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ABSTRACT
Tsinghua University-Ma Huateng Telescopes for Survey (TMTS), located at Xinglong Station of NAOC, has a field of view up
to 18 deg2. The TMTS has started to monitor the LAMOST sky areas since 2020, with the uninterrupted observations lasting for
about 6 h on average for each sky area and a cadence of about 1 min. Here, we introduce the data analysis and preliminary scientific
results for the first-year observations, which covered 188 LAMOST plates (≈ 1970 deg2). These observations have generated
over 4.9 million uninterrupted light curves, with at least 100 epochs for each of them. These light curves correspond to 4.26
million Gaia-DR2 sources, among which 285 thousand sources are found to have multi-epoch spectra from the LAMOST. By
analysing these light curves with the Lomb–Scargle periodograms, we identify more than 3700 periodic variable star candidates
with periods below ≈7.5 h, primarily consisting of eclipsing binaries and δ Scuti stars. Those short-period binaries will provide
important constraints on theories of binary evolution and possible sources for space gravitational wave experiments in the future.
Moreover, we also identified 42 flare stars by searching rapidly evolving signals in the light curves. The densely sampled light
curves from the TMTS allow us to better quantify the shapes and durations for these flares.

Key words: surveys – binaries: close – stars: flare – stars: oscillations (including pulsations).

1 IN T RO D U C T I O N

The binaries with orbital periods shorter than a few hours, namely
ultracompact binaries (UCBs), play a crucial role in the functional
tests of space gravitational wave (GW) observatories (Shah, van der
Sluys & Nelemans 2012). Over the past 2 yr, the Zwicky Transient
Facility (ZTF) has discovered a few UCBs with orbital period shorter
than 20 min through densely sampled photometric measurements
(Burdge et al. 2019, 2020a, b), these binaries are predicted to be
detected by LISA with high signal to noise (SNR) and to aid their
GW parameter estimation. On the other hand, as a class of binary
with the shortest orbital period, UCBs represent the terminal phase
of some binary evolution, which provide opportunities in studying
physics under extreme conditions and give crucial constraints on the
binary evolution, such as mass-accretion/loss processes, common-
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envelope evolution, and angular-momentum loss mechanisms (see
also Rappaport, Verbunt & Joss 1983; Zhu, Lü & Wang 2012;
Toonen, Voss & Knigge 2014; Chen, Liu & Wang 2020b; Wang et al.
2021).

Non-interacting black hole binaries (or candidates), which cannot
be detected by current X-ray detectors, have been discovered by
periodic photometric variability and radial velocities (RVs) of their
visible companion stars (Liu et al. 2019; Thompson et al. 2019).
Furthermore, some newest researches suggest that the black holes in
the short-period ellipsoidal variables can be revealed by analysing
the Fourier amplitudes of their light curves (Gomel, Faigler & Mazeh
2021a, b; Gomel et al. 2021c). As the cross field between GW
verification binaries and black hole binaries, the ultracompact black
hole (X-ray) binaries (Bahramian et al. 2017), in which the X-ray
radiation should be inefficient (Menou, Narayan & Lasota 1999;
Knevitt et al. 2014), are expected to be first discovered by high-
cadence, wide-area optical survey missions or next-generation GW
observatories. The ultracompact black hole binaries could be the
unique Galactic black hole systems that can be detected by both
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gravitational and electromagnetic waves, implying they will be the
most direct evidence that the stellar black hole exists.

So far, a dozen of ground-based survey missions have operated
to search for transients and variables on different time-scales. These
missions include the Deep Lens Survey (DLS, 1999–2005; Becker
et al. 2004), the Faint Sky Variability Survey (FSVS; Groot et al.
2003), the RApid Temporal Survey (RATS; Ramsay & Hakala
2005), the Catalina Real Time Survey (CRTS, since 2007; Drake
et al. 2009, 2014b, c), the Palomar Transient Factory (PTF, 2009–
2012; Law et al. 2009; Rau et al. 2009), the omegaWhite survey
(Macfarlane et al. 2015), the Intermediate Palomar Transient Factory
(iPTF, 2013–2017; Ho et al. 2018; Chatterjee et al. 2019), the High
Cadence Transient Survey (HiTS; Martı́nez-Palomera et al. 2018),
the Evryscope (since 2015; Ratzloff et al. 2019), the ZTF (since
2017; Bellm et al. 2019; Masci et al. 2019), the Compact binary HIgh
CAdence Survey (CHiCaS; Pala et al. 2020a). High-cadence surveys,
especially uninterrupted time series photometry, are more efficient in
discovering short-period light variations and phenomenon associated
with stellar flares/bursts. However, only a few missions (e.g. ZTF
high-cadence Galactic Plane Survey; Kupfer et al. 2021) insist on
performing uninterrupted photometry, as high-cadence surveys will
significantly sacrifice the coverage of the sky area. Fortunately,
several space-based survey missions, such as the Kepler mission
(Borucki et al. 2010; Koch et al. 2010) and the Transiting Exoplanet
Survey Satellite (TESS; Ricker et al. 2014, 2015), have operated to
perform long-duration uninterrupted photometry. However, Kepler
was limited to observe only Cygnus-Lyra region and ecliptic plane,
while TESS was designed to monitor the brightest dwarf stars.
Moreover, these space-based missions usually suffer low efficiency
of data transportation, and thus finally provide light curves for only
hundred thousands of objects.

As Burdge et al. (2020a) mentioned, a systematic search and study
of UCBs relies not only on the high-cadence photometry, but also
on the time-resolved spectroscopy. The high-cadence photometry is
used to search for periodic signals, while the spectra are used to
determine semi-amplitude of RVs. On the other hand, studies of
fast-evolving transients such as flare stars also require spectroscopic
confirmation (Kulkarni & Rau 2006; Ho et al. 2018). Therefore, we
initiated a new high-cadence survey mission, with an attempt to cover
the LAMOST sky areas with the Tsinghua University-Ma Huateng
Telescopes for Survey (TMTS; Zhang et al. 2020). The LAMOST
has started the time-domain medium-resolution spectroscopic survey
since October 2018 (Liu et al. 2020), which provides precise
measurements of the RV variations for stars brighter than 15.0 mag.

In this paper, we present the methods of data analysis and
preliminary results for the first-year high-cadence surveys from the
TMTS. The schema of first-year observations and light-curve data
set are described in Section 2. The descriptions of photometry and
calibration are presented in Section 3. In Section 4, we introduce the
methodology of detecting variability, periodicity, and flares in the
TMTS light curves, respectively. In this section, we also describe the
source selection with the Hertzsprung–Russell (HR) diagram. We
present some selected results in Section 5.

2 O BSERVATION

TMTS is a multiple-tube telescope system consisting of four 40-cm
optical telescopes with a total field of view (FoV) of about 18 deg2

(4.5 deg2 for each telescope) and a plate scale of 1.86 arcsec pixel−1.
The TMTS system is equipped with 4096 × 4096 pixels CMOS
cameras, which have short read-out time (<1 s) and allow to conduct
high-cadence photometry for targets on large sky areas. Detailed

introduction about the performance of TMTS is described in Zhang
et al. (2020).

Since TMTS and LAMOST have similar FoV and locate at the
same site (i.e. Xinglong Station of NAOC), the former is an ideal
telescope system to carry out collaborative tasks with the latter. At
Xinglong Station, the typical seeing is better or comparable to 2.6
arcsec for 80 per cent of nights and the sky brightness at zenith is
around 21.1 mag arcsec−2 (Huang et al. 2012; Zhang et al. 2015). Due
to the light pollution from the surrounding cities, the sky brightness
increases with the increase of zenith angle. As Zhang et al. (2015)
introduced, 32 per cent of nights in Xinglong Station have cloud-free
observations for at least 6 h, which means that about 117 nights
per year are suitable for the interrupted photometric observations
required by the TMTS.

The TMTS has two observation modes: (i) staring at the LAMOST
areas for the whole night whenever possible with a cadence of about
1 min; (ii) supernova survey with a cadence of about 1–2 d. In this
paper, we concentrate on the first-year observations of the LAMOST
sky areas. In order to achieve a high SNR, the observations are
conducted in Luminous filter (L filter hereafter), which has a very
wide coverage ranging from 330 nm to about 900 nm when combined
with the CMOS detector (see fig. 6 in Zhang et al. 2020). Similar to
Gaia’s G band (330–1050 nm; Gaia Collaboration 2018), the ‘white-
light’ band can maximize the detection depth of optical telescopes.
For a 1-min exposure, the 3σ detection limit of the TMTS can reach
about 19.4 mag.

As shown in Fig. 1, the TMTS observed 188 LAMOST plates
during the whole year of 2020, covering a total sky area of
≈ 1970 deg2. Among them, the sky area of ≈1793 deg2 has at least
100 uninterrupted 1-min exposures, as shown in the left-hand panel
of Fig. 2. Notice that, the 1-min image here is combined from six 10-s
images and its frame rate thus dropped to ≈1/75 Hz. For the purpose
of selecting variables based on the light-curve analysis (LCA), we
focus on the observed sky areas with at least 100 epochs, which take
up about 96 per cent of the LAMOST sky areas monitored during the
first year. The high-cadence survey allows us to discover and identify
variables in the LAMOST fields on a time-scale of about 1 min.

As can be seen from the right-hand panel of Fig. 2, the TMTS has
produced ≈13 million uninterrupted light curves during the survey
conducted in 2020, of which ≈6 million have at least 100 repeated
measurements. Notice that there are about 4.7 million light curves
with less than 20 epochs. The sources with such sparse measurements
could locate either near the edge of FoV or hover around the detection
limit. Based on the light curves with at least 100 ‘valid’ measurements
(see details in Section 3), we built a data set including 4.9 million
selected light curves from the first-year survey, namely TMTS-
ULC1st data set. It is worth noting that, multiple light curves may
correspond to the same source due to that some sources are located
in the overlapping FoV of multiple telescopes of TMTS. Since each
light curve can be used to detect variability and periodicity for a
source independently and only a small part of sources have multiple
light curves, the repeated light curves are not spliced together.

3 PH OTO M E T RY A N D C A L I B R AT I O N

All of the 10-s raw images from the TMTS are first bias-, dark-
, and flat-corrected using the fitsh package (Pál 2012). Then the
astrometric calibration is applied to the 10-s single frame using
the soft package scamp (Bertin 2006) and the reference catalogue
of PPM-Extended (PPMX; Röser et al. 2008). The scamp can
automatically generate accurate World Coordinate System (WCS)
information by cross-correlating the reference catalogue, and it
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Figure 1. Observation sky areas of the TMTS shown in equatorial coordinates. The sky map is plotted by using the HEALPIX package (http://healpix.sourcefo
rge.net) with NSIDE = 128 (Górski et al. 2005). The depth of the colour represents the total number of 1-min exposure.

Figure 2. Histogram of number of (1-min) exposures for observed area (left) and light curves (right). Left: The black solid line and red dashed line represent
the statistics based on overall and uninterrupted observations, respectively. The purple dot–dashed lines indicate the cut-off value (i.e. 100 repeated exposures).
Right: The blue dashed line represents the exposure number of valid measurements (i.e. flag=0; see details in Section 3).

can give accurate astrometric solutions for the FITS images. To
improve the detection depth, six successive single frames are median
combined into a 1-min image using the soft module SWARP in the
TERAPIX pipeline (Bertin et al. 2002). We extract the fluxes of
sources on the combined images using the soft package Source
Extractor (SExtractor; Bertin & Arnouts 1996).

We checked the SExtractor flag for all of the TMTS mea-
surements. The SExtractor flag �= 0 means that there are some
problems in the measurements, e.g. blending or saturation (see
details in https://sextractor.readthedocs.io/en/latest/Flagging.html).
In addition, we added a new flag bit (value = 256) to mark the
measurements within 100 pixels of the detector boundary, as these
measurements frequently cause spurious variations in the light curves
and are difficult to be calibrated. Due to immature manufacturing
process, the backgrounds of four regions divided by the X/Y midlines
in the CMOS detector are not completely consistent, especially
during big moon nights (see Zhang et al. 2020). This inconsistency
would cause spurious variation in the light curves of objects across the
midlines, we thus added an additional flag bit (value = 512) to those

detections within 40 pixels of the detector midlines. The histogram
of flag = 0 measurements (‘valid measurements’ hereafter) is also
shown in the right-hand panel of Fig. 2, and the number of light curves
with at least 100 repeated valid measurements is ≈4.9 million.

The flux measurements from continuous observations were com-
bined into a light curve. Before detecting real variability and
periodicity, we need to first remove the systematic effects like
spurious variations caused by changes in airmass, lunar phase, and
solar altitude, etc. The Tamuz’s method (Tamuz, Mazeh & Zucker
2005) and the principal component analysis (PCA) are not adopted in
the analysis. Because the extinction coefficients in these algorithms
cannot be correctly determined for variable stars, as these methods
actually make an assumption that the magnitudes of each light curve
are equal to its average. Some methods can better constrain the
coefficients for variable stars but a prior model on the intrinsic
variation needs to be assumed (see also Ofir et al. 2010; Aigrain
et al. 2017). For these reasons, we developed a weighted version
of ‘differential photometry’ to reduce the systematic errors of the
light curves. Similar to the Tamuz’s method and PCA, our algorithm
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adopted in the analysis also involves removing the common trends
and features among a large set of light curves. These common
trends and features can be modelled by (weighted) averaging all
measurements for constant stars (i.e. the stars that show no variations
during the observations) within the FoV. The ‘effective extinction
coefficient’ for each star (i.e. ci in Tamuz et al. 2005) is not set in
our algorithm, since the coefficient cannot be determined accurately
for those variable stars. Instead, a weighted factor based on the
separations between reference stars of constant luminosity and target
object is introduced to modulate various effects in different detection
regions. Hence, the corrected flux F corr

i at epoch ti for target source
i is calculated as

F corr
i = Fi × αi = Fi ×

M∏
j=1

(
F ref

j

F ref
i,j

)ωj /
M∑

j=1
ωj

, (1)

where αi represents the correction factor and M is the total number
of reference stars. Fi and F ref

i,j are the uncorrected flux for the target

and the jth reference star at time ti, respectively. F ref
j is the average

uncorrected flux of the jth reference star over an observation night,

and it is expressed as
N∑

i=1
F ref

i,j /N , where N is the number of epochs.

The ωj is a weighted factor for the jth reference star, which is set
to 1 arcsec2/(aj + C)2, where aj is the separation between the target
and the jth reference star. The characteristic separation C is set to be
a small value (i.e. 60 arcsec in our work) to avoid the singular value
when the reference star is very close to the target. The corrected
fluxes seem to be insensitive to the value of C and the results are not
significantly different even if the characteristic separation C is set as
10 arcmin.

The sources with 13 mag < G < 17 mag were selected to be
the reference star candidates, the G represents the mean G-band
magnitudes from Gaia DR2 data base (Gaia Collaboration 2016,
2018). In order to improve the calibration process, we only adopted
the reference star candidates with q = 100 per cent for their light
curves, where q = N(flag = 0)/N is a parameter to evaluate the
quality of a light curve. N indicates the total number of epochs
for a given light curve and N(flag = 0) represents the number of
valid measurements. Notice that, the reference stars may contain
some variables which should be revealed and kicked out through
iterative process. In order to reveal those variables in the reference
stars, we calculated the inverse von Neumann ratio for all of our
light curves (see Shin, Sekora & Byun 2009; Sokolovsky et al.
2017). This ratio is a very useful variability index derived by testing
the independence of successive measurements. The inverse von
Neumann ratio (Sokolovsky et al. 2017) is defined as

1

η
=

N∑
i=1

(
F corr

i − F corr
)2

N−1∑
i=1

(
F corr

i+1 − F corr
i

)2
, (2)

where F corr represents the corrected flux averaged over all epochs.
We set a very tight cut-off value, i.e. 0.8, to exclude all variables
from the reference stars. We will explain why 1

η
= 0.8 is a robust

threshold in Section 4.1.
An example of re-calibrated flux and correction factor for the

TMTS light curve of a WUMa-type eclipsing binary (i.e. CRTS
J075625.0+420405) are shown in the top and middle panels of
Fig. 3, respectively. To obtain the corresponding magnitudes, we
also calculate the magnitude zero-point m0 for each target, which

Figure 3. Example of TMTS light curve and correction factor (i.e. the αi in
equation 1) for the W UMa-type eclipsing binary CRTS J075625.0+420405
(Drake et al. 2014a; Marsh et al. 2017), which was observed by the telescope
#3 of TMTS for ≈5.3 h on 2020 January 15.

follows as

m0 =

M∑
j=1

ωj ×
(

2.5 log10 F ref
j + Gj

)
M∑

j=1
ωj

, (3)

where Gj is the Gaia DR2 G magnitude of the jth reference
star. The magnitude obtained at epoch ti is thus estimated as
mi = −2.5 × log10 F corr

i + m0. Inserting equations (1) and (3) into
the above equation, the magnitude can be expressed as

mi =

M∑
j=1

ωj ×
(

−2.5 log10
Fi

F ref
i,j

+ Gj

)
M∑

j=1
ωj

. (4)

The bottom panel of Fig. 3 shows the final magnitudes obtained with
the TMTS for CRTS J075625.0+420405. It is worth noting that,
the measurement accuracy of TMTS is superior to the space-based
survey mission TESS, as shown by the comparison of the light curves
obtained for the same source (see Fig. 4).

Fig. 5 shows the comparison of TMTS magnitudes obtained in
L band with the G magnitudes from Gaia DR2. The mean TMTS
magnitudes here were taken from the light curves of TMTS-ULC1st.
The corresponding Gaia sources with reliable parallax measurements
(σ� /� ≤ 0.2 here, where � is the parallax and σ� represents the
error of parallax) are used to cross-match the TMTS sources. One can
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Figure 4. A comparison between TESS and TMTS light curves. The observed
object is HS 0455+8315, which is an eclipsing cataclysmic variable (CV)
with a visual magnitude from about 15 to 17 (Downes et al. 2001). TMTS
observed this object on 2020 November 2, and the TESS (PDC) light curve
was obtained from the observations on 2020 June 9 (Sector 26). The start
time of TESS light curve is reset to make its major eclipse coincide with that
of TMTS.

Figure 5. Comparison of TMTS L-band magnitudes with Gaia DR2 G-
band Magnitude. The blue points represent the sources with reliable parallax
measurements (σ� /� ≤ 0.2), which means that these sources have more
precise astrometric solutions. The purple dot–dashed line represents the
diagonal line.

see that TMTS L magnitudes are basically consistent with the Gaia G
magnitudes while the scatter between these two magnitude systems
tends to increase at the faint end (see the blue points in Fig. 5).
Notice that the Gaia sources with spurious parallax values (e.g.
negative value) are usually faint and likely locate in crowded regions
(e.g. low Galactic latitude) where their astrometric solutions are
poorly constrained (Gaia Collaboration 2018). For the comparison,
we also showed an overall version that includes the sources with
spurious astrometric measurements (see the grey points in Fig. 5),
these sources with poor astrometry from Gaia caused an additional
cluster above the original distribution when matching with the TMTS
sources, which also appeared in the comparison between Gaia DR1 G
magnitudes and DR2 G magnitudes (see details in https://gea.esac.e
sa.int/archive/documentation/GDR2/index.html).

4 ME T H O D S

4.1 Variability detection

Difference image analysis (DIA; Tomaney & Crotts 1996; Alard &
Lupton 1998) and LCA (Sokolovsky et al. 2017) are two main
methods to search for variables. Compared with the DIA, the LCA,
based on the measurements obtained at more than two epochs,
can reveal low-amplitude variability. In search for variable sources
from the TMTS light curves, we calculated two common variability
indices. As it is difficult to detect reliable variabilities for the light
curves covering a very short duration, we thus identified variable
sources for those light curves with at least 100 valid epochs (see also
Gomel et al. 2021c; Kupfer et al. 2021).

We selected the TMTS light curves of the TMTS-ULC1st data set
(≈4.9 million) with instrumental magnitude 11.0 < m̃ < 18.5. Since
the average zero-point of all measurements is 25.59 ± 0.25, we
defined the instrumental magnitude as m̃ = −2.5 × log10(F corr) +
25.6. The value of the instrumental magnitude here is close to but
not equal to the astrophysical magnitude, due to that the variations
of photometric zero points with sky areas and observation conditions
are not considered.

The upper panel of Fig. 6 shows the histogram of number of
TMTS light curves from the TMTS-ULC1st data set as a function
of the instrumental magnitude. From magnitude 12 to 17, the
number density of TMTS light curves increases by about an order of
magnitude. The highest number density appears at m̃ ≈ 17.0 mag. At
the fainter end, the number density is limited by the varied detection
depths; at the brighter end, the detections suffer from effects of both
saturation and small number of bright stars.

We have calculated the robust standard deviation (StD) and inverse
von Neumann ratio (1/η here) as a function of their instrumental
magnitude m̃ for the selected TMTS light curves (see the middle
and lower panels of Fig. 6). The robust StD is the standard deviation
inferred from the central 50 percentile of the data points by assuming
a Gaussian distribution (Ofek et al. 2020), implying that the robust
StD is extremely insensitive to outliers or occasional variations.
The normalized robust StD, defined as the ratio of the robust
StD to the median flux, increases from ∼0.01 to ∼0.1 when the
brightness of the sources decreases from 12 to 18 mag. Those
points that have significantly larger ‘scatter’ than the expected are
very likely due to light variations. We use fifth-order polynomial
to fit the median and the 10σ excess, respectively, which are
both calculated in a bin of 0.1 mag. There are about 5600 light
curves that have higher robust Std than the 10σ threshold (the
blue square in the middle panel of Fig. 6). These light curves
correspond to about 5300 Gaia DR2 sources. However, it is difficult
to conclude that these sources are all astrophysically variable stars,
since blended sources can also show variabilities in their light
curves. For example, Kupfer et al. (2021) recently revealed a false
positive rate (i.e. the rate of non-astrophysically variable sources)
of up to 85 per cent for the variability detection in the high-
cadence Galactic Plane observations of ZTF. By visually inspecting
300 TMTS light curves with significance of light variations being
above the 10σ threshold, we found that non-astrophysically vari-
able stars accounted for about 67 per cent. For a lower threshold,
i.e. 5σ , about 23 000 light curves can be selected but the false
positive rate increases to about 86 per cent. Obviously, the lower
thresholds can be used to pick more astrophysically variable stars,
but the higher false positive rates also result in a huge sample
containing more non-astrophysically variable sources that is hard
to be visually inspected. Therefore, we will take the variability
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Figure 6. Distribution of light curves, robust Std and inverse von Neumann
ratio versus the instrumental magnitude. Upper panel: Distribution of the
number of the TMTS light curves from the TMTS-ULC1st data set against
the magnitudes. The red dashed line represents the light curves with quality
higher than 95 per cent (see Section 3). The bin size of the histogram is
0.1 mag. Middle panel: The normalized robust StD versus the magnitude.
The black and red solid lines represent the polynomial fit to the median and
10σ threshold, respectively. The blue squares indicate those light curves with
variability index being above the 10σ threshold. Lower panel: The inverse
von Neumann ratio versus the magnitude.

indices as an auxiliary condition to select periodic variables and
flare stars.

The inverse von Neumann ratio quantifies the smoothness of
a time-series successive variation and does not depend on the
uncertainty of the measurements as the contribution of uncertainty
has been nearly offset by its denominator as shown in equation (2).
For an ideal time series of photometry following a Gaussian distri-
bution, the expected value of its 1/η is equal to 0.5. However, for
real photometric measurements, which do not follow the Gaussian
distribution or are not completely independent of each other, the
cut-off value should be determined based on the distribution of 1/η
(see Sokolovsky et al. 2017). Given the characteristics of 1/η, we
use a third-order polynomial (rather than the fifth-order polynomial)
to fit the median and robust StD versus m̃, respectively, which
yields ≈24 000 light curves showing variations beyond the 10σ

threshold. Notice that the 1/η does not obey the Gaussian distribution
in practise, hence the ‘σ ’ here does not represent the confidence level
corresponding to Gaussian distribution. Moreover, we found that 1/η
tends to be larger for brighter sources, which could be caused by the
unmarked saturations. The saturation effect tends to reduce the in-
dependence of successive measurements and thus increase the value
of 1/η.

Figure 7. Density distribution of inverse von Neumann Ratio 1/η of light
curves from the TMTS-ULC1st data set for the all four (grey solid line) and
each of four (colourful dashed line) telescopes of TMTS. The bin size here
is 0.02. The purple dot–dashed line indicates the cut-off value to determine
the non-variable reference sources for photometric calibration.

For the purpose of excluding all variable stars from the reference
stars, we use 1/η to identify variable sources because the robust
StD parameter is insensitive to the occasional variations (e.g. the
variations of flare stars). Since the threshold of variability index
varies with the instrumental magnitude, we thus defined a statistic
parameter ε 1

η
= [ 1

η
− ν(m̃)]/σ (m̃), where ν(m̃) and σ (m̃) are the

median and robust standard deviation of inverse von Neumann ratios
for the TMTS light curves at a given magnitude, respectively. The
ε 1

η
is a key parameter to introduce the significance of variability for

a light curve.
As introduced above, although the identifications of astrophys-

ically variable stars using the variability indices have a low true
positive rate (TPR), they can be used to identify stars of constant
luminosity at a very high TPR since the light variations caused by
image quality will not increase the FPR of non-variable sources. The
setting of the thresholds for variability indices is usually arbitrary
(see Bellm et al. 2019; Kupfer et al. 2021; Nidever et al. 2021).
In the photometric calibration process (shown in Section 3), a fixed
threshold 1/η ≤ 0.8 is empirically set to identify non-variable sources.
It is a tight threshold that ensures ε 1

η
� 1.5 for the reference stars

in all observed magnitudes, corresponding to the exclusion of about
12 per cent of the reference star candidates.

Furthermore, we compare the density distribution of inverse von
Neumann ratio for each telescope of the TMTS system. As Fig. 7
shows, the 1/η distribution of each telescope is roughly consistent
with each other except that the telescope #1 and telescope #2 have a
slightly more concentrated distribution, implying that the capability
of variability detection is almost equivalent for each telescope.
Therefore, the same threshold for variability indices is adopted for
all of the four telescopes.

4.2 Periodicity detection

Due to potential non-uniform sampling caused by some ‘bad’
measurements, we test the periodicity of TMTS light curves using
the Lomb–Scargle periodogram (LSP hereafter; Lomb 1976; Scargle
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1982; VanderPlas 2018). The LSP here is defined as

P (f ) = 1

2σ 2
×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

N∑
i=1

Fi × cos 2πf (ti − τ )

]2

N∑
i=1

cos2 2πf (ti − τ )

+

[
N∑

i=1
Fi × sin 2πf (ti − τ )

]2

N∑
i=1

sin2 2πf (ti − τ )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

and τ = 1

4πf
×

⎛⎜⎜⎜⎝arctan

N∑
i=1

sin 4πf ti

N∑
i=1

cos 4πf ti

⎞⎟⎟⎟⎠ , (5)

where Fi is the flux at epoch ti after the calibration (see Section 3),
f is the test frequency, and σ 2 is the variance of the fluxes. The LSP
here is normalized by the variance and thus the white noise in LSP
follows the exponential distribution as exp (−z) (see also Coughlin
et al. 2020). We determine the most likely photometric period by
searching the highest LSP peak Pmax in the frequency range of 3/2T
≤ f ≤ fnyq, where T is the time span of the observations and fnyq

is the (pseudo-)Nyquist frequency (VanderPlas 2018), which can be
estimated as a half of average sampling rate (≈1/75 Hz). Notice
that, the observations must cover one and half cycles before we can
determine its periodicity.

Based on the cumulative distribution function (CDF) of exp (−z)
and the multiplicative property of the independent probabilities, the
false alarm probability (FAP; see Lomb 1976) of periodicity can be
estimated as

FAP = 1 − [1 − exp (−Pmax)]Neff , (6)

where Neff is the number of independent frequencies, which can
be calculated by Neff = fnyqT in approximation (VanderPlas 2018),
namely a half of total number of epochs. Notice that the estimate
of FAP is completely dependent on the assumption of white noise.
However, LSP power tends to be higher at lower frequency because
of the effect of red noise, thus the resultant FAP could be seriously
underestimated, especially at the low-frequency end. Due to rela-
tively short duration of our continuous photometry, the LSP is more
likely to be polluted by the red noise generated from non-periodic or
long-period variations. Therefore, we also search for the high LSP
powers at lower frequency range (i.e. f < 3/2T), since strong powers
in the low-frequency range (as Pred) are very likely caused by red
noise rather than real periodic behaviour. All light curves with Pred

> Pmax were marked to indicate the possible red noises in the LSPs.
Several samples of period search are shown in Fig. 8. Noted that both
panel ii-b and panel v-b have higher powers Pred below the frequency
threshold, implying that they suffered non-periodic variations during
the observations.

For the purpose of checking the periodicity FAPs obtained from
the light curves in the TMTS-ULC1st data set, we plotted their CDF
in Fig. 9. For comparison, we also generated 10 000 simulated time
series, and each is composed of random 100–1000 points that obey
a normal distribution. As shown in Fig. 9, the periodicity FAPs,
calculated from these simulated time series, follows exactly the ideal
null distribution 1−CDF=FAP. This implies that the method of
obtaining periodicity FAPs is feasible if the TMTS measurements
are independent and follow a Gaussian distribution. However, our
FAP, estimated from real data set, deviates significantly from the
ideal null distribution. Such a deviation was also found to exist in

the data set of other survey mission (Drake et al. 2013, 2014a). It is
known that the detectable periodic variable stars take only a small
percentage of all observed sources (Drake et al. 2014a, 2017; Chen
et al. 2020a; Ofek et al. 2020), the periodicity FAP discussed here
can be seriously underestimated in practise.

In order to derive more reliable estimate of periodicity FAPs, some
methods have been developed, such as the Baluev’s method (Baluev
2008) and bootstrap method (Ivezić et al. 2014). As an alternative, we
construct a true null distribution by real data set since we have already
calculated the FAPs for all available light curves of the TMTS-
ULC1st data set. By assuming that most observed sources are non-
periodic sources (typically � 90 per cent) and periodic sources tend
to have higher LSP peaks and thus lower FAPs, we can take the
highest 90 per cent FAPs as approximated null samples. We found
these null samples (corresponding to the 1−CDF>0.1 part of grey
solid line in Fig. 9) follow a straight line in the logarithmic 1−CDF
versus logarithmic FAP diagram, implying that the null distribution
of real data may differ from the ideal null distribution by only a
constant k, namely log10(1 − CDF) = k × log10FAP. By fitting the
distribution of these null samples, we obtained k = 0.225 for all light
curves of the TMTS-ULC1st data set and then the modified false
alarm probabilities can be expressed as FAPmod = FAPk. Notice that
the k value actually varies for different data sets as the performance of
flux measurements is dependent on the observation conditions. Thus,
a ‘daily’ k value is determined from daily observation data set in real
time and ‘daily’ modified FAPs are generated for the light curves.

The distribution of modified FAP is shown in Fig. 10, where one
can see that the area between the grey line and blue line corresponds
to the candidates of periodic variable. About 99 per cent TMTS light
curves [i.e. log10(1 − CDF) > −2] match the ideal null distribution,
implying that the (detectable) periodic light curves account for only
a few thousandths of TMTS-ULC1st data set. Notice that, due to the
limitation of current observation duration (typically within a night), it
is difficult to reveal long-period variables (e.g. P > 0.5 d; see details
in Section 5.1) using the TMTS-ULC1st data set. But the number
of periodic variables will be greatly improved with the ongoing of
supernova survey of TMTS.

4.3 Flare search

A common method of flare detection is to search for outliers in
the light curves for which non-flare variations (e.g. large-amplitude
and long-duration variations) have been removed. For the purpose
of avoiding false flares caused by instrumental errors or cosmic
rays, the flare search often requires at least two consecutive outliers
rather than one-point outliers (Walkowicz et al. 2011; Osten et al.
2012; Yang et al. 2018). In order to remove the non-flare variations,
Osten et al. (2012) use two different models to fit periodic and
non-periodic light curves, respectively. To avoid the comparison of
goodness for two models and speed up the data analysis, we fit all
light curves by a unified compound model of fourth-order Fourier
series (Pojmanski 2002; Drake et al. 2014a, 2017; Kim & Bailer-
Jones 2016) and second-order polynomial. The polynomial terms
here are used to offset the potential long-scale variations. Notice that
the purpose of fitting here is to remove the non-flare variations, rather
than modelling the true variations of light curves. The compound
model is expressed as

F model
i =

2∑
j=0

ci × t
j

i +
4∑

k=1

ak × cos(2π k fmax ti)

+ bk × sin(2π k fmax ti), (7)
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Minute-cadence observations of the TMTS I 2369

Figure 8. Examples for detections of periodicity variables and flare stars. The row i to v correspond to a W UMa-type eclipsing binary, an RR Lyr-type variable,
a δ Scuti star, an AM Her-type CV, and a multipeak flare, respectively. Columns a, b, and c represent the TMTS light curves, LSPs, and time series of φVV,
respectively. The red lines in column b represent the frequency threshold (i.e. 3/2T) used to investigate the red noise in LSPs. Notice that, the LSPs here are a
zoom-in version, the complete LSPs cover the frequency even higher than 20 h−1.

where fmax is the frequency corresponding to the highest power Pmax

in the LSP (see Section 4.2). Notice that even if a light curve is non-
periodic, we can still find a fmax in its LSP. For such a light curve,
our model is still applicable while the values of best-fitting ak and bk

are very small.
The residual flux F res

i = Fi − F model
i can be easily obtained and

the normalized residual could be calculated as

ri = F res
i − F res

σ res
, (8)

where F res and σ res represent the median flux and the robust
standard deviation of residual fluxes, respectively. It is worth noting
that, we adopted the robust StD instead of the uncertainty in flux
measurements, since the former can reveal true scatter in the residual
fluxes. In this way, the normalized residuals (except the points
corresponding to flares) will obey a normal distribution, which is the
prerequisite to estimate the significance of selected flare candidates.

The flare candidates are selected by locating the maximum φVV

in a time series (Osten et al. 2012), where the φVV is defined as the
product of continuous two normalized residuals,

φVV,i = ri × ri+1. (9)

The examples of flare search using time series of φVV are also shown
in Fig. 8, where one can see that only the row v (corresponding to a
flare) has very strong φVV values in its time series.

To estimate the false discovery rate (FDR), some studies (Kowalski
et al. 2009; Osten et al. 2012; Paudel et al. 2018, 2020) have applied
the FDR analysis following Miller et al. (2001). However, the Miller’s
method is not applied to our project, because it requires a large
number of null samples manually selected from the data set of light
curves, but this work cannot be finished automatically in real time
by our pipeline. Therefore, we explored the mathematical formula
for the null distribution of φVV.

As introduced above, the (non-flare) normalized residual fluxes
obey a normal distribution. By assuming successive residuals are
independent of each other, the product of two normalized residuals
(i.e. φVV) should follow the probability density function (PDF) as
indicated below,

PDF = K0(|φVV|)
π

= 1

π

∫ ∞

0

cos(φVV t)√
t2 + 1

d t, (10)

where K0 is the special (n = 0) case of modified Bessel function of the
second kind (Abramowitz & Stegun 1972). Fig. 11 shows the density
distribution of about 36 million φVV measurements from the TMTS
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Figure 9. CDF of unmodified FAP for periodicity detection in the TMTS-
ULC1st data set. The bin size is 0.5. The grey solid line represents the
FAPs obtained from the TMTS-ULC1st light curves, and the red solid line
is the model fitted to the grey bins above 1−CDF=0.1. The grey dashed
line represents the FAP distribution derived from 10 000 simulated time
series obeying a normal distribution, and the blue solid line is the ideal
null distribution with 1−CDF=FAP.

Figure 10. CDF of modified FAP for periodicity detection in the TMTS-
ULC1st data set. The bin size is 0.5. The grey solid line represents the FAP
modified by k = 0.225, and the blue solid line is the ideal null distribution
with 1−CDF=FAP.

observation conducted on 2020 December 19. The Bessel function
is characterized by the density distribution of φVV, implying that the
CDF of the Bessel function can be applied to estimate the FDR for
flare candidates.

Similar to equation (6), the FDR of flares can be estimated as

FDR = 1 −
[

1 − 1

2π

∫ ∞

φVV,max

K0(|x|) d x

]N−1

, (11)

where φVV, max is the maximum value of φVV inferred in a time series
and N − 1 is the number of φVV. Notice that, for the purpose of
selecting flares, we must exclude the φVV derived from the product
of a pair of negative ri values (thus the integral probability term is
multiplied by a factor of 1

2 in equation 11).
The CDF of flare FDRs for about 4.9 million light curves of

TMTS-ULC1st data set is shown in Fig. 12. The FDR distribution

Figure 11. The density distribution of φVV calculated from the TMTS
observation on 2020 December 19. The observation data include about
36 million φVV measurements from light curves of about 82 000 sources.
The bin size is 0.06.

Figure 12. CDF of unmodified FDR for flare detection in the TMTS-
ULC1st light curves. The bin size is 0.2.

generated from 10 000 simulated random time series (see more in
Section 4.2) matches well with the ideal null distribution, suggesting
that our mathematical formula of calculating the FDR is applicable
for normally distributed and independent residuals. However, as the
successive normalized residuals are not completely independent of
each other, the FDRs generated from the TMTS-ULC1st data set
deviate significantly from that of the ideal null distribution. Here, we
applied the same methods and assumptions described in Section 4.2
to modify the FDR. By fitting the cumulative distribution above
0.1, we obtained k = 0.376 for the overall TMTS-ULC1st data
and modified the FDR by FDRmod = FDRk. On the other hand,
for daily observation data set, our pipeline of data analysis will also
automatically determine a ‘daily’ k value, which helps modify the
FDR derived from daily observation data in a more accurate way.

4.4 Cross match with other catalogues

In order to obtain additional information (e.g. distance and RV) for
source selections, we have cross-matched all of the TMTS sources
with the Gaia DR2 data base and the LAMOST DR7 (including both
low- and medium-resolution spectra) catalogues.
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Minute-cadence observations of the TMTS I 2371

Figure 13. Density distribution of the Gaia DR2-TMTS sources across the
HR diagram. The bin’s size is 0.1 × 0.1 mag2, and the total number of sources
is 2.63 million.

4.4.1 Gaia

The Gaia DR2 covers 1.69 billion sources brighter than 21 mag,
among which astrometric positions, parallax and proper motion
parameters are available for more than 1.33 billion sources (Gaia
Collaboration 2018). Most of these sources also have photometric
data in G (330–1050 nm), B (330–630 nm), and R bands (630–
1050 nm).

Out of the 4.87 million light curves from the TMTS-ULC1st data
set, about 4.83 million light curves (99 per cent) are found to have
the Gaia-DR2 counterparts. The remained sources without Gaia
counterparts are either transients or bad detections. After removing
a part of sources that are located in multiple LAMOST plates or
repeatedly observed by different telescopes of TMTS, the total
number of the Gaia-DR2 counterparts is 4.26 million. Among
them, about 4.18 million (98 per cent) Gaia sources have parallax
measurements, but only 2.63 million (62 per cent) have reliable
parallax measurements (i.e. σ� /� ≤ 0.2 here).

Based on parallax, G magnitude and colour (GBP − GRP), we can
plot the HR diagram for these Gaia DR2-TMTS sources, which is
a very valid tool to select the white dwarfs (Jiménez-Esteban et al.
2018; Gentile Fusillo et al. 2019; Pelisoli & Vos 2019; Kim, Lépine &
Medan 2020) and hot subdwarf stars (Geier et al. 2019; Geier 2020).
As shown in Fig. 13, the Gaia DR2-TMTS sources cover a wide area
across the HR diagram. The reddening corrections were not applied
to these sources. The high-density areas in HR diagram correspond
to giant stars and main-sequence stars, which include some classes of
variables, such as pulsating stars and eclipsing binaries. The TMTS
has also captured a small number of white dwarfs in its first-year
observations. By applying a simple set of cuts for Gabs and GBP −
GRP (the equations 2–5 in Gentile Fusillo et al. 2019), we identified
565 (≈0.02 per cent) white dwarf candidates out of the 2.63 million
TMTS sources. Furthermore, we can identify CVs (Pala et al. 2020b)
and δ Scuti stars in periodic variables (see details in Section 5.1).

4.4.2 LAMOST

From 2011 to 2019, the LAMOST spectroscopic survey has obtained
10.6 million low-resolution (R ∼ 1800) spectra and 11.4 million
single-exposure medium-resolution (R ∼ 7500) spectra for about
8.9 million LAMOST targets brighter than 17.5 mag (see more in
Cui et al. 2012; Zhao et al. 2012; and http://dr7.lamost.org). In the

Figure 14. Number distribution of LAMOST DR7 epochs (including both
low-resolution and single-exposure medium-resolution spectra). The blue
squares represent the distribution for the LAMOST-TMTS sources.

LAMOST DR7 catalogue v1.2, all of the LAMOST targets have
already been cross-matched with that of the Gaia DR2 catalogue.

Plenty of atmospheric parameters (including effective temper-
ature, surface gravity, and metallicity) can be inferred from the
observed spectra by applying LAMOST Stellar Parameter pipeline
(LASP). The abundant spectral parameters from LAMOST can help
identify the variable stars from the TMTS. It is worth noting that,
LAMOST can provide RV measurements for millions of stars. These
RV measurements were determined by LASP or cross-correlation
with KURUCZ synthetic templates (Wang et al. 2019). As multi-
epoch spectra are available for millions of objects, the LAMOST
data can reveal RV variations for a large number of stars. Hence,
the LAMOST data can be used to select those with significant RV
variations (e.g. eclipsing binaries; Yang et al. 2020) and even the
binaries harbouring an invisible high-mass companion (i.e. black
hole binary candidates; Liu et al. 2019; Thompson et al. 2019; Yi,
Sun & Gu 2019; Zheng et al. 2019).

Fig. 14 shows the number of objects corresponding to the LAM-
OST DR7 spectra versus the number of the corresponding spectra that
contain both low-resolution and single-exposure medium-resolution
spectra. About 2.35 million sources (32 per cent of LAMOST
sources) have 2 to over 70 epochs, and the number of sources decrease
with the number of epochs. After cross-matching the TMTS sources
in TMTS-ULC1st data set with the LAMOST DR7 catalogue, we
find that there are 626 000 sources (8.5 per cent of the LAMOST
sources) in common. Among them, 285 000 TMTS sources have
multi-epoch spectra. For a 5-yr survey, the TMTS is expected to
provide high-cadence photometric data for more than half of the
LAMOST sources.

5 PRELI MI NARY R ESULTS

In this section, we present some preliminary results from the first-year
high-cadence photometric observations of the LAMOST fields with
the TMTS. The result of searching for periodic variable sources is
shown in Section 5.1, and the result for flares is shown in Section 5.2.

5.1 Periodic variable sources

The TMTS-ULC1st light curves with periodic variations (typically
shorter than 4 h) are selected by the following criteria: (i) ‘daily’
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2372 J. Lin et al.

Figure 15. Period distribution of selected light curves from the TMTS-
ULC1st data set. The red and blue lines represent the sets of light curves
selected with different ratios of period of light variation to observation
duration.

periodic FAP < 0.001; (ii) no significant Red Noise; (iii) LC quality
> 95 per cent. As a result, 6626 light curves were selected. However,
these selection criteria may introduce a large number of light curves
with false periodic variations due to that a wide periodicity criterion
was applied. In order to improve the TPR, we applied two sets of
criteria to select the light curves with different ratios of photometric
period to observation duration (P/T), respectively. To select light
curves that cover at least two complete periods of light variations
[i.e. new criterion (iv) P ≤ T/2], we followed previous selection
criteria (i)–(iii). This resulted in 2835 candidate light curves. For the
purpose of collecting light curves with periodic variations slightly
longer than a half of the observation duration (i.e. T/2 < P ≤ 2T/3),
we adopted the following tighter criteria: (i+) ‘daily’ periodic FAP
<10−5; (ii) and (iii) are the same as the previous criteria; (iv+)
T/2 < P ≤ 2T/3; (v) the variability index ε 1

η
≥ 3.0 (see details in

Section 4.1). With these modified criteria, 988 additional light curves
were selected.

The period distribution of all 3823 candidate light curves (cor-
responding to 3723 Gaia DR2 sources) is shown in Fig. 15. The
periods of these selected candidates are distributed from about 20
min to 7.5 h (see Fig. 15). The number of candidates increases
linearly with the photometric period until it peaks at around 3 h. For
the uninterrupted observations, the detectable period is obviously
dependent on the observation duration within a night. Although
the observation strategy prevents us from discovering longer period
variable stars, the number of short-period variables found by TMTS
is very competitive (see also Burdge et al. 2020a; Chen et al. 2020a;
Ofek et al. 2020). For a 5-yr survey plan, TMTS is expected to reveal
more than 20 000 periodic variable stars with period shorter than 8 h.

It is worth noting that, 81 periodic variable star candidates
(corresponding to 77 unique sources) have a photometric period
below 1 h, as the total number of periodic variable stars with periods
below 1 h in the International Variable Star Index (VSX, the version
updated on 2021 May 31; Watson, Henden & Price 2006) is only
887. In the next few years, TMTS will greatly expand the sample of
ultra-short periodic variable stars. The vast majority of these sources
are δ Scuti stars, some blue large-amplitude pulsators (BLAPs;
Pietrukowicz et al. 2017) and UCBs are also likely captured. To
distinguish the BLAPs and UCBs from the δ Scuti stars, we need
to investigate their absolute magnitudes, colours, and spectra. The

Figure 16. The phase-folded light curves for two shortest-period stars from
TMTS-ULC1st. The upper panel shows a δ Scuti star candidate with a period
of 18.4 min and an amplitude of 0.03 mag; the lower panel shows a BLAP
candidate with a period of 18.9 min and an amplitude of 0.26 mag. Notice
that, the BLAP candidate has been observed by telescope #1 (grey) and #3
(red) within different nights, respectively.

Figure 17. Period of the highest peak in the periodogram from the TMTS-
ULC1st data set versus the period given by the International Variable Star
Index (VSX). The solid and dashed lines represent the relation y = x and y =
2x, respectively.

phase-folded light curves for two shortest-period stars are shown in
Fig. 16. Their periods (and amplitudes) are 18.4 min (0.03 mag)
and 18.9 min (0.26 mag), respectively. With the Gaia Gabs and GBP

− GRP colour measurements, we inferred that the former is a low-
amplitude δ Scuti star while the latter is a BLAP. Further photometric
and spectroscopic observations are undergoing. We will study these
ultra-short periodic variable stars in separate papers.

All objects of these candidate light curves were cross-matched
with the VSX. As a result, 1603 light curves have a VSX coun-
terpart recorded and almost all these counterparts have a period
measurement given by VSX. We plotted the period corresponding
to the maximum power in TMTS LSP against the VSX period in
Fig. 17. The VSX periods basically coincide with the TMTS periods
or twice the TMTS periods (typically eclipsing binaries) except
for a few inconsistent measurements (� 2 per cent of all samples).
These inconsistent measurements are typically caused by multiperiod
variable stars or spurious periods in light curves.
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Minute-cadence observations of the TMTS I 2373

Figure 18. Distribution of periodic variable star candidates across the HR diagram. All points represent the periodic variable star candidates selected from the
TMTS-ULC1st data set, among which the eclipsing binaries, δ Scuti stars, CVs, and other variables identified in the International Variable Star Index (VSX)
are highlighted using the symbol shape of square, triangle, star, and diamond, respectively. The open circles represent the periodic variable candidates that are
not registered in VSX yet. The colour depth of symbols represents the period corresponding to the maximum power in LSP(s). The orange area indicates the
instability strip. Notice that, the period corresponding to eclipsing binaries here is the photometric period rather than the orbital period, since these candidates
are not completely classified yet.

All objects corresponding to candidate light curves are also
cross-matched with the Gaia DR2 catalogue. Because some light
curves match with repeated sources, all these candidate light curves
correspond to 3723 unique Gaia sources. Among these stars, 2987
sources have both a GBP − GRP measurement and a reliable parallax
measurement. Fig. 18 shows the distribution of these sources across
the HR diagram. Both the absolute magnitudes and the colour of
these sources were dereddened using the 3D dust map from Green
et al. (2019) and the DUSTMAPS PYTHON package1 (Green 2018).
After crosschecking with the latest VSX catalogue, we find that
more than half of our periodic variable star candidates are newly
discovered. In Fig. 18, we compared these periodic variable star
candidates with the δ Scuti instability strip inferred by using the strip
boundaries from Murphy et al. (2019) and the evolutionary tracks
of single stars from the Podova Stellar Evolution Database (Girardi
et al. 2000). As a result, about 940 periodic variable stars were found
to locate in the instability strip, among which about 800 candidates
could be new-discovered δ Scuti stars. Notice that, the number is
still underestimated, as more than 700 candidates have not good
parallax measurement and thus cannot be put in the HR diagram.
This demonstrates the high efficiency of discovering short-period
variables by the TMTS.

1https://github.com/gregreen/dustmaps

In comparison, the estimate of the number for eclipsing binaries
is more difficult, as the eclipsing binaries distributed on a much
wider area of the HR diagram than the δ Scuti stars. Due to the
special profiles of light curves from eclipsing binaries, they could
be identified by the random forest (RF) or neural networks (NNs).
By adopting the cyclic-permutation invariant NNs from Zhang &
Bloom (2021), there are about 1900 eclipsing binaries in our 3723
periodic variable star candidates, among which about 600 eclipsing
binaries are new-discovered (see details in Xi et al., in preparation).
Notice that, the results did not include the eclipsing binaries that were
covered by TMTS observations for shorter than 1.5 photometric
periods (i.e. 0.75 orbital period). These longer-period eclipsing
binaries are expected to be identified by eyes or new algorithm of
NNs.

Since about 20 per cent of periodic variable star candidates have
not reliable Gaia parallax measurements, the identifications of these
candidates rely on additional spectroscopic observations. Among
3723 periodic variable star candidates, 1252 sources are observed by
the LAMOST and 814 sources have measurements of both surface
gravity (log g) measurement and effective temperature (Teff), which
means that a part of candidates can be identified using the parameters
from the LAMOST spectra. This is because the two dominant classes
of short-period variable sources, δ Scuti stars and eclipsing binaries,
locate at distinct areas in the Teff–log g diagram (see Fig. 19). With
the cut-off temperature 6500 K from Murphy et al. (2019), 290 new δ
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Figure 19. LAMOST surface gravity versus effective temperature for peri-
odic variable candidates from the TMTS-ULC1st data set. The red triangles
and blue squares represent the δ Scuti stars and eclipsing binaries identified in
VSX, respectively. The unclassified periodic variable candidates are labelled
as grey circles. The green dashed line indicates the cut-off temperature for
selecting δ Scuti stars (see also Murphy et al. 2019).

Scuti star candidates are selected from the 502 unidentified periodic
variable candidates, and the remained unidentified candidates are
very likely eclipsing binaries.

The LAMOST has started time-domain medium-resolution spec-
troscopic survey since 2018, and one of the main scientific goals
of this survey is to discover quiescent or non-interacting black hole
binaries in our Galaxy. Since a few binaries harbouring an invisible
high-mass companion (e.g. Munseen > 3 M
) have been proposed
as black hole binary candidates (Gu et al. 2019; Liu et al. 2019;
Thompson et al. 2019; Yi et al. 2019; Zheng et al. 2019; Clavel et al.
2021; Gomel et al. 2021c). With multi-epoch RV measurements from
the spectroscopic surveys and periodic provided by the wide-field
photometric survey missions like TMTS, the lower limits of mass
functions are easily estimated for the observed binaries. It is worth
noting that, the multi-epoch spectra tend to discover short-period
binaries, since these systems usually have larger Keplerian velocities.
As introduced by Yang et al. (2020), the most spectroscopic binaries
(SBs) identified from the LAMOST have an orbital period shorter
than 0.6 d. In the next few years, the TMTS is expected to play an
important role in providing a large sample with short-period light
variations. With the progress of time-domain survey, LAMOST and
TMTS observations will give constrains on mass function for a large
number of single-lined binaries and thus provide an opportunity for
the search of black hole or neutron star binaries.

5.2 Flare stars

As a subclass of eruptive variable star, flare stars are observed
to exhibit flaring behaviour during which the brightness of stars
dramatically increase within a few minutes and then decrease for
several hours. Since the operation of Kepler mission, about 3400
stars are found to have flares according to the Q1–Q17 (Data Release
25) long-cadence (LC) data of Kepler (Yang & Liu 2019). However,
only about 200 flare stars have been identified through its short-
cadence (SC) data, since only about 5000 targets in Kepler have SC
observations (Balona 2015; Yang et al. 2018). Compared to the LC
data, the good time resolution of SC data allows further study about
the morphology of flares (Balona 2015).

Figure 20. Distribution of the flare stars and candidates in the HR diagram.
The confirmed flare stars are labelled with red star symbol.

During the high-cadence observations of the LAMOST sky area,
TMTS has also captured a series of flare events. Because the flares
only cause occasional variations in the light curves, the variability in-
dexes tend to be less sensitive compared with the periodic variations.
Therefore, we widened the criterion of ε 1

η
here when identifying

flares. On the other hand, the flare search is very dependent on the
observational condition since two continuous outliers in a light curve
are already enough to produce a flare candidate. It is worth noting
that, some spurious ‘flares’ could be generated when the objects
locate on the bad pixels of detectors. These bad pixels usually distort
the point spread function of the sources, so the SExtractor Flags
of the corresponding measurements are very likely non-zero values.
Hence, a very tight criterion is needed for the LC quality.

In summary, we searched for the flares in the TMTS-ULC1st light
curves using the following criteria: (i) ‘daily’ flare FDP <10−5; (ii)
ε 1

η
> 2.0; (iii) LC quality = 100 per cent; (iv) excluding bad weather

observations. This finally resulted in 356 flare candidates, among
which 42 flares were visually confirmed. Among them, 39 flares
correspond to Gaia sources with both the GBP − GRP colour and the
reliable parallax measurement. As shown in Fig. 20, these flare stars
are distributed on the lower right branch of the main sequence in
the HR diagram, with an absolute magnitude lying between 6.0 and
12.0 mag. Compared to flare stars discovered by other surveys, the 1-
min cadence of uninterrupted photometry allows us to further study
the shapes and durations (a flare sample is shown in the row v of
Fig. 8). In a 5-yr survey plan of TMTS, the discovery number of flares
with high-quality light curve coverage is expected to significantly
expand the samples of flares with short time resolution.

6 SU M M A RY

We present the methodology of variables detecting and preliminary
scientific results for the first-year high-cadence monitoring of the
LAMOST plates with the TMTS. During the period from 2020
January to 2020 December, the TMTS has observed 188 LAMOST
plates and generated 4.9 million uninterrupted light curves for
over 4.2 million objects with a cadence of about 1 min. We have
applied the inverse von Neumann ratio, LSP, and Osten’s methods
to detect variability, periodicity, and flares in these light curves,
respectively, and then estimated the corresponding significance by
their cumulative functions.
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A preliminary result of periodicity detection reveals 3723 short-
period variable candidates, with a period shorter than 7.5 h. Hence,
TMTS is expected to find more than 20 000 short-period periodic
variables in a 5-yr observation plan. By plotting the TMTS sources
across the HR diagram using the Gaia DR2 parameters, we estimated
that at least 600 new eclipsing binaries and 800 new δ Scuti stars were
discovered in 2020. Furthermore, over 40 flares with great temporal
resolution were detected during the observations. Further analysis of
the periodic variables and flares will be presented in the forthcoming
papers.
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