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ABSTRACT
We present a new method of modelling time-series data based on the running optimal average (ROA). By identifying the effective
number of parameters for the ROA model, in terms of the shape and width of its window function and the times and accuracies
of the data, we enable a Bayesian analysis, optimizing the ROA width, along with other model parameters, by minimizing the
Bayesian information criterion (BIC) and sampling joint posterior parameter distributions using MCMC methods. For analysis of
quasar light curves, our implementation of ROA modelling can measure time delays among light curves at different wavelengths
or from different images of a lensed quasar and, in future work, be used to inter-calibrate light-curve data from different telescopes
and estimate the shape and thus the power-density spectrum of the light curve. Our noise model implements a robust treatment of
outliers and error-bar adjustments to account for additional variance or poorly quantified uncertainties. Tests with simulated data
validate the parameter uncertainty estimates. We compare ROA delay measurements with results from cross-correlation and from
JAVELIN, which models light curves with a prior on the power-density spectrum. We analyse published COSMOGRAIL light
curves of multilensed quasar light curves and present the resulting measurements of the inter-image time delays and detection
of microlensing effects.
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1 IN T RO D U C T I O N

Active galactic nuclei (AGN) are powered by accretion on to a
super-massive black hole (SMBH), producing the brightest persistent
objects in the Universe (e.g. Salpeter 1964; Lynden-Bell 1969;
Sanders et al. 1989). AGN are known to play a key role across cosmic
time in the evolution of galaxies (e.g. Fabian 2012; Heckman &
Best 2014), and so understanding the central regions that power
AGN is crucial. Despite their extreme brightness, resolving structure
close to the black hole remains a challenge. Spatially resolving
these regions typically requires sub-microacrsecond resolution, a
feat outwith the spatial resolution of current telescopes. Recent
progress has been made relying on interferometry with instruments
such as GRAVITY in the near-IR (Gravity Collaboration 2018)
resolving the the broad-line region (BLR) on sub-pc scales, or
the Event Horizon Telescope (Event Horizon Telescope Collabo-
ration 2019) resolving the shadow of the SMBH at the centre of
M87.

AGN are known to be variable (e.g. Kawaguchi et al. 1998; Dex-
ter & Agol 2011), and while its physical origin is not fully understood,
this variability can be exploited to probe the inner regions of AGN.
Echo mapping or reverberation mapping (e.g. Blandford & McKee
1982; Peterson 1993; Cackett, Bentz & Kara 2021) is a technique
that exploits this variability as well as the finite traveltime of light to
dissect the accretion flow, providing a probe of the structure on a scale
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equivalent to sub-microarcsecond resolution. This technique is based
upon variable X-ray/EUV emission originating close to the BH, that
propagates outward at the speed of light and is reprocessed, either
as thermal continuum emission from the disc or as broad emission
lines from the BLR.

The main aim of reverberation mapping experiments is to measure
the time delay between variations in the driving and reprocessed light
curves. In the case of thermal reprocessing in the accretion disc,
the wavelength is set by the local temperature, therefore measuring
the time delays as a function of wavelength, provides a test of
the temperature structure of the disc as well as the size of the
disc (Cackett, Horne & Winkler 2007). Measuring the delay of
the response of broad emission lines, provides an estimate of the
size of the BLR and thus the mass of the BH (e.g. Peterson et al.
2004). Measuring the response of these broad lines as a function
of velocity, allows the structure and kinematics of the BLR to be
investigated (Horne et al. 2004). For these experiments, a robust
method of measuring these time delays is required.

Time delays can also be measured between images of gravitation-
ally lensed quasars by similarly exploiting the intrinsic variability.
These can provide a direct probe of Hubble’s constant, H0 (e.g.
Tewes et al. 2012), measure the size of the BLR of the source quasar
(e.g. Sluse & Tewes 2014) and enable reverberation mapping at high
redshift through reconstructing rest frame light curves (e.g. Williams
et al. 2021). Measuring these time delays also requires accounting for
microlensing effects that vary the brightness of the lensed images on
a longer time-scale than the intrinsic quasar variability (e.g. Tewes,
Courbin & Meylan 2013).
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Typically, time delays between two light curves have been
measured using the interpolation cross-correlation function (ICCF;
Gaskell & Peterson 1987). The most notable problem with this
method is that it is based upon interpolating one light curve and
treating this as the driver to measure the delay to another. This
is especially a problem for unevenly sampled data or large gaps
where observations may have been halted for a period of time, often
resulting in poor constraints on these time delays. An alternative
approach would be to model the light curves based on some
assumptions. The most popular of these, JAVELIN (Zu, Kochanek &
Peterson 2011), models the variability with a damped random walk,
and generally provides tighter uncertainties (e.g. Yu et al 2020) on
the measured delays as well as provides a model of the driving light
curve. A similar approach is taken by CREAM (Starkey, Horne &
Villforth 2016), which models the light curves based on the ‘lamp-
post’ model, inferring the driving light curve.

In this paper, we investigate using a running optimal average
(ROA) to model AGN light curves and to then measure the time
delays between light curves. We present the code PYROA,1 which
draws information from all available light-curve data in forming the
ROA model of the AGN variations. The ROA is then normalized,
shifted, and scaled to fit the individual light curves, thus measuring
the mean and rms of the variations in each light curve, and the
time delays between them. Markov chain Monte Carlo (MCMC)
samples provide parameter estimates and uncertainties. In Section 2,
we outline the running optimal average and the modelling process
of PYROA to measure inter-light-curve delays. In Section 3, we test
the method with simulated data. In Section 4, we use our method
to measure inter-image delays of gravitationally lensed quasars of
public data from the COSMOGRAIL project (Eigenbrod et al. 2005,
and references therein). We conclude in Section 5 with a brief
summary of our findings.

2 L I G H T C U RV E M O D E L L I N G

This section outlines a Bayesian analysis using a running optimal
average (ROA) to model light-curve data. The ROA model represents
the light curve as a running optimal average of the data. The
Bayesian information criterion (BIC) is then used to tune the degree
of smoothing warranted by the data. The model parameters are
sampled with MCMC to estimate their values and uncertainties.
Unlike methods such as cross-correlation that compare one light
curve with another, the ROA model fits multiple light-curve data sets
simultaneously to collect all the available information in determining
the light-curve shape.

2.1 Running optimal average

The ROA model provides a smooth differentiable function that
describes the shape of a light curve, or other time series, along with
an error envelope to quantify its uncertainty. It is defined as follows.
Consider time-series data consisting of N data points Di, with error
bars σ i, at times ti. The ROA model light curve X(t) is an optimal
(inverse-variance weighted) average of all the data, evaluated at time
t with a window function that diminishes the influence of data at
times ti that are far from the time t. This is given by

X(t) =
∑N

i=1 Diwi(t)∑N

i=1 wi(t)
, wi(t) = 1

σ 2
i

exp

[
−1

2

(
t − ti

�

)2
]

, (1)

1https://github.com/FergusDonnan/PyROA.

where the weights wi(t) are described here by a Gaussian window
function with width �. Given the uncertainties σ i on the data Di, the
resulting statistical variance of the running optimal average is

σ 2 [X(t)] = 1∑N

i=1 wi(t)
. (2)

This defines the error envelope for the ROA light-curve model. When
data points are densely sampling compared with the window width �,
they are averaged with optimal inverse-variance weights. The ROA
interpolates across data gaps, and extrapolates beyond the ends of the
data, with an error envelope that expands appropriately, depending
on the adopted shape of the window function.

Unlike other attempts to model quasar variability, the ROA does
not make any assumptions about the shape of the driving light
curve. For example, JAVELIN uses a damped random walk that is
then smoothed by a uniform transfer function to model the light
curves, whereas the ROA simply calculates the shape from the data,
which is already smoothed. This provides a unique insight into quasar
variability compared to previous methods.

2.1.1 Window function shape

The ROA can be defined in terms of a generic window function shape
W(x), where x ≡ (t − ti)/�, and we require W(0) = 1 and W(± ∞) =
0. Perhaps the simplest option is the‘top-hat’ window function,

W (x) ≡
{

1 , |x| < 1 ,

0 , |x| > 1 .
(3)

This admits data within a time interval ±�. Although widely used,
the resulting ROA X(t) jumps whenever data enter or leave the
window, and the uncertainty σ [(X(t)] is infinite whenever a data
gap exceeds the window width 2 �. These undesirable features
are avoided with smoothly-declining window functions such as a
Gaussian window function,

W (x) ≡ exp

(
− x2

2 �

)
. (4)

Other shapes with wider wings affect the rate at which data more
distant in time lose influence on the ROA. For example, an inverse-
cosh window function,

W (x) ≡ 1

cos h(x)
, (5)

has exponentially decaying wings, and a Lorentzian window func-
tion,

W (x) ≡ 1

1 + x2
, (6)

has power-law x−2 wings. Other choices are clearly possible.

2.1.2 Effective number of parameters

The ‘flexibility’ of the ROA is controlled by the window function
width �. If � is small, then X(t) is flexible enough to follow relatively
rapid variations in the data. If � is large, then X(t) is stiffer and can
follow only slower variations. In the limit � → ∞, the ROA model
becomes a rigid constant, the optimal average of all the data. From
this, it is clear that the value of � controls the effective number of
parameters of the model. A small � highly flexible ROA model has
many parameters. As � → ∞, the number of parameters reduces to
just 1. As � → 0, X(t) can fit the data perfectly, and thus in this limit
the number of parameters becomes N, the number of data points.
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Optimizing � is important because an overly-stiff model fails to
fit the data while an overly-flexible model overfits the noisy data.
The balance between overfitting and underfitting can be achieved by
a trade-off between the quality of the fit, as measured for example
by χ2, and an Occam bias favouring simpler models with relatively
few parameters. To implement this, we need to quantify the effective
number of parameters for a given value of �.

The number of parameters Pi used by the ROA model X(t) to fit a
single datum Di ± σ i at time ti is given by

Pi(�) = ∂X(ti)

∂Di

= wi(t)∑
k wk(ti)

= 1/σ 2
i∑

k
1
σ 2
k

exp
[
− 1

2

(
ti−tk

�

)2
] , (7)

written here for a Gaussian window function. Note that Pi = 1 for
an isolated data point with no other data close enough to affect the
ROA. In a more densely sampled region, Pi decreases to the data
point’s share of the inverse-variance weights of all data close enough
in time to contribute to the ROA. For the full ROA model, X(t), the
total number of parameters sums the previous equation for Pi over
all N data points:

PX(�) =
N∑

i=1

Pi =
N∑

i=1

1/σ 2
i∑

k
1
σ 2
k

exp
[
− 1

2

(
ti−tk

�

)2
] . (8)

Knowing the number of parameters allows for the optimal value of �

to be determined using the BIC. This is a ‘badness of fit’ statistic that
includes a penalty for models with too many parameters. We have
released the code for simply calculating the running optimal average
separately to the PYROA code for modelling the light curves. This
code, ROA,2 calculates the running optimal average and effective
number of parameters for some given data.

The ROA model, X(t), can be normalized such that 〈X〉t = 0,
〈X2〉t = 1. This then provides a dimensionless driving light curve
that can be scaled and shifted to fit to data. This is the basis of this
method to model AGN light curves.

2.2 Simple model

The simplest model for these light curves is one where the driving
light curve is scaled, shifted, and translated in time to reproduce the
flux of a given light curve, i. The following is an equation for the
model flux as a function of time, fi(t), given by

fi(t) = AiX (t − τi) + Bi , (9)

where Ai represents the rms flux, Bi represents the mean flux, τ i

represents the time delay, and X(t) is the driving light curve. The
time delay for the first light curve is fixed at 0 (τ 1 = 0), which means
that the time delays are measured relative to this light curve.

In this simple model the assumption is that the shape of the
variability given by X(t), is the same for each light curve, calculated
using all of the light curves shifted and stacked appropriately where
the ROA is calculated from equation (1). This provides the maximum
information for determining the shape of the driving light curve. In
this model, we can also add an extra variance term to the noise model
as a free parameter for each light curve, to account for additional
uncertainty not included in the original error bars.

We fit this model using a Bayesian approach where the posterior
probability of the model, M, given the data, D, (Pr(M|D)) is
maximized by the best-fitting parameters. The natural log of this

2https://github.com/FergusDonnan/Running-Optimal-Average.

probability is given by the sum of the log prior (Pr(M)) and the
log-likelihood (Pr(D|M)):

ln Pr(M|D) = ln Pr(M) + ln Pr(D|M) + const . (10)

As mentioned previously, fitting this model required the use of a
statistic that includes a penalty for a running optimal average that is
too flexible. As the BIC is a ‘badness of fit’ statistic, it is minimized
by the best-fitting parameters. The BIC is given by

BIC = −2 ln Pr(D|M) + P ln N , (11)

where the second term is the penalty, added to negative twice the log
likelihood, which depends on the number of parameters, P, and the
total number of data points, N. For our model, the first term is

−2 ln Pr(D|M) =
Nl∑
i=1

⎡
⎣ Ni∑

j=1

[(
Dj,i − fi

)2

σ 2
j,i + s2

i

+ ln

(
σ 2

j,i + s2
i

σ 2
j,i

)]⎤⎦ ,

(12)

where for Nl light curves, indexed i = 1, 2, 3, ..., each contain Ni

data points, Dj, i, with errors, σ j, i. The extra error parameters, si, are
added in quadrature to the original error bars. The right-hand term of
this equation provides a penalty for adding additional variance to the
flux error measurements, which is measured relative to the original
error bars to give zero when no extra variance is added.

The penalty term for the number of parameters is given by

P ln N =
Nl∑
i=1

4 ln(Ni) + PX ln

(
Nl∑
i=1

Ni

)
. (13)

The first term features a factor of 4, for the four parameters per
light curve: Ai, Bi, τ i, si. The number of parameters in the final term,
PX, depends on the free parameter �, according to equation (8). This
ensures that the best-fitting running optimal average is the one that
fits the data well with the fewest effective number of parameters.

2.3 Fitting procedure

To determine the best-fitting parameters for this model, we use
the MCMC package, EMCEE (Foreman-Mackey et al. 2013). This
process samples the posterior probability of the model given the
data, including prior probabilities for the parameters. The priors are
chosen as uniform distributions between sensible limits, e.g. Ai is
known to be positive. For each sample in the MCMC, the following
steps are taken to calculate the posterior probability:

(i) First, each light curve is shifted by the appropriate parameters.
This means each data point, Dj, i, is altered such that Dj, i → (Dj, i

− Bi)/Ai and is shifted back in time by τ i. This has the effect of
‘stacking’ the light curves (if the parameters are close to optimal),
allowing for the running optimal average to be determined. The first
light curve is not shifted in time ensuring that the ‘stacking’ occurs
on light curve 1. This means the time delays are measured relative to
this light curve that removes a degeneracy in the time delays. Without
this, there is no reference to measure a lag from and therefore the τ i

parameters would be degenerate.
(ii) The extra error parameters, si, are also added in quadrature to

the error bars of each light curve, i.e. σj,i →
√

σ 2
j,i + s2

i .

(iii) The shifted light curves are then merged into a single light
curve, where the running optimal average, X(t), is calculated on a fine
grid of times using equation (1). The grid consists of 1000 equally
spaced points, ranging over the initial and final times of the merged
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light curve. The effective number of parameters given the value of
�, is also calculated using equation (8).

(iv) The running optimal average, X(t), is then normalized to
ensure that 〈X〉t = 0, 〈X2〉t = 1. This is done by subtracting the
mean of X(t), and then dividing by the standard deviation of X(t).

(v) The model is then calculated for each light curve, using
equation (9).

(vi) Finally, the BIC is calculated using equation (11). The
negative of the BIC provides twice the log likelihood plus a penalty,
therefore the relative log posterior probability is calculated by adding
the twice the log prior to the negative of the BIC. i.e. 2ln Pr(M) −
BIC. This is the statistic calculated for each sample of the Markov
chain, and maximized by the best-fitting solution.

This process is repeated for a large number of samples, discarding
a fraction of samples as ‘burn-in’. The best-fitting parameters are
chosen by taking the median of the posterior distributions, with
uncertainties in the range from the 16th to the 84th percentile. The
starting positions of the MCMC walkers are chosen as Gaussian
random numbers centred on a chosen value. For the parameter Ai,
the walkers are started around the rms of the individual light curves.
For Bi, they are started around the mean of the individual light curves
and for � they are started around 1 d – although this value can be
altered depending on the data. The other parameters were started
around zero. The initial time delays and � can be chosen depending
on the data being modelled. For example, if the time delay is large and
can be estimated visually (or by some other method), initializing the
walkers by this estimation will reduce the ‘burn-in’ required and/or
prevent the Markov chain getting stuck in a local minima.

2.4 Managing outliers

A major problem with astronomical data are outliers, caused by
external processes such as cosmic rays. The optimal process of
managing them is often unclear as there are many approaches. A
common method is sigma clipping, where data points outwith a
certain threshold (Nσ ) of the model, are excluded. For example, if a
datum were outside a threshold of 3σ , it lies outwith a probability of
99.7 per cent, assuming Gaussian error bars.

Sigma clipping has the effect of creating a discontinuity in χ2

at the threshold, as χ2 drops to zero beyond the threshold. This
discontinuity is undesirable as a data point slightly outwith the
threshold is treated vastly differently to one slightly within the
threshold. The most simple way to resolve this issue is to instead have
the χ2 to become constant at the value of the threshold, demonstrated
in Fig. 1. This is equivalent to expanding the error bars of the outliers
such that they are exactly Nσ away from the model. This method
of sigma clipping was implemented into the fitting process when
calculating the BIC, where we treat the χ2 term of equation (12) as
a piecewise function that is constant for data beyond the threshold.
The second term is handled by expanding the error bars of points
outwith the threshold to meet Nσ , i.e. σ 2

j,i + s2
i is set to the variance

required such that the datum is exactly Nσ from the model.
Other methods of sigma clipping are also possible. While χ2 is

no longer discontinuous as the threshold, the first derivative is still
discontinuous. A way to solve this issue would be for χ2 to become
linear with the gradient set by the first derivative evaluated at the
threshold. This is effectively converting χ2 into a function similar to
the median absolute deviation (MAD) beyond the threshold, which is
much more resilient to outliers than χ2. Implementing such a solution
would be relatively straightforward, if required in future applications
of the model.

Figure 1. Demonstration of sigma clipping at a threshold of 4σ . The value
of χ2 is constant beyond the threshold, shown by the solid line. The dashed
blue line shows χ2 without any sigma clipping.

3 TESTI NG W I TH MOCK DATA

To ensure the ROA model and fitting procedure is robust, we tested
our algorithm with mock data where the variability is generated from
a random walk. A damped random walk has been shown to describe
quasar variability well (e.g. Kozłowski et al. 2010; MacLeod et al.
2010), where the variability is given by a random walk on short time-
scales but ‘damped’ on long time-scales to push deviations towards
the mean, with typical damping time-scales on the order ∼200 d
(MacLeod et al. 2010). For our simulation, we use a dimensionless
duration of 50 and delays of 5 and 10, which, if measured in days, are
plausible delays for reverberation mapping studies of BLR emission
line lags (e.g. Grier et al. 2017) or accretion disc lags (e.g. Homayouni
et al. 2021). Therefore, it is suitable to use a random walk for 50 d
as this is significantly shorter than the typical damping time-scale of
∼200 d. We first generated three mock light curves based on the same
random walk where each is shifted in time by some true parameter.
This allows us to test our method’s ability to reproduce the true value
of the parameters. The mock data was generated by the following:

(i) A random walk light curve was generated where each step is a
Gaussian random number with a mean of 0 and a standard deviation
of 1. This was done for 10 000 steps over a range of times from 0 to
100. The random walk was then normalized such that its mean is 0
and rms is 1. This mimics the random variability of an AGN and an
example is plotted in the top panel of Fig. 2 in purple.

(ii) A set of discrete times was generated between 30 and 70 with
equal spacing, consisting of 200 points for the first light curves, 150
for the second, and 250 points for the third. A Gaussian random
number with a mean of 0 and a standard deviation of 1 was then
multiplied by the spacing between the times and added to the original
times. This makes the spacing between the data points uneven.

(iii) The normalized random walk was then scaled and shifted in
time by the true parameters (shown in Table 1), and calculated at the
times generated in the previous step.

(iv) To simulate error bars, errors were chosen as some arbitrary
value plus a small uniform random number to vary the sizes of the
error bars across the light curve.

(v) To scatter the flux values based on the error bars, they were
calculated as Gaussian random numbers with a mean calculated in
the second step and a standard deviation given by the error bars.

Our benchmark model consists of three light curves, with the true
parameters are given in Table 1 labelled Case A. This was chosen
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Figure 2. Model fit to mock data, Case A. The top panel shows the random walk used to generate the data (purple) overlayed with the normalized driving light
curve found by the model (black). The grey shaded region shows the error envelope for the running optimal average calculated using equation (2). The three
mock light curves are plotted in the following panels, overlayed with the best-fitting model in black. The normalized residuals, χ , for each light curve are also
shown, with the colour corresponding to the appropriate light curve. The right-hand panels of each light curve show histograms of the probability distributions
for the time delay. The cross-correlation centroid distribution is shown in grey, our method (PYROA) is shown in blue and JAVELIN is shown in red. The dashed line
shows the cross-correlation function. The right-hand panels of the residuals show a histogram of those normalized residuals, in comparison with the expected
Gaussian distribution in black.

to give a signal-to-noise ratio (S/N) of ∼20. For the first light curve,
we generated errors of 0.2, for the second we used 0.5 and 0.2 for
the third. We then add a uniform random number between 0 and
0.01 for light curves 1 and 3, whereas for light curve 2, we use a
uniform random number between 0 and 0.05, which varies the errors
slightly. This represents a very high S/N case. The high S/N here is

measured as how variable the source is relative to the noise of the
flux measurements. This can be estimated by the ratio of the rms of
the light curve to the mean error of the fluxes, which, for this case,
gives an S/N of ∼ 20.

The high cadence and S/N are similar to typical intensive disc-
reverberation mapping (IDRM) campaigns (e.g. Fausnaugh et al.
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Table 1. Mock data results.

Parameter Truth Prior Best fit ICCF JAVELIN

Case A: high signal-to-noise ratio (Fig. 2)

A1 5.0 [0, 20] 4.954+0.035
−0.035 – –

A2 12.0 [0, 20] 12.04+0.10
−0.10 – –

A3 2.0 [0, 20] 2.003+0.014
−0.014 – –

B1 100.0 [0, 1000] 100.000+0.033
−0.035 – –

B2 85.0 [0, 1000] 85.186+0.093
−0.096 – –

B3 90.0 [0, 1000] 90.003+0.014
−0.014 – –

s1 0.0 [0, 10] 0.509+0.027
−0.026 – –

s2 0.0 [0, 10] 1.322+0.078
−0.069 – –

s3 0.0 [0, 10] 0.197+0.013
−0.013 – –

τ 2 5.0 [−50, 50] 5.006+0.011
−0.013 4.958+0.058

−0.062 5.0061+0.0059
−0.0052

τ 3 10.0 [−50, 50] 9.986+0.013
−0.010 9.991+0.048

−0.040 10.002+0.012
−0.011

� – [0.1, 10] 0.239+0.010
−0.010 – –

Case B: seasonal gaps (Fig. 4)

A1 5.0 [0, 20] 4.953+0.043
−0.043 – –

A2 12.0 [0, 20] 12.57+0.18
−0.17 – –

A3 2.0 [0, 20] 1.990+0.018
−0.018 – –

B1 100.0 [0, 1000] 99.915+0.047
−0.048 – –

B2 85.0 [0, 1000] 84.84+0.11
−0.11 – –

B3 90.0 [0, 1000] 90.075+0.020
−0.020 – –

s1 0.0 [0, 10] 0.396+0.031
−0.030 – –

s2 0.0 [0, 10] 0.956+0.100
−0.093 – –

s3 0.0 [0, 10] 0.172+0.020
−0.020 – –

τ 2 5.0 [−50, 50] 5.009+0.018
−0.013 4.20+0.17

−0.15 5.016+0.017
−0.019

τ 3 10.0 [−50, 50] 9.993+0.021
−0.024 8.56+0.18

−0.20 10.037+0.049
−0.048

� – [0.1, 10] 0.206+0.013
−0.012 – –

Case C: low signal-to-noise ratio (Fig. 5)

A1 5.0 [0, 20] 4.35+0.19
−0.19 – –

A2 12.0 [0, 20] 11.82+0.59
−0.55 – –

A3 2.0 [0, 20] 2.13+0.16
−0.16 – –

B1 100.0 [0, 1000] 99.93+0.18
−0.19 – –

B2 85.0 [0, 1000] 85.43+0.57
−0.56 – –

B3 90.0 [0, 1000] 89.83+0.16
−0.16 – –

s1 0.0 [0, 10] 0.44+0.34
−0.30 – –

s2 0.0 [0, 10] 3.09+0.66
−0.71 – –

s3 0.0 [0, 10] 0.77+0.30
−0.39 – –

τ 2 5.0 [−50, 50] 5.31+0.14
−0.15 5.30+0.27

−0.32 5.30+0.17
−0.15

τ 3 10.0 [−50, 50] 10.16+0.23
−0.22 10.30+0.45

−0.47 10.22+0.24
−0.23

� – [0.1, 10] 1.45+0.11
−0.10 – –

Case D: high S/N with underestimated errors (Fig. 6)

A1 5.0 [0, 20] 4.965+0.034
−0.034 – –

A2 12.0 [0, 20] 11.787+0.089
−0.093 – –

A3 2.0 [0, 20] 2.003+0.013
−0.013 – –

B1 100.0 [0, 1000] 99.962+0.032
−0.031 – –

B2 85.0 [0, 1000] 85.072+0.085
−0.089 – –

B3 90.0 [0, 1000] 90.001+0.013
−0.013 – –

s1 0.16 [0, 10] 0.525+0.024
−0.023 – –

s2 0.42 [0, 10] 1.212+0.066
−0.063 – –

s3 0.15 [0, 10] 0.2478+0.0098
−0.0091 – –

τ 2 5.0 [−50, 50] 4.992+0.011
−0.013 4.951+0.056

−0.059 5.006+0.036
−0.012

τ 3 10.0 [−50, 50] 9.974+0.013
−0.013 9.993+0.041

−0.038 9.975+0.042
−0.238

� – [0.1, 10] 0.22+0.10
−0.10 – –

Note. Priors are uniform between the two limits given in the table.

2016; Edelson et al. 2019; Hernández Santisteban et al. 2020;
Kara et al. 2021) with facilities such as the Neil Gehrels Swift
Observatory (Gehrels et al. 2004) or the Las Cumbres Observatory
global telescope network (Brown et al. 2013).

These light curves are shown in Fig. 2, labelled light curves 1, 2,
3. The model was fitted to the data through the process described
in Section 2.3, with 15 000 samples, 26 walkers and, a burn-in of
10 000. The priors were uniform distributions between two limits
given in Table 1.

Fig. 2 shows the model light curves fitted to the mock data, where
the fit produced normalized residuals that look Gaussian. The top
panel shows the driving light curve found, X(t), from the running
optimal average, which successfully picks up the variations in the
true driving light curve generated from the random walk. The error
envelope is small between times of 20 and 70, where there were
data to calculate the shape accurately. Outwith these times, the error
envelope increases rapidly where there were no data to calculate X(t).

Table 1 shows the resulting best-fitting parameters for this mock
data set in comparison to the true values. We found that the true values
for A2, A3, B1, B3 were within 1σ of the best-fitting parameters with
A1 and B2 close to but outwith the error range. The time delays
were recovered successfully, with τ 2 within 1σ and τ 3 very slightly
outwith the error range. As the time delays are the parameters of
interest, the accuracy of their error bars are investigated further in
Section 3.2.

Interestingly, extra errors were added by the model, even though
they were not deliberately underestimated when generating the mock
data set. To understand this, we explored how the BIC and it
components vary as a function of the window width, �. To do this,
the model was fitted to a single light curve numerous times, each at
a different fixed value of �. This is shown in Fig. 3.

Initially, when � is small, the ROA is very flexible and thus the
penalty that scales with the number of parameters, Pln N, is very large
(red). This balances with the very low χ2 to create a minimum in the
BIC, labelled A on the figure. At this point, no extra errors are added,
as the model is flexible enough to pick up all the variations; therefore,
the penalty for adding this additional error is zero (green). If the
model is fitted without including a parameter that adds extra errors,
the best-fitting solution is A, which corresponds to this minimum in
the BIC.

As � increases beyond this point, the BIC begins to rise again as
extra errors are now being added by the model to accommodate the
smoother ROA, increasing the penalty for adding additional errors
(green). The smoother ROA has less effective number of parameters,
so this penalty (red) is no longer dominant, and so there is another
minima in the BIC, labelled B. This is a lower minimum and so it
corresponds to the best-fitting model where extra errors are added as
a free parameter. These two solutions can be seen in the right-hand
panels of Fig. 3.

This effect means that out algorithm is over cautious when
including the noise model, by increasing the flux errors, increasing
the uncertainty in the time delay. This effect is safe as it does
not cause any bias in the results and just makes the results less
certain by sacrificing the fastest variations for noise. As explained
previously the higher the extra variance parameter, the wider the
width of the window function, resulting in a smoother model.
This smoother model therefore measures time delays using less
information resulting in larger uncertainty in the time delay.

The benchmark data are well sampled with a high S/N. We
therefore present three further mock data sets, one with large gaps
inserted (Case B), one with an S/N lower by a factor of 10, of ∼ 2
(Case C), and finally one with light curves with different amounts
of blurring (Case E). For this, we used the same random walk light
curve as the previous mock data set, with the same true values of the
parameters. The first of these (Case B) can be seen in Fig. 4, where
two large gaps were inserted into the light curves between times of
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ROA models of quasar light curves 5455

Figure 3. Left-hand panel: plot of the BIC and its constituent components as a function of window width, � for a Gaussian window function. The vertical
dashed lines show the best-fitting value of � where the extra variance parameter is not included (A) and is included (B). Right-hand panel: the fit of the model
to the single light curve where the extra variance parameter is not included (A) and is included (B), corresponding to the dashed lines in the left-hand panel.

38 to 46 and 54 to 62. This is a common scenario for ground based
observing campaigns where there are yearly gaps due to the object
being too close to the sun on the sky. We find that the delays are
successfully recovered with τ2 = 5.010+0.018

−0.013 and τ3 = 9.993+0.021
−0.024,

which contain the true values of 5 and 10. This case demonstrates
one of the major strengths of our method as using all of the available
data to calculate X(t), provides information within the gaps of the
individual light curves. This is demonstrated in the top panel of
Fig. 4, where the data used to calculate the ROA are shown, after
shifting and stacking as described in Section 2.3. Even if no data are
available, the error envelope of the ROA will expand accordingly as
it interpolates across a gap.

The next simulation (Case C) is where the light curves are sampled
with a lower cadence and a lower S/N of ∼ 2. This provides a
more typical case for larger surveys such as the The Sloan Digital
Sky Survey Reverberation Mapping (SDSS-RM) project (Shen et al.
2015) and upcoming surveys such as the Legacy Survey of Space
and Time (LSST) at the Vera C. Rubin Observatory.

The number of epochs in the first light curve is lowered to 100, the
second to 80 and the third to 100. This is shown in Fig. 5, where the
noisier data results in a smoother model with a lower window width,
�, and a wider error envelope due to the poorer data. We find time
delays of τ2 = 5.31+0.14

−0.15 and τ3 = 10.16+0.23
−0.22, where the true value

for τ 3 is within 1σ , whereas the true value for τ 2 is ∼2σ from the
measured value.

The final simulation (Case E) is where light curves 2 and 3 are
blurred by different amounts, in addition to being shifted in time. We
do this by convolving the random walk with a Gaussian with widths
of 1 and 2 for light curves 2 and 3, respectively. This simulates the
convolution of the driving light curve with a response function, which
is a strong effect for BLR RM, where emission line light curves are
smoothed relative to the continuum. PYROA assumes the same shape
for each light curve, with a single level of smoothing given by the
window width �. The results for this test case are shown in Table 2,
where the true time delays are recovered accurately. By assuming
a single level of smoothing, the resulting value of � is somewhere
between the most smoothed light curve (3) and the most flexible
light curve (1), where the error bars of these two light curves are
expanded to be consistent with the single ROA. Despite this, PYROA

is still able to recover the mean delay although the expanded error bars
increase the uncertainty. Allowing a different � for each model light
curve would account for a Gaussian transfer function, however this
is a symmetric transfer function. Theoretical transfer functions for
accretion disc reverberation (e.g. Starkey, Horne & Villforth 2016)
are asymmetric that, if not accounted for, can cause a bias towards
a small mean delay (Chan et al. 2020). This is a problem present in
JAVELIN, which uses a uniform transfer function and also a problem
for ICCF, which treats the time delays symmetrically. In a future
paper, we extend PYROA to use an asymmetric transfer function with
respect to the mean delay. A plot of the PYROA fit for Case E can be
found in the supplementary material in fig. 34.

To place these results in context, we compared them to two popular
methods for measuring time delays, ICCF (Gaskell & Peterson 1987)
and JAVELIN (Zu et al. 2011).

3.1 Comparison to ICCF and JAVELIN

To compare to the interpolation cross-correlation method (ICCF;
Gaskell & Peterson 1987), we used the code PYCCF3 (Sun, Grier &
Peterson 2018). We used an interpolation grid between 0 and 15
with a spacing of 0.01. To sample errors for the time delays, this
code uses flux randomization/random subset selection (FR/RSS)
method (Peterson et al. 1998), which measures the lags from many
realizations of the CCF. The measured delays are based on the
centroid of the CCF using values of r > 0.8 rmax, where rmax is the
maximum value of the CCF.

We also compared our ROA algorithm to another popular method
for measuring time delays, JAVELIN4 (Zu et al. 2011). This method
uses a damped random walk to model the variability, which is first
determined from a reference light curve and then subsequently shifted
and blurred to fit the other light curves. To fit to our mock data, we
used the first light curve as a reference.

This method consistently finds smaller uncertainties than the ICCF
(Yu et al. 2020); however, it does not account for poorly estimated

3https://bitbucket.org/cgrier/python ccf code/src/master/.
4https://github.com/legolason/javelin-1.
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Figure 4. The same as Fig. 2 but for Case B where large gaps are inserted into the light curves. Additionally, the top panel shows the data after the shifting and
stacking stage of the fitting procedure (Section 2.3), from which X(t) is calculated. The S/N (variability to noise) is ∼20.

errors on the flux measurements of AGN light curves, making it
sensitive to this effect. We applied both of these methods to the
three mock data sets discussed previously. For the first data set,
the ICCF finds significantly larger uncertainties than our method
whereas JAVELIN on average finds slightly smaller uncertainties.
These are shown in Table 1 and the posterior probability distributions
are compared to our method in the right-hand panels of Fig. 2.
One reason for JAVELIN finding smaller uncertainties may be that
it assumes the error bars on the flux data are accurate whereas our
method expands these to account for poorly estimated errors. To

investigate this further, we fit the model again but with error bars
on the flux measurements that were deliberately underestimated by
a factor of 5 (Case D). The resulting probability distributions for the
time delays are shown in Fig. 6, comparing our method to the cross-
correlation and JAVELIN. The best-fitting parameters are shown in
table 1. Our method measured consistent delays as previously found
whereas JAVELIN had some difficulties due to overfitting the noise.
While the first delay was measured successfully by JAVELIN, finding
τ2 = 5.006+0.036

−0.012, its errors were larger and asymmetrical. The second
delay had similar problems, with a measurement of τ3 = 9.975+0.012

−0.24 ,
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Figure 5. The same as Fig. 2 but for Case C, which contains a lower cadence and a lower S/N of ∼ 2.

where several smaller peaks in the probability distribution skewed the
lower error estimated, resulting in very uneven error bars. The cross-
correlation is similar here to our method, successfully recovering
the delays similar to before with similarly large uncertainties. This
shows the importance of including a noise model when there is
no prior knowledge that the flux measurement errors are accurately
known.

We find that the extra error parameters increase by larger than
the amount it was deliberately underestimated. This is similar to
what we found when the uncertainties were not underestimated, that
the algorithm is over cautious, sacrificing the very fastest variations

as noise. This makes it robust when dealing with data such as this
test case, where the flux errors are underestimated, and can still
recover an accurate time delay. This is tested more thoroughly in
Section 3.2. We also note that the error bars were not expanded as
much for light curve 2 than the case where the uncertainties were not
underestimated. We suspect this is due to the scatter in the size of the
flux error bars across light curve 2 due to the uniform random number
we added when generating the data, as described in Section 3. This
scatter was larger for light curve 2 and therefore the extra variance
added to the whole light curve by the algorithm is higher to make the
data consistent with the other light curves when calculating the ROA.
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Table 2. Mock data results cont.

Parameter Truth Prior Best fit ICCF JAVELIN

Case E: blurred light curves

A1 5.0 [0, 20] 5.170+0.071
−0.072 – –

A2 12.0 [0, 20] 12.114+0.069
−0.070 – –

A3 2.0 [0, 20] 1.574+0.014
−0.014 – –

B1 100.0 [0, 1000] 100.240+0.062
−0.065 – –

B2 85.0 [0, 1000] 85.081+0.063
−0.061 – –

B3 90.0 [0, 1000] 89.913+0.014
−0.014 – –

s1 0.0 [0, 10] 1.143+0.046
−0.042 – –

s2 0.0 [0, 10] 0.442+0.057
−0.058 – –

s3 0.0 [0, 10] 0.226+0.013
−0.014 – –

τ 2 5.0 [−50, 50] 4.988+0.035
−0.035 4.935+0.052

−0.059 5.030+0.021
−0.022

τ 3 10.0 [−50, 50] 10.034+0.047
−0.047 9.981+0.093

−0.074 9.991+0.049
−0.047

� – [0.1, 10] 0.649+0.033
−0.031 – –

Note. Priors are uniform between the two limits given in the table.

Figure 6. Posterior probability distributions of the time delays between
the high S/N mock light curves but where the flux errors are deliberately
underestimated by a factor of 5. The cross-correlation centroid distribution is
shown in grey, our method is shown in blue and JAVELIN is shown in red. The
dashed line shows the cross-correlation function.

In the underestimated case, the division by a factor of 5 reduces the
strength of this scatter and therefore the flux errors are not expanded
as much to be consistent.

For the second data set, shown in Fig. 4, the large gaps proved
difficult for the ICCF, causing both delays to be massively underesti-
mated. This is likely due to the linear interpolation across the gaps that
are being treated as a feature in the light curve when measuring the
cross-correlation function. This is a known problem with the ICCF. In
comparison, our method was successful in recovering the true delays
as was JAVELIN. In this case, our method produced uncertainties
comparable to JAVELIN.

The third data set contained few points, with a lower S/N of
∼ 2. Our method is consistent with ICCF and JAVELIN and finds
uncertainties comparable to JAVELIN. Interestingly, the uncertainty in
the delays from the ICCF are closer to our method and JAVELN than
in the high S/N case.

The final data set was where the second and third light curves were
blurred by a different amount. Comparing to ICCF and JAVELIN, we
see a similar result to the previous case, where the ICCF errors are
the largest and PYROA is reasonably similar to JAVELIN in its error
estimates.

3.2 Verifying the accuracy of the error bars

To ensure that the errors in the time delays are being predicted
accurately, 50 additional mock data sets were fitted where each of
these data sets were based on a different random walk. We tested the
robustness of the errors by calculating the normalized residuals of
the time delay parameters with respect to the true value. This was
calculated by subtracting the true value from the measured value and
dividing by the average of the errors. This creates a distribution that
should have a mean of 0 and a standard deviation of 1 for properly
estimated error bars. As there are two time delay parameters per
data set, there is a total of 100 samples. The resulting probability
distributions and cumulative distributions for all 100 samples are
shown in the top panel of Fig. 7.

This distribution has a sample mean of −0.09 ± 0.11 and a sample
standard deviation of 1.06 ± 0.16, which is consistent with the
expected result for well defined error bars. A mean close to 0 suggests
no systematic bias in the method while a variance of 1 suggests the
error bars are accurately estimated. Furthermore, we performed a
Kolmogorov–Smirnov (K-S) test (Karson 1968), which tests whether
the distribution of our samples is drawn from an underlying Gaussian
distribution that has a mean of 0 and variance of 1. This is the null-
hypothesis – that both distributions are the same – which typically
requires a p-value <0.05 to reject.We use the one-sample KS test
from the SCIPY.STATS package. This calculates a p-value based on the
maximum distance between the measured cumulative distribution
function (CDF) and the expected normal CDF as well as the sample
size. We find a p-value of 0.67, which suggests that our samples are
consistent with the expected normal distribution. These tests confirm
that our method is producing accurate error bars.

As discussed in Section 3.1, a major advantage of PYROA is the
inclusion of a noise model that can account for underestimated
flux errors. To verify that the true time delays can be recovered
consistently by PYROA in this case, we repeated the previous test,
fitting to 50 mock data sets but this time where the flux errors are
underestimated by a factor of 5. We again calculated the normalized
residuals of the time delay parameters that are plotted in the bottom
panel of Fig. 7. We find a sample mean of 0.16 ± 0.11 and a
sample standard deviation of 1.12 ± 0.18. The standard deviation
is consistent with 1, suggesting that the size of the error bars are
accurate however the mean is >1σ from zero, although it is close at
1.45σ . A KS test returns a p-value of 0.06, which is greater than the
rejection criterion of >0.05, and therefore provides weak evidence
that our samples are drawn from a normal distribution. The low p-
value is driven largely by the mean and so shifting the distribution
by the mean finds a p-value of 0.7, which is strongly consistent with
a normal distribution. We suspect that the mean of 0.16 ± 0.11 is
due to a lack of samples and not a systematic bias as it is only
1.45σ from the true value. This would suggest that PYROA is able to
obtain accurate time delays where the flux errors are underestimated
by a factor of 5, albeit with weaker evidence than the normal flux
error case.

3.3 Choice of window function

For all of the testing so far, a Gaussian window function has been
used. As many choices are possible, we tested the effect this has
on the results of fitting the model to mock data. We used two light
curves that included large gaps as the window function has a large
effect on the error envelope calculated from equation (2). Fig. 8
shows the calculation of the driving light curve using three different
window functions, Gaussian, inverse-cosh, and Lorentzian, given by
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Figure 7. Results of the error bar testing for the time delay parameters. The top panel shows the results for normal flux errors, whereas the bottom panel shown
the testing where the flux errors were deliberately underestimated by a factor of 5. Left-hand panel: probability distribution of the normalized residuals of the
pairs of time delay parameters for 50 random walk light curves, relative to the true value (blue), with a Gaussian distribution with a mean of 0 and standard
deviation of 1 in black. The black dashed line shows a sample mean of −0.09 in the top panel and a sample mean of 0.16 in the bottom panel. Right-hand panel:
cumulative distribution of the normalized residuals (blue) compared to the Gaussian (black).

Figure 8. Calculation of the running optimal average at the stacking stage of the fitting procedure (Section 2.3), when fitting two light curves that contain large
gaps. Three different window functions were used: a Gaussian shown in black, inverse-cosh shown in green and a Lorentzian in red. The error envelopes are
shown as the shaded colour. The right-hand panel shows the probability distribution for the time delay between the light curves for each of the window functions.

equations (4), (5), and (6), respectively. The right-hand panel of this
figure shows the resulting posterior distributions for the time delay
between the two light curves.

The main difference between them is how the error envelope
behaves when there is a lack of data. The error envelope of the
Gaussian window function rapidly increases in the gap whereas the
error of the inverse-cosh increases slower but still becomes very
large in the gaps. This is largely due to the wider wings of the
inverse-cosh function compared to the Gaussian, which will allow
data points far from centre of the window to still slightly contribute
to the running optimal average. This effect is even more pronounced
when using a Lorentzian window function, which has even wider

wings. Here the error envelope only increases slightly within the
gaps and increasing slower of the ends of the data. At the other
extreme, a boxcar function drops to zero outwith the window, which
would result in an error envelope becoming infinity within these
gaps.

The probability distributions of the time delays are of similar width
and peak for each window function; however, the Lorentzian shows
an unusual feature, where there are two smaller peaks to each side
of the main peak. The physical cause of this is unknown and as there
is no real difference in the probability distributions for the Gaussian
and inverse-cosh functions, we continue using a Gaussian window
function for the remainder of this paper.
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4 G RAV ITATIONA L LENSING TIME D ELAYS

In order to test this method with real data, we applied it to quasars
that are gravitationally lensed by an intermediate object such as a
galaxy or galaxy cluster. The lens causes the light from the quasar
to form multiple images of itself on the sky. As the light from the
quasar travels along vastly different paths to form each image, a
time delay is induced, due to the geometric difference in the path-
length that the light travels along (Cooke & Kantowski 1975), and the
different gravitational potentials that the photons experience (Shapiro
1964). As the lensed quasar is variable, obtaining light curves for
each of these images allows the time delay between images to be
measured, using the method outlined in this paper. There are also
microlensing effects taking place, which causes the brightness of the
image to vary slowly with time due to objects in the lens moving
relative to the source and observer (Refsdal 1964). These effects
can also be modelled by including a slow varying component to
the model, which modulates the brightness of each image relative to
some reference image. Accounting for these effects are important for
obtaining accurate delay measurements as they can create extraneous
features in the light curves, resulting in poorly estimated delays.

We used public data from the COSmological MOnitoring of
GRAvItational Lenses (COSMOGRAIL) project (Eigenbrod et al.
2005, and references therein), to measure the time delays between
gravitationally lensed images of 34 different quasars and model
microlensing effects. This requires a slightly different model than
previously used, specifically to model the microlensing effects. We
model the flux of each image, indexed i, where i = 1 is the image
that the magnifications are measured relative to. Therefore, the model
flux is given by

fi(t) =
{

A1X (t) + B1 i = 1
[A1X (t − τi) + B1] 10−0.4Pi (t) i > 1

}
, (14)

where A1 represents the rms flux of the reference image, B1 represents
the mean flux of the reference image, τ i represents the time delay of
image i relative to the first image, and X(t) is the driving light curve,
normalized such that 〈X 〉t = 0, 〈X2〉t = 1. The magnitude different
due to microlensing is given by a fourth-order polynomial, Pi(t). This
is given by

Pi(t) =
4∑

j=0

Pi,j ηj (t), (15)

where the argument, η(t), is time normalized such that it runs between
−1 and 1 over the range of the data. This is calculated by

η(t) = 2 (t − t0)

�t
, (16)

where t0 is the mid-point time of the data and �t is the length of time
between the start of observing and the end. Normalizing the time in
this manner ensures that the ‘pivot point’ of the polynomial is at the
centre of the data.

As we model the flux of the light curves, the data were converted
from magnitudes into arbitrary flux units before modelling. This was
done using

f (t) = 3.0128 × 10−510−0.4m(t), (17)

where m(t) is the magnitude of the image as a function of time, t. This
conversion gives the flux in arbitrary units with magnitudes on the
order of unity for the majority of the COSMOGRAIL data. For DES
2325−5229, HE 0047−1756, PDJ 1606−233, SDSS J1515+1511,
and WG 0214−2105, this factor was 3.0128 × 107, as the data here
measured magnitude relative to some other arbitrary value. As the

parameters A1 and B1 have flux units, ensuring that they are not a
drastically different order of magnitude (e.g. 14 orders different) to
the other parameters helps when initializing the walkers to keep them
linearly independent.

The method used by COSMOGRAIL measures delays between
every image rather than to a single reference image (Tewes et al.
2013). Therefore, to be directly comparable, we fit our model
numerous times where the time delays are measured relative to a
different image each time, e.g. if there are three images (A, B, C),
the model is fitted firstly with image A as the reference and then with
image B as the reference. This allows all the inter-image delays to be
obtained as well as the relative microlensing between all the images.

We used uniform priors between sensible limits for all the
parameters and used 15 000 samples discarding the first 10 000 as
burn-in for the two light-curve data. For objects with three/four light
curves, we used 20 000 samples with 15 000 as burn-in. For the
HE 0435−1223, we used 35 000 samples and a burn-in of 30 000 as
the extra parameters required a long burn-in in this case. The number
of walkers for each is � twice the number of sampled parameters.
Specifically this is 7Nl + 3, where there are Nl light curves, although
this number was chosen fairly arbitrary meeting the only requirement
of being > twice the number of sampled parameters. Here we also
include the noise model where there is extra variance added to the
flux errors of each light curve as described previously.

4.1 Results

We show our results for the publicly available COSMOGRAIL
light curves in Table 3. As our method measures the time delay
in the opposite direction, we take the negative of the measured
time delay posterior distributions in order to compare directly with
COSMOGRAIL i.e. τAB = −τ 2, where i = 1 and 2 represent images
A and B, respectively, using equation (14). The table also shows
the coefficients of the fourth-order polynomial used to model the
microlensing variability. The zeroth-order coefficient is of particular
interest as this provides the mean difference in magnitude between
the images. The higher order terms describe how the magnitude
varies with time around this mean.

Comparing to previous analysis, our results find time delays with
consistently smaller uncertainties than the COSMOGRAIL analysis.
For most of these objects, the error regions overlap as we find delays
that are consistent, however a few objects show some interesting
results. First, some show significantly smaller errors such as DES
J0408−5354, SDSS J0832+0404, and DES 2325−5229. A plot
of the fit for DES J0408−5354 is shown in Fig. 9 and discussed
in more detail later. Secondly, we also find delays for numerous
objects where previously delays were not able to be measured,
e.g. SDSS J1226−0006, SDSS J1320+1644, etc. Naturally, these
objects have large uncertainties but are somewhat constrained. Lastly,
we find some disagreement with the previous analysis for a few
objects. In particular HE 2149−2745 and HS 0818+1227 show
strong disagreement; however, Millon et al. (2020a) note that they are
tentative in their estimate for these two objects, so some disagreement
is not entirely unexpected. UM 673 showed strong disagreement with
Millon et al. (2020a), and although they are again uncertain in their
measurement, with other studies finding τAB = −72 ± 22 (Oscoz
et al. 2013) and −95+5

−16 d (Koptelova et al. 2012), these overlap with
their result while ours is ∼7σ further from these results. Our delay
is likely inaccurate as this object shows little intrinsic variability
as shown in Fig. 10, meaning that the microlensing variability may
distort and prevent an accurate delay from being obtained.
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ROA models of quasar light curves 5463

Figure 9. Light curves for DES J0408−5354, overlaid with our best-fitting model in black, with the grey shaded region showing the error envelope in the
ROA. The colour indicates the image, with the lower panels of each image showing the microlensing behaviour relative to image A. The data points for this are
calculated from equation (18), and are represented by a fourth-order polynomial in the model, shown in black.

Figure 10. Same as Fig. 9 but for UM 673.
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We included the extra error parameters on the fluxes for each
light curve to account for underestimated errors. We find that the
error bars of fluxes were expanded for these fits, for some more
than others. For example, in the case of HE 0435−1223 discussed
later, the long observation time means that the microlensing curve
is unable to pick up all the variations, resulting in the error bars
being expanded more than DES J0408−5354, for example, where
the microlensing variations are small. This results in the time delays
being less certain, however they are all more certain than the previous
COSMOGRAIL results so we present our results including the
extra variance. This therefore means that more precise delays are
possible with our method, if we did not use the extra variance
parameters.

A full list of plots can be found online5; however, we show a few
cases representative of the full sample. These plots show our best-
fitting model overlaid on the light curves, with the lower panel of each
image showing the microlensing behaviour. This is the magnitude
difference relative to image A, calculated by dividing the fluxes of
the other images by the model for image A shifted to remove the
time delay. Specifically, this is

�m = −2.5 log

[
fi(t)

A1X (t − τi) + B1

]
, (18)

where fi(t) are the flux data for light curve i. This is the component
modelled by the low order polynomial in equation (14), which is
shown as a black solid line, overlaid on top of this data.

Fig. 9 shows the results for DES J0408−5354, a quadruply imaged
quasar at z = 2.375, lensed by a galaxy at z = 0.597 (Lin et al. 2017).
Three of these images, A, B, D, were observed over seven months
with the MPIA 2.2-m telescope and 1.2-m Euler Swiss telescope at
La Silla (Courbin et al. 2018), yielding three light curves. This object
is particularly noteworthy as we found significantly smaller errors
for the time delays in comparison with the previous analysis from
Courbin et al. (2018).

Another interesting object was HE 0435−1223, which is a
quadruply imaged quasar at zS = 1.693, with a lens at at zL = 0.454
(Wisotzki et al. 2002). All four images were monitored over 13 yr,
providing four light curves (Millon et al. 2020a). Fig. 11 shows the
results for this object. This object contained much more data than the
other objects and thus it was difficulty to achieve a good fit with only
a fourth-order polynomial to model the microlensing, so we used a
sixth-order polynomial. We also noticed that there is a sharp increase
in the brightness of image A towards its peak at an MJD ∼54250,
that was unable to be fitted with a simple polynomial. Therefore we
inserted an extra magnification term for image A, that of a lensing due
to a point mass (Paczynski 1986). This magnification as a function
of time, t, is defined as

A [u(t)] = u2 + 2

u
√

u2 + 4
, u(t) =

√(
t − t0

tE

)2

+ u2
0, (19)

where we add three new parameters to the model: the time of
maximum magnification, t0, the Einstein ring radius crossing time
in days, tE, and the impact parameter, u0, in units of the number of
Einstein ring radii. We restricted the prior of t0 to be uniform between
54 200 and 54 300 and tE uniform between 10 and 200 d, to ensure
that this fitted the sharp peak in image A. This means the model
becomes

fi(t) =
{

[A1X (t) + B1] A i = 1
[A1X (t − τi) + B1] 10−0.4Pi (t) i > 1

}
, (20)

5https://dx.doi.org/10.5281/zenodo.5060008.

where image A is the reference. If image B, C, or D is the reference,
then the factor A is multiplied by 10−0.4Pi (t) and the reference curve
has no magnification.

The best-fitting values for the point mass lens are t0 = 54253.5+1.5
−1.5,

tE = 106.9+3.4
−3.2 d, and u0 = 1.242+0.017

−0.016. These values, particularly the
crossing time, tE, can be used to estimate the mass of the lens that
caused this event. To do this requires the relative velocity of the
object to the source and the observer, as well as the distances to the
source and lens. Assuming 	CDM cosmology with H0 = 67.8 ± 0.9
kms−1Mpc−1 and 
m = 0.308 ± 0.012 (Planck Collaboration XIII
2016), the distance to the lens is DL = 2600.9 Mpc for zL = 0.454
(Wisotzki et al. 2002) and the distance to the source is DS = 12.99
Gpc for zS = 2.375.

From the crossing time, the Einstein ring radius can be estimated,
which relates to the mass of the lens, ML from the following :

tEvrel

(1 + zL)DL
≈ θE =

√
4GML

c2

DS − DL

DSDL
, (21)

where the factor of 1 + zL accounts for cosmic time dilation on
the measured crossing time. To estimate vrel, we would require the
velocity of the source, lens, and observer, however, we can construct
a prior on vrel making some approximations, following Poindexter &
Kochanek (2010) and Blackburne et al. (2014). Namely, we assume
that the source velocity is negligible compared to the lens velocity
due to cosmic time dilation/geometric projection effects and then
construct a Gaussian prior on the relative velocity measured as
the lens velocity relative to the observers velocity, estimated from
the projection of the cosmic microwave background (CMB) dipole
(Hinshaw et al. 2009). The width of this prior is estimated from the
sum of the velocity dispersions of the source and lens galaxies to
account for the random motion of stars that cause these microlensing
events. For HE 0435−1223, this has been estimated to be σ S =
227 and σ L = 277 km s−1 for the source and the lens, respectively
(Blackburne et al. 2014). Therefore, the prior for the relative velocity
is

P (vvvrel) ∝ exp

(
−vvvrel − vvvCMB

2σ 2

)
, (22)

where vvvCMB is the CMB dipole velocity projected on to the lens
plane, which for HE 0435−1223 is (363, −56) km s−1 east and north
(Blackburne et al. 2014) and the velocity dispersion is given by

σ 2 = σ 2
L +

(
σS

1 + zL

1 + zS

DL

DS

)2

= (290 km s-1)2. (23)

To achieve a probability distribution of the mass of the lens, we
generated a 2D probability distribution for vvvrel by sampling Gaussian
random numbers with a mean of the (CMB) dipole velocity for
each component and a standard deviation of 290 km s−1. This is
then converted into a distribution on the speed, vrel, by taking the
magnitude of each of the velocity coordinates and by also sampling
Gaussian random numbers for the distribution on tE, we calculated a
probability distribution for the lens mass, ML.

The resulting distribution is highly skewed towards low mass with
a median and 16th/84th percentiles giving ML = 8+11

−6 M⊕. The low
microlensing mass measured suggests that this object could be a
planet – specifically a rogue planet that is not bound to a star. If
it did orbit a star, the host star would dominate the microlensing
amplification and render the planet undetectable. Such objects have
been proposed to explain microlensing activity in RX J1131−1231
(Dai & Guerras 2018) where ∼ 2000 objects with masses between
the Moon and Jupiter masses were estimated by analysing Fe Kα

line energy shifts. Taking a larger estimate of the velocity dispersion
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Figure 11. Light curves for HE 0435−122, overlaid with our best-fitting model in black, with the grey shaded region showing the error envelope in the ROA.
The colour indicates the image, with the lower panels of each image showing the microlensing behaviour relative to image A. The data points for this are
calculated from equation (18), and are represented by a sixth-order polynomial in the model, shown in black. For image A, magnification for lensing due to a
point mass is inserted.

of σ = 1000 km s−1 results in a larger mass of ML = 0.16+0.27
−0.12 MJup,

which is ∼ 6.7 times more massive but still a planet-mass object.
The probability of a rogue planet causing this event is extremely low
considering their size and suggested abundance compared with stars
in the galaxy.

The other possibility is that this event is caused by a star that
is moving extremely fast. Taking a typical M dwarf of ∼0.3M
,
would require a speed of ∼ 53 000 km s−1, which is extremely fast
compared to the prior – also an unlikely result. As both of these
results are unlikely, it suggests that the assumption that this feature
in the light curve is cause by a point-mass may be inaccurate. The

caustic patterns that cause this lensing are likely much more complex
than a single point mass and so while it provides a good fit to the
light curve, any physical interpretation of the parameters are likely
inaccurate.

The only object where we were unable to obtain a good fit was for
RX J1131−1231, which similar to HE 0435−1223 is a quadruply
imaged quasar (Sluse et al. 2003) that was observed for 15 yr. We
had difficulty constraining the parameters for this object, specifically
with the additional microlensing effect. We tried using a sixth-
order polynomial as well as including point mass lenses similar
to HE 0435−12234; however, we were unable to constrain these
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parameters. This object likely requires a more complex microlensing
model. Using a higher order polynomial may work but would become
overflexible at the edges of the data and so a better solution could
be using a series of splines that can become more flexible where
appropriate to fit certain features of the microlensing light curve.
This is the approach of (Tewes et al. 2013); however, they also
use splines to model the quasar variability. We have shown that
the running optimal average provides a good model of the intrinsic
quasar variability and so modifying our method to use splines for the
microlensing variability may be a good option for these objects that
have been observed for a very long period of time.

5 C O N C L U S I O N S

This paper presents the use of a running optimal average to model
the variability of quasars, with the main aim of measuring the time
delay between quasar light curves. This method can model many
light curves simultaneously, providing the maximum information for
determining the shape of the variability from the running optimal
average. We optimize the flexibility of the ROA by calculating the
effective number of parameters and minimizing the BIC through
MCMC sampling of the joint posterior probability distributions of
the parameters. We tested this method with mock data as well as real
data in the form of gravitationally lensed quasars that were observed
and analysed as part of the COSMOGRAIL project. From this testing
the main findings are as follows:

(i) Fitting to mock data with high S/N, low S/N, and large gaps,
PYROA recovers precise time delays, with uncertainties comparable
to JAVELIN and significantly smaller than ICCF.

(ii) From fitting to 50 mock data sets, generated with different
random walks, we verified that the uncertainties on the time delay
parameters were accurate, with the normalized residuals forming a
normal distribution with a mean of 0 and rms of 1.

(iii) Our method is easily able to deal with large gaps in individual
light curves, either where data points from another light curve pro-
vides information within the gap of another, or the ROA interpolates
across the gap with an error envelope that expands accordingly.

(iv) By including a noise model that allows the variance of flux
measurements to increase, PYROA is able to recover accurate time
delays when the flux errors are deliberately underestimated, while
JAVELIN fails.

(v) By including microlensing effects, we modelled the light
curves of 33 gravitationally lensed quasars from the COSMOGRAIL
project. We find delays that are consistent with the previous analysis,
with the exception of a few objects. We consistently finds smaller
errors for the time delays between images as well as find delays for
data that previously were unable to yield a measurement.

In addition to measuring the time delays between light curves,
PYROA provides a model of the driving light curve that can be used for
further analysis. For example, this can be used to generate a power-
density spectrum of the light curves, decompose light curves into
variable/fixed components to separate AGN from galaxy or inter-
calibrate data from multiple telescopes where the ROA provides
a model of the merged light curve. The code PYROA is publicly
available, providing a new tool in reverberation mapping studies and
gravitationally lensed quasars.
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