-damping of this out-of-plane component.

(x) The physical meaning of the sloshing torque G can be
elegantly described in terms of the affine tilted slab picture of
Ogilvie (2018), where the sloshing causes the vertical slab to tilt
back and forth, allowing it to exert pressure in vertical direction on
its neighbours, thereby exerting a torque on them. The azimuthal
phase of the oscillating tilt, ¢, determines whether the torque is
purely damping (¢o = 0) or has a twisting effect too (¢ # 0).
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APPENDIX A: ALTERNATIVE FORM OF
GLOBAL ANGULAR MOMENTUM
CONSERVATION EQUATION

While the equations of Section 3 are complete and general, the
angular momentum conservation equation has often been formulated
in different ways. For instance, in the diffusive regime, Papaloizou
& Pringle (1983) formulate it as (generalized to include the twisting
term)

oL 10 19 10 /1
T + ;a(err) = —;a(qul) + o (§U2L¢>

10

+-— (Ll x¥) + T, (A1)
r or

where we define L =|L| = XQr?, and we remind that ¢ =

dl/dInr is a vectorial quantity (cf. equation 5). The three viscosities

are related to the Qs as follows:

v =—Qhiq' 0, (A2)
v, = 2Qh; 05, (A3)
v3 = Qh; 0. (A4)

If these viscosity coefficients are formulated in the standard way in
terms of « values according to v = (thﬁ, one finds

o =—q"'01=q, (AS)
a =20, (A6)
az = 03, (AT)

where the Q-values are given in equations (135)—(137). For oy <« 1
and in the limiting case of ¢ = 3/2 (perfect Kepler), and thus € = x>
— 1 = 0, we obtain the familiar results that o, >~ 1/(2¢;) and a3 >~
3/8. But it should be noted that this formulation only holds for the
diffusive regime because it does not allow a dynamical torque.

APPENDIX B: DERIVATIONS OF SUB-STEPS

B1 Equations of motion: from unwarped to warped frame

Here we provide background information for the transformation of
the equations of motion from the unwarped (x, y, z) coordinates
equations (8)—(13) to the warped (x', y', z’) coordinates with the
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modified velocity definitions (v’, v;, v}) equations (24)—(29). The
coordinates (x, y, z) and (x', y’, z) are related via equations (17)—-(19).

The relation between the (uy, u,, u;) = (D, Dy, Diz) and
', u;, u’) = (D', Dyy’, Diz') velocities is derived by taking the
comoving time derivative D, of equations (17)—(19):

uy =ul, B1)
uy = u;, (B2)
u; = ul, + Y Qox"sin(¢) — ¥ cos(@)u’,, (B3)

where comoving with the orbital motion means ¢ = Qot. The
relations between the u-velocities and the v-velocities are given by
equations (21)—(23), which we repeat here for convenience:

u, = v, (B4)
uy = v;. —qQox’, (B5)
u; = v, + ¥ Qox’sin(p). (B6)
The comoving derivative in the (x, y, z) coordinate system is
Dy =0+ u,0, +uy0y +u.0,. B7)
The partial derivatives in the two systems are related via’®
0 = 3y — Y Qsin(@)x0, (B8)
0x = 0x + ¥ cos(¢)0z, (B9)
0y =0y, (B10)
0, =0,. (BI11)
The divergence of u becomes
V.u=0,u,+0yuy+0.u,

= (0 + ¥ cos(¢)d, )V, + 6}./v;, + 0.0 (B12)

The comoving time derivative D, (equation B7) then becomes in the
(x', ¥, Z') system:

Dy = 3y — Qo sin(@)x'd + v (3 + ¥ cos(¢)9.)

+(y = gQx)0y + (v, + ¥ Qox’ sin(¢))d.

=0y + v, 0y + (v; —gQx")0,

+(v] 4+ Yy cos(¢))d.. (B13)
The comoving derivatives of the velocities are
D, = D), (B14)
Duy = Dtv; — D(gQ0x")

= Dtv; — g, (B15)
Dy, = Dy, + Dy(¥ Q0x sin(¢))

= D, + ¥ Qo sin(p)v;, + UQ2x’ cos(). (B16)
SNote that the distinction between ¢ and 7 is only made for the partial
time derivative (d; versus O, ), in which the only difference is which other

coordinates are kept constant while taking this derivative. In all other aspects,

t=t.
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Finally, we note that as a result of ¢ = Q¢f, when we follow the
motion of a fluid parcel, the comoving derivative of ¢ becomes

D¢ = Qo, (B17)

which is the origin of the sin (¢) terms in the above equations. With
these equations, it becomes straightforward to derive equations (24)—
(29) from equations (8) to (13).

B2 Shear viscosity forces in the warped frame

The viscous shear stress tensor tl.(;’), with i, j = x, y, z, is, in the

comoving lab frame coordinates (x, y, z), given by

1 = pvsij, (B18)
with the shear tensor given by

_%&.jv.u, (B19)

Sij = aiu_,- + ajui

where §; is the Kronecker delta. In the warped frame (x’, y’, z’) with
the mixed-frame velocities (v, v/, v}), the shear tensor becomes

Sex = 200 + Cos(q&)azr)v; — %V -u, (B20)
Syy = 20,0, — 3V -, (B21)
s.. =200, — iV .u, (B22)
Syy = 8yx = (0p + ¢ cos(¢)azr)v; + 9, v, — ¢, (B23)
Sye = S5y = 0yv, + 00, (B24)

Sor = Sxz = 00, + (Qx + Y cos(9)d)v] + Y Qosin(h).  (B25)

It is important to keep in mind that the components of the shear
tensor are still in the original (x, y, z) orthogonal directions; they are
just formulated with partial derivatives in the (x’, y’, z") coordinates.
The viscous force density f; in equation (32) can now be expressed
as

£ =(1/p) (axtf;‘) + 0,00 + aztz(,.”) , (B26)

where the partial derivatives are taken in the non-warped coordinates
(x, v, z). To cast them into partial derivatives in the coordinates
(x',y', z"), we use equations (B9)—(B11):

£ =(1/p) ((ax, + 1 cos(@)d. Y + 0,1 + az,tgf)) . (B27)

Again, i here refers to the (x, y, z)-directions, not the warped ones.
So far, the expressions for the shear viscous tensor are general, and
can be used for numerical 3D warped shearing box modelling.

For the laminar solutions that are translationally symmetric in x’
and y’, all instances of 9, and 0,, become zero. The divergence of
the velocity is reduced to

V-u =1 cos(¢)d v, + 9.0, (B28)

The components of s;; then simplify to

Sve = 3 cos(@)d v, — 20,0, (B29)
Syy = — 32y cos(¢)d v, — 2., (B30)
S22 = 300, — 39 cos(¢)d v, (B31)
Syy =Syx =¥ cos(d))azrv;, — g%, (B32)
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Syz = Szy = 0}, (B33)

Szx = Sy = 00V 4+ ¥ cos(¢)0,v] + Qg sin(g). (B34)

Next we employ the Ansatz that the velocities are linear in z” and
zero at 77 = 0, by using equations (43)—(45). The derivatives of the

velocities then become
0yv; = QVi, (B35)

with, as usual, i = x, y, z. The components of s;; then simplify even
more:

Sex = %W COS(¢)VX - %st (B36)
Syy = =2y cos(p)V, — 2V, (B37)
See=3V. — 3¥ cos(p)Vi, (B38)
Sey = Syx = Y cos(P)Vy — ¢, (B39)
Sy, =S,y =V, (B40)
Sz = Sz = Ve + 9 cos(P)V; + ¥ sin(¢h), (B41)
where we defined

Sij = 'si (B42)
for notational convenience. The shear viscosity force is then

1= Q0(1/p) (v cos(¢)Syi + S.i)d=(pv). (B43)

where the 9 now only acts on pv because 9.S;; = 0 due to the
linear velocity Ansatz. The viscosity coefficient v is written in the
classical way as
2
_ Cs _ 2
V= atQ—O = oz[hon.

(B44)

For the assumption of vertical isothermality, (1/0)9./(pv) can be

worked out further as
(1/p)3(pv) =vd Inp = —0 7, (B45)

where we used the Gaussian vertical structure of equation (42). The
shear viscosity force then becomes

[l = =7 (¥ cos(@) S + Si).

Following the notation of equation (65), we define a scaled, and 7'-
independent version of this as F" = (Q3z')~! £, which then reads

(B46)

F! = —a (¥ cos(¢)S + S-i). (B47)
Concretely, these become
F! = —a (39 cos’() + DVx

+3V cos(9)V: + ¥ sin(g)), (B438)
F! = —a (¥ cos™ (@) + D)V, — g cos(¢h)), (B49)
F!' = —a((¥?cos’(¢) + DV.

+3V cos(@)Vx + ¥ sin(@) cos(9)). (B50)

These expressions of the viscous force can then be used for the F;*®
in the equations of motion equations (61)—(64).
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B3 Local internal torque for the laminar solution
The components of the local internal torque are
8&x = —Zlyy, (B51)
8y = —Tolxz + Zlxx, (B52)
8z =Tolxy, (B53)

where we should not forget that z = 7' — ¥ x" cos(¢). The stress
tensor components appearing here are

Iyx = PUxlly + P — PVSxx

= pviv, + p — pv [39 cos()d. v, — 20.0]], (B54)
fxy = Qoroputy + pUuslty — PVSyy

= Qoropv, + pv;v; —pv [1// cos(d))az/v;_ — qQO] , (B55)
Ly, = PUyU, — PVSy,

= pvv. — pv [0V, + ¥ cos(¢)d V] + Y Qosin(p)],  (BS56)

where we used the expressions for sy, s,,, and s,. from equa-
tions (B29), (B32), and (B34), and the expressions for u,, u,, and u,
from equations (21), (22), and (23), respectively. Furthermore, we
have, in the last step, set x’ = x = 0 and assumed a laminar solution
that implies 0,» = 0,» = 0. Inserting these into the expressions for g
yields

g = —2'Qoropv, — 7' pviv;

+Zpv [y cos(¢)d.rv; — q] . (B57)
gy = —ropv v, + 2 pviv, +2'p

+ropv [0V] + ¥ cos(¢)0.v] + ¥ Qo sin(@)]

=2/ pv [ cos(¢)d v, — 30.v.] (B58)
8 = Qurgpv, + ropvv,

—rppv [W cos(d))az/v;‘ — qQo] , (B59)

where g, 0, p, and v/, _ are to be understood as functions of (, z/,
¢). Now we insert v, = ©V;z’ (cf. equations 43-45), which is the
Ansatz for the laminar solutions, and we obtain

g = —(@)V’QropVe — () Qo V.V,

+ 2 pv [ Qo cos(@)Vy — g, (B60)
g = —(@PQLrop ViV + (@)’ QRpVeVe +2p

+ Qoropv [Vy + ¥ cos(p)V, + ¥ sin(¢)]

— 2'Qopv [$¥ cos(@)V, — V. ], (B61)
g = Qra(@)pVi + ro(@ Qo ViV,

— roQpv [ cos(@)Vy — q] . (B62)
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B4 Vertically integrated local internal torque for the laminar
solution

By integrating equations (B60)—(B62) over 7/,

+o0
g = / gidz/, (B63)

o0

all terms proportional to z' and (z’)* integate to zero because the
density p(z) and pressure p(z’) are even functions in z’. We obtain
the following components for the vertically integrated internal torque
vector g:

8 =—QroThlVe, (B64)

gy = —QroThiV, Ve

+Qoro X[V, + ¥ cos(@)V, + ¥ sin(@)], (B65)
3. = Qgrozhgvx Vy — Qoro X[y cos(@)V, — ql, (B66)
where
+00
X = / pdz/, (B67)
—00

and we assumed that v is independent of z’. Furthermore, we used

/+oo (Z)()2dz = x /+Ooex _@? (Z)*d7
N = Varhy ) TP\ 22

= Ehﬁ. (B68)

Next we replace v using equation (B44) with athf)QO. If we now
define, for notational convenience,

g = QroThy, (B69)
then we can write

8x/80 = —Vx, (B70)
8y/80 = =V V. +a[Vy + ¥ cos(9)V, + ¥ sin(¢)], (B71)
8:/80 = ViVy — au[Yf cos()Vy — q]. (B72)

For non-linear (numerical) solutions of V; (see Section 5.4), this is
the form of the torque that has to be used. However, for sufficiently
small V;, we can ignore the V.V, V,V,, and yrcos (¢)V, terms in the
above equations. They then reduce to

8x/80 = —Vy, (B73)
8y/80 = ar[Vi + ¥ sin(g)], (B74)
8:/80 = qou. (B75)

The only velocity component that remains is V,. If we want to apply
the complex version of the linear solution for V,, equation (103),
then we should also replace sin (¢) with —ie'. In addition, we now
use equation (93) to write V, = V.(7)e'?, and obtain
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8:/80 = —Vi(r)e, (B76)
8y/80 = a[Vi(1) —ir]e?, (B77)
8:/80 = qu, (B78)

where V,(7) is now a complex solution to equations (95) and (96),
i.e. given by equation (97).
BS Azimuthal mean internal torque for the laminar solution

The ultimate goal of the computation of the internal torque is to find
the azimuthal mean vertically integrated internal torque because this
is what is needed for the evolution of the warp of a disc. Computing
the mean requires integration over azimuth ¢. However, we cannot
simply integrate equations (B73)-(B75) over ¢ because the basis
vectors of the local coordinate system (x, y, z) rotate with respect to
the global coordinates (X, Y, Z). Ogilvie & Latter (2013a) solve this
by applying a rotation to (g., g,) to obtain (gx, gy), where now the
components point in the global X- and Y-directions:

gx = cos()gx — sin(P)g,, (B79)
gy = sin(@)g, + cos(¢)gy, (B80)
8z =& (B81)

We then integrate these over ¢ to obtain the azimuthal mean:

1 27t
Gx = 7/ gx do, (B82)
7T Jo
1 270
Gy = 7/ gr do, (B83)
7 Jo
1 27T
Gz =— g7 do. B&4
z 271/0 gz d¢ (B84)

These integrals can be conveniently evaluated if we write cos (¢) =
(e'® + e7**)/2 and sin (¢) = (' — e~*)/2i in equations (B79) and
(B80). The €' part integrates to zero, while for the e part, only
the terms in equations (B76) and (B77) proportional to e survive.
This leads to the following expressions for the complex values of the
internal torque:

2Gx/go = —Vi(r) —ia V(1) — o, (B85)
2Gy/go = —iVi(r) + o V() — i), (B86)
Gz/8 = qa. (B87)

APPENDIX C: SYMBOLS

A list of symbols used in this paper, their meaning, the equation
where they are first used, and their relation to other papers’ literature,
is given in Table C1.
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Table C1. Often-used symbols in this paper.
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Symbol Meaning Dimension Equation/section Ogilvie & Latter Martin et al.
t Time T t
T Dimensionless time Equation (36) T
10 Radius of the annulus L Section 4.1 0 R
¢ Azimuthal angle along annulus Section 4.1 T
1 Unit vector of orbit orientation of annulus Section 4.1 1 1
Qo Orbital angular frequency at r = rg 7! Section 4.1 Qo
q Qoxr™4 Equation (7) q
K Dimensionless epicyclic freq. Equation (73) K/S2
oy Turbulence parameter Equation (B44) o o
¥ Warp vector Equation (5) |y |m dl/dInR
v Warp strength Equations (5) and (6) | |dl/dIn R|
XY Z Global coordinate system L Section 4.1
X, ¥, 2 Local comoving coordinate system L Section 4.2 X, ¥, 2
Xy Z Local comoving warped coordinate system L Section 4.3 X', 7
Uy, Uy, U Velocity in (x, y, z) system LT Section 4.2 Uy, Uy, U
VL VL) Velocity in sheared/warped system LT Section 4.3 Vy, Vy, Vg
Vs Vv, V. Dimensionless tilt velocity Equations (43)—(45) u, v, w
o Dimensionless frequency of the hom. solution Equation (99)
H Dimensionless pressure scaleheight Equation (55) H
P Gas density MIL? Section 4.2, equation (42) P
P Gas pressure ML-'T? Section 4.2, equation (14) P
) Surface density MIL? Equation (16) ) )
Cs Isothermal sound speed LT Cs
hp Pressure scaleheight of the disc L hp = ¢5/Q0 hp H
Ur Radial velocity of the gas in the global disc LT Equation (4) UR
fi" Gas pressure acceleration LT 2 Equations (14) and (33)—(35)
Y Viscous acceleration LT? Equation (B43)
FY Dimensionless viscous acceleration of tilt Equation (B47)
Dy Comoving time derivative L! Section 4.2, equation (B7) D
D; Dimensionless comoving time deriv. Equation (37)
G Azimuthally averaged torque density MLT™? Equation (123)—(125) or (127)—(129) G/Qmuro) —G/R
G® The dynamic (‘sloshing’) part of G MLT Equation (154)
GV The static viscous part of G MLT™? Equation (155)
G% or G,o The steady-state particular solution of G or G® MLT™? Equation (162) or (178)
g Local torque density MT™? Equations (B57)—~(B59) g
20 Dimensionality constant for G MLT™? Equation (126)
B The damping coefficient of Martin et al. (2019) Section 7.3 B
01, 02,03 The Q symbols of Ogilvie (1999) Equations (135)—-(137) 01,02, 03

01, 02, O3 Alternative Q symbols
bo Phase (orientation) of sloshing torque

01 = a0}, equations (166) and (167)
Equation (138)

Notes. The dimension column gives the dimension of the quantity, where T is the time, L is the length, and M is the mass. The equivalent y’ quantities in Ogilvie
& Latter (2013a) are in parentheses because we define the y’-coordinate as non-winding-up, as opposed to Ogilvie & Latter (2013a).

This paper has been typeset from a TEX/ITEX file prepared by the author.
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