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ABSTRACT
A planetary instability occurring at time <100 My after formation of the giant planets (GPs) in our Solar system can be
responsible for some characteristics of the inner Solar system. However, the actual influence of the instability on the terrestrial
planet formation is not well understood. The simulations of terrestrial planet formation are very CPU-expensive, and this limits
the exploration of different instability scenarios. To include the effects of the GPs instability in the simulations of terrestrial
planets formation in a feasible way, we approach the problem in two steps. First, we model and record an evolution of the GPs
that replicates the present outer Solar system in the end. Then, we use that orbital record, properly interpolated, as the input for
a second step to simulate its effects on the terrestrial planet formation. For this second step, we developed ISYMBA, a symplectic
massive bodies algorithm, where ‘i’ stands for interpolation. ISYMBA is a very useful code to accurately evaluate the effects of
planetary instabilities on minor body reservoirs, whilst accounting for close encounters among massive objects. We provide a
detailed description of how ISYMBA was developed and implemented to study terrestrial planet formation. Adapting ISYMBA for
other problems that demand interpolation from previous simulations can be done following the method described here.
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1 IN T RO D U C T I O N

Current theories of the early evolution of the Solar system invoke
a temporary instability of the giant planets (GPs), which would
have happened sometime after the dissipation of the gas in the
protoplanetary nebula (see Nesvorný 2018, for a review). This
instability led to mutual scattering of the GPs while they were
radially migrating due to the interaction with an outer massive disc
of remnant planetesimals (PLs). The instability is required to explain
many dynamical features that are currently observed in the different
populations of Solar system bodies. These include the angular
momentum deficit of the GPs (e.g. Nesvorný & Morbidelli 2012;
Deienno et al. 2017), the inclinations of asteroids in the main belt
(e.g. Roig & Nesvorný 2015; Deienno et al. 2018), the existence of
Jupiter trojans (e.g. Nesvorný, Vokrouhlický & Morbidelli 2013), the
orbital architecture of the Kuiper belt (e.g. Nesvorný 2015; Gomes
et al. 2018), the excited orbit of Mercury (e.g. Roig, Nesvorný &
DeSouza 2016), the dynamical characteristics of the satellites of the
jovian planets (e.g. Deienno et al. 2014; Nesvorný, Vokrouhlický &
Deienno 2014b; Nesvorný et al. 2014a), among others.

The first instability models (Tsiganis et al. 2005) assumed that the
instability may have happened around 600 My after the dissipation of
the gas in the protoplanetary nebula, helping to trigger the Lunar Late
Heavy Bombardment (Gomes et al. 2005; Bottke et al. 2012). Recent
models, however, propose that the instability may have happened as
early as ∼10 My after the dissipation of the gas (Nesvorný 2018).
This means that the instability might have played a relevant role in
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the accretion of the terrestrial planets (e.g. Clement et al. 2018, 2019;
Nesvorný, Roig & Deienno 2021).

Using fully self consistent models to study the effects of the
instability in the early evolution of the Solar system may be an
unfeasible task. In general, such models need to consider at least
three ingredients: the GPs, the disc of massive PLs that drives the
migration of the GPs, and the population of bodies affected by the
instability. We refer to the latter as the target population, and it may be
represented either by test particles or by mutually interacting massive
bodies. This requires to explore a large number of model parameters
and over a wide range of values, implying the need for hundreds or
thousands of computationally expensive numerical simulations that,
in most cases, lead to meaningless results.

An alternative to overcome these limitations is to use simplified,
yet realistic, models where the amount of free parameters is smaller,
and the user have more control over the range of possible evolutions
of the system. This involves, for example, to drop off the disc of
PLs and consider a prescribed evolution of the GPs. This prescribed
evolution might be as simple as an ad hoc evolution, mimicked by
using artificial forces, or as complex as a realistic evolution obtained
from other previous simulations (e.g. Nesvorný, Roig & Bottke 2017;
Deienno et al. 2018).

Here, we develop a numerical integration method that exploits the
latter approach. In this method, the evolution of the GPs is stored
in a file at regular intervals, and their positions and velocities for a
given time are obtained by interpolation. Our aim is to construct a
symplectic N-body integrator for the target population, which has the
GPs interpolation scheme embedded in it.

Symplectic integrators are a particular class of numerical integra-
tors, specifically designed to solve Hamiltonian problems (Yoshida
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Figure 1. The detailed sequence of operations needed for a single integration time step, from t to t + τ in the SYMBA code. Primed variables are referred to the
centre of mass of the whole system. Heliocentric variables are not primed.

1993). Their main property is the conservation of a quantity H ,
referred to as the surrogate Hamiltonian, which is very close to the
original Hamiltonian H of the problem. Our choice for a symplectic
algorithm has two motivations: (i) these algorithms have proven to
be fast and reliable, allowing for long-term simulations of planetary
N-body systems with less computational cost than traditional integra-
tion algorithms (e.g. Wisdom & Holman 1991), and (ii) we intend
to use the set of subroutines and packages of the well-tested and
publicly available symplectic integrators SWIFT (Levison & Duncan
1993) and SYMBA (Duncan, Levison & Lee 1998), with the necessary
modifications, as the basis for our algorithm.

When the target population consists of mass-less particles, the
construction of a symplectic integrator with embedded interpolation
is relatively straightforward (e.g. Beaugé, Roig & Nesvorný 2002;
Roig & Nesvorný 2015). On the other hand, when the target
populations consist of massive bodies that interact with each other
and may develop close encounters, including the GPs interpolation in
a symplectic way requires some specific considerations that turn the
development of the algorithm more difficult. One particular problem
is related to the fact that the system of GPs has a centre of mass that
differs from that of the target population. This requires a specific
splitting of the Hamiltonian that is not accounted for in full N-body
symplectic integrators.

Here, we focus on the case when the target population is in
the inner Solar system, and we describe the construction of the
algorithm. For its recent applications, we refer the reader to Nesvorný
et al. (2021) and DeSouza, Roig & Nesvorný (2021). The paper is
organized as follows. In Section 2, we revise the basic concepts,
provide the detailed description of the new algorithm, and perform
some validation tests. In Section 3, we briefly discuss the possible
parallelization strategies for the new code. The last section is devoted
to the conclusions.

2 SYMPLECTIC INTEGRATION W ITH
INTERPOLATION

2.1 SYMBA

Before proceeding with the description of ISYMBA, we will briefly
review the basics of SYMBA (see Duncan et al. 1998, for more details).
SYMBA stands for Symplectic Massive Bodies Algorithm, and it
is a second-order symplectic integrator for the planetary N-body
problem, which allows for close encounters between massive bodies.

Let us assume a set of N bodies of masses mi orbiting around the
Sun (or any central star) of mass M � mi, and introduce the Poincaré
canonical coordinates ri , p′

i such that ri are heliocentric positions
and p′

i = miv′
i are barycentric momenta (barycentric velocities).

Throughout this work, primed variables are referred to the centre
of mass of the system, and not primed variables are referred to

the Sun. The Hamiltonian of the system is then composed of three
parts:

H
(
r, p′) = HKep + HInt + HSun (1)

where

HKep(r, p′) =
N∑

i=1

(∣∣p′
i

∣∣2

2mi

− GMmi

|ri |

)
(2)

represents the two-body motion of the bodies around the Sun,

HInt(r) = −
N−1∑
i=1

N∑
k=i+1

Gmimk

|ri − rk| (3)

is the gravitational interaction potential between the bodies, and

HSun(p′) = 1

2M

∣∣∣∣∣
N∑

i=1

p′
i

∣∣∣∣∣
2

(4)

is the barycentric kinetic energy of the Sun.
Whenever HInt, HSun � HKep, a second-order symplectic integra-

tion over a time step τ is obtained through the following sequence of
steps:

Step 1. Evolve the system only through HSun, over τ /2; this applies
a linear drift (LD) to the positions r.

Step 2. Evolve the system only through HInt, over τ /2; this applies
an impulse or kick (K) to the momenta p′.

Step 3. Evolve the system only through HKep, over τ ; this applies
a drift (D) to each body along a Keplerian orbit.

Step 4. Evolve the system only through HInt, over τ /2; this applies
again a kick (K) to the momenta p′.

Step 5. Evolve the system only through HSun, over τ /2; this applies
again a LD to the positions r.

The integration over a time step τ is then schematized by a
sequence LD - K - D - K - LD. The detailed flowchart of the algorithm
is shown in Fig. 1.

However, when a close encounter between two bodies arises, the
condition HInt � HKep is no longer satisfied and the above sequence is
no longer valid. In a traditional numerical integrator, the increase of
the HInt term during the close encounter is usually compensated by a
decrease of the time step τ , such as to keep the impulse −τ ∂HInt/∂r
limited. However, in a symplectic integrator, the time step must be
kept fixed over the whole integration. This is a well known limitation
of symplectic algorithms, since the surrogate Hamiltonian H , which
is preserved by the algorithm, is such that H = H + O(τn), being n
the order of the integrator. Thus, any change in the time step would
break the conservation of H .

The solution proposed by Duncan et al. (1998) and Chambers
(1999) to circumvent this limitation consists into split the term HInt

into pieces, weighted by a function that depends on the distance
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Figure 2. The detailed sequence of operations needed for a single time-step integration, from t to t + τ in the ISYMBA code. Primed variables are referred to
the centre of mass of the system composed by the GPs, the terrestrial PPs, and PLs. Heliocentric variables are not primed.

between the different pairs of bodies. Consider, for example, a two-
terms splitting, HInt = H

(0)
Int + H

(1)
Int , where:

H
(0)
Int = −∑N−1

i=1

∑N

k=i+1
Gmimk

rik

(
1 − w1,ik

)
H

(1)
Int = −∑N−1

i=1

∑N

k=i+1
Gmimk

rik
w1,ik (5)

Here, rik = |ri − rk|, and wl, ik is a sigmoid-like weight function:

wl,ik =

⎧⎪⎨
⎪⎩

1 , rik ≥ Rl,ik

φ
(

rik−Rl+1,ik

Rl,ik−Rl+1,ik

)
, Rl+1,ik ≤ rik < Rl,ik

0 , rik < Rl+1,ik

(6)

where φ is a suitable odd degree polynomial, and Rl, ik, Rl + 1, ik are
defined in terms of the mutual Hill radii. Then, the sequence of steps
over a time step τ becomes:

Step 1. Evolve the system only through HSun, over τ /2
Step 2. Evolve the system only through H

(1)
Int , over τ /2

Step 3. Repeat from 1 to q (q > 1, integer)
Step 3.1. Evolve the system only through H

(0)
Int , over τ /2q

Step 3.2. Evolve the system only through HKep, over τ /q
Step 3.3. Evolve the system only through H

(0)
Int , over τ /2q

Step 4. Evolve the system only through H
(1)
Int , over τ /2

Step 5. Evolve the system only through HSun, over τ /2

When rik ≥ Rl, ik (no close encounters), H (0)
Int = 0 and step 3 reduces

to a single evolution of HKep over τ . On the other hand, when rik <

Rl + 1, ik (close encounter), H
(1)
Int = 0, and step 3 effectively performs

the symplectic integration using a smaller time step τ /q. The above
sequence can be represented as:

LD - K(1)︸ ︷︷ ︸ -

(
K(0)-D-K(0)︸ ︷︷ ︸

)q

- K(1) - LD︸ ︷︷ ︸
step τ step τ/q step τ

This strategy can be recursively extended to an arbitrary sequence
of weight functions for radii R1, ik > R2, ik > . . . > Rn, ik > Rn + 1, ik,
associating smaller and smaller time steps to each weight function.
In SYMBA, Rn + 1, ik is usually set to be of the order of the planetary
radii, and R1, ik is of the order of a few Hill radii.

2.2 ISYMBA

In order to apply the above concepts to develop ISYMBA, we consider
three different categories of bodies:

(i) GPs: represented by J bodies of masses μj, j = 1, . . . , J.
The positions ρj and velocities υj of these bodies are directly read
from a file, where they are stored at regular time intervals, and
are interpolated down to the desired time step.1 The GPs perturb
the other two bodies categocither amongst them, nor from other
bodies.

(ii) Terrestrial protoplanets (PPs): represented by T bodies of
masses mi ≥ mtiny, i = 1, . . . , T. The positions ri and velocities
vi of these bodies are advanced through a second-order symplectic
integrator. They feel their mutual gravitational perturbations, as well
as those from the GPs and from the terrestrial PLs. Terrestrial PPs
may also feel relativistic perturbations, if required.

(iii) Terrestrial PLs: represented by N − T bodies of masses mi

< mtiny, i = T + 1, . . . , N. The positions ri and velocities vi of
these bodies are also advanced through a second-order symplectic
integrator. They do not feel their mutual gravitational perturbations,
but they are perturbed by both the GPs and the terrestrial PPs. They
also perturb the terrestrial PPs.

As in the original SYMBA code, mtiny is a constant mass threshold,
that we set, for example, to 2 MMoon in Nesvorný et al. (2021). We
refer to the set of terrestrial PPs and PLs simply as the terrestrial
bodies.

In the following, we describe in detail the different parts of the
code. The flowchart of the algorithm is presented in Fig. 2.

1The storing cadence needs to be dense enough for the interpolation to
work properly. A cadence of 1 yr proved to be good for interpolation to
time steps of a few days. In principle, interpolation could be avoided by
using a cadence equal to the time step, but this unnecessarily increases the
file size and also makes the algorithm too slow due to the amount of I/O
operations.
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2.2.1 GPs interpolation

The positions and velocities of the GPs are obtained from a previous,
and independent, simulation of the migration of these planets by
interaction with a transneptunian disc of PLs (e.g. Nesvorný &
Morbidelli 2012; Deienno et al. 2018). The output of this simulation,
i.e. heliocentric positions and velocities (or heliocentric orbital
elements) of the GPs, as well as their masses and the Sun mass,
are stored in a file at 1 yr intervals. The masses are not necessarily
constant during such evolution, since the planets and the Sun may
accrete PLs while migrating and grow in mass.

Let ρb,υb, μb be the position, velocity, and mass of a given GP at
time tb, and ρe, υe, μe the corresponding values at a posterior time
te. Let also Mb and Me the corresponding masses of the Sun. Assume
that we want to interpolate this trajectory over a time step τ = (te −
tb)/n. The interpolation method consists of the following steps

Step 1. Advance ρb, υb from tb to te along a Keplerian orbit,
considering the central mass Mb + μb, to obtain the sequence of
values ρ

(i)
b , υ

(i)
b , for times ti = tb + iτ , i = 0, . . . , n.

Step 2. Recede ρe,υe from te to tb along a Keplerian orbit,
considering the central mass Me + μe, to obtain the sequence of
values ρ(j )

e ,υ (j )
e , for times tj = te − jτ , j = 0, . . . , n.

Step 3. Compute the interpolated values at time tb ≤ tk ≤ te

through a weighted average:

ρk = (1 − wk)ρ(k)
b + wkρ

(n−k)
e

υk = (1 − wk)υ(k)
b + wkυ

(n−k)
e

μk = (1 − wk)μb + wkμe

Mk = (1 − wk)Mb + wkMe (7)

where wk = k/n, k = 0, . . . , n.

We recall that these interpolated coordinates are heliocentric.
A similar interpolation strategy was already implemented in the
SWIFT RMVS3 integrator to deal with encounters of test particles
to massive bodies (Levison & Duncan 1993), and the corresponding
subroutine has been adapted with the necessary modifications to
account for mass changes.

The interpolation of a GP that disappears from the system, either
by escaping or by merging to another giant, can be performed only
until the last registry of that planet stored in the file. In such case, since
the orbits are stored at 1 yr intervals, we loose only a few months of
evolution of the giant that disappears. This is not expected to have any
significant influence on the evolution of the target population over
million years. Moreover, in the case of a merging between two GPs,
one giant disappears but another has its mass increased. This latter
giant will be properly interpolated since the interpolation scheme
takes into account any variation of the planet’s mass.

It is worth noting that the symplectic algorithm described in the
next sections is independent of the particular interpolation scheme.
Other interpolation routines, different than the one presented here,
can be applied with the same result.

2.2.2 Terrestrial bodies integration

The key contribution to the development of the algorithm consists in
the second-order symplectic integrator to advance the orbits of the
terrestrial bodies over a time step τ . This is constituted by a specific
sequence of Lie series, applied to a non autonomous Hamiltonian of
the form:

H (r, p′, t) = HKep + HPert + HJov + HSun (8)

where, again, ri , p′
i are the Poincaré canonical coordinates. The

Hamiltonian is time-dependent though the heliocentric positions
ρj and the barycentric momenta (velocities) π ′

j = μjυ
′
j of the

GPs, which are computed from the interpolated heliocentric values
(Section 2.2.1). It is worth noting that the barycentric momenta p′, π ′

are referred to the centre of mass of the whole system, i.e. considering
the terrestrial bodies and the GPs altogether.

The different terms of the Hamiltonian are:

HKep(r, p′) =
N∑

i=1

(∣∣p′
i

∣∣2

2mi

− GMmi

|ri |

)
(9)

that represents the two-body motion of the terrestrial bodies around
the Sun, of mass M,

HPert(r) = −
T −1∑
i=1

N∑
k=i+1

Gmimk

|ri − rk| (10)

which is the mutual gravitational perturbation amongst the terrestrial
bodies,

HJov(r, t) = −
N∑

i=1

J∑
j=1

Gmiμj∣∣ri − ρj (t)
∣∣ (11)

that gives the direct gravitational perturbation of the GPs on the
terrestrial bodies, and

HSun(p′, t) = 1

2M

∣∣∣∣∣∣
N∑

i=1

p′
i +

J∑
j=1

π ′
j (t)

∣∣∣∣∣∣
2

(12)

that represents the linear momentum of the Sun around the centre of
mass of the whole system.

The detailed sequence of operations for a single time-step integra-
tion, from t to t + τ , is as follows:

Step 1. Start with the heliocentric positions and velocities r, v
of all the terrestrial bodies, obtained from the previous time step, as
well as the heliocentric positions and velocities ρ, υ interpolated for
the GPs, at time t.

Step 2. Calculate the heliocentric acceleration aR on the terrestrial
PPs due to relativistic corrections (Quinn, Tremaine & Duncan
1991):

aR,i = GM

c2 |ri |3
(

4 ri · vi vi − vi · vi ri + 4M
ri

|ri |
)

, i = 1, . . . , T

(13)

Step 3. Apply a kick, over τ /2, in the heliocentric velocities v of
the terrestrials PPs due to the relativistic acceleration correction:

vi ←− vi + τ

2
aR,i , i = 1, . . . , T (14)

Step 4. Convert the heliocentric velocities v, υ of all bodies to
barycentric v′, υ ′, with respect to the centre of mass of the whole
system:

V′ = −
∑N

i=1 mivi + ∑J

j=1 μjυj

M + ∑N

i=1 mi + ∑J

j=1 μj

v′
i = vi + V′, i = 1, . . . , N

υ ′
j = υj + V′, j = 1, . . . , J (15)

Step 5. Compute the heliocentric accelerations aJ on the terrestrial
bodies due to the GPs:

aJ,i = −
J∑

j=1

Gμj

ri − ρj∣∣ri − ρj

∣∣3 , i = 1, . . . , N (16)
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Step 6. Apply a kick, over τ /2, in the barycentric velocities v′ of
the terrestrial bodies due to these accelerations:

v′
i ←− v′

i + τ

2
aJ,i , i = 1, . . . , N (17)

Step 7. Perform a LD, over τ /2, of the heliocentric positions
r of the terrestrial bodies due to the GPs contribution to the Sun
momentum:

ri ←− ri + τ

2M

J∑
j=1

μjυ
′
j , i = 1, . . . , N (18)

Step 8. Perform a LD, over τ /2, of the heliocentric positions r
of the terrestrial bodies due to their own contribution to the Sun
momentum:

ri ←− ri + τ

2M

N∑
k=1

mkv′
k, i = 1, . . . , N (19)

Step 9. Compute the heliocentric mutual accelerations aT of the
terrestrial PPs and PLs:

aT,i = −
N∑

k=i+1

Gmk

ri − rk

|ri − rk|3
, i = 1, . . . , T

aT,k = −
T∑

i=1

Gmi

rk − ri

|rk − ri |3
, k = T + 1, . . . , N (20)

Step 10. Apply a kick, over τ /2, in the barycentric velocities v′

of the terrestrial bodies due to these accelerations:

v′
i ←− v′

i + τ

2
aT,i , i = 1, . . . , N (21)

Step 11. Drift the heliocentric positions r and barycentric ve-
locities v′ of the terrestrial PPs and PLs along the Keplerian orbits
generated by the Hamiltonian HKep (equation 9), over a full time step
τ

Step 12. Recompute the heliocentric mutual accelerations aT of
the terrestrial bodies (equation 20)

Step 13. Apply a kick, over τ /2, in the barycentric velocities v′

of the terrestrial bodies due to these accelerations (equation 21)
Step 14. Perform a LD, over τ /2, of the heliocentric positions

r of the terrestrial bodies due to their own contribution to the Sun
momentum (equation 19)

Step 15. Convert the heliocentric velocities υ of the GPs at time t
+ τ to barycentric υ ′, with respect to the centre of mass of the whole
system:

V′ = −
∑N

i=1 miv′
i + ∑J

j=1 μjυj

M + ∑J

j=1 μj

υ ′
j = υj + V′, j = 1, . . . , J (22)

Step 16. Perform a LD, over τ /2, of the heliocentric positions
r of the terrestrial bodies due to the GPs contribution to the Sun
momentum (equation 18)

Step 17. Recompute the heliocentric accelerations aJ on the
terrestrial bodies due to the GPs (equation 16)

Step 18. Apply a kick, over τ /2, in the barycentric velocities v′

of the terrestrial bodies due to these accelerations (equation 17)
Step 19. Convert back the barycentric velocities v′ of the terrestrial

bodies to heliocentric v:

V′ = −
∑N

i=1 miv′
i + ∑J

j=1 μjυ
′
j

M

vi = v′
i − V′, i = 1, . . . , N (23)

Step 20. Recalculate the heliocentric acceleration aR on the
terrestrial PPs due to relativistic corrections (equation 13)

Step 21. Apply a kick, over τ /2, in the heliocentric velocities v
of the terrestrials PPs due to the relativistic acceleration correction
(equation 14)

Step 22. Return to step 2.

At variance with the standard SYMBA code, which uses a LD - K -
D - K - LD sequence, ISYMBA uses a KJ - LDJ - LDT - KT - DT - KT

- LDT - LDJ - KJ sequence, where the sub-indices J,T refer to jovian
and terrestrial, respectively, with an additional outer KR sequence for
relativistic corrections, if required. This specific sequence has three
advantages over other possible sequences:

(i) The GPs perturbations (equation 16) do not need to be recom-
puted at the beginning of each time step; they can be recovered from
the final values of the previous time step.

(ii) If relativistic corrections are not accounted for, there is no need
to recompute the barycentric velocities at the beginning of each time
step (equation 15); they can be recovered from the final values of the
previous time step.

(iii) The innermost LDT - KT - DT - KT - LDT sequence (steps
8–14), which treats the interactions amongst the terrestrial bodies
solely, could be executed by the standard SYMBA algorithm.

2.2.3 Treatment of close encounters amongst terrestrial bodies

Close encounters amongst terrestrial PPs, or between terrestrial PPs
and PLs, are manipulated by ISYMBA using the same strategy of
SYMBA, i.e. by splitting the potential term (equation 10) as:

HPert(r) = H
(0)
Pert + ∑n

s=1 H
(s)
Pert (24)

H
(0)
Pert = −∑T −1

i=1

∑N

k=i+1
Gmimk

rik

∏n

l=1

(
1 − wl,ik

)
(25)

H
(s)
Pert = −∑T −1

i=1

∑N

k=i+1
Gmimk

rik
ws,ik

∏s−1
l=1

(
1 − wl,ik

)
(26)

where the wl, ik are given by equation (6). The propagation of
the orbits of any two bodies involved in an encounter during the
innermost LDT-KT-DT-KT-LDT sequence (steps 8–14), is carried out
recursively through the nested application of a KT-DT-KT sequence to

the Hamiltonian
(((

HKep + H
(0)
Pert

)
+ H

(1)
Pert

)
+ . . .

)
+ H

(n)
Pert, using

smaller and smaller time steps τ l = τ /3l, l = 1, . . . , n.
For this stage, we use the original SYMBA subroutines, with little

modifications. Bodies are always merged whenever they reach the
last stage of the recursion and get closer than Rn + 1, ik.

2.2.4 Treatment of close encounters between terrestrial
bodies and GPs

Close encounters with GPs are not properly manipulated by ISYMBA.
The application of a splitting strategy to the term HJov (equation 11)
would demand additional interpolations of the GPs orbits, down to
smaller and smaller time steps. This would also require significant
changes to the standard SYMBA recursive subroutines, which turns to
be a quite complex task. Therefore, we leave this implementation to
a future work.

Currently, the way ISYMBA deals with such close encounters is to
keep tracking the distances between the PPs/PLs and the GPs, and
discard the former when they get closer to a GP than the sum of
their individual Hill radii. This solution proved to be adequate for our
purposes, since the disc of terrestrial bodies is interior to Jupiter’s
orbit. Thus, we may expect that close encounters of PLs with the
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ISYMBA 4863

Figure 3. Comparison between the output from SYMBA (black) and ISYMBA (over-plotted in magenta) for the orbital elements of planet Mercury, over 1 My of
evolution, in the 4G4T model (see text for the simulation details): a, semimajor axis, e eccentricity, I inclination, and � longitude of perihelion. The smaller
panels show the relative differences (in green), except for � that shows the absolute difference.

Table 1. Maximum differences in the orbital elements of the terrestrial
planets, over 1 My, for the validation test using the 4G4T model (see text).

δa/a δe/e δI/I δ� (◦)

Mercury 1.5 × 10−6 9 × 10−5 4 × 10−5 6 × 10−3

Venus 2.5 × 10−5 6 × 10−3 2 × 10−3 2 × 10−1

Earth 4 × 10−5 1.5 × 10−2 6 × 10−3 5 × 10−1

Mars 3 × 10−5 1.5 × 10−3 2 × 10−4 4 × 10−2

GPs will be rare, and they eventually will affect only the outer edge
of the disc. In particular, using the results of Nesvorný et al. (2021),
we verified that, when the disc extends up to 4 au with a radial
surface density profile �(r) = r−1, less than 30 per cent of the PLs
experienced close encounters with Jupiter during the simulations.

2.2.5 Treatment of small perihelion passages

The ISYMBA code does not properly treat the HSun term increase
(equation 12) when a terrestrial body experiences a small perihelion

passage or get too close to the Sun. This limitation also exists in the
standard SYMBA code. In such cases, the code relies only in the setup
of a sufficiently small time step to resolve the perihelion passage
without loosing too much precision. In Nesvorný et al. (2021), we
setup a time step τ = 3–7 d, which proved to be good enough in that
application. Bodies are discarded whenever they reach heliocentric
or perihelion distances smaller than a given threshold, set by the user.

2.2.6 Symplecticity and energy conservation

The symplecticity of ISYMBA is guaranteed by the conservation of
the corresponding surrogate Hamiltonian:

H = HKep + HPert + HJov + HSun

−
n∑

i=0

τ 2
i

12

[[
HKep , HPert,i

]
, HKep + 1

2
HPert,i +

n∑
j=i+1

HPert,j

]

− τ 2
0

12

[[
HKep , HSun

]
, HKep + 1

2
HSun

]
− τ 2

0

12

[[
HKep , HJov

]
, HKep + 1

2
HJov

]
+ O(τ 4) (27)
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Figure 4. Comparison between the total energy of the system from SYMBA (black) and from ISYMBA (magenta), in the 4G4T model (see text). Since the ISYMBA

Hamiltonian is non autonomous, the energy displays oscillations with amplitude <10−5, with respect to the SYMBA energy.

where [,] represents the Lagrange brackets. In practice, the total
energy can be computed as the sum of the barycentric kinetic and
potential energies, taking into account all the three categories of
bodies in the system:

E = 1

2
M
∣∣V′∣∣2 +

N∑
i=1

1

2
mi

∣∣v′
i

∣∣2 +
J∑

j=1

1

2
μj

∣∣υ ′
j

∣∣2

−
N∑

i=1

GMmi∣∣ri

∣∣ −
T −1∑
i=1

N∑
k=i+1

Gmimk∣∣ri − rk

∣∣ −
J∑

j=1

GMμj∣∣ρj

∣∣
−

J−1∑
j=1

J∑
k=j+1

Gμjμk∣∣ρj − ρk

∣∣ −
N∑

i=1

J∑
j=1

Gmiμj∣∣ri − ρj

∣∣ (28)

It is worth recalling that in ISYMBA, the model Hamiltonian is non-
autonomous. Therefore, the energy is not expected to be constant,
but it should display periodic oscillations with bounded amplitude.

2.3 Validation tests

The ISYMBA algorithm has been validated as follows. We consider a
system consisting of J GPs and T terrestrial planets, and perform a
simulation over 1 My using the standard SYMBA, i.e. allowing for all
the planets to be mutually perturbed. The output (orbital elements)
of this simulation for the GPs is stored in a file every 1 yr, while
the output for the terrestrial planets is stored in a separate file every
1000 yr. Then, we repeat the simulation using ISYMBA, with the same
initial conditions for the terrestrial planets, and interpolating the GPs’
orbits from the ones previously stored. The output of this simulation
is recorded every 1000 yr, and it is directly compared to the previous

output from SYMBA. In all the simulations, we check that the total
energy of the system, computed from equation (28), is well behaved.

We apply the above validation test to two different systems. The
first one is the present Solar system, with four terrestrial and four GPs.
Initial conditions are taken from the JPL Ephemerides. Relativistic
perturbations are not taken into account, and there are no close
encounters between the planets. We call this the 4G4T model.

The second system is a fictitious system composed of five GPs and
20 terrestrial bodies. The GPs are Jupiter, Saturn, and three ice giants,
initially in a mutual resonant and compact orbital configuration (see
DeSouza et al. 2021, for example). The 20 terrestrial bodies are
represented by planetary embryos with a total mass of 5 M⊕. These
bodies are uniformly distributed in a very narrow annulus, between
0.95 and 1.05 au, with eccentricities <0.01 and inclinations <0.001.
The idea of this setup is to force close encounters between the
terrestrial bodies, in order to test the behaviour of ISYMBA under
such conditions. Relativistic perturbations are not taken into account
either. We call this the 5G20T model.

Fig. 3 shows a result from the 4G4T model. The panels display
the evolution of the orbital elements of Mercury from the ISYMBA

simulation (in magenta), and the SYMBA simulation (in black, but not
visible due to overlapping). The differences between the two codes
are shown in green. The behaviour is similar for the other terrestrial
planets. Table 1 summarizes the maximum relative differences found
in this validation test. The total energy of the system behaves as
expected (Fig. 4), and the differences between the two codes in no
larger than 10−5 over the whole time span.

In the 5G20T model, reproducing the exact evolution of the system
with ISYMBA is not feasible, because the system is chaotic, and the
small differences caused by the many collisions/mergers produce
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Figure 5. Comparison between the total energy of the system from SYMBA (black) and from ISYMBA (magenta), in the 5G20T model (see text). Again, the
ISYMBA energy displays oscillations with amplitude <2 × 10−5, with respect to the SYMBA energy.

quantitatively different results. We verify, however, that the total
energy of the system is well behaved, as shown in Fig. 5, with a
bounded amplitude for ISYMBA that is only twice than in the 4G4T
model without collisions. Although the number of collisions recorded
in SYMBA and ISYMBA is not the same, the latter is able to reproduce
quite well the first few collisions in the simulation. An example
of this is shown in Fig. 6. We note that the merger happens at
slightly different times in each case. Such small differences quickly
propagate, and in a few tens of years each code starts to produce its
own set of collisions, not matching each other anymore.

The above validation tests allow us to conclude that ISYMBA shows
the desired behaviour in terms of simulation results.

3 PARALLELIZATION STRATEGY

Aiming to improve the performance of ISYMBA, we have imple-
mented multithreading parallelization using OPENMP. The following
discussion does not intend to be comprehensive, and it is only
applicable to the specific test models described below. Our aim is to
provide some clues about the possible best strategies to parallelize our
code, which eventually can be also taken into account to parallelize
SYMBA itself.

There is no unique strategy to parallelize a code, and sometimes
the best approach is obtained by first redesigning the original serial
code. Here, however, the idea is to adopt a parallelization strategy
that keeps the original serial structure of the SYMBA subroutines with
minimum or no changes.

The following discussion is based on two different test models:
one considering 100 terrestrial PPs and 1000 PLs (e.g. Nesvorný

et al. 2021), which we refer to as m100n1000 model, and another
considering 10 PPs and 10 000 PLs, which we called m10n10000
model. In both cases, the number of GPs is 5. In all the tests, we
use the same total time span and the same time step. We also keep
the amount of I/O operations to the minimum required. We define
the normalized execution time as the ratio Tpar/Tser, where Tser is the
total execution time of the serial code, without any parallelization,
and Tpar is the execution time of the parallelized code. All the tests
have been performed in Intel Core i7 processors, using GNU FORTRAN.

There are basically two types of structures that can be parallelized
in ISYMBA using OPENMP:

(i) the operations that require double loops over the terrestrial
bodies, like the mutual acceleration calculations (equations 13, 16,
and 20), the check for close encounters, and the energy computation
(equation 28), and

(ii) the calculations that require single loops over the bodies,
including the Keplerian drifts, the LD, the kicks, the coordinate
changes, the loops to deal with interpolation of the GPs, etc.

We will discuss each structure separately.

3.1 Single loops

Paralellization of the single loops within the code has to be carefully
evaluated, because it may provide little or no improvement of the
execution speed. For example, in the LD - K - D - K - LD inte-
gration scheme, the Keplerian drifts are, in theory, the second most
CPU-expensive step, after the accelerations calculation. However,
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Figure 6. Detail of an encounter/merger between two terrestrial bodies in the 5G20T model. The SYMBA simulation is shown in black, and ISYMBA in magenta.
Full and dashed lines identify each of the bodies, respectively.

in our simulations, the Keplerian drifts take between 5 per cent
and 20 per cent of the total run time in a serial run. Therefore,
their parallelization might not contribute significantly to improve
performance.

We have verified that, in the m100n1000 simulations, paralleliza-
tion of the single loops makes the code only ∼1.2 times faster, but
in the m10n10000 simulations, it becomes ∼2.3 times faster.

We have also verified that parallelization of any loop within the
recursive integration of close encounters (see Section 2.2.3) must
be avoided, since it may slow down execution speed by a factor of
2. This concerns, in particular, the subroutines SYMBA7 STEP RECUR

and SYMBA7 KICK. We note, however, that there is no actual need to
parallelize any part of the recursion, because it only affects the pair
of bodies involved in an encounter, and these are not too frequent per
time step.

After several experiments, we conclude that multithreading par-
allelization has to focus on the double loops, as explained below,
and on the single loops that performs the most complex calculations,
like the Keplerian drifts, the loops to deal with the interpolation of
the GPs, the relativistic corrections, the oblateness potential, and the
discard subroutines.

3.2 Double loops

The strategy applied for parallelization of the double loops influences
the execution speed. A double loop to compute the accelerations
between PPs and PLs typically reads:
do i from 1 to m

do j from i + 1 to n
a(j) = a(j) + accel ji
a(i) = a(i) + accel ij

end do
end do
where m is the number of self gravitating PPs, n is the number of

PLs, and a() is an array of dimension n. In this case, one possible
strategy is to parallelize the outer loop overi, and the other possibility
is to parallelize the inner loop over j.

Fig. 7 shows the normalized execution time for the different models
and strategies, as a function of the number of threads. The solid lines
correspond to the case in which the outer loops are parallelized,
while the dashed lines correspond to the case in which the inner
loops are parallelized. We note that, when using few threads, there is
no significant difference between one strategy or the other, although
parallelization of the outer loops performs a bit better. On the other
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Figure 7. The performance of ISYMBA for different multithreading parallelization strategies. The solid lines correspond to the parallelization of the outer loop
in double loops, while the dashed lines correspond to the parallelization of the inner loop. The colours identify the test models with different numbers of PPs
(m) and PLs (n). The execution time has been normalized with respect to the serial execution time (see text for details). The green dotted line represents a linear
trend, for reference purposes.

hand, when using many threads, each strategy has advantages over
the other depending on the values of m and n.

For the simulations of the m100n1000 model, parallelization of the
outer loops provides ∼1.5 times faster execution times with respect
to the parallelization of the inner loops. On the other hand, for the
simulations of the m10n10000 model, it is the parallelization of the
inner loops that provides ∼1.3 times faster execution times than
parallelizing the outer loops.2

This behaviour may be related to the fact that initialization
and execution of a parallel loop involve several tasks, besides the
calculations within the loop, which may produce some latency in
the execution. When parallelizing an inner loop, the parallel threads
have to be initialized/allocated for every iteration of the outer loop,
and this may cause a lot of latency. If the outer loop is small, as in m
= 10, the latency does not have a big impact. However, if the outer
loop is bigger, as in m = 100, the impact of latency may become
significant.

Parallelization of the outer loops has a couple of additional
peculiarities that should be taken into account. The first one refers
to the fact that the number of iterations over j, in the inner loop, is
smaller for largeri. This means that the amount of work to be done by
each iteration over i is different. In such case, the way of scheduling
the iterations may be relevant. One possibility is choosing between
a cyclic or a block scheduling. A cyclic schedule distributes the loop
iterations in a round-robin fashion amongst the available threads, and
should provide better performance in our case. The other possibility

2These tests have been performed using eight threads.

is choosing between static or dynamic scheduling. We have verified
that using a combination of static and cyclic scheduling provides
∼1.1 times faster execution times than either a dynamic or block
scheduling.

The second peculiarity in parallelizing the outer loops refers to
the occurrence of data racing conditions over the accelerations array
a(). A racing condition arises when two or more processes running
in different threads try to modify or update the same variable at
the same time. Fortunately, FORTRAN OPENMP has the capability of
performing array reduction, which allows to properly update a(),
avoiding data race.

Although multithreading parallelization, in our case, may improve
execution speed by a factor of 3–6, the improvement is not linear with
the number of threads and, as shown in Fig. 7, it tends to stabilize
for � 10 threads.

4 C O N C L U S I O N S

In this work, we described how to implement the necessary modifi-
cations to embed an orbit interpolation scheme into the symplectic
planetary N-body integrator SYMBA. Our algorithm, named ISYMBA,
allows to study the effects of a prescribed evolution of a set of planets
on a target population of massive bodies, which interact with each
other through close encounters.

ISYMBA is a very useful code to accurately evaluate the effects
of planetary instabilities on the accretion processes in the terrestrial
planets region. These include the growth of protoplanetary embryos
(Nesvorný et al. 2021), the Moon-forming impact (DeSouza et al.
2021), and the origin of Mercury.
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Although ISYMBA has been primarily developed and implemented
to study terrestrial planet formation, the method presented here could
be easily modified to study the evolution of other populations, which
requires orbit interpolation from previously developed simulations,
while accounting for close encounters amongst massive objects.
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Gomes R., Nesvorný D., Morbidelli A., Deienno R., Nogueira E., 2018,

Icarus, 306, 319
Levison H. F., Duncan M. J., 1993, ApJ, 406, L35
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